linux/drivers/net/ns83820.c
<<
>>
Prefs
   1#define VERSION "0.23"
   2/* ns83820.c by Benjamin LaHaise with contributions.
   3 *
   4 * Questions/comments/discussion to linux-ns83820@kvack.org.
   5 *
   6 * $Revision: 1.34.2.23 $
   7 *
   8 * Copyright 2001 Benjamin LaHaise.
   9 * Copyright 2001, 2002 Red Hat.
  10 *
  11 * Mmmm, chocolate vanilla mocha...
  12 *
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 *
  24 * You should have received a copy of the GNU General Public License
  25 * along with this program; if not, write to the Free Software
  26 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  27 *
  28 *
  29 * ChangeLog
  30 * =========
  31 *      20010414        0.1 - created
  32 *      20010622        0.2 - basic rx and tx.
  33 *      20010711        0.3 - added duplex and link state detection support.
  34 *      20010713        0.4 - zero copy, no hangs.
  35 *                      0.5 - 64 bit dma support (davem will hate me for this)
  36 *                          - disable jumbo frames to avoid tx hangs
  37 *                          - work around tx deadlocks on my 1.02 card via
  38 *                            fiddling with TXCFG
  39 *      20010810        0.6 - use pci dma api for ringbuffers, work on ia64
  40 *      20010816        0.7 - misc cleanups
  41 *      20010826        0.8 - fix critical zero copy bugs
  42 *                      0.9 - internal experiment
  43 *      20010827        0.10 - fix ia64 unaligned access.
  44 *      20010906        0.11 - accept all packets with checksum errors as
  45 *                             otherwise fragments get lost
  46 *                           - fix >> 32 bugs
  47 *                      0.12 - add statistics counters
  48 *                           - add allmulti/promisc support
  49 *      20011009        0.13 - hotplug support, other smaller pci api cleanups
  50 *      20011204        0.13a - optical transceiver support added
  51 *                              by Michael Clark <michael@metaparadigm.com>
  52 *      20011205        0.13b - call register_netdev earlier in initialization
  53 *                              suppress duplicate link status messages
  54 *      20011117        0.14 - ethtool GDRVINFO, GLINK support from jgarzik
  55 *      20011204        0.15    get ppc (big endian) working
  56 *      20011218        0.16    various cleanups
  57 *      20020310        0.17    speedups
  58 *      20020610        0.18 -  actually use the pci dma api for highmem
  59 *                           -  remove pci latency register fiddling
  60 *                      0.19 -  better bist support
  61 *                           -  add ihr and reset_phy parameters
  62 *                           -  gmii bus probing
  63 *                           -  fix missed txok introduced during performance
  64 *                              tuning
  65 *                      0.20 -  fix stupid RFEN thinko.  i am such a smurf.
  66 *      20040828        0.21 -  add hardware vlan accleration
  67 *                              by Neil Horman <nhorman@redhat.com>
  68 *      20050406        0.22 -  improved DAC ifdefs from Andi Kleen
  69 *                           -  removal of dead code from Adrian Bunk
  70 *                           -  fix half duplex collision behaviour
  71 * Driver Overview
  72 * ===============
  73 *
  74 * This driver was originally written for the National Semiconductor
  75 * 83820 chip, a 10/100/1000 Mbps 64 bit PCI ethernet NIC.  Hopefully
  76 * this code will turn out to be a) clean, b) correct, and c) fast.
  77 * With that in mind, I'm aiming to split the code up as much as
  78 * reasonably possible.  At present there are X major sections that
  79 * break down into a) packet receive, b) packet transmit, c) link
  80 * management, d) initialization and configuration.  Where possible,
  81 * these code paths are designed to run in parallel.
  82 *
  83 * This driver has been tested and found to work with the following
  84 * cards (in no particular order):
  85 *
  86 *      Cameo           SOHO-GA2000T    SOHO-GA2500T
  87 *      D-Link          DGE-500T
  88 *      PureData        PDP8023Z-TG
  89 *      SMC             SMC9452TX       SMC9462TX
  90 *      Netgear         GA621
  91 *
  92 * Special thanks to SMC for providing hardware to test this driver on.
  93 *
  94 * Reports of success or failure would be greatly appreciated.
  95 */
  96//#define dprintk               printk
  97#define dprintk(x...)           do { } while (0)
  98
  99#include <linux/module.h>
 100#include <linux/moduleparam.h>
 101#include <linux/types.h>
 102#include <linux/pci.h>
 103#include <linux/dma-mapping.h>
 104#include <linux/netdevice.h>
 105#include <linux/etherdevice.h>
 106#include <linux/delay.h>
 107#include <linux/workqueue.h>
 108#include <linux/init.h>
 109#include <linux/ip.h>   /* for iph */
 110#include <linux/in.h>   /* for IPPROTO_... */
 111#include <linux/compiler.h>
 112#include <linux/prefetch.h>
 113#include <linux/ethtool.h>
 114#include <linux/timer.h>
 115#include <linux/if_vlan.h>
 116#include <linux/rtnetlink.h>
 117#include <linux/jiffies.h>
 118
 119#include <asm/io.h>
 120#include <asm/uaccess.h>
 121#include <asm/system.h>
 122
 123#define DRV_NAME "ns83820"
 124
 125/* Global parameters.  See module_param near the bottom. */
 126static int ihr = 2;
 127static int reset_phy = 0;
 128static int lnksts = 0;          /* CFG_LNKSTS bit polarity */
 129
 130/* Dprintk is used for more interesting debug events */
 131#undef Dprintk
 132#define Dprintk                 dprintk
 133
 134/* tunables */
 135#define RX_BUF_SIZE     1500    /* 8192 */
 136#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
 137#define NS83820_VLAN_ACCEL_SUPPORT
 138#endif
 139
 140/* Must not exceed ~65000. */
 141#define NR_RX_DESC      64
 142#define NR_TX_DESC      128
 143
 144/* not tunable */
 145#define REAL_RX_BUF_SIZE (RX_BUF_SIZE + 14)     /* rx/tx mac addr + type */
 146
 147#define MIN_TX_DESC_FREE        8
 148
 149/* register defines */
 150#define CFGCS           0x04
 151
 152#define CR_TXE          0x00000001
 153#define CR_TXD          0x00000002
 154/* Ramit : Here's a tip, don't do a RXD immediately followed by an RXE
 155 * The Receive engine skips one descriptor and moves
 156 * onto the next one!! */
 157#define CR_RXE          0x00000004
 158#define CR_RXD          0x00000008
 159#define CR_TXR          0x00000010
 160#define CR_RXR          0x00000020
 161#define CR_SWI          0x00000080
 162#define CR_RST          0x00000100
 163
 164#define PTSCR_EEBIST_FAIL       0x00000001
 165#define PTSCR_EEBIST_EN         0x00000002
 166#define PTSCR_EELOAD_EN         0x00000004
 167#define PTSCR_RBIST_FAIL        0x000001b8
 168#define PTSCR_RBIST_DONE        0x00000200
 169#define PTSCR_RBIST_EN          0x00000400
 170#define PTSCR_RBIST_RST         0x00002000
 171
 172#define MEAR_EEDI               0x00000001
 173#define MEAR_EEDO               0x00000002
 174#define MEAR_EECLK              0x00000004
 175#define MEAR_EESEL              0x00000008
 176#define MEAR_MDIO               0x00000010
 177#define MEAR_MDDIR              0x00000020
 178#define MEAR_MDC                0x00000040
 179
 180#define ISR_TXDESC3     0x40000000
 181#define ISR_TXDESC2     0x20000000
 182#define ISR_TXDESC1     0x10000000
 183#define ISR_TXDESC0     0x08000000
 184#define ISR_RXDESC3     0x04000000
 185#define ISR_RXDESC2     0x02000000
 186#define ISR_RXDESC1     0x01000000
 187#define ISR_RXDESC0     0x00800000
 188#define ISR_TXRCMP      0x00400000
 189#define ISR_RXRCMP      0x00200000
 190#define ISR_DPERR       0x00100000
 191#define ISR_SSERR       0x00080000
 192#define ISR_RMABT       0x00040000
 193#define ISR_RTABT       0x00020000
 194#define ISR_RXSOVR      0x00010000
 195#define ISR_HIBINT      0x00008000
 196#define ISR_PHY         0x00004000
 197#define ISR_PME         0x00002000
 198#define ISR_SWI         0x00001000
 199#define ISR_MIB         0x00000800
 200#define ISR_TXURN       0x00000400
 201#define ISR_TXIDLE      0x00000200
 202#define ISR_TXERR       0x00000100
 203#define ISR_TXDESC      0x00000080
 204#define ISR_TXOK        0x00000040
 205#define ISR_RXORN       0x00000020
 206#define ISR_RXIDLE      0x00000010
 207#define ISR_RXEARLY     0x00000008
 208#define ISR_RXERR       0x00000004
 209#define ISR_RXDESC      0x00000002
 210#define ISR_RXOK        0x00000001
 211
 212#define TXCFG_CSI       0x80000000
 213#define TXCFG_HBI       0x40000000
 214#define TXCFG_MLB       0x20000000
 215#define TXCFG_ATP       0x10000000
 216#define TXCFG_ECRETRY   0x00800000
 217#define TXCFG_BRST_DIS  0x00080000
 218#define TXCFG_MXDMA1024 0x00000000
 219#define TXCFG_MXDMA512  0x00700000
 220#define TXCFG_MXDMA256  0x00600000
 221#define TXCFG_MXDMA128  0x00500000
 222#define TXCFG_MXDMA64   0x00400000
 223#define TXCFG_MXDMA32   0x00300000
 224#define TXCFG_MXDMA16   0x00200000
 225#define TXCFG_MXDMA8    0x00100000
 226
 227#define CFG_LNKSTS      0x80000000
 228#define CFG_SPDSTS      0x60000000
 229#define CFG_SPDSTS1     0x40000000
 230#define CFG_SPDSTS0     0x20000000
 231#define CFG_DUPSTS      0x10000000
 232#define CFG_TBI_EN      0x01000000
 233#define CFG_MODE_1000   0x00400000
 234/* Ramit : Dont' ever use AUTO_1000, it never works and is buggy.
 235 * Read the Phy response and then configure the MAC accordingly */
 236#define CFG_AUTO_1000   0x00200000
 237#define CFG_PINT_CTL    0x001c0000
 238#define CFG_PINT_DUPSTS 0x00100000
 239#define CFG_PINT_LNKSTS 0x00080000
 240#define CFG_PINT_SPDSTS 0x00040000
 241#define CFG_TMRTEST     0x00020000
 242#define CFG_MRM_DIS     0x00010000
 243#define CFG_MWI_DIS     0x00008000
 244#define CFG_T64ADDR     0x00004000
 245#define CFG_PCI64_DET   0x00002000
 246#define CFG_DATA64_EN   0x00001000
 247#define CFG_M64ADDR     0x00000800
 248#define CFG_PHY_RST     0x00000400
 249#define CFG_PHY_DIS     0x00000200
 250#define CFG_EXTSTS_EN   0x00000100
 251#define CFG_REQALG      0x00000080
 252#define CFG_SB          0x00000040
 253#define CFG_POW         0x00000020
 254#define CFG_EXD         0x00000010
 255#define CFG_PESEL       0x00000008
 256#define CFG_BROM_DIS    0x00000004
 257#define CFG_EXT_125     0x00000002
 258#define CFG_BEM         0x00000001
 259
 260#define EXTSTS_UDPPKT   0x00200000
 261#define EXTSTS_TCPPKT   0x00080000
 262#define EXTSTS_IPPKT    0x00020000
 263#define EXTSTS_VPKT     0x00010000
 264#define EXTSTS_VTG_MASK 0x0000ffff
 265
 266#define SPDSTS_POLARITY (CFG_SPDSTS1 | CFG_SPDSTS0 | CFG_DUPSTS | (lnksts ? CFG_LNKSTS : 0))
 267
 268#define MIBC_MIBS       0x00000008
 269#define MIBC_ACLR       0x00000004
 270#define MIBC_FRZ        0x00000002
 271#define MIBC_WRN        0x00000001
 272
 273#define PCR_PSEN        (1 << 31)
 274#define PCR_PS_MCAST    (1 << 30)
 275#define PCR_PS_DA       (1 << 29)
 276#define PCR_STHI_8      (3 << 23)
 277#define PCR_STLO_4      (1 << 23)
 278#define PCR_FFHI_8K     (3 << 21)
 279#define PCR_FFLO_4K     (1 << 21)
 280#define PCR_PAUSE_CNT   0xFFFE
 281
 282#define RXCFG_AEP       0x80000000
 283#define RXCFG_ARP       0x40000000
 284#define RXCFG_STRIPCRC  0x20000000
 285#define RXCFG_RX_FD     0x10000000
 286#define RXCFG_ALP       0x08000000
 287#define RXCFG_AIRL      0x04000000
 288#define RXCFG_MXDMA512  0x00700000
 289#define RXCFG_DRTH      0x0000003e
 290#define RXCFG_DRTH0     0x00000002
 291
 292#define RFCR_RFEN       0x80000000
 293#define RFCR_AAB        0x40000000
 294#define RFCR_AAM        0x20000000
 295#define RFCR_AAU        0x10000000
 296#define RFCR_APM        0x08000000
 297#define RFCR_APAT       0x07800000
 298#define RFCR_APAT3      0x04000000
 299#define RFCR_APAT2      0x02000000
 300#define RFCR_APAT1      0x01000000
 301#define RFCR_APAT0      0x00800000
 302#define RFCR_AARP       0x00400000
 303#define RFCR_MHEN       0x00200000
 304#define RFCR_UHEN       0x00100000
 305#define RFCR_ULM        0x00080000
 306
 307#define VRCR_RUDPE      0x00000080
 308#define VRCR_RTCPE      0x00000040
 309#define VRCR_RIPE       0x00000020
 310#define VRCR_IPEN       0x00000010
 311#define VRCR_DUTF       0x00000008
 312#define VRCR_DVTF       0x00000004
 313#define VRCR_VTREN      0x00000002
 314#define VRCR_VTDEN      0x00000001
 315
 316#define VTCR_PPCHK      0x00000008
 317#define VTCR_GCHK       0x00000004
 318#define VTCR_VPPTI      0x00000002
 319#define VTCR_VGTI       0x00000001
 320
 321#define CR              0x00
 322#define CFG             0x04
 323#define MEAR            0x08
 324#define PTSCR           0x0c
 325#define ISR             0x10
 326#define IMR             0x14
 327#define IER             0x18
 328#define IHR             0x1c
 329#define TXDP            0x20
 330#define TXDP_HI         0x24
 331#define TXCFG           0x28
 332#define GPIOR           0x2c
 333#define RXDP            0x30
 334#define RXDP_HI         0x34
 335#define RXCFG           0x38
 336#define PQCR            0x3c
 337#define WCSR            0x40
 338#define PCR             0x44
 339#define RFCR            0x48
 340#define RFDR            0x4c
 341
 342#define SRR             0x58
 343
 344#define VRCR            0xbc
 345#define VTCR            0xc0
 346#define VDR             0xc4
 347#define CCSR            0xcc
 348
 349#define TBICR           0xe0
 350#define TBISR           0xe4
 351#define TANAR           0xe8
 352#define TANLPAR         0xec
 353#define TANER           0xf0
 354#define TESR            0xf4
 355
 356#define TBICR_MR_AN_ENABLE      0x00001000
 357#define TBICR_MR_RESTART_AN     0x00000200
 358
 359#define TBISR_MR_LINK_STATUS    0x00000020
 360#define TBISR_MR_AN_COMPLETE    0x00000004
 361
 362#define TANAR_PS2               0x00000100
 363#define TANAR_PS1               0x00000080
 364#define TANAR_HALF_DUP          0x00000040
 365#define TANAR_FULL_DUP          0x00000020
 366
 367#define GPIOR_GP5_OE            0x00000200
 368#define GPIOR_GP4_OE            0x00000100
 369#define GPIOR_GP3_OE            0x00000080
 370#define GPIOR_GP2_OE            0x00000040
 371#define GPIOR_GP1_OE            0x00000020
 372#define GPIOR_GP3_OUT           0x00000004
 373#define GPIOR_GP1_OUT           0x00000001
 374
 375#define LINK_AUTONEGOTIATE      0x01
 376#define LINK_DOWN               0x02
 377#define LINK_UP                 0x04
 378
 379#define HW_ADDR_LEN     sizeof(dma_addr_t)
 380#define desc_addr_set(desc, addr)                               \
 381        do {                                                    \
 382                ((desc)[0] = cpu_to_le32(addr));                \
 383                if (HW_ADDR_LEN == 8)                           \
 384                        (desc)[1] = cpu_to_le32(((u64)addr) >> 32);     \
 385        } while(0)
 386#define desc_addr_get(desc)                                     \
 387        (le32_to_cpu((desc)[0]) | \
 388        (HW_ADDR_LEN == 8 ? ((dma_addr_t)le32_to_cpu((desc)[1]))<<32 : 0))
 389
 390#define DESC_LINK               0
 391#define DESC_BUFPTR             (DESC_LINK + HW_ADDR_LEN/4)
 392#define DESC_CMDSTS             (DESC_BUFPTR + HW_ADDR_LEN/4)
 393#define DESC_EXTSTS             (DESC_CMDSTS + 4/4)
 394
 395#define CMDSTS_OWN      0x80000000
 396#define CMDSTS_MORE     0x40000000
 397#define CMDSTS_INTR     0x20000000
 398#define CMDSTS_ERR      0x10000000
 399#define CMDSTS_OK       0x08000000
 400#define CMDSTS_RUNT     0x00200000
 401#define CMDSTS_LEN_MASK 0x0000ffff
 402
 403#define CMDSTS_DEST_MASK        0x01800000
 404#define CMDSTS_DEST_SELF        0x00800000
 405#define CMDSTS_DEST_MULTI       0x01000000
 406
 407#define DESC_SIZE       8               /* Should be cache line sized */
 408
 409struct rx_info {
 410        spinlock_t      lock;
 411        int             up;
 412        long            idle;
 413
 414        struct sk_buff  *skbs[NR_RX_DESC];
 415
 416        __le32          *next_rx_desc;
 417        u16             next_rx, next_empty;
 418
 419        __le32          *descs;
 420        dma_addr_t      phy_descs;
 421};
 422
 423
 424struct ns83820 {
 425        struct net_device_stats stats;
 426        u8                      __iomem *base;
 427
 428        struct pci_dev          *pci_dev;
 429        struct net_device       *ndev;
 430
 431#ifdef NS83820_VLAN_ACCEL_SUPPORT
 432        struct vlan_group       *vlgrp;
 433#endif
 434
 435        struct rx_info          rx_info;
 436        struct tasklet_struct   rx_tasklet;
 437
 438        unsigned                ihr;
 439        struct work_struct      tq_refill;
 440
 441        /* protects everything below.  irqsave when using. */
 442        spinlock_t              misc_lock;
 443
 444        u32                     CFG_cache;
 445
 446        u32                     MEAR_cache;
 447        u32                     IMR_cache;
 448
 449        unsigned                linkstate;
 450
 451        spinlock_t      tx_lock;
 452
 453        u16             tx_done_idx;
 454        u16             tx_idx;
 455        volatile u16    tx_free_idx;    /* idx of free desc chain */
 456        u16             tx_intr_idx;
 457
 458        atomic_t        nr_tx_skbs;
 459        struct sk_buff  *tx_skbs[NR_TX_DESC];
 460
 461        char            pad[16] __attribute__((aligned(16)));
 462        __le32          *tx_descs;
 463        dma_addr_t      tx_phy_descs;
 464
 465        struct timer_list       tx_watchdog;
 466};
 467
 468static inline struct ns83820 *PRIV(struct net_device *dev)
 469{
 470        return netdev_priv(dev);
 471}
 472
 473#define __kick_rx(dev)  writel(CR_RXE, dev->base + CR)
 474
 475static inline void kick_rx(struct net_device *ndev)
 476{
 477        struct ns83820 *dev = PRIV(ndev);
 478        dprintk("kick_rx: maybe kicking\n");
 479        if (test_and_clear_bit(0, &dev->rx_info.idle)) {
 480                dprintk("actually kicking\n");
 481                writel(dev->rx_info.phy_descs +
 482                        (4 * DESC_SIZE * dev->rx_info.next_rx),
 483                       dev->base + RXDP);
 484                if (dev->rx_info.next_rx == dev->rx_info.next_empty)
 485                        printk(KERN_DEBUG "%s: uh-oh: next_rx == next_empty???\n",
 486                                ndev->name);
 487                __kick_rx(dev);
 488        }
 489}
 490
 491//free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC
 492#define start_tx_okay(dev)      \
 493        (((NR_TX_DESC-2 + dev->tx_done_idx - dev->tx_free_idx) % NR_TX_DESC) > MIN_TX_DESC_FREE)
 494
 495
 496#ifdef NS83820_VLAN_ACCEL_SUPPORT
 497static void ns83820_vlan_rx_register(struct net_device *ndev, struct vlan_group *grp)
 498{
 499        struct ns83820 *dev = PRIV(ndev);
 500
 501        spin_lock_irq(&dev->misc_lock);
 502        spin_lock(&dev->tx_lock);
 503
 504        dev->vlgrp = grp;
 505
 506        spin_unlock(&dev->tx_lock);
 507        spin_unlock_irq(&dev->misc_lock);
 508}
 509#endif
 510
 511/* Packet Receiver
 512 *
 513 * The hardware supports linked lists of receive descriptors for
 514 * which ownership is transfered back and forth by means of an
 515 * ownership bit.  While the hardware does support the use of a
 516 * ring for receive descriptors, we only make use of a chain in
 517 * an attempt to reduce bus traffic under heavy load scenarios.
 518 * This will also make bugs a bit more obvious.  The current code
 519 * only makes use of a single rx chain; I hope to implement
 520 * priority based rx for version 1.0.  Goal: even under overload
 521 * conditions, still route realtime traffic with as low jitter as
 522 * possible.
 523 */
 524static inline void build_rx_desc(struct ns83820 *dev, __le32 *desc, dma_addr_t link, dma_addr_t buf, u32 cmdsts, u32 extsts)
 525{
 526        desc_addr_set(desc + DESC_LINK, link);
 527        desc_addr_set(desc + DESC_BUFPTR, buf);
 528        desc[DESC_EXTSTS] = cpu_to_le32(extsts);
 529        mb();
 530        desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
 531}
 532
 533#define nr_rx_empty(dev) ((NR_RX_DESC-2 + dev->rx_info.next_rx - dev->rx_info.next_empty) % NR_RX_DESC)
 534static inline int ns83820_add_rx_skb(struct ns83820 *dev, struct sk_buff *skb)
 535{
 536        unsigned next_empty;
 537        u32 cmdsts;
 538        __le32 *sg;
 539        dma_addr_t buf;
 540
 541        next_empty = dev->rx_info.next_empty;
 542
 543        /* don't overrun last rx marker */
 544        if (unlikely(nr_rx_empty(dev) <= 2)) {
 545                kfree_skb(skb);
 546                return 1;
 547        }
 548
 549#if 0
 550        dprintk("next_empty[%d] nr_used[%d] next_rx[%d]\n",
 551                dev->rx_info.next_empty,
 552                dev->rx_info.nr_used,
 553                dev->rx_info.next_rx
 554                );
 555#endif
 556
 557        sg = dev->rx_info.descs + (next_empty * DESC_SIZE);
 558        BUG_ON(NULL != dev->rx_info.skbs[next_empty]);
 559        dev->rx_info.skbs[next_empty] = skb;
 560
 561        dev->rx_info.next_empty = (next_empty + 1) % NR_RX_DESC;
 562        cmdsts = REAL_RX_BUF_SIZE | CMDSTS_INTR;
 563        buf = pci_map_single(dev->pci_dev, skb->data,
 564                             REAL_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 565        build_rx_desc(dev, sg, 0, buf, cmdsts, 0);
 566        /* update link of previous rx */
 567        if (likely(next_empty != dev->rx_info.next_rx))
 568                dev->rx_info.descs[((NR_RX_DESC + next_empty - 1) % NR_RX_DESC) * DESC_SIZE] = cpu_to_le32(dev->rx_info.phy_descs + (next_empty * DESC_SIZE * 4));
 569
 570        return 0;
 571}
 572
 573static inline int rx_refill(struct net_device *ndev, gfp_t gfp)
 574{
 575        struct ns83820 *dev = PRIV(ndev);
 576        unsigned i;
 577        unsigned long flags = 0;
 578
 579        if (unlikely(nr_rx_empty(dev) <= 2))
 580                return 0;
 581
 582        dprintk("rx_refill(%p)\n", ndev);
 583        if (gfp == GFP_ATOMIC)
 584                spin_lock_irqsave(&dev->rx_info.lock, flags);
 585        for (i=0; i<NR_RX_DESC; i++) {
 586                struct sk_buff *skb;
 587                long res;
 588                /* extra 16 bytes for alignment */
 589                skb = __dev_alloc_skb(REAL_RX_BUF_SIZE+16, gfp);
 590                if (unlikely(!skb))
 591                        break;
 592
 593                res = (long)skb->data & 0xf;
 594                res = 0x10 - res;
 595                res &= 0xf;
 596                skb_reserve(skb, res);
 597
 598                if (gfp != GFP_ATOMIC)
 599                        spin_lock_irqsave(&dev->rx_info.lock, flags);
 600                res = ns83820_add_rx_skb(dev, skb);
 601                if (gfp != GFP_ATOMIC)
 602                        spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 603                if (res) {
 604                        i = 1;
 605                        break;
 606                }
 607        }
 608        if (gfp == GFP_ATOMIC)
 609                spin_unlock_irqrestore(&dev->rx_info.lock, flags);
 610
 611        return i ? 0 : -ENOMEM;
 612}
 613
 614static void FASTCALL(rx_refill_atomic(struct net_device *ndev));
 615static void fastcall rx_refill_atomic(struct net_device *ndev)
 616{
 617        rx_refill(ndev, GFP_ATOMIC);
 618}
 619
 620/* REFILL */
 621static inline void queue_refill(struct work_struct *work)
 622{
 623        struct ns83820 *dev = container_of(work, struct ns83820, tq_refill);
 624        struct net_device *ndev = dev->ndev;
 625
 626        rx_refill(ndev, GFP_KERNEL);
 627        if (dev->rx_info.up)
 628                kick_rx(ndev);
 629}
 630
 631static inline void clear_rx_desc(struct ns83820 *dev, unsigned i)
 632{
 633        build_rx_desc(dev, dev->rx_info.descs + (DESC_SIZE * i), 0, 0, CMDSTS_OWN, 0);
 634}
 635
 636static void FASTCALL(phy_intr(struct net_device *ndev));
 637static void fastcall phy_intr(struct net_device *ndev)
 638{
 639        struct ns83820 *dev = PRIV(ndev);
 640        static const char *speeds[] = { "10", "100", "1000", "1000(?)", "1000F" };
 641        u32 cfg, new_cfg;
 642        u32 tbisr, tanar, tanlpar;
 643        int speed, fullduplex, newlinkstate;
 644
 645        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
 646
 647        if (dev->CFG_cache & CFG_TBI_EN) {
 648                /* we have an optical transceiver */
 649                tbisr = readl(dev->base + TBISR);
 650                tanar = readl(dev->base + TANAR);
 651                tanlpar = readl(dev->base + TANLPAR);
 652                dprintk("phy_intr: tbisr=%08x, tanar=%08x, tanlpar=%08x\n",
 653                        tbisr, tanar, tanlpar);
 654
 655                if ( (fullduplex = (tanlpar & TANAR_FULL_DUP)
 656                      && (tanar & TANAR_FULL_DUP)) ) {
 657
 658                        /* both of us are full duplex */
 659                        writel(readl(dev->base + TXCFG)
 660                               | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
 661                               dev->base + TXCFG);
 662                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 663                               dev->base + RXCFG);
 664                        /* Light up full duplex LED */
 665                        writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
 666                               dev->base + GPIOR);
 667
 668                } else if(((tanlpar & TANAR_HALF_DUP)
 669                           && (tanar & TANAR_HALF_DUP))
 670                        || ((tanlpar & TANAR_FULL_DUP)
 671                            && (tanar & TANAR_HALF_DUP))
 672                        || ((tanlpar & TANAR_HALF_DUP)
 673                            && (tanar & TANAR_FULL_DUP))) {
 674
 675                        /* one or both of us are half duplex */
 676                        writel((readl(dev->base + TXCFG)
 677                                & ~(TXCFG_CSI | TXCFG_HBI)) | TXCFG_ATP,
 678                               dev->base + TXCFG);
 679                        writel(readl(dev->base + RXCFG) & ~RXCFG_RX_FD,
 680                               dev->base + RXCFG);
 681                        /* Turn off full duplex LED */
 682                        writel(readl(dev->base + GPIOR) & ~GPIOR_GP1_OUT,
 683                               dev->base + GPIOR);
 684                }
 685
 686                speed = 4; /* 1000F */
 687
 688        } else {
 689                /* we have a copper transceiver */
 690                new_cfg = dev->CFG_cache & ~(CFG_SB | CFG_MODE_1000 | CFG_SPDSTS);
 691
 692                if (cfg & CFG_SPDSTS1)
 693                        new_cfg |= CFG_MODE_1000;
 694                else
 695                        new_cfg &= ~CFG_MODE_1000;
 696
 697                speed = ((cfg / CFG_SPDSTS0) & 3);
 698                fullduplex = (cfg & CFG_DUPSTS);
 699
 700                if (fullduplex) {
 701                        new_cfg |= CFG_SB;
 702                        writel(readl(dev->base + TXCFG)
 703                                        | TXCFG_CSI | TXCFG_HBI,
 704                               dev->base + TXCFG);
 705                        writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
 706                               dev->base + RXCFG);
 707                } else {
 708                        writel(readl(dev->base + TXCFG)
 709                                        & ~(TXCFG_CSI | TXCFG_HBI),
 710                               dev->base + TXCFG);
 711                        writel(readl(dev->base + RXCFG) & ~(RXCFG_RX_FD),
 712                               dev->base + RXCFG);
 713                }
 714
 715                if ((cfg & CFG_LNKSTS) &&
 716                    ((new_cfg ^ dev->CFG_cache) != 0)) {
 717                        writel(new_cfg, dev->base + CFG);
 718                        dev->CFG_cache = new_cfg;
 719                }
 720
 721                dev->CFG_cache &= ~CFG_SPDSTS;
 722                dev->CFG_cache |= cfg & CFG_SPDSTS;
 723        }
 724
 725        newlinkstate = (cfg & CFG_LNKSTS) ? LINK_UP : LINK_DOWN;
 726
 727        if (newlinkstate & LINK_UP
 728            && dev->linkstate != newlinkstate) {
 729                netif_start_queue(ndev);
 730                netif_wake_queue(ndev);
 731                printk(KERN_INFO "%s: link now %s mbps, %s duplex and up.\n",
 732                        ndev->name,
 733                        speeds[speed],
 734                        fullduplex ? "full" : "half");
 735        } else if (newlinkstate & LINK_DOWN
 736                   && dev->linkstate != newlinkstate) {
 737                netif_stop_queue(ndev);
 738                printk(KERN_INFO "%s: link now down.\n", ndev->name);
 739        }
 740
 741        dev->linkstate = newlinkstate;
 742}
 743
 744static int ns83820_setup_rx(struct net_device *ndev)
 745{
 746        struct ns83820 *dev = PRIV(ndev);
 747        unsigned i;
 748        int ret;
 749
 750        dprintk("ns83820_setup_rx(%p)\n", ndev);
 751
 752        dev->rx_info.idle = 1;
 753        dev->rx_info.next_rx = 0;
 754        dev->rx_info.next_rx_desc = dev->rx_info.descs;
 755        dev->rx_info.next_empty = 0;
 756
 757        for (i=0; i<NR_RX_DESC; i++)
 758                clear_rx_desc(dev, i);
 759
 760        writel(0, dev->base + RXDP_HI);
 761        writel(dev->rx_info.phy_descs, dev->base + RXDP);
 762
 763        ret = rx_refill(ndev, GFP_KERNEL);
 764        if (!ret) {
 765                dprintk("starting receiver\n");
 766                /* prevent the interrupt handler from stomping on us */
 767                spin_lock_irq(&dev->rx_info.lock);
 768
 769                writel(0x0001, dev->base + CCSR);
 770                writel(0, dev->base + RFCR);
 771                writel(0x7fc00000, dev->base + RFCR);
 772                writel(0xffc00000, dev->base + RFCR);
 773
 774                dev->rx_info.up = 1;
 775
 776                phy_intr(ndev);
 777
 778                /* Okay, let it rip */
 779                spin_lock_irq(&dev->misc_lock);
 780                dev->IMR_cache |= ISR_PHY;
 781                dev->IMR_cache |= ISR_RXRCMP;
 782                //dev->IMR_cache |= ISR_RXERR;
 783                //dev->IMR_cache |= ISR_RXOK;
 784                dev->IMR_cache |= ISR_RXORN;
 785                dev->IMR_cache |= ISR_RXSOVR;
 786                dev->IMR_cache |= ISR_RXDESC;
 787                dev->IMR_cache |= ISR_RXIDLE;
 788                dev->IMR_cache |= ISR_TXDESC;
 789                dev->IMR_cache |= ISR_TXIDLE;
 790
 791                writel(dev->IMR_cache, dev->base + IMR);
 792                writel(1, dev->base + IER);
 793                spin_unlock(&dev->misc_lock);
 794
 795                kick_rx(ndev);
 796
 797                spin_unlock_irq(&dev->rx_info.lock);
 798        }
 799        return ret;
 800}
 801
 802static void ns83820_cleanup_rx(struct ns83820 *dev)
 803{
 804        unsigned i;
 805        unsigned long flags;
 806
 807        dprintk("ns83820_cleanup_rx(%p)\n", dev);
 808
 809        /* disable receive interrupts */
 810        spin_lock_irqsave(&dev->misc_lock, flags);
 811        dev->IMR_cache &= ~(ISR_RXOK | ISR_RXDESC | ISR_RXERR | ISR_RXEARLY | ISR_RXIDLE);
 812        writel(dev->IMR_cache, dev->base + IMR);
 813        spin_unlock_irqrestore(&dev->misc_lock, flags);
 814
 815        /* synchronize with the interrupt handler and kill it */
 816        dev->rx_info.up = 0;
 817        synchronize_irq(dev->pci_dev->irq);
 818
 819        /* touch the pci bus... */
 820        readl(dev->base + IMR);
 821
 822        /* assumes the transmitter is already disabled and reset */
 823        writel(0, dev->base + RXDP_HI);
 824        writel(0, dev->base + RXDP);
 825
 826        for (i=0; i<NR_RX_DESC; i++) {
 827                struct sk_buff *skb = dev->rx_info.skbs[i];
 828                dev->rx_info.skbs[i] = NULL;
 829                clear_rx_desc(dev, i);
 830                if (skb)
 831                        kfree_skb(skb);
 832        }
 833}
 834
 835static void FASTCALL(ns83820_rx_kick(struct net_device *ndev));
 836static void fastcall ns83820_rx_kick(struct net_device *ndev)
 837{
 838        struct ns83820 *dev = PRIV(ndev);
 839        /*if (nr_rx_empty(dev) >= NR_RX_DESC/4)*/ {
 840                if (dev->rx_info.up) {
 841                        rx_refill_atomic(ndev);
 842                        kick_rx(ndev);
 843                }
 844        }
 845
 846        if (dev->rx_info.up && nr_rx_empty(dev) > NR_RX_DESC*3/4)
 847                schedule_work(&dev->tq_refill);
 848        else
 849                kick_rx(ndev);
 850        if (dev->rx_info.idle)
 851                printk(KERN_DEBUG "%s: BAD\n", ndev->name);
 852}
 853
 854/* rx_irq
 855 *
 856 */
 857static void FASTCALL(rx_irq(struct net_device *ndev));
 858static void fastcall rx_irq(struct net_device *ndev)
 859{
 860        struct ns83820 *dev = PRIV(ndev);
 861        struct rx_info *info = &dev->rx_info;
 862        unsigned next_rx;
 863        int rx_rc, len;
 864        u32 cmdsts;
 865        __le32 *desc;
 866        unsigned long flags;
 867        int nr = 0;
 868
 869        dprintk("rx_irq(%p)\n", ndev);
 870        dprintk("rxdp: %08x, descs: %08lx next_rx[%d]: %p next_empty[%d]: %p\n",
 871                readl(dev->base + RXDP),
 872                (long)(dev->rx_info.phy_descs),
 873                (int)dev->rx_info.next_rx,
 874                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_rx)),
 875                (int)dev->rx_info.next_empty,
 876                (dev->rx_info.descs + (DESC_SIZE * dev->rx_info.next_empty))
 877                );
 878
 879        spin_lock_irqsave(&info->lock, flags);
 880        if (!info->up)
 881                goto out;
 882
 883        dprintk("walking descs\n");
 884        next_rx = info->next_rx;
 885        desc = info->next_rx_desc;
 886        while ((CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) &&
 887               (cmdsts != CMDSTS_OWN)) {
 888                struct sk_buff *skb;
 889                u32 extsts = le32_to_cpu(desc[DESC_EXTSTS]);
 890                dma_addr_t bufptr = desc_addr_get(desc + DESC_BUFPTR);
 891
 892                dprintk("cmdsts: %08x\n", cmdsts);
 893                dprintk("link: %08x\n", cpu_to_le32(desc[DESC_LINK]));
 894                dprintk("extsts: %08x\n", extsts);
 895
 896                skb = info->skbs[next_rx];
 897                info->skbs[next_rx] = NULL;
 898                info->next_rx = (next_rx + 1) % NR_RX_DESC;
 899
 900                mb();
 901                clear_rx_desc(dev, next_rx);
 902
 903                pci_unmap_single(dev->pci_dev, bufptr,
 904                                 RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
 905                len = cmdsts & CMDSTS_LEN_MASK;
 906#ifdef NS83820_VLAN_ACCEL_SUPPORT
 907                /* NH: As was mentioned below, this chip is kinda
 908                 * brain dead about vlan tag stripping.  Frames
 909                 * that are 64 bytes with a vlan header appended
 910                 * like arp frames, or pings, are flagged as Runts
 911                 * when the tag is stripped and hardware.  This
 912                 * also means that the OK bit in the descriptor
 913                 * is cleared when the frame comes in so we have
 914                 * to do a specific length check here to make sure
 915                 * the frame would have been ok, had we not stripped
 916                 * the tag.
 917                 */
 918                if (likely((CMDSTS_OK & cmdsts) ||
 919                        ((cmdsts & CMDSTS_RUNT) && len >= 56))) {
 920#else
 921                if (likely(CMDSTS_OK & cmdsts)) {
 922#endif
 923                        skb_put(skb, len);
 924                        if (unlikely(!skb))
 925                                goto netdev_mangle_me_harder_failed;
 926                        if (cmdsts & CMDSTS_DEST_MULTI)
 927                                dev->stats.multicast ++;
 928                        dev->stats.rx_packets ++;
 929                        dev->stats.rx_bytes += len;
 930                        if ((extsts & 0x002a0000) && !(extsts & 0x00540000)) {
 931                                skb->ip_summed = CHECKSUM_UNNECESSARY;
 932                        } else {
 933                                skb->ip_summed = CHECKSUM_NONE;
 934                        }
 935                        skb->protocol = eth_type_trans(skb, ndev);
 936#ifdef NS83820_VLAN_ACCEL_SUPPORT
 937                        if(extsts & EXTSTS_VPKT) {
 938                                unsigned short tag;
 939                                tag = ntohs(extsts & EXTSTS_VTG_MASK);
 940                                rx_rc = vlan_hwaccel_rx(skb,dev->vlgrp,tag);
 941                        } else {
 942                                rx_rc = netif_rx(skb);
 943                        }
 944#else
 945                        rx_rc = netif_rx(skb);
 946#endif
 947                        if (NET_RX_DROP == rx_rc) {
 948netdev_mangle_me_harder_failed:
 949                                dev->stats.rx_dropped ++;
 950                        }
 951                } else {
 952                        kfree_skb(skb);
 953                }
 954
 955                nr++;
 956                next_rx = info->next_rx;
 957                desc = info->descs + (DESC_SIZE * next_rx);
 958        }
 959        info->next_rx = next_rx;
 960        info->next_rx_desc = info->descs + (DESC_SIZE * next_rx);
 961
 962out:
 963        if (0 && !nr) {
 964                Dprintk("dazed: cmdsts_f: %08x\n", cmdsts);
 965        }
 966
 967        spin_unlock_irqrestore(&info->lock, flags);
 968}
 969
 970static void rx_action(unsigned long _dev)
 971{
 972        struct net_device *ndev = (void *)_dev;
 973        struct ns83820 *dev = PRIV(ndev);
 974        rx_irq(ndev);
 975        writel(ihr, dev->base + IHR);
 976
 977        spin_lock_irq(&dev->misc_lock);
 978        dev->IMR_cache |= ISR_RXDESC;
 979        writel(dev->IMR_cache, dev->base + IMR);
 980        spin_unlock_irq(&dev->misc_lock);
 981
 982        rx_irq(ndev);
 983        ns83820_rx_kick(ndev);
 984}
 985
 986/* Packet Transmit code
 987 */
 988static inline void kick_tx(struct ns83820 *dev)
 989{
 990        dprintk("kick_tx(%p): tx_idx=%d free_idx=%d\n",
 991                dev, dev->tx_idx, dev->tx_free_idx);
 992        writel(CR_TXE, dev->base + CR);
 993}
 994
 995/* No spinlock needed on the transmit irq path as the interrupt handler is
 996 * serialized.
 997 */
 998static void do_tx_done(struct net_device *ndev)
 999{
1000        struct ns83820 *dev = PRIV(ndev);
1001        u32 cmdsts, tx_done_idx;
1002        __le32 *desc;
1003
1004        dprintk("do_tx_done(%p)\n", ndev);
1005        tx_done_idx = dev->tx_done_idx;
1006        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1007
1008        dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1009                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1010        while ((tx_done_idx != dev->tx_free_idx) &&
1011               !(CMDSTS_OWN & (cmdsts = le32_to_cpu(desc[DESC_CMDSTS]))) ) {
1012                struct sk_buff *skb;
1013                unsigned len;
1014                dma_addr_t addr;
1015
1016                if (cmdsts & CMDSTS_ERR)
1017                        dev->stats.tx_errors ++;
1018                if (cmdsts & CMDSTS_OK)
1019                        dev->stats.tx_packets ++;
1020                if (cmdsts & CMDSTS_OK)
1021                        dev->stats.tx_bytes += cmdsts & 0xffff;
1022
1023                dprintk("tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1024                        tx_done_idx, dev->tx_free_idx, cmdsts);
1025                skb = dev->tx_skbs[tx_done_idx];
1026                dev->tx_skbs[tx_done_idx] = NULL;
1027                dprintk("done(%p)\n", skb);
1028
1029                len = cmdsts & CMDSTS_LEN_MASK;
1030                addr = desc_addr_get(desc + DESC_BUFPTR);
1031                if (skb) {
1032                        pci_unmap_single(dev->pci_dev,
1033                                        addr,
1034                                        len,
1035                                        PCI_DMA_TODEVICE);
1036                        dev_kfree_skb_irq(skb);
1037                        atomic_dec(&dev->nr_tx_skbs);
1038                } else
1039                        pci_unmap_page(dev->pci_dev,
1040                                        addr,
1041                                        len,
1042                                        PCI_DMA_TODEVICE);
1043
1044                tx_done_idx = (tx_done_idx + 1) % NR_TX_DESC;
1045                dev->tx_done_idx = tx_done_idx;
1046                desc[DESC_CMDSTS] = cpu_to_le32(0);
1047                mb();
1048                desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1049        }
1050
1051        /* Allow network stack to resume queueing packets after we've
1052         * finished transmitting at least 1/4 of the packets in the queue.
1053         */
1054        if (netif_queue_stopped(ndev) && start_tx_okay(dev)) {
1055                dprintk("start_queue(%p)\n", ndev);
1056                netif_start_queue(ndev);
1057                netif_wake_queue(ndev);
1058        }
1059}
1060
1061static void ns83820_cleanup_tx(struct ns83820 *dev)
1062{
1063        unsigned i;
1064
1065        for (i=0; i<NR_TX_DESC; i++) {
1066                struct sk_buff *skb = dev->tx_skbs[i];
1067                dev->tx_skbs[i] = NULL;
1068                if (skb) {
1069                        __le32 *desc = dev->tx_descs + (i * DESC_SIZE);
1070                        pci_unmap_single(dev->pci_dev,
1071                                        desc_addr_get(desc + DESC_BUFPTR),
1072                                        le32_to_cpu(desc[DESC_CMDSTS]) & CMDSTS_LEN_MASK,
1073                                        PCI_DMA_TODEVICE);
1074                        dev_kfree_skb_irq(skb);
1075                        atomic_dec(&dev->nr_tx_skbs);
1076                }
1077        }
1078
1079        memset(dev->tx_descs, 0, NR_TX_DESC * DESC_SIZE * 4);
1080}
1081
1082/* transmit routine.  This code relies on the network layer serializing
1083 * its calls in, but will run happily in parallel with the interrupt
1084 * handler.  This code currently has provisions for fragmenting tx buffers
1085 * while trying to track down a bug in either the zero copy code or
1086 * the tx fifo (hence the MAX_FRAG_LEN).
1087 */
1088static int ns83820_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev)
1089{
1090        struct ns83820 *dev = PRIV(ndev);
1091        u32 free_idx, cmdsts, extsts;
1092        int nr_free, nr_frags;
1093        unsigned tx_done_idx, last_idx;
1094        dma_addr_t buf;
1095        unsigned len;
1096        skb_frag_t *frag;
1097        int stopped = 0;
1098        int do_intr = 0;
1099        volatile __le32 *first_desc;
1100
1101        dprintk("ns83820_hard_start_xmit\n");
1102
1103        nr_frags =  skb_shinfo(skb)->nr_frags;
1104again:
1105        if (unlikely(dev->CFG_cache & CFG_LNKSTS)) {
1106                netif_stop_queue(ndev);
1107                if (unlikely(dev->CFG_cache & CFG_LNKSTS))
1108                        return 1;
1109                netif_start_queue(ndev);
1110        }
1111
1112        last_idx = free_idx = dev->tx_free_idx;
1113        tx_done_idx = dev->tx_done_idx;
1114        nr_free = (tx_done_idx + NR_TX_DESC-2 - free_idx) % NR_TX_DESC;
1115        nr_free -= 1;
1116        if (nr_free <= nr_frags) {
1117                dprintk("stop_queue - not enough(%p)\n", ndev);
1118                netif_stop_queue(ndev);
1119
1120                /* Check again: we may have raced with a tx done irq */
1121                if (dev->tx_done_idx != tx_done_idx) {
1122                        dprintk("restart queue(%p)\n", ndev);
1123                        netif_start_queue(ndev);
1124                        goto again;
1125                }
1126                return 1;
1127        }
1128
1129        if (free_idx == dev->tx_intr_idx) {
1130                do_intr = 1;
1131                dev->tx_intr_idx = (dev->tx_intr_idx + NR_TX_DESC/4) % NR_TX_DESC;
1132        }
1133
1134        nr_free -= nr_frags;
1135        if (nr_free < MIN_TX_DESC_FREE) {
1136                dprintk("stop_queue - last entry(%p)\n", ndev);
1137                netif_stop_queue(ndev);
1138                stopped = 1;
1139        }
1140
1141        frag = skb_shinfo(skb)->frags;
1142        if (!nr_frags)
1143                frag = NULL;
1144        extsts = 0;
1145        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1146                extsts |= EXTSTS_IPPKT;
1147                if (IPPROTO_TCP == ip_hdr(skb)->protocol)
1148                        extsts |= EXTSTS_TCPPKT;
1149                else if (IPPROTO_UDP == ip_hdr(skb)->protocol)
1150                        extsts |= EXTSTS_UDPPKT;
1151        }
1152
1153#ifdef NS83820_VLAN_ACCEL_SUPPORT
1154        if(vlan_tx_tag_present(skb)) {
1155                /* fetch the vlan tag info out of the
1156                 * ancilliary data if the vlan code
1157                 * is using hw vlan acceleration
1158                 */
1159                short tag = vlan_tx_tag_get(skb);
1160                extsts |= (EXTSTS_VPKT | htons(tag));
1161        }
1162#endif
1163
1164        len = skb->len;
1165        if (nr_frags)
1166                len -= skb->data_len;
1167        buf = pci_map_single(dev->pci_dev, skb->data, len, PCI_DMA_TODEVICE);
1168
1169        first_desc = dev->tx_descs + (free_idx * DESC_SIZE);
1170
1171        for (;;) {
1172                volatile __le32 *desc = dev->tx_descs + (free_idx * DESC_SIZE);
1173
1174                dprintk("frag[%3u]: %4u @ 0x%08Lx\n", free_idx, len,
1175                        (unsigned long long)buf);
1176                last_idx = free_idx;
1177                free_idx = (free_idx + 1) % NR_TX_DESC;
1178                desc[DESC_LINK] = cpu_to_le32(dev->tx_phy_descs + (free_idx * DESC_SIZE * 4));
1179                desc_addr_set(desc + DESC_BUFPTR, buf);
1180                desc[DESC_EXTSTS] = cpu_to_le32(extsts);
1181
1182                cmdsts = ((nr_frags) ? CMDSTS_MORE : do_intr ? CMDSTS_INTR : 0);
1183                cmdsts |= (desc == first_desc) ? 0 : CMDSTS_OWN;
1184                cmdsts |= len;
1185                desc[DESC_CMDSTS] = cpu_to_le32(cmdsts);
1186
1187                if (!nr_frags)
1188                        break;
1189
1190                buf = pci_map_page(dev->pci_dev, frag->page,
1191                                   frag->page_offset,
1192                                   frag->size, PCI_DMA_TODEVICE);
1193                dprintk("frag: buf=%08Lx  page=%08lx offset=%08lx\n",
1194                        (long long)buf, (long) page_to_pfn(frag->page),
1195                        frag->page_offset);
1196                len = frag->size;
1197                frag++;
1198                nr_frags--;
1199        }
1200        dprintk("done pkt\n");
1201
1202        spin_lock_irq(&dev->tx_lock);
1203        dev->tx_skbs[last_idx] = skb;
1204        first_desc[DESC_CMDSTS] |= cpu_to_le32(CMDSTS_OWN);
1205        dev->tx_free_idx = free_idx;
1206        atomic_inc(&dev->nr_tx_skbs);
1207        spin_unlock_irq(&dev->tx_lock);
1208
1209        kick_tx(dev);
1210
1211        /* Check again: we may have raced with a tx done irq */
1212        if (stopped && (dev->tx_done_idx != tx_done_idx) && start_tx_okay(dev))
1213                netif_start_queue(ndev);
1214
1215        /* set the transmit start time to catch transmit timeouts */
1216        ndev->trans_start = jiffies;
1217        return 0;
1218}
1219
1220static void ns83820_update_stats(struct ns83820 *dev)
1221{
1222        u8 __iomem *base = dev->base;
1223
1224        /* the DP83820 will freeze counters, so we need to read all of them */
1225        dev->stats.rx_errors            += readl(base + 0x60) & 0xffff;
1226        dev->stats.rx_crc_errors        += readl(base + 0x64) & 0xffff;
1227        dev->stats.rx_missed_errors     += readl(base + 0x68) & 0xffff;
1228        dev->stats.rx_frame_errors      += readl(base + 0x6c) & 0xffff;
1229        /*dev->stats.rx_symbol_errors +=*/ readl(base + 0x70);
1230        dev->stats.rx_length_errors     += readl(base + 0x74) & 0xffff;
1231        dev->stats.rx_length_errors     += readl(base + 0x78) & 0xffff;
1232        /*dev->stats.rx_badopcode_errors += */ readl(base + 0x7c);
1233        /*dev->stats.rx_pause_count += */  readl(base + 0x80);
1234        /*dev->stats.tx_pause_count += */  readl(base + 0x84);
1235        dev->stats.tx_carrier_errors    += readl(base + 0x88) & 0xff;
1236}
1237
1238static struct net_device_stats *ns83820_get_stats(struct net_device *ndev)
1239{
1240        struct ns83820 *dev = PRIV(ndev);
1241
1242        /* somewhat overkill */
1243        spin_lock_irq(&dev->misc_lock);
1244        ns83820_update_stats(dev);
1245        spin_unlock_irq(&dev->misc_lock);
1246
1247        return &dev->stats;
1248}
1249
1250/* Let ethtool retrieve info */
1251static int ns83820_get_settings(struct net_device *ndev,
1252                                struct ethtool_cmd *cmd)
1253{
1254        struct ns83820 *dev = PRIV(ndev);
1255        u32 cfg, tanar, tbicr;
1256        int have_optical = 0;
1257        int fullduplex   = 0;
1258
1259        /*
1260         * Here's the list of available ethtool commands from other drivers:
1261         *      cmd->advertising =
1262         *      cmd->speed =
1263         *      cmd->duplex =
1264         *      cmd->port = 0;
1265         *      cmd->phy_address =
1266         *      cmd->transceiver = 0;
1267         *      cmd->autoneg =
1268         *      cmd->maxtxpkt = 0;
1269         *      cmd->maxrxpkt = 0;
1270         */
1271
1272        /* read current configuration */
1273        cfg   = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1274        tanar = readl(dev->base + TANAR);
1275        tbicr = readl(dev->base + TBICR);
1276
1277        if (dev->CFG_cache & CFG_TBI_EN) {
1278                /* we have an optical interface */
1279                have_optical = 1;
1280                fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1281
1282        } else {
1283                /* We have copper */
1284                fullduplex = (cfg & CFG_DUPSTS) ? 1 : 0;
1285        }
1286
1287        cmd->supported = SUPPORTED_Autoneg;
1288
1289        /* we have optical interface */
1290        if (dev->CFG_cache & CFG_TBI_EN) {
1291                cmd->supported |= SUPPORTED_1000baseT_Half |
1292                                        SUPPORTED_1000baseT_Full |
1293                                        SUPPORTED_FIBRE;
1294                cmd->port       = PORT_FIBRE;
1295        } /* TODO: else copper related  support */
1296
1297        cmd->duplex = fullduplex ? DUPLEX_FULL : DUPLEX_HALF;
1298        switch (cfg / CFG_SPDSTS0 & 3) {
1299        case 2:
1300                cmd->speed = SPEED_1000;
1301                break;
1302        case 1:
1303                cmd->speed = SPEED_100;
1304                break;
1305        default:
1306                cmd->speed = SPEED_10;
1307                break;
1308        }
1309        cmd->autoneg = (tbicr & TBICR_MR_AN_ENABLE) ? 1: 0;
1310        return 0;
1311}
1312
1313/* Let ethool change settings*/
1314static int ns83820_set_settings(struct net_device *ndev,
1315                                struct ethtool_cmd *cmd)
1316{
1317        struct ns83820 *dev = PRIV(ndev);
1318        u32 cfg, tanar;
1319        int have_optical = 0;
1320        int fullduplex   = 0;
1321
1322        /* read current configuration */
1323        cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1324        tanar = readl(dev->base + TANAR);
1325
1326        if (dev->CFG_cache & CFG_TBI_EN) {
1327                /* we have optical */
1328                have_optical = 1;
1329                fullduplex   = (tanar & TANAR_FULL_DUP);
1330
1331        } else {
1332                /* we have copper */
1333                fullduplex = cfg & CFG_DUPSTS;
1334        }
1335
1336        spin_lock_irq(&dev->misc_lock);
1337        spin_lock(&dev->tx_lock);
1338
1339        /* Set duplex */
1340        if (cmd->duplex != fullduplex) {
1341                if (have_optical) {
1342                        /*set full duplex*/
1343                        if (cmd->duplex == DUPLEX_FULL) {
1344                                /* force full duplex */
1345                                writel(readl(dev->base + TXCFG)
1346                                        | TXCFG_CSI | TXCFG_HBI | TXCFG_ATP,
1347                                        dev->base + TXCFG);
1348                                writel(readl(dev->base + RXCFG) | RXCFG_RX_FD,
1349                                        dev->base + RXCFG);
1350                                /* Light up full duplex LED */
1351                                writel(readl(dev->base + GPIOR) | GPIOR_GP1_OUT,
1352                                        dev->base + GPIOR);
1353                        } else {
1354                                /*TODO: set half duplex */
1355                        }
1356
1357                } else {
1358                        /*we have copper*/
1359                        /* TODO: Set duplex for copper cards */
1360                }
1361                printk(KERN_INFO "%s: Duplex set via ethtool\n",
1362                ndev->name);
1363        }
1364
1365        /* Set autonegotiation */
1366        if (1) {
1367                if (cmd->autoneg == AUTONEG_ENABLE) {
1368                        /* restart auto negotiation */
1369                        writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
1370                                dev->base + TBICR);
1371                        writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
1372                                dev->linkstate = LINK_AUTONEGOTIATE;
1373
1374                        printk(KERN_INFO "%s: autoneg enabled via ethtool\n",
1375                                ndev->name);
1376                } else {
1377                        /* disable auto negotiation */
1378                        writel(0x00000000, dev->base + TBICR);
1379                }
1380
1381                printk(KERN_INFO "%s: autoneg %s via ethtool\n", ndev->name,
1382                                cmd->autoneg ? "ENABLED" : "DISABLED");
1383        }
1384
1385        phy_intr(ndev);
1386        spin_unlock(&dev->tx_lock);
1387        spin_unlock_irq(&dev->misc_lock);
1388
1389        return 0;
1390}
1391/* end ethtool get/set support -df */
1392
1393static void ns83820_get_drvinfo(struct net_device *ndev, struct ethtool_drvinfo *info)
1394{
1395        struct ns83820 *dev = PRIV(ndev);
1396        strcpy(info->driver, "ns83820");
1397        strcpy(info->version, VERSION);
1398        strcpy(info->bus_info, pci_name(dev->pci_dev));
1399}
1400
1401static u32 ns83820_get_link(struct net_device *ndev)
1402{
1403        struct ns83820 *dev = PRIV(ndev);
1404        u32 cfg = readl(dev->base + CFG) ^ SPDSTS_POLARITY;
1405        return cfg & CFG_LNKSTS ? 1 : 0;
1406}
1407
1408static const struct ethtool_ops ops = {
1409        .get_settings    = ns83820_get_settings,
1410        .set_settings    = ns83820_set_settings,
1411        .get_drvinfo     = ns83820_get_drvinfo,
1412        .get_link        = ns83820_get_link
1413};
1414
1415/* this function is called in irq context from the ISR */
1416static void ns83820_mib_isr(struct ns83820 *dev)
1417{
1418        unsigned long flags;
1419        spin_lock_irqsave(&dev->misc_lock, flags);
1420        ns83820_update_stats(dev);
1421        spin_unlock_irqrestore(&dev->misc_lock, flags);
1422}
1423
1424static void ns83820_do_isr(struct net_device *ndev, u32 isr);
1425static irqreturn_t ns83820_irq(int foo, void *data)
1426{
1427        struct net_device *ndev = data;
1428        struct ns83820 *dev = PRIV(ndev);
1429        u32 isr;
1430        dprintk("ns83820_irq(%p)\n", ndev);
1431
1432        dev->ihr = 0;
1433
1434        isr = readl(dev->base + ISR);
1435        dprintk("irq: %08x\n", isr);
1436        ns83820_do_isr(ndev, isr);
1437        return IRQ_HANDLED;
1438}
1439
1440static void ns83820_do_isr(struct net_device *ndev, u32 isr)
1441{
1442        struct ns83820 *dev = PRIV(ndev);
1443        unsigned long flags;
1444
1445#ifdef DEBUG
1446        if (isr & ~(ISR_PHY | ISR_RXDESC | ISR_RXEARLY | ISR_RXOK | ISR_RXERR | ISR_TXIDLE | ISR_TXOK | ISR_TXDESC))
1447                Dprintk("odd isr? 0x%08x\n", isr);
1448#endif
1449
1450        if (ISR_RXIDLE & isr) {
1451                dev->rx_info.idle = 1;
1452                Dprintk("oh dear, we are idle\n");
1453                ns83820_rx_kick(ndev);
1454        }
1455
1456        if ((ISR_RXDESC | ISR_RXOK) & isr) {
1457                prefetch(dev->rx_info.next_rx_desc);
1458
1459                spin_lock_irqsave(&dev->misc_lock, flags);
1460                dev->IMR_cache &= ~(ISR_RXDESC | ISR_RXOK);
1461                writel(dev->IMR_cache, dev->base + IMR);
1462                spin_unlock_irqrestore(&dev->misc_lock, flags);
1463
1464                tasklet_schedule(&dev->rx_tasklet);
1465                //rx_irq(ndev);
1466                //writel(4, dev->base + IHR);
1467        }
1468
1469        if ((ISR_RXIDLE | ISR_RXORN | ISR_RXDESC | ISR_RXOK | ISR_RXERR) & isr)
1470                ns83820_rx_kick(ndev);
1471
1472        if (unlikely(ISR_RXSOVR & isr)) {
1473                //printk("overrun: rxsovr\n");
1474                dev->stats.rx_fifo_errors ++;
1475        }
1476
1477        if (unlikely(ISR_RXORN & isr)) {
1478                //printk("overrun: rxorn\n");
1479                dev->stats.rx_fifo_errors ++;
1480        }
1481
1482        if ((ISR_RXRCMP & isr) && dev->rx_info.up)
1483                writel(CR_RXE, dev->base + CR);
1484
1485        if (ISR_TXIDLE & isr) {
1486                u32 txdp;
1487                txdp = readl(dev->base + TXDP);
1488                dprintk("txdp: %08x\n", txdp);
1489                txdp -= dev->tx_phy_descs;
1490                dev->tx_idx = txdp / (DESC_SIZE * 4);
1491                if (dev->tx_idx >= NR_TX_DESC) {
1492                        printk(KERN_ALERT "%s: BUG -- txdp out of range\n", ndev->name);
1493                        dev->tx_idx = 0;
1494                }
1495                /* The may have been a race between a pci originated read
1496                 * and the descriptor update from the cpu.  Just in case,
1497                 * kick the transmitter if the hardware thinks it is on a
1498                 * different descriptor than we are.
1499                 */
1500                if (dev->tx_idx != dev->tx_free_idx)
1501                        kick_tx(dev);
1502        }
1503
1504        /* Defer tx ring processing until more than a minimum amount of
1505         * work has accumulated
1506         */
1507        if ((ISR_TXDESC | ISR_TXIDLE | ISR_TXOK | ISR_TXERR) & isr) {
1508                spin_lock_irqsave(&dev->tx_lock, flags);
1509                do_tx_done(ndev);
1510                spin_unlock_irqrestore(&dev->tx_lock, flags);
1511
1512                /* Disable TxOk if there are no outstanding tx packets.
1513                 */
1514                if ((dev->tx_done_idx == dev->tx_free_idx) &&
1515                    (dev->IMR_cache & ISR_TXOK)) {
1516                        spin_lock_irqsave(&dev->misc_lock, flags);
1517                        dev->IMR_cache &= ~ISR_TXOK;
1518                        writel(dev->IMR_cache, dev->base + IMR);
1519                        spin_unlock_irqrestore(&dev->misc_lock, flags);
1520                }
1521        }
1522
1523        /* The TxIdle interrupt can come in before the transmit has
1524         * completed.  Normally we reap packets off of the combination
1525         * of TxDesc and TxIdle and leave TxOk disabled (since it
1526         * occurs on every packet), but when no further irqs of this
1527         * nature are expected, we must enable TxOk.
1528         */
1529        if ((ISR_TXIDLE & isr) && (dev->tx_done_idx != dev->tx_free_idx)) {
1530                spin_lock_irqsave(&dev->misc_lock, flags);
1531                dev->IMR_cache |= ISR_TXOK;
1532                writel(dev->IMR_cache, dev->base + IMR);
1533                spin_unlock_irqrestore(&dev->misc_lock, flags);
1534        }
1535
1536        /* MIB interrupt: one of the statistics counters is about to overflow */
1537        if (unlikely(ISR_MIB & isr))
1538                ns83820_mib_isr(dev);
1539
1540        /* PHY: Link up/down/negotiation state change */
1541        if (unlikely(ISR_PHY & isr))
1542                phy_intr(ndev);
1543
1544#if 0   /* Still working on the interrupt mitigation strategy */
1545        if (dev->ihr)
1546                writel(dev->ihr, dev->base + IHR);
1547#endif
1548}
1549
1550static void ns83820_do_reset(struct ns83820 *dev, u32 which)
1551{
1552        Dprintk("resetting chip...\n");
1553        writel(which, dev->base + CR);
1554        do {
1555                schedule();
1556        } while (readl(dev->base + CR) & which);
1557        Dprintk("okay!\n");
1558}
1559
1560static int ns83820_stop(struct net_device *ndev)
1561{
1562        struct ns83820 *dev = PRIV(ndev);
1563
1564        /* FIXME: protect against interrupt handler? */
1565        del_timer_sync(&dev->tx_watchdog);
1566
1567        /* disable interrupts */
1568        writel(0, dev->base + IMR);
1569        writel(0, dev->base + IER);
1570        readl(dev->base + IER);
1571
1572        dev->rx_info.up = 0;
1573        synchronize_irq(dev->pci_dev->irq);
1574
1575        ns83820_do_reset(dev, CR_RST);
1576
1577        synchronize_irq(dev->pci_dev->irq);
1578
1579        spin_lock_irq(&dev->misc_lock);
1580        dev->IMR_cache &= ~(ISR_TXURN | ISR_TXIDLE | ISR_TXERR | ISR_TXDESC | ISR_TXOK);
1581        spin_unlock_irq(&dev->misc_lock);
1582
1583        ns83820_cleanup_rx(dev);
1584        ns83820_cleanup_tx(dev);
1585
1586        return 0;
1587}
1588
1589static void ns83820_tx_timeout(struct net_device *ndev)
1590{
1591        struct ns83820 *dev = PRIV(ndev);
1592        u32 tx_done_idx;
1593        __le32 *desc;
1594        unsigned long flags;
1595
1596        spin_lock_irqsave(&dev->tx_lock, flags);
1597
1598        tx_done_idx = dev->tx_done_idx;
1599        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1600
1601        printk(KERN_INFO "%s: tx_timeout: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1602                ndev->name,
1603                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1604
1605#if defined(DEBUG)
1606        {
1607                u32 isr;
1608                isr = readl(dev->base + ISR);
1609                printk("irq: %08x imr: %08x\n", isr, dev->IMR_cache);
1610                ns83820_do_isr(ndev, isr);
1611        }
1612#endif
1613
1614        do_tx_done(ndev);
1615
1616        tx_done_idx = dev->tx_done_idx;
1617        desc = dev->tx_descs + (tx_done_idx * DESC_SIZE);
1618
1619        printk(KERN_INFO "%s: after: tx_done_idx=%d free_idx=%d cmdsts=%08x\n",
1620                ndev->name,
1621                tx_done_idx, dev->tx_free_idx, le32_to_cpu(desc[DESC_CMDSTS]));
1622
1623        spin_unlock_irqrestore(&dev->tx_lock, flags);
1624}
1625
1626static void ns83820_tx_watch(unsigned long data)
1627{
1628        struct net_device *ndev = (void *)data;
1629        struct ns83820 *dev = PRIV(ndev);
1630
1631#if defined(DEBUG)
1632        printk("ns83820_tx_watch: %u %u %d\n",
1633                dev->tx_done_idx, dev->tx_free_idx, atomic_read(&dev->nr_tx_skbs)
1634                );
1635#endif
1636
1637        if (time_after(jiffies, ndev->trans_start + 1*HZ) &&
1638            dev->tx_done_idx != dev->tx_free_idx) {
1639                printk(KERN_DEBUG "%s: ns83820_tx_watch: %u %u %d\n",
1640                        ndev->name,
1641                        dev->tx_done_idx, dev->tx_free_idx,
1642                        atomic_read(&dev->nr_tx_skbs));
1643                ns83820_tx_timeout(ndev);
1644        }
1645
1646        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1647}
1648
1649static int ns83820_open(struct net_device *ndev)
1650{
1651        struct ns83820 *dev = PRIV(ndev);
1652        unsigned i;
1653        u32 desc;
1654        int ret;
1655
1656        dprintk("ns83820_open\n");
1657
1658        writel(0, dev->base + PQCR);
1659
1660        ret = ns83820_setup_rx(ndev);
1661        if (ret)
1662                goto failed;
1663
1664        memset(dev->tx_descs, 0, 4 * NR_TX_DESC * DESC_SIZE);
1665        for (i=0; i<NR_TX_DESC; i++) {
1666                dev->tx_descs[(i * DESC_SIZE) + DESC_LINK]
1667                                = cpu_to_le32(
1668                                  dev->tx_phy_descs
1669                                  + ((i+1) % NR_TX_DESC) * DESC_SIZE * 4);
1670        }
1671
1672        dev->tx_idx = 0;
1673        dev->tx_done_idx = 0;
1674        desc = dev->tx_phy_descs;
1675        writel(0, dev->base + TXDP_HI);
1676        writel(desc, dev->base + TXDP);
1677
1678        init_timer(&dev->tx_watchdog);
1679        dev->tx_watchdog.data = (unsigned long)ndev;
1680        dev->tx_watchdog.function = ns83820_tx_watch;
1681        mod_timer(&dev->tx_watchdog, jiffies + 2*HZ);
1682
1683        netif_start_queue(ndev);        /* FIXME: wait for phy to come up */
1684
1685        return 0;
1686
1687failed:
1688        ns83820_stop(ndev);
1689        return ret;
1690}
1691
1692static void ns83820_getmac(struct ns83820 *dev, u8 *mac)
1693{
1694        unsigned i;
1695        for (i=0; i<3; i++) {
1696                u32 data;
1697
1698                /* Read from the perfect match memory: this is loaded by
1699                 * the chip from the EEPROM via the EELOAD self test.
1700                 */
1701                writel(i*2, dev->base + RFCR);
1702                data = readl(dev->base + RFDR);
1703
1704                *mac++ = data;
1705                *mac++ = data >> 8;
1706        }
1707}
1708
1709static int ns83820_change_mtu(struct net_device *ndev, int new_mtu)
1710{
1711        if (new_mtu > RX_BUF_SIZE)
1712                return -EINVAL;
1713        ndev->mtu = new_mtu;
1714        return 0;
1715}
1716
1717static void ns83820_set_multicast(struct net_device *ndev)
1718{
1719        struct ns83820 *dev = PRIV(ndev);
1720        u8 __iomem *rfcr = dev->base + RFCR;
1721        u32 and_mask = 0xffffffff;
1722        u32 or_mask = 0;
1723        u32 val;
1724
1725        if (ndev->flags & IFF_PROMISC)
1726                or_mask |= RFCR_AAU | RFCR_AAM;
1727        else
1728                and_mask &= ~(RFCR_AAU | RFCR_AAM);
1729
1730        if (ndev->flags & IFF_ALLMULTI || ndev->mc_count)
1731                or_mask |= RFCR_AAM;
1732        else
1733                and_mask &= ~RFCR_AAM;
1734
1735        spin_lock_irq(&dev->misc_lock);
1736        val = (readl(rfcr) & and_mask) | or_mask;
1737        /* Ramit : RFCR Write Fix doc says RFEN must be 0 modify other bits */
1738        writel(val & ~RFCR_RFEN, rfcr);
1739        writel(val, rfcr);
1740        spin_unlock_irq(&dev->misc_lock);
1741}
1742
1743static void ns83820_run_bist(struct net_device *ndev, const char *name, u32 enable, u32 done, u32 fail)
1744{
1745        struct ns83820 *dev = PRIV(ndev);
1746        int timed_out = 0;
1747        unsigned long start;
1748        u32 status;
1749        int loops = 0;
1750
1751        dprintk("%s: start %s\n", ndev->name, name);
1752
1753        start = jiffies;
1754
1755        writel(enable, dev->base + PTSCR);
1756        for (;;) {
1757                loops++;
1758                status = readl(dev->base + PTSCR);
1759                if (!(status & enable))
1760                        break;
1761                if (status & done)
1762                        break;
1763                if (status & fail)
1764                        break;
1765                if (time_after_eq(jiffies, start + HZ)) {
1766                        timed_out = 1;
1767                        break;
1768                }
1769                schedule_timeout_uninterruptible(1);
1770        }
1771
1772        if (status & fail)
1773                printk(KERN_INFO "%s: %s failed! (0x%08x & 0x%08x)\n",
1774                        ndev->name, name, status, fail);
1775        else if (timed_out)
1776                printk(KERN_INFO "%s: run_bist %s timed out! (%08x)\n",
1777                        ndev->name, name, status);
1778
1779        dprintk("%s: done %s in %d loops\n", ndev->name, name, loops);
1780}
1781
1782#ifdef PHY_CODE_IS_FINISHED
1783static void ns83820_mii_write_bit(struct ns83820 *dev, int bit)
1784{
1785        /* drive MDC low */
1786        dev->MEAR_cache &= ~MEAR_MDC;
1787        writel(dev->MEAR_cache, dev->base + MEAR);
1788        readl(dev->base + MEAR);
1789
1790        /* enable output, set bit */
1791        dev->MEAR_cache |= MEAR_MDDIR;
1792        if (bit)
1793                dev->MEAR_cache |= MEAR_MDIO;
1794        else
1795                dev->MEAR_cache &= ~MEAR_MDIO;
1796
1797        /* set the output bit */
1798        writel(dev->MEAR_cache, dev->base + MEAR);
1799        readl(dev->base + MEAR);
1800
1801        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1802        udelay(1);
1803
1804        /* drive MDC high causing the data bit to be latched */
1805        dev->MEAR_cache |= MEAR_MDC;
1806        writel(dev->MEAR_cache, dev->base + MEAR);
1807        readl(dev->base + MEAR);
1808
1809        /* Wait again... */
1810        udelay(1);
1811}
1812
1813static int ns83820_mii_read_bit(struct ns83820 *dev)
1814{
1815        int bit;
1816
1817        /* drive MDC low, disable output */
1818        dev->MEAR_cache &= ~MEAR_MDC;
1819        dev->MEAR_cache &= ~MEAR_MDDIR;
1820        writel(dev->MEAR_cache, dev->base + MEAR);
1821        readl(dev->base + MEAR);
1822
1823        /* Wait.  Max clock rate is 2.5MHz, this way we come in under 1MHz */
1824        udelay(1);
1825
1826        /* drive MDC high causing the data bit to be latched */
1827        bit = (readl(dev->base + MEAR) & MEAR_MDIO) ? 1 : 0;
1828        dev->MEAR_cache |= MEAR_MDC;
1829        writel(dev->MEAR_cache, dev->base + MEAR);
1830
1831        /* Wait again... */
1832        udelay(1);
1833
1834        return bit;
1835}
1836
1837static unsigned ns83820_mii_read_reg(struct ns83820 *dev, unsigned phy, unsigned reg)
1838{
1839        unsigned data = 0;
1840        int i;
1841
1842        /* read some garbage so that we eventually sync up */
1843        for (i=0; i<64; i++)
1844                ns83820_mii_read_bit(dev);
1845
1846        ns83820_mii_write_bit(dev, 0);  /* start */
1847        ns83820_mii_write_bit(dev, 1);
1848        ns83820_mii_write_bit(dev, 1);  /* opcode read */
1849        ns83820_mii_write_bit(dev, 0);
1850
1851        /* write out the phy address: 5 bits, msb first */
1852        for (i=0; i<5; i++)
1853                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1854
1855        /* write out the register address, 5 bits, msb first */
1856        for (i=0; i<5; i++)
1857                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1858
1859        ns83820_mii_read_bit(dev);      /* turn around cycles */
1860        ns83820_mii_read_bit(dev);
1861
1862        /* read in the register data, 16 bits msb first */
1863        for (i=0; i<16; i++) {
1864                data <<= 1;
1865                data |= ns83820_mii_read_bit(dev);
1866        }
1867
1868        return data;
1869}
1870
1871static unsigned ns83820_mii_write_reg(struct ns83820 *dev, unsigned phy, unsigned reg, unsigned data)
1872{
1873        int i;
1874
1875        /* read some garbage so that we eventually sync up */
1876        for (i=0; i<64; i++)
1877                ns83820_mii_read_bit(dev);
1878
1879        ns83820_mii_write_bit(dev, 0);  /* start */
1880        ns83820_mii_write_bit(dev, 1);
1881        ns83820_mii_write_bit(dev, 0);  /* opcode read */
1882        ns83820_mii_write_bit(dev, 1);
1883
1884        /* write out the phy address: 5 bits, msb first */
1885        for (i=0; i<5; i++)
1886                ns83820_mii_write_bit(dev, phy & (0x10 >> i));
1887
1888        /* write out the register address, 5 bits, msb first */
1889        for (i=0; i<5; i++)
1890                ns83820_mii_write_bit(dev, reg & (0x10 >> i));
1891
1892        ns83820_mii_read_bit(dev);      /* turn around cycles */
1893        ns83820_mii_read_bit(dev);
1894
1895        /* read in the register data, 16 bits msb first */
1896        for (i=0; i<16; i++)
1897                ns83820_mii_write_bit(dev, (data >> (15 - i)) & 1);
1898
1899        return data;
1900}
1901
1902static void ns83820_probe_phy(struct net_device *ndev)
1903{
1904        struct ns83820 *dev = PRIV(ndev);
1905        static int first;
1906        int i;
1907#define MII_PHYIDR1     0x02
1908#define MII_PHYIDR2     0x03
1909
1910#if 0
1911        if (!first) {
1912                unsigned tmp;
1913                ns83820_mii_read_reg(dev, 1, 0x09);
1914                ns83820_mii_write_reg(dev, 1, 0x10, 0x0d3e);
1915
1916                tmp = ns83820_mii_read_reg(dev, 1, 0x00);
1917                ns83820_mii_write_reg(dev, 1, 0x00, tmp | 0x8000);
1918                udelay(1300);
1919                ns83820_mii_read_reg(dev, 1, 0x09);
1920        }
1921#endif
1922        first = 1;
1923
1924        for (i=1; i<2; i++) {
1925                int j;
1926                unsigned a, b;
1927                a = ns83820_mii_read_reg(dev, i, MII_PHYIDR1);
1928                b = ns83820_mii_read_reg(dev, i, MII_PHYIDR2);
1929
1930                //printk("%s: phy %d: 0x%04x 0x%04x\n",
1931                //      ndev->name, i, a, b);
1932
1933                for (j=0; j<0x16; j+=4) {
1934                        dprintk("%s: [0x%02x] %04x %04x %04x %04x\n",
1935                                ndev->name, j,
1936                                ns83820_mii_read_reg(dev, i, 0 + j),
1937                                ns83820_mii_read_reg(dev, i, 1 + j),
1938                                ns83820_mii_read_reg(dev, i, 2 + j),
1939                                ns83820_mii_read_reg(dev, i, 3 + j)
1940                                );
1941                }
1942        }
1943        {
1944                unsigned a, b;
1945                /* read firmware version: memory addr is 0x8402 and 0x8403 */
1946                ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1947                ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1948                a = ns83820_mii_read_reg(dev, 1, 0x1d);
1949
1950                ns83820_mii_write_reg(dev, 1, 0x16, 0x000d);
1951                ns83820_mii_write_reg(dev, 1, 0x1e, 0x810e);
1952                b = ns83820_mii_read_reg(dev, 1, 0x1d);
1953                dprintk("version: 0x%04x 0x%04x\n", a, b);
1954        }
1955}
1956#endif
1957
1958static int __devinit ns83820_init_one(struct pci_dev *pci_dev, const struct pci_device_id *id)
1959{
1960        struct net_device *ndev;
1961        struct ns83820 *dev;
1962        long addr;
1963        int err;
1964        int using_dac = 0;
1965        DECLARE_MAC_BUF(mac);
1966
1967        /* See if we can set the dma mask early on; failure is fatal. */
1968        if (sizeof(dma_addr_t) == 8 &&
1969                !pci_set_dma_mask(pci_dev, DMA_64BIT_MASK)) {
1970                using_dac = 1;
1971        } else if (!pci_set_dma_mask(pci_dev, DMA_32BIT_MASK)) {
1972                using_dac = 0;
1973        } else {
1974                dev_warn(&pci_dev->dev, "pci_set_dma_mask failed!\n");
1975                return -ENODEV;
1976        }
1977
1978        ndev = alloc_etherdev(sizeof(struct ns83820));
1979        dev = PRIV(ndev);
1980
1981        err = -ENOMEM;
1982        if (!dev)
1983                goto out;
1984
1985        dev->ndev = ndev;
1986
1987        spin_lock_init(&dev->rx_info.lock);
1988        spin_lock_init(&dev->tx_lock);
1989        spin_lock_init(&dev->misc_lock);
1990        dev->pci_dev = pci_dev;
1991
1992        SET_NETDEV_DEV(ndev, &pci_dev->dev);
1993
1994        INIT_WORK(&dev->tq_refill, queue_refill);
1995        tasklet_init(&dev->rx_tasklet, rx_action, (unsigned long)ndev);
1996
1997        err = pci_enable_device(pci_dev);
1998        if (err) {
1999                dev_info(&pci_dev->dev, "pci_enable_dev failed: %d\n", err);
2000                goto out_free;
2001        }
2002
2003        pci_set_master(pci_dev);
2004        addr = pci_resource_start(pci_dev, 1);
2005        dev->base = ioremap_nocache(addr, PAGE_SIZE);
2006        dev->tx_descs = pci_alloc_consistent(pci_dev,
2007                        4 * DESC_SIZE * NR_TX_DESC, &dev->tx_phy_descs);
2008        dev->rx_info.descs = pci_alloc_consistent(pci_dev,
2009                        4 * DESC_SIZE * NR_RX_DESC, &dev->rx_info.phy_descs);
2010        err = -ENOMEM;
2011        if (!dev->base || !dev->tx_descs || !dev->rx_info.descs)
2012                goto out_disable;
2013
2014        dprintk("%p: %08lx  %p: %08lx\n",
2015                dev->tx_descs, (long)dev->tx_phy_descs,
2016                dev->rx_info.descs, (long)dev->rx_info.phy_descs);
2017
2018        /* disable interrupts */
2019        writel(0, dev->base + IMR);
2020        writel(0, dev->base + IER);
2021        readl(dev->base + IER);
2022
2023        dev->IMR_cache = 0;
2024
2025        err = request_irq(pci_dev->irq, ns83820_irq, IRQF_SHARED,
2026                          DRV_NAME, ndev);
2027        if (err) {
2028                dev_info(&pci_dev->dev, "unable to register irq %d, err %d\n",
2029                        pci_dev->irq, err);
2030                goto out_disable;
2031        }
2032
2033        /*
2034         * FIXME: we are holding rtnl_lock() over obscenely long area only
2035         * because some of the setup code uses dev->name.  It's Wrong(tm) -
2036         * we should be using driver-specific names for all that stuff.
2037         * For now that will do, but we really need to come back and kill
2038         * most of the dev_alloc_name() users later.
2039         */
2040        rtnl_lock();
2041        err = dev_alloc_name(ndev, ndev->name);
2042        if (err < 0) {
2043                dev_info(&pci_dev->dev, "unable to get netdev name: %d\n", err);
2044                goto out_free_irq;
2045        }
2046
2047        printk("%s: ns83820.c: 0x22c: %08x, subsystem: %04x:%04x\n",
2048                ndev->name, le32_to_cpu(readl(dev->base + 0x22c)),
2049                pci_dev->subsystem_vendor, pci_dev->subsystem_device);
2050
2051        ndev->open = ns83820_open;
2052        ndev->stop = ns83820_stop;
2053        ndev->hard_start_xmit = ns83820_hard_start_xmit;
2054        ndev->get_stats = ns83820_get_stats;
2055        ndev->change_mtu = ns83820_change_mtu;
2056        ndev->set_multicast_list = ns83820_set_multicast;
2057        SET_ETHTOOL_OPS(ndev, &ops);
2058        ndev->tx_timeout = ns83820_tx_timeout;
2059        ndev->watchdog_timeo = 5 * HZ;
2060        pci_set_drvdata(pci_dev, ndev);
2061
2062        ns83820_do_reset(dev, CR_RST);
2063
2064        /* Must reset the ram bist before running it */
2065        writel(PTSCR_RBIST_RST, dev->base + PTSCR);
2066        ns83820_run_bist(ndev, "sram bist",   PTSCR_RBIST_EN,
2067                         PTSCR_RBIST_DONE, PTSCR_RBIST_FAIL);
2068        ns83820_run_bist(ndev, "eeprom bist", PTSCR_EEBIST_EN, 0,
2069                         PTSCR_EEBIST_FAIL);
2070        ns83820_run_bist(ndev, "eeprom load", PTSCR_EELOAD_EN, 0, 0);
2071
2072        /* I love config registers */
2073        dev->CFG_cache = readl(dev->base + CFG);
2074
2075        if ((dev->CFG_cache & CFG_PCI64_DET)) {
2076                printk(KERN_INFO "%s: detected 64 bit PCI data bus.\n",
2077                        ndev->name);
2078                /*dev->CFG_cache |= CFG_DATA64_EN;*/
2079                if (!(dev->CFG_cache & CFG_DATA64_EN))
2080                        printk(KERN_INFO "%s: EEPROM did not enable 64 bit bus.  Disabled.\n",
2081                                ndev->name);
2082        } else
2083                dev->CFG_cache &= ~(CFG_DATA64_EN);
2084
2085        dev->CFG_cache &= (CFG_TBI_EN  | CFG_MRM_DIS   | CFG_MWI_DIS |
2086                           CFG_T64ADDR | CFG_DATA64_EN | CFG_EXT_125 |
2087                           CFG_M64ADDR);
2088        dev->CFG_cache |= CFG_PINT_DUPSTS | CFG_PINT_LNKSTS | CFG_PINT_SPDSTS |
2089                          CFG_EXTSTS_EN   | CFG_EXD         | CFG_PESEL;
2090        dev->CFG_cache |= CFG_REQALG;
2091        dev->CFG_cache |= CFG_POW;
2092        dev->CFG_cache |= CFG_TMRTEST;
2093
2094        /* When compiled with 64 bit addressing, we must always enable
2095         * the 64 bit descriptor format.
2096         */
2097        if (sizeof(dma_addr_t) == 8)
2098                dev->CFG_cache |= CFG_M64ADDR;
2099        if (using_dac)
2100                dev->CFG_cache |= CFG_T64ADDR;
2101
2102        /* Big endian mode does not seem to do what the docs suggest */
2103        dev->CFG_cache &= ~CFG_BEM;
2104
2105        /* setup optical transceiver if we have one */
2106        if (dev->CFG_cache & CFG_TBI_EN) {
2107                printk(KERN_INFO "%s: enabling optical transceiver\n",
2108                        ndev->name);
2109                writel(readl(dev->base + GPIOR) | 0x3e8, dev->base + GPIOR);
2110
2111                /* setup auto negotiation feature advertisement */
2112                writel(readl(dev->base + TANAR)
2113                       | TANAR_HALF_DUP | TANAR_FULL_DUP,
2114                       dev->base + TANAR);
2115
2116                /* start auto negotiation */
2117                writel(TBICR_MR_AN_ENABLE | TBICR_MR_RESTART_AN,
2118                       dev->base + TBICR);
2119                writel(TBICR_MR_AN_ENABLE, dev->base + TBICR);
2120                dev->linkstate = LINK_AUTONEGOTIATE;
2121
2122                dev->CFG_cache |= CFG_MODE_1000;
2123        }
2124
2125        writel(dev->CFG_cache, dev->base + CFG);
2126        dprintk("CFG: %08x\n", dev->CFG_cache);
2127
2128        if (reset_phy) {
2129                printk(KERN_INFO "%s: resetting phy\n", ndev->name);
2130                writel(dev->CFG_cache | CFG_PHY_RST, dev->base + CFG);
2131                msleep(10);
2132                writel(dev->CFG_cache, dev->base + CFG);
2133        }
2134
2135#if 0   /* Huh?  This sets the PCI latency register.  Should be done via
2136         * the PCI layer.  FIXME.
2137         */
2138        if (readl(dev->base + SRR))
2139                writel(readl(dev->base+0x20c) | 0xfe00, dev->base + 0x20c);
2140#endif
2141
2142        /* Note!  The DMA burst size interacts with packet
2143         * transmission, such that the largest packet that
2144         * can be transmitted is 8192 - FLTH - burst size.
2145         * If only the transmit fifo was larger...
2146         */
2147        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2148         * some DELL and COMPAQ SMP systems */
2149        writel(TXCFG_CSI | TXCFG_HBI | TXCFG_ATP | TXCFG_MXDMA512
2150                | ((1600 / 32) * 0x100),
2151                dev->base + TXCFG);
2152
2153        /* Flush the interrupt holdoff timer */
2154        writel(0x000, dev->base + IHR);
2155        writel(0x100, dev->base + IHR);
2156        writel(0x000, dev->base + IHR);
2157
2158        /* Set Rx to full duplex, don't accept runt, errored, long or length
2159         * range errored packets.  Use 512 byte DMA.
2160         */
2161        /* Ramit : 1024 DMA is not a good idea, it ends up banging
2162         * some DELL and COMPAQ SMP systems
2163         * Turn on ALP, only we are accpeting Jumbo Packets */
2164        writel(RXCFG_AEP | RXCFG_ARP | RXCFG_AIRL | RXCFG_RX_FD
2165                | RXCFG_STRIPCRC
2166                //| RXCFG_ALP
2167                | (RXCFG_MXDMA512) | 0, dev->base + RXCFG);
2168
2169        /* Disable priority queueing */
2170        writel(0, dev->base + PQCR);
2171
2172        /* Enable IP checksum validation and detetion of VLAN headers.
2173         * Note: do not set the reject options as at least the 0x102
2174         * revision of the chip does not properly accept IP fragments
2175         * at least for UDP.
2176         */
2177        /* Ramit : Be sure to turn on RXCFG_ARP if VLAN's are enabled, since
2178         * the MAC it calculates the packetsize AFTER stripping the VLAN
2179         * header, and if a VLAN Tagged packet of 64 bytes is received (like
2180         * a ping with a VLAN header) then the card, strips the 4 byte VLAN
2181         * tag and then checks the packet size, so if RXCFG_ARP is not enabled,
2182         * it discrards it!.  These guys......
2183         * also turn on tag stripping if hardware acceleration is enabled
2184         */
2185#ifdef NS83820_VLAN_ACCEL_SUPPORT
2186#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN|VRCR_VTREN)
2187#else
2188#define VRCR_INIT_VALUE (VRCR_IPEN|VRCR_VTDEN)
2189#endif
2190        writel(VRCR_INIT_VALUE, dev->base + VRCR);
2191
2192        /* Enable per-packet TCP/UDP/IP checksumming
2193         * and per packet vlan tag insertion if
2194         * vlan hardware acceleration is enabled
2195         */
2196#ifdef NS83820_VLAN_ACCEL_SUPPORT
2197#define VTCR_INIT_VALUE (VTCR_PPCHK|VTCR_VPPTI)
2198#else
2199#define VTCR_INIT_VALUE VTCR_PPCHK
2200#endif
2201        writel(VTCR_INIT_VALUE, dev->base + VTCR);
2202
2203        /* Ramit : Enable async and sync pause frames */
2204        /* writel(0, dev->base + PCR); */
2205        writel((PCR_PS_MCAST | PCR_PS_DA | PCR_PSEN | PCR_FFLO_4K |
2206                PCR_FFHI_8K | PCR_STLO_4 | PCR_STHI_8 | PCR_PAUSE_CNT),
2207                dev->base + PCR);
2208
2209        /* Disable Wake On Lan */
2210        writel(0, dev->base + WCSR);
2211
2212        ns83820_getmac(dev, ndev->dev_addr);
2213
2214        /* Yes, we support dumb IP checksum on transmit */
2215        ndev->features |= NETIF_F_SG;
2216        ndev->features |= NETIF_F_IP_CSUM;
2217
2218#ifdef NS83820_VLAN_ACCEL_SUPPORT
2219        /* We also support hardware vlan acceleration */
2220        ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
2221        ndev->vlan_rx_register = ns83820_vlan_rx_register;
2222#endif
2223
2224        if (using_dac) {
2225                printk(KERN_INFO "%s: using 64 bit addressing.\n",
2226                        ndev->name);
2227                ndev->features |= NETIF_F_HIGHDMA;
2228        }
2229
2230        printk(KERN_INFO "%s: ns83820 v" VERSION ": DP83820 v%u.%u: %s io=0x%08lx irq=%d f=%s\n",
2231                ndev->name,
2232                (unsigned)readl(dev->base + SRR) >> 8,
2233                (unsigned)readl(dev->base + SRR) & 0xff,
2234                print_mac(mac, ndev->dev_addr),
2235                addr, pci_dev->irq,
2236                (ndev->features & NETIF_F_HIGHDMA) ? "h,sg" : "sg"
2237                );
2238
2239#ifdef PHY_CODE_IS_FINISHED
2240        ns83820_probe_phy(ndev);
2241#endif
2242
2243        err = register_netdevice(ndev);
2244        if (err) {
2245                printk(KERN_INFO "ns83820: unable to register netdev: %d\n", err);
2246                goto out_cleanup;
2247        }
2248        rtnl_unlock();
2249
2250        return 0;
2251
2252out_cleanup:
2253        writel(0, dev->base + IMR);     /* paranoia */
2254        writel(0, dev->base + IER);
2255        readl(dev->base + IER);
2256out_free_irq:
2257        rtnl_unlock();
2258        free_irq(pci_dev->irq, ndev);
2259out_disable:
2260        if (dev->base)
2261                iounmap(dev->base);
2262        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_TX_DESC, dev->tx_descs, dev->tx_phy_descs);
2263        pci_free_consistent(pci_dev, 4 * DESC_SIZE * NR_RX_DESC, dev->rx_info.descs, dev->rx_info.phy_descs);
2264        pci_disable_device(pci_dev);
2265out_free:
2266        free_netdev(ndev);
2267        pci_set_drvdata(pci_dev, NULL);
2268out:
2269        return err;
2270}
2271
2272static void __devexit ns83820_remove_one(struct pci_dev *pci_dev)
2273{
2274        struct net_device *ndev = pci_get_drvdata(pci_dev);
2275        struct ns83820 *dev = PRIV(ndev); /* ok even if NULL */
2276
2277        if (!ndev)                      /* paranoia */
2278                return;
2279
2280        writel(0, dev->base + IMR);     /* paranoia */
2281        writel(0, dev->base + IER);
2282        readl(dev->base + IER);
2283
2284        unregister_netdev(ndev);
2285        free_irq(dev->pci_dev->irq, ndev);
2286        iounmap(dev->base);
2287        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_TX_DESC,
2288                        dev->tx_descs, dev->tx_phy_descs);
2289        pci_free_consistent(dev->pci_dev, 4 * DESC_SIZE * NR_RX_DESC,
2290                        dev->rx_info.descs, dev->rx_info.phy_descs);
2291        pci_disable_device(dev->pci_dev);
2292        free_netdev(ndev);
2293        pci_set_drvdata(pci_dev, NULL);
2294}
2295
2296static struct pci_device_id ns83820_pci_tbl[] = {
2297        { 0x100b, 0x0022, PCI_ANY_ID, PCI_ANY_ID, 0, .driver_data = 0, },
2298        { 0, },
2299};
2300
2301static struct pci_driver driver = {
2302        .name           = "ns83820",
2303        .id_table       = ns83820_pci_tbl,
2304        .probe          = ns83820_init_one,
2305        .remove         = __devexit_p(ns83820_remove_one),
2306#if 0   /* FIXME: implement */
2307        .suspend        = ,
2308        .resume         = ,
2309#endif
2310};
2311
2312
2313static int __init ns83820_init(void)
2314{
2315        printk(KERN_INFO "ns83820.c: National Semiconductor DP83820 10/100/1000 driver.\n");
2316        return pci_register_driver(&driver);
2317}
2318
2319static void __exit ns83820_exit(void)
2320{
2321        pci_unregister_driver(&driver);
2322}
2323
2324MODULE_AUTHOR("Benjamin LaHaise <bcrl@kvack.org>");
2325MODULE_DESCRIPTION("National Semiconductor DP83820 10/100/1000 driver");
2326MODULE_LICENSE("GPL");
2327
2328MODULE_DEVICE_TABLE(pci, ns83820_pci_tbl);
2329
2330module_param(lnksts, int, 0);
2331MODULE_PARM_DESC(lnksts, "Polarity of LNKSTS bit");
2332
2333module_param(ihr, int, 0);
2334MODULE_PARM_DESC(ihr, "Time in 100 us increments to delay interrupts (range 0-127)");
2335
2336module_param(reset_phy, int, 0);
2337MODULE_PARM_DESC(reset_phy, "Set to 1 to reset the PHY on startup");
2338
2339module_init(ns83820_init);
2340module_exit(ns83820_exit);
2341