linux/drivers/net/sungem.c
<<
>>
Prefs
   1/* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $
   2 * sungem.c: Sun GEM ethernet driver.
   3 *
   4 * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com)
   5 *
   6 * Support for Apple GMAC and assorted PHYs, WOL, Power Management
   7 * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org)
   8 * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp.
   9 *
  10 * NAPI and NETPOLL support
  11 * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com)
  12 *
  13 * TODO:
  14 *  - Now that the driver was significantly simplified, I need to rework
  15 *    the locking. I'm sure we don't need _2_ spinlocks, and we probably
  16 *    can avoid taking most of them for so long period of time (and schedule
  17 *    instead). The main issues at this point are caused by the netdev layer
  18 *    though:
  19 *
  20 *    gem_change_mtu() and gem_set_multicast() are called with a read_lock()
  21 *    help by net/core/dev.c, thus they can't schedule. That means they can't
  22 *    call napi_disable() neither, thus force gem_poll() to keep a spinlock
  23 *    where it could have been dropped. change_mtu especially would love also to
  24 *    be able to msleep instead of horrid locked delays when resetting the HW,
  25 *    but that read_lock() makes it impossible, unless I defer it's action to
  26 *    the reset task, which means it'll be asynchronous (won't take effect until
  27 *    the system schedules a bit).
  28 *
  29 *    Also, it would probably be possible to also remove most of the long-life
  30 *    locking in open/resume code path (gem_reinit_chip) by beeing more careful
  31 *    about when we can start taking interrupts or get xmit() called...
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/kernel.h>
  36#include <linux/types.h>
  37#include <linux/fcntl.h>
  38#include <linux/interrupt.h>
  39#include <linux/ioport.h>
  40#include <linux/in.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/delay.h>
  44#include <linux/init.h>
  45#include <linux/errno.h>
  46#include <linux/pci.h>
  47#include <linux/dma-mapping.h>
  48#include <linux/netdevice.h>
  49#include <linux/etherdevice.h>
  50#include <linux/skbuff.h>
  51#include <linux/mii.h>
  52#include <linux/ethtool.h>
  53#include <linux/crc32.h>
  54#include <linux/random.h>
  55#include <linux/workqueue.h>
  56#include <linux/if_vlan.h>
  57#include <linux/bitops.h>
  58#include <linux/mutex.h>
  59#include <linux/mm.h>
  60
  61#include <asm/system.h>
  62#include <asm/io.h>
  63#include <asm/byteorder.h>
  64#include <asm/uaccess.h>
  65#include <asm/irq.h>
  66
  67#ifdef CONFIG_SPARC
  68#include <asm/idprom.h>
  69#include <asm/prom.h>
  70#endif
  71
  72#ifdef CONFIG_PPC_PMAC
  73#include <asm/pci-bridge.h>
  74#include <asm/prom.h>
  75#include <asm/machdep.h>
  76#include <asm/pmac_feature.h>
  77#endif
  78
  79#include "sungem_phy.h"
  80#include "sungem.h"
  81
  82/* Stripping FCS is causing problems, disabled for now */
  83#undef STRIP_FCS
  84
  85#define DEFAULT_MSG     (NETIF_MSG_DRV          | \
  86                         NETIF_MSG_PROBE        | \
  87                         NETIF_MSG_LINK)
  88
  89#define ADVERTISE_MASK  (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
  90                         SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
  91                         SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \
  92                         SUPPORTED_Pause | SUPPORTED_Autoneg)
  93
  94#define DRV_NAME        "sungem"
  95#define DRV_VERSION     "0.98"
  96#define DRV_RELDATE     "8/24/03"
  97#define DRV_AUTHOR      "David S. Miller (davem@redhat.com)"
  98
  99static char version[] __devinitdata =
 100        DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " " DRV_AUTHOR "\n";
 101
 102MODULE_AUTHOR(DRV_AUTHOR);
 103MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver");
 104MODULE_LICENSE("GPL");
 105
 106#define GEM_MODULE_NAME "gem"
 107#define PFX GEM_MODULE_NAME ": "
 108
 109static struct pci_device_id gem_pci_tbl[] = {
 110        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM,
 111          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 112
 113        /* These models only differ from the original GEM in
 114         * that their tx/rx fifos are of a different size and
 115         * they only support 10/100 speeds. -DaveM
 116         *
 117         * Apple's GMAC does support gigabit on machines with
 118         * the BCM54xx PHYs. -BenH
 119         */
 120        { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM,
 121          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 122        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC,
 123          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 124        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP,
 125          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 126        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2,
 127          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 128        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC,
 129          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 130        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM,
 131          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 132        { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC,
 133          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
 134        {0, }
 135};
 136
 137MODULE_DEVICE_TABLE(pci, gem_pci_tbl);
 138
 139static u16 __phy_read(struct gem *gp, int phy_addr, int reg)
 140{
 141        u32 cmd;
 142        int limit = 10000;
 143
 144        cmd  = (1 << 30);
 145        cmd |= (2 << 28);
 146        cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 147        cmd |= (reg << 18) & MIF_FRAME_REGAD;
 148        cmd |= (MIF_FRAME_TAMSB);
 149        writel(cmd, gp->regs + MIF_FRAME);
 150
 151        while (limit--) {
 152                cmd = readl(gp->regs + MIF_FRAME);
 153                if (cmd & MIF_FRAME_TALSB)
 154                        break;
 155
 156                udelay(10);
 157        }
 158
 159        if (!limit)
 160                cmd = 0xffff;
 161
 162        return cmd & MIF_FRAME_DATA;
 163}
 164
 165static inline int _phy_read(struct net_device *dev, int mii_id, int reg)
 166{
 167        struct gem *gp = dev->priv;
 168        return __phy_read(gp, mii_id, reg);
 169}
 170
 171static inline u16 phy_read(struct gem *gp, int reg)
 172{
 173        return __phy_read(gp, gp->mii_phy_addr, reg);
 174}
 175
 176static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val)
 177{
 178        u32 cmd;
 179        int limit = 10000;
 180
 181        cmd  = (1 << 30);
 182        cmd |= (1 << 28);
 183        cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD;
 184        cmd |= (reg << 18) & MIF_FRAME_REGAD;
 185        cmd |= (MIF_FRAME_TAMSB);
 186        cmd |= (val & MIF_FRAME_DATA);
 187        writel(cmd, gp->regs + MIF_FRAME);
 188
 189        while (limit--) {
 190                cmd = readl(gp->regs + MIF_FRAME);
 191                if (cmd & MIF_FRAME_TALSB)
 192                        break;
 193
 194                udelay(10);
 195        }
 196}
 197
 198static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val)
 199{
 200        struct gem *gp = dev->priv;
 201        __phy_write(gp, mii_id, reg, val & 0xffff);
 202}
 203
 204static inline void phy_write(struct gem *gp, int reg, u16 val)
 205{
 206        __phy_write(gp, gp->mii_phy_addr, reg, val);
 207}
 208
 209static inline void gem_enable_ints(struct gem *gp)
 210{
 211        /* Enable all interrupts but TXDONE */
 212        writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 213}
 214
 215static inline void gem_disable_ints(struct gem *gp)
 216{
 217        /* Disable all interrupts, including TXDONE */
 218        writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK);
 219}
 220
 221static void gem_get_cell(struct gem *gp)
 222{
 223        BUG_ON(gp->cell_enabled < 0);
 224        gp->cell_enabled++;
 225#ifdef CONFIG_PPC_PMAC
 226        if (gp->cell_enabled == 1) {
 227                mb();
 228                pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1);
 229                udelay(10);
 230        }
 231#endif /* CONFIG_PPC_PMAC */
 232}
 233
 234/* Turn off the chip's clock */
 235static void gem_put_cell(struct gem *gp)
 236{
 237        BUG_ON(gp->cell_enabled <= 0);
 238        gp->cell_enabled--;
 239#ifdef CONFIG_PPC_PMAC
 240        if (gp->cell_enabled == 0) {
 241                mb();
 242                pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0);
 243                udelay(10);
 244        }
 245#endif /* CONFIG_PPC_PMAC */
 246}
 247
 248static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits)
 249{
 250        if (netif_msg_intr(gp))
 251                printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name);
 252}
 253
 254static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 255{
 256        u32 pcs_istat = readl(gp->regs + PCS_ISTAT);
 257        u32 pcs_miistat;
 258
 259        if (netif_msg_intr(gp))
 260                printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n",
 261                        gp->dev->name, pcs_istat);
 262
 263        if (!(pcs_istat & PCS_ISTAT_LSC)) {
 264                printk(KERN_ERR "%s: PCS irq but no link status change???\n",
 265                       dev->name);
 266                return 0;
 267        }
 268
 269        /* The link status bit latches on zero, so you must
 270         * read it twice in such a case to see a transition
 271         * to the link being up.
 272         */
 273        pcs_miistat = readl(gp->regs + PCS_MIISTAT);
 274        if (!(pcs_miistat & PCS_MIISTAT_LS))
 275                pcs_miistat |=
 276                        (readl(gp->regs + PCS_MIISTAT) &
 277                         PCS_MIISTAT_LS);
 278
 279        if (pcs_miistat & PCS_MIISTAT_ANC) {
 280                /* The remote-fault indication is only valid
 281                 * when autoneg has completed.
 282                 */
 283                if (pcs_miistat & PCS_MIISTAT_RF)
 284                        printk(KERN_INFO "%s: PCS AutoNEG complete, "
 285                               "RemoteFault\n", dev->name);
 286                else
 287                        printk(KERN_INFO "%s: PCS AutoNEG complete.\n",
 288                               dev->name);
 289        }
 290
 291        if (pcs_miistat & PCS_MIISTAT_LS) {
 292                printk(KERN_INFO "%s: PCS link is now up.\n",
 293                       dev->name);
 294                netif_carrier_on(gp->dev);
 295        } else {
 296                printk(KERN_INFO "%s: PCS link is now down.\n",
 297                       dev->name);
 298                netif_carrier_off(gp->dev);
 299                /* If this happens and the link timer is not running,
 300                 * reset so we re-negotiate.
 301                 */
 302                if (!timer_pending(&gp->link_timer))
 303                        return 1;
 304        }
 305
 306        return 0;
 307}
 308
 309static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 310{
 311        u32 txmac_stat = readl(gp->regs + MAC_TXSTAT);
 312
 313        if (netif_msg_intr(gp))
 314                printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n",
 315                        gp->dev->name, txmac_stat);
 316
 317        /* Defer timer expiration is quite normal,
 318         * don't even log the event.
 319         */
 320        if ((txmac_stat & MAC_TXSTAT_DTE) &&
 321            !(txmac_stat & ~MAC_TXSTAT_DTE))
 322                return 0;
 323
 324        if (txmac_stat & MAC_TXSTAT_URUN) {
 325                printk(KERN_ERR "%s: TX MAC xmit underrun.\n",
 326                       dev->name);
 327                gp->net_stats.tx_fifo_errors++;
 328        }
 329
 330        if (txmac_stat & MAC_TXSTAT_MPE) {
 331                printk(KERN_ERR "%s: TX MAC max packet size error.\n",
 332                       dev->name);
 333                gp->net_stats.tx_errors++;
 334        }
 335
 336        /* The rest are all cases of one of the 16-bit TX
 337         * counters expiring.
 338         */
 339        if (txmac_stat & MAC_TXSTAT_NCE)
 340                gp->net_stats.collisions += 0x10000;
 341
 342        if (txmac_stat & MAC_TXSTAT_ECE) {
 343                gp->net_stats.tx_aborted_errors += 0x10000;
 344                gp->net_stats.collisions += 0x10000;
 345        }
 346
 347        if (txmac_stat & MAC_TXSTAT_LCE) {
 348                gp->net_stats.tx_aborted_errors += 0x10000;
 349                gp->net_stats.collisions += 0x10000;
 350        }
 351
 352        /* We do not keep track of MAC_TXSTAT_FCE and
 353         * MAC_TXSTAT_PCE events.
 354         */
 355        return 0;
 356}
 357
 358/* When we get a RX fifo overflow, the RX unit in GEM is probably hung
 359 * so we do the following.
 360 *
 361 * If any part of the reset goes wrong, we return 1 and that causes the
 362 * whole chip to be reset.
 363 */
 364static int gem_rxmac_reset(struct gem *gp)
 365{
 366        struct net_device *dev = gp->dev;
 367        int limit, i;
 368        u64 desc_dma;
 369        u32 val;
 370
 371        /* First, reset & disable MAC RX. */
 372        writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
 373        for (limit = 0; limit < 5000; limit++) {
 374                if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD))
 375                        break;
 376                udelay(10);
 377        }
 378        if (limit == 5000) {
 379                printk(KERN_ERR "%s: RX MAC will not reset, resetting whole "
 380                       "chip.\n", dev->name);
 381                return 1;
 382        }
 383
 384        writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB,
 385               gp->regs + MAC_RXCFG);
 386        for (limit = 0; limit < 5000; limit++) {
 387                if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB))
 388                        break;
 389                udelay(10);
 390        }
 391        if (limit == 5000) {
 392                printk(KERN_ERR "%s: RX MAC will not disable, resetting whole "
 393                       "chip.\n", dev->name);
 394                return 1;
 395        }
 396
 397        /* Second, disable RX DMA. */
 398        writel(0, gp->regs + RXDMA_CFG);
 399        for (limit = 0; limit < 5000; limit++) {
 400                if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE))
 401                        break;
 402                udelay(10);
 403        }
 404        if (limit == 5000) {
 405                printk(KERN_ERR "%s: RX DMA will not disable, resetting whole "
 406                       "chip.\n", dev->name);
 407                return 1;
 408        }
 409
 410        udelay(5000);
 411
 412        /* Execute RX reset command. */
 413        writel(gp->swrst_base | GREG_SWRST_RXRST,
 414               gp->regs + GREG_SWRST);
 415        for (limit = 0; limit < 5000; limit++) {
 416                if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST))
 417                        break;
 418                udelay(10);
 419        }
 420        if (limit == 5000) {
 421                printk(KERN_ERR "%s: RX reset command will not execute, resetting "
 422                       "whole chip.\n", dev->name);
 423                return 1;
 424        }
 425
 426        /* Refresh the RX ring. */
 427        for (i = 0; i < RX_RING_SIZE; i++) {
 428                struct gem_rxd *rxd = &gp->init_block->rxd[i];
 429
 430                if (gp->rx_skbs[i] == NULL) {
 431                        printk(KERN_ERR "%s: Parts of RX ring empty, resetting "
 432                               "whole chip.\n", dev->name);
 433                        return 1;
 434                }
 435
 436                rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 437        }
 438        gp->rx_new = gp->rx_old = 0;
 439
 440        /* Now we must reprogram the rest of RX unit. */
 441        desc_dma = (u64) gp->gblock_dvma;
 442        desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
 443        writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
 444        writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
 445        writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
 446        val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
 447               ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
 448        writel(val, gp->regs + RXDMA_CFG);
 449        if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
 450                writel(((5 & RXDMA_BLANK_IPKTS) |
 451                        ((8 << 12) & RXDMA_BLANK_ITIME)),
 452                       gp->regs + RXDMA_BLANK);
 453        else
 454                writel(((5 & RXDMA_BLANK_IPKTS) |
 455                        ((4 << 12) & RXDMA_BLANK_ITIME)),
 456                       gp->regs + RXDMA_BLANK);
 457        val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
 458        val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
 459        writel(val, gp->regs + RXDMA_PTHRESH);
 460        val = readl(gp->regs + RXDMA_CFG);
 461        writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
 462        writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
 463        val = readl(gp->regs + MAC_RXCFG);
 464        writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
 465
 466        return 0;
 467}
 468
 469static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 470{
 471        u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT);
 472        int ret = 0;
 473
 474        if (netif_msg_intr(gp))
 475                printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n",
 476                        gp->dev->name, rxmac_stat);
 477
 478        if (rxmac_stat & MAC_RXSTAT_OFLW) {
 479                u32 smac = readl(gp->regs + MAC_SMACHINE);
 480
 481                printk(KERN_ERR "%s: RX MAC fifo overflow smac[%08x].\n",
 482                                dev->name, smac);
 483                gp->net_stats.rx_over_errors++;
 484                gp->net_stats.rx_fifo_errors++;
 485
 486                ret = gem_rxmac_reset(gp);
 487        }
 488
 489        if (rxmac_stat & MAC_RXSTAT_ACE)
 490                gp->net_stats.rx_frame_errors += 0x10000;
 491
 492        if (rxmac_stat & MAC_RXSTAT_CCE)
 493                gp->net_stats.rx_crc_errors += 0x10000;
 494
 495        if (rxmac_stat & MAC_RXSTAT_LCE)
 496                gp->net_stats.rx_length_errors += 0x10000;
 497
 498        /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE
 499         * events.
 500         */
 501        return ret;
 502}
 503
 504static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 505{
 506        u32 mac_cstat = readl(gp->regs + MAC_CSTAT);
 507
 508        if (netif_msg_intr(gp))
 509                printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n",
 510                        gp->dev->name, mac_cstat);
 511
 512        /* This interrupt is just for pause frame and pause
 513         * tracking.  It is useful for diagnostics and debug
 514         * but probably by default we will mask these events.
 515         */
 516        if (mac_cstat & MAC_CSTAT_PS)
 517                gp->pause_entered++;
 518
 519        if (mac_cstat & MAC_CSTAT_PRCV)
 520                gp->pause_last_time_recvd = (mac_cstat >> 16);
 521
 522        return 0;
 523}
 524
 525static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 526{
 527        u32 mif_status = readl(gp->regs + MIF_STATUS);
 528        u32 reg_val, changed_bits;
 529
 530        reg_val = (mif_status & MIF_STATUS_DATA) >> 16;
 531        changed_bits = (mif_status & MIF_STATUS_STAT);
 532
 533        gem_handle_mif_event(gp, reg_val, changed_bits);
 534
 535        return 0;
 536}
 537
 538static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status)
 539{
 540        u32 pci_estat = readl(gp->regs + GREG_PCIESTAT);
 541
 542        if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
 543            gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
 544                printk(KERN_ERR "%s: PCI error [%04x] ",
 545                       dev->name, pci_estat);
 546
 547                if (pci_estat & GREG_PCIESTAT_BADACK)
 548                        printk("<No ACK64# during ABS64 cycle> ");
 549                if (pci_estat & GREG_PCIESTAT_DTRTO)
 550                        printk("<Delayed transaction timeout> ");
 551                if (pci_estat & GREG_PCIESTAT_OTHER)
 552                        printk("<other>");
 553                printk("\n");
 554        } else {
 555                pci_estat |= GREG_PCIESTAT_OTHER;
 556                printk(KERN_ERR "%s: PCI error\n", dev->name);
 557        }
 558
 559        if (pci_estat & GREG_PCIESTAT_OTHER) {
 560                u16 pci_cfg_stat;
 561
 562                /* Interrogate PCI config space for the
 563                 * true cause.
 564                 */
 565                pci_read_config_word(gp->pdev, PCI_STATUS,
 566                                     &pci_cfg_stat);
 567                printk(KERN_ERR "%s: Read PCI cfg space status [%04x]\n",
 568                       dev->name, pci_cfg_stat);
 569                if (pci_cfg_stat & PCI_STATUS_PARITY)
 570                        printk(KERN_ERR "%s: PCI parity error detected.\n",
 571                               dev->name);
 572                if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT)
 573                        printk(KERN_ERR "%s: PCI target abort.\n",
 574                               dev->name);
 575                if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT)
 576                        printk(KERN_ERR "%s: PCI master acks target abort.\n",
 577                               dev->name);
 578                if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT)
 579                        printk(KERN_ERR "%s: PCI master abort.\n",
 580                               dev->name);
 581                if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR)
 582                        printk(KERN_ERR "%s: PCI system error SERR#.\n",
 583                               dev->name);
 584                if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY)
 585                        printk(KERN_ERR "%s: PCI parity error.\n",
 586                               dev->name);
 587
 588                /* Write the error bits back to clear them. */
 589                pci_cfg_stat &= (PCI_STATUS_PARITY |
 590                                 PCI_STATUS_SIG_TARGET_ABORT |
 591                                 PCI_STATUS_REC_TARGET_ABORT |
 592                                 PCI_STATUS_REC_MASTER_ABORT |
 593                                 PCI_STATUS_SIG_SYSTEM_ERROR |
 594                                 PCI_STATUS_DETECTED_PARITY);
 595                pci_write_config_word(gp->pdev,
 596                                      PCI_STATUS, pci_cfg_stat);
 597        }
 598
 599        /* For all PCI errors, we should reset the chip. */
 600        return 1;
 601}
 602
 603/* All non-normal interrupt conditions get serviced here.
 604 * Returns non-zero if we should just exit the interrupt
 605 * handler right now (ie. if we reset the card which invalidates
 606 * all of the other original irq status bits).
 607 */
 608static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status)
 609{
 610        if (gem_status & GREG_STAT_RXNOBUF) {
 611                /* Frame arrived, no free RX buffers available. */
 612                if (netif_msg_rx_err(gp))
 613                        printk(KERN_DEBUG "%s: no buffer for rx frame\n",
 614                                gp->dev->name);
 615                gp->net_stats.rx_dropped++;
 616        }
 617
 618        if (gem_status & GREG_STAT_RXTAGERR) {
 619                /* corrupt RX tag framing */
 620                if (netif_msg_rx_err(gp))
 621                        printk(KERN_DEBUG "%s: corrupt rx tag framing\n",
 622                                gp->dev->name);
 623                gp->net_stats.rx_errors++;
 624
 625                goto do_reset;
 626        }
 627
 628        if (gem_status & GREG_STAT_PCS) {
 629                if (gem_pcs_interrupt(dev, gp, gem_status))
 630                        goto do_reset;
 631        }
 632
 633        if (gem_status & GREG_STAT_TXMAC) {
 634                if (gem_txmac_interrupt(dev, gp, gem_status))
 635                        goto do_reset;
 636        }
 637
 638        if (gem_status & GREG_STAT_RXMAC) {
 639                if (gem_rxmac_interrupt(dev, gp, gem_status))
 640                        goto do_reset;
 641        }
 642
 643        if (gem_status & GREG_STAT_MAC) {
 644                if (gem_mac_interrupt(dev, gp, gem_status))
 645                        goto do_reset;
 646        }
 647
 648        if (gem_status & GREG_STAT_MIF) {
 649                if (gem_mif_interrupt(dev, gp, gem_status))
 650                        goto do_reset;
 651        }
 652
 653        if (gem_status & GREG_STAT_PCIERR) {
 654                if (gem_pci_interrupt(dev, gp, gem_status))
 655                        goto do_reset;
 656        }
 657
 658        return 0;
 659
 660do_reset:
 661        gp->reset_task_pending = 1;
 662        schedule_work(&gp->reset_task);
 663
 664        return 1;
 665}
 666
 667static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status)
 668{
 669        int entry, limit;
 670
 671        if (netif_msg_intr(gp))
 672                printk(KERN_DEBUG "%s: tx interrupt, gem_status: 0x%x\n",
 673                        gp->dev->name, gem_status);
 674
 675        entry = gp->tx_old;
 676        limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT);
 677        while (entry != limit) {
 678                struct sk_buff *skb;
 679                struct gem_txd *txd;
 680                dma_addr_t dma_addr;
 681                u32 dma_len;
 682                int frag;
 683
 684                if (netif_msg_tx_done(gp))
 685                        printk(KERN_DEBUG "%s: tx done, slot %d\n",
 686                                gp->dev->name, entry);
 687                skb = gp->tx_skbs[entry];
 688                if (skb_shinfo(skb)->nr_frags) {
 689                        int last = entry + skb_shinfo(skb)->nr_frags;
 690                        int walk = entry;
 691                        int incomplete = 0;
 692
 693                        last &= (TX_RING_SIZE - 1);
 694                        for (;;) {
 695                                walk = NEXT_TX(walk);
 696                                if (walk == limit)
 697                                        incomplete = 1;
 698                                if (walk == last)
 699                                        break;
 700                        }
 701                        if (incomplete)
 702                                break;
 703                }
 704                gp->tx_skbs[entry] = NULL;
 705                gp->net_stats.tx_bytes += skb->len;
 706
 707                for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
 708                        txd = &gp->init_block->txd[entry];
 709
 710                        dma_addr = le64_to_cpu(txd->buffer);
 711                        dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ;
 712
 713                        pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE);
 714                        entry = NEXT_TX(entry);
 715                }
 716
 717                gp->net_stats.tx_packets++;
 718                dev_kfree_skb_irq(skb);
 719        }
 720        gp->tx_old = entry;
 721
 722        if (netif_queue_stopped(dev) &&
 723            TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))
 724                netif_wake_queue(dev);
 725}
 726
 727static __inline__ void gem_post_rxds(struct gem *gp, int limit)
 728{
 729        int cluster_start, curr, count, kick;
 730
 731        cluster_start = curr = (gp->rx_new & ~(4 - 1));
 732        count = 0;
 733        kick = -1;
 734        wmb();
 735        while (curr != limit) {
 736                curr = NEXT_RX(curr);
 737                if (++count == 4) {
 738                        struct gem_rxd *rxd =
 739                                &gp->init_block->rxd[cluster_start];
 740                        for (;;) {
 741                                rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
 742                                rxd++;
 743                                cluster_start = NEXT_RX(cluster_start);
 744                                if (cluster_start == curr)
 745                                        break;
 746                        }
 747                        kick = curr;
 748                        count = 0;
 749                }
 750        }
 751        if (kick >= 0) {
 752                mb();
 753                writel(kick, gp->regs + RXDMA_KICK);
 754        }
 755}
 756
 757static int gem_rx(struct gem *gp, int work_to_do)
 758{
 759        int entry, drops, work_done = 0;
 760        u32 done;
 761
 762        if (netif_msg_rx_status(gp))
 763                printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n",
 764                        gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new);
 765
 766        entry = gp->rx_new;
 767        drops = 0;
 768        done = readl(gp->regs + RXDMA_DONE);
 769        for (;;) {
 770                struct gem_rxd *rxd = &gp->init_block->rxd[entry];
 771                struct sk_buff *skb;
 772                u64 status = cpu_to_le64(rxd->status_word);
 773                dma_addr_t dma_addr;
 774                int len;
 775
 776                if ((status & RXDCTRL_OWN) != 0)
 777                        break;
 778
 779                if (work_done >= RX_RING_SIZE || work_done >= work_to_do)
 780                        break;
 781
 782                /* When writing back RX descriptor, GEM writes status
 783                 * then buffer address, possibly in seperate transactions.
 784                 * If we don't wait for the chip to write both, we could
 785                 * post a new buffer to this descriptor then have GEM spam
 786                 * on the buffer address.  We sync on the RX completion
 787                 * register to prevent this from happening.
 788                 */
 789                if (entry == done) {
 790                        done = readl(gp->regs + RXDMA_DONE);
 791                        if (entry == done)
 792                                break;
 793                }
 794
 795                /* We can now account for the work we're about to do */
 796                work_done++;
 797
 798                skb = gp->rx_skbs[entry];
 799
 800                len = (status & RXDCTRL_BUFSZ) >> 16;
 801                if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) {
 802                        gp->net_stats.rx_errors++;
 803                        if (len < ETH_ZLEN)
 804                                gp->net_stats.rx_length_errors++;
 805                        if (len & RXDCTRL_BAD)
 806                                gp->net_stats.rx_crc_errors++;
 807
 808                        /* We'll just return it to GEM. */
 809                drop_it:
 810                        gp->net_stats.rx_dropped++;
 811                        goto next;
 812                }
 813
 814                dma_addr = cpu_to_le64(rxd->buffer);
 815                if (len > RX_COPY_THRESHOLD) {
 816                        struct sk_buff *new_skb;
 817
 818                        new_skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
 819                        if (new_skb == NULL) {
 820                                drops++;
 821                                goto drop_it;
 822                        }
 823                        pci_unmap_page(gp->pdev, dma_addr,
 824                                       RX_BUF_ALLOC_SIZE(gp),
 825                                       PCI_DMA_FROMDEVICE);
 826                        gp->rx_skbs[entry] = new_skb;
 827                        new_skb->dev = gp->dev;
 828                        skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET));
 829                        rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev,
 830                                                               virt_to_page(new_skb->data),
 831                                                               offset_in_page(new_skb->data),
 832                                                               RX_BUF_ALLOC_SIZE(gp),
 833                                                               PCI_DMA_FROMDEVICE));
 834                        skb_reserve(new_skb, RX_OFFSET);
 835
 836                        /* Trim the original skb for the netif. */
 837                        skb_trim(skb, len);
 838                } else {
 839                        struct sk_buff *copy_skb = dev_alloc_skb(len + 2);
 840
 841                        if (copy_skb == NULL) {
 842                                drops++;
 843                                goto drop_it;
 844                        }
 845
 846                        skb_reserve(copy_skb, 2);
 847                        skb_put(copy_skb, len);
 848                        pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 849                        skb_copy_from_linear_data(skb, copy_skb->data, len);
 850                        pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE);
 851
 852                        /* We'll reuse the original ring buffer. */
 853                        skb = copy_skb;
 854                }
 855
 856                skb->csum = ntohs((status & RXDCTRL_TCPCSUM) ^ 0xffff);
 857                skb->ip_summed = CHECKSUM_COMPLETE;
 858                skb->protocol = eth_type_trans(skb, gp->dev);
 859
 860                netif_receive_skb(skb);
 861
 862                gp->net_stats.rx_packets++;
 863                gp->net_stats.rx_bytes += len;
 864                gp->dev->last_rx = jiffies;
 865
 866        next:
 867                entry = NEXT_RX(entry);
 868        }
 869
 870        gem_post_rxds(gp, entry);
 871
 872        gp->rx_new = entry;
 873
 874        if (drops)
 875                printk(KERN_INFO "%s: Memory squeeze, deferring packet.\n",
 876                       gp->dev->name);
 877
 878        return work_done;
 879}
 880
 881static int gem_poll(struct napi_struct *napi, int budget)
 882{
 883        struct gem *gp = container_of(napi, struct gem, napi);
 884        struct net_device *dev = gp->dev;
 885        unsigned long flags;
 886        int work_done;
 887
 888        /*
 889         * NAPI locking nightmare: See comment at head of driver
 890         */
 891        spin_lock_irqsave(&gp->lock, flags);
 892
 893        work_done = 0;
 894        do {
 895                /* Handle anomalies */
 896                if (gp->status & GREG_STAT_ABNORMAL) {
 897                        if (gem_abnormal_irq(dev, gp, gp->status))
 898                                break;
 899                }
 900
 901                /* Run TX completion thread */
 902                spin_lock(&gp->tx_lock);
 903                gem_tx(dev, gp, gp->status);
 904                spin_unlock(&gp->tx_lock);
 905
 906                spin_unlock_irqrestore(&gp->lock, flags);
 907
 908                /* Run RX thread. We don't use any locking here,
 909                 * code willing to do bad things - like cleaning the
 910                 * rx ring - must call napi_disable(), which
 911                 * schedule_timeout()'s if polling is already disabled.
 912                 */
 913                work_done += gem_rx(gp, budget);
 914
 915                if (work_done >= budget)
 916                        return work_done;
 917
 918                spin_lock_irqsave(&gp->lock, flags);
 919
 920                gp->status = readl(gp->regs + GREG_STAT);
 921        } while (gp->status & GREG_STAT_NAPI);
 922
 923        __netif_rx_complete(dev, napi);
 924        gem_enable_ints(gp);
 925
 926        spin_unlock_irqrestore(&gp->lock, flags);
 927
 928        return work_done;
 929}
 930
 931static irqreturn_t gem_interrupt(int irq, void *dev_id)
 932{
 933        struct net_device *dev = dev_id;
 934        struct gem *gp = dev->priv;
 935        unsigned long flags;
 936
 937        /* Swallow interrupts when shutting the chip down, though
 938         * that shouldn't happen, we should have done free_irq() at
 939         * this point...
 940         */
 941        if (!gp->running)
 942                return IRQ_HANDLED;
 943
 944        spin_lock_irqsave(&gp->lock, flags);
 945
 946        if (netif_rx_schedule_prep(dev, &gp->napi)) {
 947                u32 gem_status = readl(gp->regs + GREG_STAT);
 948
 949                if (gem_status == 0) {
 950                        napi_enable(&gp->napi);
 951                        spin_unlock_irqrestore(&gp->lock, flags);
 952                        return IRQ_NONE;
 953                }
 954                gp->status = gem_status;
 955                gem_disable_ints(gp);
 956                __netif_rx_schedule(dev, &gp->napi);
 957        }
 958
 959        spin_unlock_irqrestore(&gp->lock, flags);
 960
 961        /* If polling was disabled at the time we received that
 962         * interrupt, we may return IRQ_HANDLED here while we
 963         * should return IRQ_NONE. No big deal...
 964         */
 965        return IRQ_HANDLED;
 966}
 967
 968#ifdef CONFIG_NET_POLL_CONTROLLER
 969static void gem_poll_controller(struct net_device *dev)
 970{
 971        /* gem_interrupt is safe to reentrance so no need
 972         * to disable_irq here.
 973         */
 974        gem_interrupt(dev->irq, dev);
 975}
 976#endif
 977
 978static void gem_tx_timeout(struct net_device *dev)
 979{
 980        struct gem *gp = dev->priv;
 981
 982        printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
 983        if (!gp->running) {
 984                printk("%s: hrm.. hw not running !\n", dev->name);
 985                return;
 986        }
 987        printk(KERN_ERR "%s: TX_STATE[%08x:%08x:%08x]\n",
 988               dev->name,
 989               readl(gp->regs + TXDMA_CFG),
 990               readl(gp->regs + MAC_TXSTAT),
 991               readl(gp->regs + MAC_TXCFG));
 992        printk(KERN_ERR "%s: RX_STATE[%08x:%08x:%08x]\n",
 993               dev->name,
 994               readl(gp->regs + RXDMA_CFG),
 995               readl(gp->regs + MAC_RXSTAT),
 996               readl(gp->regs + MAC_RXCFG));
 997
 998        spin_lock_irq(&gp->lock);
 999        spin_lock(&gp->tx_lock);
1000
1001        gp->reset_task_pending = 1;
1002        schedule_work(&gp->reset_task);
1003
1004        spin_unlock(&gp->tx_lock);
1005        spin_unlock_irq(&gp->lock);
1006}
1007
1008static __inline__ int gem_intme(int entry)
1009{
1010        /* Algorithm: IRQ every 1/2 of descriptors. */
1011        if (!(entry & ((TX_RING_SIZE>>1)-1)))
1012                return 1;
1013
1014        return 0;
1015}
1016
1017static int gem_start_xmit(struct sk_buff *skb, struct net_device *dev)
1018{
1019        struct gem *gp = dev->priv;
1020        int entry;
1021        u64 ctrl;
1022        unsigned long flags;
1023
1024        ctrl = 0;
1025        if (skb->ip_summed == CHECKSUM_PARTIAL) {
1026                const u64 csum_start_off = skb_transport_offset(skb);
1027                const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
1028
1029                ctrl = (TXDCTRL_CENAB |
1030                        (csum_start_off << 15) |
1031                        (csum_stuff_off << 21));
1032        }
1033
1034        local_irq_save(flags);
1035        if (!spin_trylock(&gp->tx_lock)) {
1036                /* Tell upper layer to requeue */
1037                local_irq_restore(flags);
1038                return NETDEV_TX_LOCKED;
1039        }
1040        /* We raced with gem_do_stop() */
1041        if (!gp->running) {
1042                spin_unlock_irqrestore(&gp->tx_lock, flags);
1043                return NETDEV_TX_BUSY;
1044        }
1045
1046        /* This is a hard error, log it. */
1047        if (TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1)) {
1048                netif_stop_queue(dev);
1049                spin_unlock_irqrestore(&gp->tx_lock, flags);
1050                printk(KERN_ERR PFX "%s: BUG! Tx Ring full when queue awake!\n",
1051                       dev->name);
1052                return NETDEV_TX_BUSY;
1053        }
1054
1055        entry = gp->tx_new;
1056        gp->tx_skbs[entry] = skb;
1057
1058        if (skb_shinfo(skb)->nr_frags == 0) {
1059                struct gem_txd *txd = &gp->init_block->txd[entry];
1060                dma_addr_t mapping;
1061                u32 len;
1062
1063                len = skb->len;
1064                mapping = pci_map_page(gp->pdev,
1065                                       virt_to_page(skb->data),
1066                                       offset_in_page(skb->data),
1067                                       len, PCI_DMA_TODEVICE);
1068                ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len;
1069                if (gem_intme(entry))
1070                        ctrl |= TXDCTRL_INTME;
1071                txd->buffer = cpu_to_le64(mapping);
1072                wmb();
1073                txd->control_word = cpu_to_le64(ctrl);
1074                entry = NEXT_TX(entry);
1075        } else {
1076                struct gem_txd *txd;
1077                u32 first_len;
1078                u64 intme;
1079                dma_addr_t first_mapping;
1080                int frag, first_entry = entry;
1081
1082                intme = 0;
1083                if (gem_intme(entry))
1084                        intme |= TXDCTRL_INTME;
1085
1086                /* We must give this initial chunk to the device last.
1087                 * Otherwise we could race with the device.
1088                 */
1089                first_len = skb_headlen(skb);
1090                first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data),
1091                                             offset_in_page(skb->data),
1092                                             first_len, PCI_DMA_TODEVICE);
1093                entry = NEXT_TX(entry);
1094
1095                for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1096                        skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1097                        u32 len;
1098                        dma_addr_t mapping;
1099                        u64 this_ctrl;
1100
1101                        len = this_frag->size;
1102                        mapping = pci_map_page(gp->pdev,
1103                                               this_frag->page,
1104                                               this_frag->page_offset,
1105                                               len, PCI_DMA_TODEVICE);
1106                        this_ctrl = ctrl;
1107                        if (frag == skb_shinfo(skb)->nr_frags - 1)
1108                                this_ctrl |= TXDCTRL_EOF;
1109
1110                        txd = &gp->init_block->txd[entry];
1111                        txd->buffer = cpu_to_le64(mapping);
1112                        wmb();
1113                        txd->control_word = cpu_to_le64(this_ctrl | len);
1114
1115                        if (gem_intme(entry))
1116                                intme |= TXDCTRL_INTME;
1117
1118                        entry = NEXT_TX(entry);
1119                }
1120                txd = &gp->init_block->txd[first_entry];
1121                txd->buffer = cpu_to_le64(first_mapping);
1122                wmb();
1123                txd->control_word =
1124                        cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len);
1125        }
1126
1127        gp->tx_new = entry;
1128        if (TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))
1129                netif_stop_queue(dev);
1130
1131        if (netif_msg_tx_queued(gp))
1132                printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n",
1133                       dev->name, entry, skb->len);
1134        mb();
1135        writel(gp->tx_new, gp->regs + TXDMA_KICK);
1136        spin_unlock_irqrestore(&gp->tx_lock, flags);
1137
1138        dev->trans_start = jiffies;
1139
1140        return NETDEV_TX_OK;
1141}
1142
1143#define STOP_TRIES 32
1144
1145/* Must be invoked under gp->lock and gp->tx_lock. */
1146static void gem_reset(struct gem *gp)
1147{
1148        int limit;
1149        u32 val;
1150
1151        /* Make sure we won't get any more interrupts */
1152        writel(0xffffffff, gp->regs + GREG_IMASK);
1153
1154        /* Reset the chip */
1155        writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST,
1156               gp->regs + GREG_SWRST);
1157
1158        limit = STOP_TRIES;
1159
1160        do {
1161                udelay(20);
1162                val = readl(gp->regs + GREG_SWRST);
1163                if (limit-- <= 0)
1164                        break;
1165        } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST));
1166
1167        if (limit <= 0)
1168                printk(KERN_ERR "%s: SW reset is ghetto.\n", gp->dev->name);
1169}
1170
1171/* Must be invoked under gp->lock and gp->tx_lock. */
1172static void gem_start_dma(struct gem *gp)
1173{
1174        u32 val;
1175
1176        /* We are ready to rock, turn everything on. */
1177        val = readl(gp->regs + TXDMA_CFG);
1178        writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1179        val = readl(gp->regs + RXDMA_CFG);
1180        writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1181        val = readl(gp->regs + MAC_TXCFG);
1182        writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1183        val = readl(gp->regs + MAC_RXCFG);
1184        writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1185
1186        (void) readl(gp->regs + MAC_RXCFG);
1187        udelay(100);
1188
1189        gem_enable_ints(gp);
1190
1191        writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1192}
1193
1194/* Must be invoked under gp->lock and gp->tx_lock. DMA won't be
1195 * actually stopped before about 4ms tho ...
1196 */
1197static void gem_stop_dma(struct gem *gp)
1198{
1199        u32 val;
1200
1201        /* We are done rocking, turn everything off. */
1202        val = readl(gp->regs + TXDMA_CFG);
1203        writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG);
1204        val = readl(gp->regs + RXDMA_CFG);
1205        writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG);
1206        val = readl(gp->regs + MAC_TXCFG);
1207        writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG);
1208        val = readl(gp->regs + MAC_RXCFG);
1209        writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
1210
1211        (void) readl(gp->regs + MAC_RXCFG);
1212
1213        /* Need to wait a bit ... done by the caller */
1214}
1215
1216
1217/* Must be invoked under gp->lock and gp->tx_lock. */
1218// XXX dbl check what that function should do when called on PCS PHY
1219static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep)
1220{
1221        u32 advertise, features;
1222        int autoneg;
1223        int speed;
1224        int duplex;
1225
1226        if (gp->phy_type != phy_mii_mdio0 &&
1227            gp->phy_type != phy_mii_mdio1)
1228                goto non_mii;
1229
1230        /* Setup advertise */
1231        if (found_mii_phy(gp))
1232                features = gp->phy_mii.def->features;
1233        else
1234                features = 0;
1235
1236        advertise = features & ADVERTISE_MASK;
1237        if (gp->phy_mii.advertising != 0)
1238                advertise &= gp->phy_mii.advertising;
1239
1240        autoneg = gp->want_autoneg;
1241        speed = gp->phy_mii.speed;
1242        duplex = gp->phy_mii.duplex;
1243
1244        /* Setup link parameters */
1245        if (!ep)
1246                goto start_aneg;
1247        if (ep->autoneg == AUTONEG_ENABLE) {
1248                advertise = ep->advertising;
1249                autoneg = 1;
1250        } else {
1251                autoneg = 0;
1252                speed = ep->speed;
1253                duplex = ep->duplex;
1254        }
1255
1256start_aneg:
1257        /* Sanitize settings based on PHY capabilities */
1258        if ((features & SUPPORTED_Autoneg) == 0)
1259                autoneg = 0;
1260        if (speed == SPEED_1000 &&
1261            !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)))
1262                speed = SPEED_100;
1263        if (speed == SPEED_100 &&
1264            !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full)))
1265                speed = SPEED_10;
1266        if (duplex == DUPLEX_FULL &&
1267            !(features & (SUPPORTED_1000baseT_Full |
1268                          SUPPORTED_100baseT_Full |
1269                          SUPPORTED_10baseT_Full)))
1270                duplex = DUPLEX_HALF;
1271        if (speed == 0)
1272                speed = SPEED_10;
1273
1274        /* If we are asleep, we don't try to actually setup the PHY, we
1275         * just store the settings
1276         */
1277        if (gp->asleep) {
1278                gp->phy_mii.autoneg = gp->want_autoneg = autoneg;
1279                gp->phy_mii.speed = speed;
1280                gp->phy_mii.duplex = duplex;
1281                return;
1282        }
1283
1284        /* Configure PHY & start aneg */
1285        gp->want_autoneg = autoneg;
1286        if (autoneg) {
1287                if (found_mii_phy(gp))
1288                        gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise);
1289                gp->lstate = link_aneg;
1290        } else {
1291                if (found_mii_phy(gp))
1292                        gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex);
1293                gp->lstate = link_force_ok;
1294        }
1295
1296non_mii:
1297        gp->timer_ticks = 0;
1298        mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1299}
1300
1301/* A link-up condition has occurred, initialize and enable the
1302 * rest of the chip.
1303 *
1304 * Must be invoked under gp->lock and gp->tx_lock.
1305 */
1306static int gem_set_link_modes(struct gem *gp)
1307{
1308        u32 val;
1309        int full_duplex, speed, pause;
1310
1311        full_duplex = 0;
1312        speed = SPEED_10;
1313        pause = 0;
1314
1315        if (found_mii_phy(gp)) {
1316                if (gp->phy_mii.def->ops->read_link(&gp->phy_mii))
1317                        return 1;
1318                full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL);
1319                speed = gp->phy_mii.speed;
1320                pause = gp->phy_mii.pause;
1321        } else if (gp->phy_type == phy_serialink ||
1322                   gp->phy_type == phy_serdes) {
1323                u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1324
1325                if (pcs_lpa & PCS_MIIADV_FD)
1326                        full_duplex = 1;
1327                speed = SPEED_1000;
1328        }
1329
1330        if (netif_msg_link(gp))
1331                printk(KERN_INFO "%s: Link is up at %d Mbps, %s-duplex.\n",
1332                        gp->dev->name, speed, (full_duplex ? "full" : "half"));
1333
1334        if (!gp->running)
1335                return 0;
1336
1337        val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU);
1338        if (full_duplex) {
1339                val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL);
1340        } else {
1341                /* MAC_TXCFG_NBO must be zero. */
1342        }
1343        writel(val, gp->regs + MAC_TXCFG);
1344
1345        val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED);
1346        if (!full_duplex &&
1347            (gp->phy_type == phy_mii_mdio0 ||
1348             gp->phy_type == phy_mii_mdio1)) {
1349                val |= MAC_XIFCFG_DISE;
1350        } else if (full_duplex) {
1351                val |= MAC_XIFCFG_FLED;
1352        }
1353
1354        if (speed == SPEED_1000)
1355                val |= (MAC_XIFCFG_GMII);
1356
1357        writel(val, gp->regs + MAC_XIFCFG);
1358
1359        /* If gigabit and half-duplex, enable carrier extension
1360         * mode.  Else, disable it.
1361         */
1362        if (speed == SPEED_1000 && !full_duplex) {
1363                val = readl(gp->regs + MAC_TXCFG);
1364                writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1365
1366                val = readl(gp->regs + MAC_RXCFG);
1367                writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1368        } else {
1369                val = readl(gp->regs + MAC_TXCFG);
1370                writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG);
1371
1372                val = readl(gp->regs + MAC_RXCFG);
1373                writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG);
1374        }
1375
1376        if (gp->phy_type == phy_serialink ||
1377            gp->phy_type == phy_serdes) {
1378                u32 pcs_lpa = readl(gp->regs + PCS_MIILP);
1379
1380                if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP))
1381                        pause = 1;
1382        }
1383
1384        if (netif_msg_link(gp)) {
1385                if (pause) {
1386                        printk(KERN_INFO "%s: Pause is enabled "
1387                               "(rxfifo: %d off: %d on: %d)\n",
1388                               gp->dev->name,
1389                               gp->rx_fifo_sz,
1390                               gp->rx_pause_off,
1391                               gp->rx_pause_on);
1392                } else {
1393                        printk(KERN_INFO "%s: Pause is disabled\n",
1394                               gp->dev->name);
1395                }
1396        }
1397
1398        if (!full_duplex)
1399                writel(512, gp->regs + MAC_STIME);
1400        else
1401                writel(64, gp->regs + MAC_STIME);
1402        val = readl(gp->regs + MAC_MCCFG);
1403        if (pause)
1404                val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1405        else
1406                val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE);
1407        writel(val, gp->regs + MAC_MCCFG);
1408
1409        gem_start_dma(gp);
1410
1411        return 0;
1412}
1413
1414/* Must be invoked under gp->lock and gp->tx_lock. */
1415static int gem_mdio_link_not_up(struct gem *gp)
1416{
1417        switch (gp->lstate) {
1418        case link_force_ret:
1419                if (netif_msg_link(gp))
1420                        printk(KERN_INFO "%s: Autoneg failed again, keeping"
1421                                " forced mode\n", gp->dev->name);
1422                gp->phy_mii.def->ops->setup_forced(&gp->phy_mii,
1423                        gp->last_forced_speed, DUPLEX_HALF);
1424                gp->timer_ticks = 5;
1425                gp->lstate = link_force_ok;
1426                return 0;
1427        case link_aneg:
1428                /* We try forced modes after a failed aneg only on PHYs that don't
1429                 * have "magic_aneg" bit set, which means they internally do the
1430                 * while forced-mode thingy. On these, we just restart aneg
1431                 */
1432                if (gp->phy_mii.def->magic_aneg)
1433                        return 1;
1434                if (netif_msg_link(gp))
1435                        printk(KERN_INFO "%s: switching to forced 100bt\n",
1436                                gp->dev->name);
1437                /* Try forced modes. */
1438                gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100,
1439                        DUPLEX_HALF);
1440                gp->timer_ticks = 5;
1441                gp->lstate = link_force_try;
1442                return 0;
1443        case link_force_try:
1444                /* Downgrade from 100 to 10 Mbps if necessary.
1445                 * If already at 10Mbps, warn user about the
1446                 * situation every 10 ticks.
1447                 */
1448                if (gp->phy_mii.speed == SPEED_100) {
1449                        gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10,
1450                                DUPLEX_HALF);
1451                        gp->timer_ticks = 5;
1452                        if (netif_msg_link(gp))
1453                                printk(KERN_INFO "%s: switching to forced 10bt\n",
1454                                        gp->dev->name);
1455                        return 0;
1456                } else
1457                        return 1;
1458        default:
1459                return 0;
1460        }
1461}
1462
1463static void gem_link_timer(unsigned long data)
1464{
1465        struct gem *gp = (struct gem *) data;
1466        int restart_aneg = 0;
1467
1468        if (gp->asleep)
1469                return;
1470
1471        spin_lock_irq(&gp->lock);
1472        spin_lock(&gp->tx_lock);
1473        gem_get_cell(gp);
1474
1475        /* If the reset task is still pending, we just
1476         * reschedule the link timer
1477         */
1478        if (gp->reset_task_pending)
1479                goto restart;
1480
1481        if (gp->phy_type == phy_serialink ||
1482            gp->phy_type == phy_serdes) {
1483                u32 val = readl(gp->regs + PCS_MIISTAT);
1484
1485                if (!(val & PCS_MIISTAT_LS))
1486                        val = readl(gp->regs + PCS_MIISTAT);
1487
1488                if ((val & PCS_MIISTAT_LS) != 0) {
1489                        gp->lstate = link_up;
1490                        netif_carrier_on(gp->dev);
1491                        (void)gem_set_link_modes(gp);
1492                }
1493                goto restart;
1494        }
1495        if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) {
1496                /* Ok, here we got a link. If we had it due to a forced
1497                 * fallback, and we were configured for autoneg, we do
1498                 * retry a short autoneg pass. If you know your hub is
1499                 * broken, use ethtool ;)
1500                 */
1501                if (gp->lstate == link_force_try && gp->want_autoneg) {
1502                        gp->lstate = link_force_ret;
1503                        gp->last_forced_speed = gp->phy_mii.speed;
1504                        gp->timer_ticks = 5;
1505                        if (netif_msg_link(gp))
1506                                printk(KERN_INFO "%s: Got link after fallback, retrying"
1507                                        " autoneg once...\n", gp->dev->name);
1508                        gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising);
1509                } else if (gp->lstate != link_up) {
1510                        gp->lstate = link_up;
1511                        netif_carrier_on(gp->dev);
1512                        if (gem_set_link_modes(gp))
1513                                restart_aneg = 1;
1514                }
1515        } else {
1516                /* If the link was previously up, we restart the
1517                 * whole process
1518                 */
1519                if (gp->lstate == link_up) {
1520                        gp->lstate = link_down;
1521                        if (netif_msg_link(gp))
1522                                printk(KERN_INFO "%s: Link down\n",
1523                                        gp->dev->name);
1524                        netif_carrier_off(gp->dev);
1525                        gp->reset_task_pending = 1;
1526                        schedule_work(&gp->reset_task);
1527                        restart_aneg = 1;
1528                } else if (++gp->timer_ticks > 10) {
1529                        if (found_mii_phy(gp))
1530                                restart_aneg = gem_mdio_link_not_up(gp);
1531                        else
1532                                restart_aneg = 1;
1533                }
1534        }
1535        if (restart_aneg) {
1536                gem_begin_auto_negotiation(gp, NULL);
1537                goto out_unlock;
1538        }
1539restart:
1540        mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10));
1541out_unlock:
1542        gem_put_cell(gp);
1543        spin_unlock(&gp->tx_lock);
1544        spin_unlock_irq(&gp->lock);
1545}
1546
1547/* Must be invoked under gp->lock and gp->tx_lock. */
1548static void gem_clean_rings(struct gem *gp)
1549{
1550        struct gem_init_block *gb = gp->init_block;
1551        struct sk_buff *skb;
1552        int i;
1553        dma_addr_t dma_addr;
1554
1555        for (i = 0; i < RX_RING_SIZE; i++) {
1556                struct gem_rxd *rxd;
1557
1558                rxd = &gb->rxd[i];
1559                if (gp->rx_skbs[i] != NULL) {
1560                        skb = gp->rx_skbs[i];
1561                        dma_addr = le64_to_cpu(rxd->buffer);
1562                        pci_unmap_page(gp->pdev, dma_addr,
1563                                       RX_BUF_ALLOC_SIZE(gp),
1564                                       PCI_DMA_FROMDEVICE);
1565                        dev_kfree_skb_any(skb);
1566                        gp->rx_skbs[i] = NULL;
1567                }
1568                rxd->status_word = 0;
1569                wmb();
1570                rxd->buffer = 0;
1571        }
1572
1573        for (i = 0; i < TX_RING_SIZE; i++) {
1574                if (gp->tx_skbs[i] != NULL) {
1575                        struct gem_txd *txd;
1576                        int frag;
1577
1578                        skb = gp->tx_skbs[i];
1579                        gp->tx_skbs[i] = NULL;
1580
1581                        for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1582                                int ent = i & (TX_RING_SIZE - 1);
1583
1584                                txd = &gb->txd[ent];
1585                                dma_addr = le64_to_cpu(txd->buffer);
1586                                pci_unmap_page(gp->pdev, dma_addr,
1587                                               le64_to_cpu(txd->control_word) &
1588                                               TXDCTRL_BUFSZ, PCI_DMA_TODEVICE);
1589
1590                                if (frag != skb_shinfo(skb)->nr_frags)
1591                                        i++;
1592                        }
1593                        dev_kfree_skb_any(skb);
1594                }
1595        }
1596}
1597
1598/* Must be invoked under gp->lock and gp->tx_lock. */
1599static void gem_init_rings(struct gem *gp)
1600{
1601        struct gem_init_block *gb = gp->init_block;
1602        struct net_device *dev = gp->dev;
1603        int i;
1604        dma_addr_t dma_addr;
1605
1606        gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0;
1607
1608        gem_clean_rings(gp);
1609
1610        gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN,
1611                            (unsigned)VLAN_ETH_FRAME_LEN);
1612
1613        for (i = 0; i < RX_RING_SIZE; i++) {
1614                struct sk_buff *skb;
1615                struct gem_rxd *rxd = &gb->rxd[i];
1616
1617                skb = gem_alloc_skb(RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC);
1618                if (!skb) {
1619                        rxd->buffer = 0;
1620                        rxd->status_word = 0;
1621                        continue;
1622                }
1623
1624                gp->rx_skbs[i] = skb;
1625                skb->dev = dev;
1626                skb_put(skb, (gp->rx_buf_sz + RX_OFFSET));
1627                dma_addr = pci_map_page(gp->pdev,
1628                                        virt_to_page(skb->data),
1629                                        offset_in_page(skb->data),
1630                                        RX_BUF_ALLOC_SIZE(gp),
1631                                        PCI_DMA_FROMDEVICE);
1632                rxd->buffer = cpu_to_le64(dma_addr);
1633                wmb();
1634                rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp));
1635                skb_reserve(skb, RX_OFFSET);
1636        }
1637
1638        for (i = 0; i < TX_RING_SIZE; i++) {
1639                struct gem_txd *txd = &gb->txd[i];
1640
1641                txd->control_word = 0;
1642                wmb();
1643                txd->buffer = 0;
1644        }
1645        wmb();
1646}
1647
1648/* Init PHY interface and start link poll state machine */
1649static void gem_init_phy(struct gem *gp)
1650{
1651        u32 mifcfg;
1652
1653        /* Revert MIF CFG setting done on stop_phy */
1654        mifcfg = readl(gp->regs + MIF_CFG);
1655        mifcfg &= ~MIF_CFG_BBMODE;
1656        writel(mifcfg, gp->regs + MIF_CFG);
1657
1658        if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) {
1659                int i;
1660
1661                /* Those delay sucks, the HW seem to love them though, I'll
1662                 * serisouly consider breaking some locks here to be able
1663                 * to schedule instead
1664                 */
1665                for (i = 0; i < 3; i++) {
1666#ifdef CONFIG_PPC_PMAC
1667                        pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0);
1668                        msleep(20);
1669#endif
1670                        /* Some PHYs used by apple have problem getting back to us,
1671                         * we do an additional reset here
1672                         */
1673                        phy_write(gp, MII_BMCR, BMCR_RESET);
1674                        msleep(20);
1675                        if (phy_read(gp, MII_BMCR) != 0xffff)
1676                                break;
1677                        if (i == 2)
1678                                printk(KERN_WARNING "%s: GMAC PHY not responding !\n",
1679                                       gp->dev->name);
1680                }
1681        }
1682
1683        if (gp->pdev->vendor == PCI_VENDOR_ID_SUN &&
1684            gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) {
1685                u32 val;
1686
1687                /* Init datapath mode register. */
1688                if (gp->phy_type == phy_mii_mdio0 ||
1689                    gp->phy_type == phy_mii_mdio1) {
1690                        val = PCS_DMODE_MGM;
1691                } else if (gp->phy_type == phy_serialink) {
1692                        val = PCS_DMODE_SM | PCS_DMODE_GMOE;
1693                } else {
1694                        val = PCS_DMODE_ESM;
1695                }
1696
1697                writel(val, gp->regs + PCS_DMODE);
1698        }
1699
1700        if (gp->phy_type == phy_mii_mdio0 ||
1701            gp->phy_type == phy_mii_mdio1) {
1702                // XXX check for errors
1703                mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr);
1704
1705                /* Init PHY */
1706                if (gp->phy_mii.def && gp->phy_mii.def->ops->init)
1707                        gp->phy_mii.def->ops->init(&gp->phy_mii);
1708        } else {
1709                u32 val;
1710                int limit;
1711
1712                /* Reset PCS unit. */
1713                val = readl(gp->regs + PCS_MIICTRL);
1714                val |= PCS_MIICTRL_RST;
1715                writeb(val, gp->regs + PCS_MIICTRL);
1716
1717                limit = 32;
1718                while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) {
1719                        udelay(100);
1720                        if (limit-- <= 0)
1721                                break;
1722                }
1723                if (limit <= 0)
1724                        printk(KERN_WARNING "%s: PCS reset bit would not clear.\n",
1725                               gp->dev->name);
1726
1727                /* Make sure PCS is disabled while changing advertisement
1728                 * configuration.
1729                 */
1730                val = readl(gp->regs + PCS_CFG);
1731                val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO);
1732                writel(val, gp->regs + PCS_CFG);
1733
1734                /* Advertise all capabilities except assymetric
1735                 * pause.
1736                 */
1737                val = readl(gp->regs + PCS_MIIADV);
1738                val |= (PCS_MIIADV_FD | PCS_MIIADV_HD |
1739                        PCS_MIIADV_SP | PCS_MIIADV_AP);
1740                writel(val, gp->regs + PCS_MIIADV);
1741
1742                /* Enable and restart auto-negotiation, disable wrapback/loopback,
1743                 * and re-enable PCS.
1744                 */
1745                val = readl(gp->regs + PCS_MIICTRL);
1746                val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE);
1747                val &= ~PCS_MIICTRL_WB;
1748                writel(val, gp->regs + PCS_MIICTRL);
1749
1750                val = readl(gp->regs + PCS_CFG);
1751                val |= PCS_CFG_ENABLE;
1752                writel(val, gp->regs + PCS_CFG);
1753
1754                /* Make sure serialink loopback is off.  The meaning
1755                 * of this bit is logically inverted based upon whether
1756                 * you are in Serialink or SERDES mode.
1757                 */
1758                val = readl(gp->regs + PCS_SCTRL);
1759                if (gp->phy_type == phy_serialink)
1760                        val &= ~PCS_SCTRL_LOOP;
1761                else
1762                        val |= PCS_SCTRL_LOOP;
1763                writel(val, gp->regs + PCS_SCTRL);
1764        }
1765
1766        /* Default aneg parameters */
1767        gp->timer_ticks = 0;
1768        gp->lstate = link_down;
1769        netif_carrier_off(gp->dev);
1770
1771        /* Can I advertise gigabit here ? I'd need BCM PHY docs... */
1772        spin_lock_irq(&gp->lock);
1773        gem_begin_auto_negotiation(gp, NULL);
1774        spin_unlock_irq(&gp->lock);
1775}
1776
1777/* Must be invoked under gp->lock and gp->tx_lock. */
1778static void gem_init_dma(struct gem *gp)
1779{
1780        u64 desc_dma = (u64) gp->gblock_dvma;
1781        u32 val;
1782
1783        val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE);
1784        writel(val, gp->regs + TXDMA_CFG);
1785
1786        writel(desc_dma >> 32, gp->regs + TXDMA_DBHI);
1787        writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW);
1788        desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd));
1789
1790        writel(0, gp->regs + TXDMA_KICK);
1791
1792        val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) |
1793               ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128);
1794        writel(val, gp->regs + RXDMA_CFG);
1795
1796        writel(desc_dma >> 32, gp->regs + RXDMA_DBHI);
1797        writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW);
1798
1799        writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK);
1800
1801        val  = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF);
1802        val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON);
1803        writel(val, gp->regs + RXDMA_PTHRESH);
1804
1805        if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN)
1806                writel(((5 & RXDMA_BLANK_IPKTS) |
1807                        ((8 << 12) & RXDMA_BLANK_ITIME)),
1808                       gp->regs + RXDMA_BLANK);
1809        else
1810                writel(((5 & RXDMA_BLANK_IPKTS) |
1811                        ((4 << 12) & RXDMA_BLANK_ITIME)),
1812                       gp->regs + RXDMA_BLANK);
1813}
1814
1815/* Must be invoked under gp->lock and gp->tx_lock. */
1816static u32 gem_setup_multicast(struct gem *gp)
1817{
1818        u32 rxcfg = 0;
1819        int i;
1820
1821        if ((gp->dev->flags & IFF_ALLMULTI) ||
1822            (gp->dev->mc_count > 256)) {
1823                for (i=0; i<16; i++)
1824                        writel(0xffff, gp->regs + MAC_HASH0 + (i << 2));
1825                rxcfg |= MAC_RXCFG_HFE;
1826        } else if (gp->dev->flags & IFF_PROMISC) {
1827                rxcfg |= MAC_RXCFG_PROM;
1828        } else {
1829                u16 hash_table[16];
1830                u32 crc;
1831                struct dev_mc_list *dmi = gp->dev->mc_list;
1832                int i;
1833
1834                for (i = 0; i < 16; i++)
1835                        hash_table[i] = 0;
1836
1837                for (i = 0; i < gp->dev->mc_count; i++) {
1838                        char *addrs = dmi->dmi_addr;
1839
1840                        dmi = dmi->next;
1841
1842                        if (!(*addrs & 1))
1843                                continue;
1844
1845                        crc = ether_crc_le(6, addrs);
1846                        crc >>= 24;
1847                        hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
1848                }
1849                for (i=0; i<16; i++)
1850                        writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2));
1851                rxcfg |= MAC_RXCFG_HFE;
1852        }
1853
1854        return rxcfg;
1855}
1856
1857/* Must be invoked under gp->lock and gp->tx_lock. */
1858static void gem_init_mac(struct gem *gp)
1859{
1860        unsigned char *e = &gp->dev->dev_addr[0];
1861
1862        writel(0x1bf0, gp->regs + MAC_SNDPAUSE);
1863
1864        writel(0x00, gp->regs + MAC_IPG0);
1865        writel(0x08, gp->regs + MAC_IPG1);
1866        writel(0x04, gp->regs + MAC_IPG2);
1867        writel(0x40, gp->regs + MAC_STIME);
1868        writel(0x40, gp->regs + MAC_MINFSZ);
1869
1870        /* Ethernet payload + header + FCS + optional VLAN tag. */
1871        writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ);
1872
1873        writel(0x07, gp->regs + MAC_PASIZE);
1874        writel(0x04, gp->regs + MAC_JAMSIZE);
1875        writel(0x10, gp->regs + MAC_ATTLIM);
1876        writel(0x8808, gp->regs + MAC_MCTYPE);
1877
1878        writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED);
1879
1880        writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
1881        writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
1882        writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
1883
1884        writel(0, gp->regs + MAC_ADDR3);
1885        writel(0, gp->regs + MAC_ADDR4);
1886        writel(0, gp->regs + MAC_ADDR5);
1887
1888        writel(0x0001, gp->regs + MAC_ADDR6);
1889        writel(0xc200, gp->regs + MAC_ADDR7);
1890        writel(0x0180, gp->regs + MAC_ADDR8);
1891
1892        writel(0, gp->regs + MAC_AFILT0);
1893        writel(0, gp->regs + MAC_AFILT1);
1894        writel(0, gp->regs + MAC_AFILT2);
1895        writel(0, gp->regs + MAC_AF21MSK);
1896        writel(0, gp->regs + MAC_AF0MSK);
1897
1898        gp->mac_rx_cfg = gem_setup_multicast(gp);
1899#ifdef STRIP_FCS
1900        gp->mac_rx_cfg |= MAC_RXCFG_SFCS;
1901#endif
1902        writel(0, gp->regs + MAC_NCOLL);
1903        writel(0, gp->regs + MAC_FASUCC);
1904        writel(0, gp->regs + MAC_ECOLL);
1905        writel(0, gp->regs + MAC_LCOLL);
1906        writel(0, gp->regs + MAC_DTIMER);
1907        writel(0, gp->regs + MAC_PATMPS);
1908        writel(0, gp->regs + MAC_RFCTR);
1909        writel(0, gp->regs + MAC_LERR);
1910        writel(0, gp->regs + MAC_AERR);
1911        writel(0, gp->regs + MAC_FCSERR);
1912        writel(0, gp->regs + MAC_RXCVERR);
1913
1914        /* Clear RX/TX/MAC/XIF config, we will set these up and enable
1915         * them once a link is established.
1916         */
1917        writel(0, gp->regs + MAC_TXCFG);
1918        writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG);
1919        writel(0, gp->regs + MAC_MCCFG);
1920        writel(0, gp->regs + MAC_XIFCFG);
1921
1922        /* Setup MAC interrupts.  We want to get all of the interesting
1923         * counter expiration events, but we do not want to hear about
1924         * normal rx/tx as the DMA engine tells us that.
1925         */
1926        writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK);
1927        writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK);
1928
1929        /* Don't enable even the PAUSE interrupts for now, we
1930         * make no use of those events other than to record them.
1931         */
1932        writel(0xffffffff, gp->regs + MAC_MCMASK);
1933
1934        /* Don't enable GEM's WOL in normal operations
1935         */
1936        if (gp->has_wol)
1937                writel(0, gp->regs + WOL_WAKECSR);
1938}
1939
1940/* Must be invoked under gp->lock and gp->tx_lock. */
1941static void gem_init_pause_thresholds(struct gem *gp)
1942{
1943        u32 cfg;
1944
1945        /* Calculate pause thresholds.  Setting the OFF threshold to the
1946         * full RX fifo size effectively disables PAUSE generation which
1947         * is what we do for 10/100 only GEMs which have FIFOs too small
1948         * to make real gains from PAUSE.
1949         */
1950        if (gp->rx_fifo_sz <= (2 * 1024)) {
1951                gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz;
1952        } else {
1953                int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63;
1954                int off = (gp->rx_fifo_sz - (max_frame * 2));
1955                int on = off - max_frame;
1956
1957                gp->rx_pause_off = off;
1958                gp->rx_pause_on = on;
1959        }
1960
1961
1962        /* Configure the chip "burst" DMA mode & enable some
1963         * HW bug fixes on Apple version
1964         */
1965        cfg  = 0;
1966        if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE)
1967                cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX;
1968#if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
1969        cfg |= GREG_CFG_IBURST;
1970#endif
1971        cfg |= ((31 << 1) & GREG_CFG_TXDMALIM);
1972        cfg |= ((31 << 6) & GREG_CFG_RXDMALIM);
1973        writel(cfg, gp->regs + GREG_CFG);
1974
1975        /* If Infinite Burst didn't stick, then use different
1976         * thresholds (and Apple bug fixes don't exist)
1977         */
1978        if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) {
1979                cfg = ((2 << 1) & GREG_CFG_TXDMALIM);
1980                cfg |= ((8 << 6) & GREG_CFG_RXDMALIM);
1981                writel(cfg, gp->regs + GREG_CFG);
1982        }
1983}
1984
1985static int gem_check_invariants(struct gem *gp)
1986{
1987        struct pci_dev *pdev = gp->pdev;
1988        u32 mif_cfg;
1989
1990        /* On Apple's sungem, we can't rely on registers as the chip
1991         * was been powered down by the firmware. The PHY is looked
1992         * up later on.
1993         */
1994        if (pdev->vendor == PCI_VENDOR_ID_APPLE) {
1995                gp->phy_type = phy_mii_mdio0;
1996                gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
1997                gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
1998                gp->swrst_base = 0;
1999
2000                mif_cfg = readl(gp->regs + MIF_CFG);
2001                mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1);
2002                mif_cfg |= MIF_CFG_MDI0;
2003                writel(mif_cfg, gp->regs + MIF_CFG);
2004                writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE);
2005                writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG);
2006
2007                /* We hard-code the PHY address so we can properly bring it out of
2008                 * reset later on, we can't really probe it at this point, though
2009                 * that isn't an issue.
2010                 */
2011                if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC)
2012                        gp->mii_phy_addr = 1;
2013                else
2014                        gp->mii_phy_addr = 0;
2015
2016                return 0;
2017        }
2018
2019        mif_cfg = readl(gp->regs + MIF_CFG);
2020
2021        if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2022            pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) {
2023                /* One of the MII PHYs _must_ be present
2024                 * as this chip has no gigabit PHY.
2025                 */
2026                if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) {
2027                        printk(KERN_ERR PFX "RIO GEM lacks MII phy, mif_cfg[%08x]\n",
2028                               mif_cfg);
2029                        return -1;
2030                }
2031        }
2032
2033        /* Determine initial PHY interface type guess.  MDIO1 is the
2034         * external PHY and thus takes precedence over MDIO0.
2035         */
2036
2037        if (mif_cfg & MIF_CFG_MDI1) {
2038                gp->phy_type = phy_mii_mdio1;
2039                mif_cfg |= MIF_CFG_PSELECT;
2040                writel(mif_cfg, gp->regs + MIF_CFG);
2041        } else if (mif_cfg & MIF_CFG_MDI0) {
2042                gp->phy_type = phy_mii_mdio0;
2043                mif_cfg &= ~MIF_CFG_PSELECT;
2044                writel(mif_cfg, gp->regs + MIF_CFG);
2045        } else {
2046                gp->phy_type = phy_serialink;
2047        }
2048        if (gp->phy_type == phy_mii_mdio1 ||
2049            gp->phy_type == phy_mii_mdio0) {
2050                int i;
2051
2052                for (i = 0; i < 32; i++) {
2053                        gp->mii_phy_addr = i;
2054                        if (phy_read(gp, MII_BMCR) != 0xffff)
2055                                break;
2056                }
2057                if (i == 32) {
2058                        if (pdev->device != PCI_DEVICE_ID_SUN_GEM) {
2059                                printk(KERN_ERR PFX "RIO MII phy will not respond.\n");
2060                                return -1;
2061                        }
2062                        gp->phy_type = phy_serdes;
2063                }
2064        }
2065
2066        /* Fetch the FIFO configurations now too. */
2067        gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64;
2068        gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64;
2069
2070        if (pdev->vendor == PCI_VENDOR_ID_SUN) {
2071                if (pdev->device == PCI_DEVICE_ID_SUN_GEM) {
2072                        if (gp->tx_fifo_sz != (9 * 1024) ||
2073                            gp->rx_fifo_sz != (20 * 1024)) {
2074                                printk(KERN_ERR PFX "GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2075                                       gp->tx_fifo_sz, gp->rx_fifo_sz);
2076                                return -1;
2077                        }
2078                        gp->swrst_base = 0;
2079                } else {
2080                        if (gp->tx_fifo_sz != (2 * 1024) ||
2081                            gp->rx_fifo_sz != (2 * 1024)) {
2082                                printk(KERN_ERR PFX "RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n",
2083                                       gp->tx_fifo_sz, gp->rx_fifo_sz);
2084                                return -1;
2085                        }
2086                        gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT;
2087                }
2088        }
2089
2090        return 0;
2091}
2092
2093/* Must be invoked under gp->lock and gp->tx_lock. */
2094static void gem_reinit_chip(struct gem *gp)
2095{
2096        /* Reset the chip */
2097        gem_reset(gp);
2098
2099        /* Make sure ints are disabled */
2100        gem_disable_ints(gp);
2101
2102        /* Allocate & setup ring buffers */
2103        gem_init_rings(gp);
2104
2105        /* Configure pause thresholds */
2106        gem_init_pause_thresholds(gp);
2107
2108        /* Init DMA & MAC engines */
2109        gem_init_dma(gp);
2110        gem_init_mac(gp);
2111}
2112
2113
2114/* Must be invoked with no lock held. */
2115static void gem_stop_phy(struct gem *gp, int wol)
2116{
2117        u32 mifcfg;
2118        unsigned long flags;
2119
2120        /* Let the chip settle down a bit, it seems that helps
2121         * for sleep mode on some models
2122         */
2123        msleep(10);
2124
2125        /* Make sure we aren't polling PHY status change. We
2126         * don't currently use that feature though
2127         */
2128        mifcfg = readl(gp->regs + MIF_CFG);
2129        mifcfg &= ~MIF_CFG_POLL;
2130        writel(mifcfg, gp->regs + MIF_CFG);
2131
2132        if (wol && gp->has_wol) {
2133                unsigned char *e = &gp->dev->dev_addr[0];
2134                u32 csr;
2135
2136                /* Setup wake-on-lan for MAGIC packet */
2137                writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB,
2138                       gp->regs + MAC_RXCFG);
2139                writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0);
2140                writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1);
2141                writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2);
2142
2143                writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT);
2144                csr = WOL_WAKECSR_ENABLE;
2145                if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0)
2146                        csr |= WOL_WAKECSR_MII;
2147                writel(csr, gp->regs + WOL_WAKECSR);
2148        } else {
2149                writel(0, gp->regs + MAC_RXCFG);
2150                (void)readl(gp->regs + MAC_RXCFG);
2151                /* Machine sleep will die in strange ways if we
2152                 * dont wait a bit here, looks like the chip takes
2153                 * some time to really shut down
2154                 */
2155                msleep(10);
2156        }
2157
2158        writel(0, gp->regs + MAC_TXCFG);
2159        writel(0, gp->regs + MAC_XIFCFG);
2160        writel(0, gp->regs + TXDMA_CFG);
2161        writel(0, gp->regs + RXDMA_CFG);
2162
2163        if (!wol) {
2164                spin_lock_irqsave(&gp->lock, flags);
2165                spin_lock(&gp->tx_lock);
2166                gem_reset(gp);
2167                writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST);
2168                writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST);
2169                spin_unlock(&gp->tx_lock);
2170                spin_unlock_irqrestore(&gp->lock, flags);
2171
2172                /* No need to take the lock here */
2173
2174                if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend)
2175                        gp->phy_mii.def->ops->suspend(&gp->phy_mii);
2176
2177                /* According to Apple, we must set the MDIO pins to this begnign
2178                 * state or we may 1) eat more current, 2) damage some PHYs
2179                 */
2180                writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG);
2181                writel(0, gp->regs + MIF_BBCLK);
2182                writel(0, gp->regs + MIF_BBDATA);
2183                writel(0, gp->regs + MIF_BBOENAB);
2184                writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG);
2185                (void) readl(gp->regs + MAC_XIFCFG);
2186        }
2187}
2188
2189
2190static int gem_do_start(struct net_device *dev)
2191{
2192        struct gem *gp = dev->priv;
2193        unsigned long flags;
2194
2195        spin_lock_irqsave(&gp->lock, flags);
2196        spin_lock(&gp->tx_lock);
2197
2198        /* Enable the cell */
2199        gem_get_cell(gp);
2200
2201        /* Init & setup chip hardware */
2202        gem_reinit_chip(gp);
2203
2204        gp->running = 1;
2205
2206        if (gp->lstate == link_up) {
2207                netif_carrier_on(gp->dev);
2208                gem_set_link_modes(gp);
2209        }
2210
2211        netif_wake_queue(gp->dev);
2212
2213        spin_unlock(&gp->tx_lock);
2214        spin_unlock_irqrestore(&gp->lock, flags);
2215
2216        if (request_irq(gp->pdev->irq, gem_interrupt,
2217                                   IRQF_SHARED, dev->name, (void *)dev)) {
2218                printk(KERN_ERR "%s: failed to request irq !\n", gp->dev->name);
2219
2220                spin_lock_irqsave(&gp->lock, flags);
2221                spin_lock(&gp->tx_lock);
2222
2223                gp->running =  0;
2224                gem_reset(gp);
2225                gem_clean_rings(gp);
2226                gem_put_cell(gp);
2227
2228                spin_unlock(&gp->tx_lock);
2229                spin_unlock_irqrestore(&gp->lock, flags);
2230
2231                return -EAGAIN;
2232        }
2233
2234        return 0;
2235}
2236
2237static void gem_do_stop(struct net_device *dev, int wol)
2238{
2239        struct gem *gp = dev->priv;
2240        unsigned long flags;
2241
2242        spin_lock_irqsave(&gp->lock, flags);
2243        spin_lock(&gp->tx_lock);
2244
2245        gp->running = 0;
2246
2247        /* Stop netif queue */
2248        netif_stop_queue(dev);
2249
2250        /* Make sure ints are disabled */
2251        gem_disable_ints(gp);
2252
2253        /* We can drop the lock now */
2254        spin_unlock(&gp->tx_lock);
2255        spin_unlock_irqrestore(&gp->lock, flags);
2256
2257        /* If we are going to sleep with WOL */
2258        gem_stop_dma(gp);
2259        msleep(10);
2260        if (!wol)
2261                gem_reset(gp);
2262        msleep(10);
2263
2264        /* Get rid of rings */
2265        gem_clean_rings(gp);
2266
2267        /* No irq needed anymore */
2268        free_irq(gp->pdev->irq, (void *) dev);
2269
2270        /* Cell not needed neither if no WOL */
2271        if (!wol) {
2272                spin_lock_irqsave(&gp->lock, flags);
2273                gem_put_cell(gp);
2274                spin_unlock_irqrestore(&gp->lock, flags);
2275        }
2276}
2277
2278static void gem_reset_task(struct work_struct *work)
2279{
2280        struct gem *gp = container_of(work, struct gem, reset_task);
2281
2282        mutex_lock(&gp->pm_mutex);
2283
2284        if (gp->opened)
2285                napi_disable(&gp->napi);
2286
2287        spin_lock_irq(&gp->lock);
2288        spin_lock(&gp->tx_lock);
2289
2290        if (gp->running) {
2291                netif_stop_queue(gp->dev);
2292
2293                /* Reset the chip & rings */
2294                gem_reinit_chip(gp);
2295                if (gp->lstate == link_up)
2296                        gem_set_link_modes(gp);
2297                netif_wake_queue(gp->dev);
2298        }
2299
2300        gp->reset_task_pending = 0;
2301
2302        spin_unlock(&gp->tx_lock);
2303        spin_unlock_irq(&gp->lock);
2304
2305        if (gp->opened)
2306                napi_enable(&gp->napi);
2307
2308        mutex_unlock(&gp->pm_mutex);
2309}
2310
2311
2312static int gem_open(struct net_device *dev)
2313{
2314        struct gem *gp = dev->priv;
2315        int rc = 0;
2316
2317        mutex_lock(&gp->pm_mutex);
2318
2319        /* We need the cell enabled */
2320        if (!gp->asleep)
2321                rc = gem_do_start(dev);
2322        gp->opened = (rc == 0);
2323        if (gp->opened)
2324                napi_enable(&gp->napi);
2325
2326        mutex_unlock(&gp->pm_mutex);
2327
2328        return rc;
2329}
2330
2331static int gem_close(struct net_device *dev)
2332{
2333        struct gem *gp = dev->priv;
2334
2335        mutex_lock(&gp->pm_mutex);
2336
2337        napi_disable(&gp->napi);
2338
2339        gp->opened = 0;
2340        if (!gp->asleep)
2341                gem_do_stop(dev, 0);
2342
2343        mutex_unlock(&gp->pm_mutex);
2344
2345        return 0;
2346}
2347
2348#ifdef CONFIG_PM
2349static int gem_suspend(struct pci_dev *pdev, pm_message_t state)
2350{
2351        struct net_device *dev = pci_get_drvdata(pdev);
2352        struct gem *gp = dev->priv;
2353        unsigned long flags;
2354
2355        mutex_lock(&gp->pm_mutex);
2356
2357        printk(KERN_INFO "%s: suspending, WakeOnLan %s\n",
2358               dev->name,
2359               (gp->wake_on_lan && gp->opened) ? "enabled" : "disabled");
2360
2361        /* Keep the cell enabled during the entire operation */
2362        spin_lock_irqsave(&gp->lock, flags);
2363        spin_lock(&gp->tx_lock);
2364        gem_get_cell(gp);
2365        spin_unlock(&gp->tx_lock);
2366        spin_unlock_irqrestore(&gp->lock, flags);
2367
2368        /* If the driver is opened, we stop the MAC */
2369        if (gp->opened) {
2370                napi_disable(&gp->napi);
2371
2372                /* Stop traffic, mark us closed */
2373                netif_device_detach(dev);
2374
2375                /* Switch off MAC, remember WOL setting */
2376                gp->asleep_wol = gp->wake_on_lan;
2377                gem_do_stop(dev, gp->asleep_wol);
2378        } else
2379                gp->asleep_wol = 0;
2380
2381        /* Mark us asleep */
2382        gp->asleep = 1;
2383        wmb();
2384
2385        /* Stop the link timer */
2386        del_timer_sync(&gp->link_timer);
2387
2388        /* Now we release the mutex to not block the reset task who
2389         * can take it too. We are marked asleep, so there will be no
2390         * conflict here
2391         */
2392        mutex_unlock(&gp->pm_mutex);
2393
2394        /* Wait for a pending reset task to complete */
2395        while (gp->reset_task_pending)
2396                yield();
2397        flush_scheduled_work();
2398
2399        /* Shut the PHY down eventually and setup WOL */
2400        gem_stop_phy(gp, gp->asleep_wol);
2401
2402        /* Make sure bus master is disabled */
2403        pci_disable_device(gp->pdev);
2404
2405        /* Release the cell, no need to take a lock at this point since
2406         * nothing else can happen now
2407         */
2408        gem_put_cell(gp);
2409
2410        return 0;
2411}
2412
2413static int gem_resume(struct pci_dev *pdev)
2414{
2415        struct net_device *dev = pci_get_drvdata(pdev);
2416        struct gem *gp = dev->priv;
2417        unsigned long flags;
2418
2419        printk(KERN_INFO "%s: resuming\n", dev->name);
2420
2421        mutex_lock(&gp->pm_mutex);
2422
2423        /* Keep the cell enabled during the entire operation, no need to
2424         * take a lock here tho since nothing else can happen while we are
2425         * marked asleep
2426         */
2427        gem_get_cell(gp);
2428
2429        /* Make sure PCI access and bus master are enabled */
2430        if (pci_enable_device(gp->pdev)) {
2431                printk(KERN_ERR "%s: Can't re-enable chip !\n",
2432                       dev->name);
2433                /* Put cell and forget it for now, it will be considered as
2434                 * still asleep, a new sleep cycle may bring it back
2435                 */
2436                gem_put_cell(gp);
2437                mutex_unlock(&gp->pm_mutex);
2438                return 0;
2439        }
2440        pci_set_master(gp->pdev);
2441
2442        /* Reset everything */
2443        gem_reset(gp);
2444
2445        /* Mark us woken up */
2446        gp->asleep = 0;
2447        wmb();
2448
2449        /* Bring the PHY back. Again, lock is useless at this point as
2450         * nothing can be happening until we restart the whole thing
2451         */
2452        gem_init_phy(gp);
2453
2454        /* If we were opened, bring everything back */
2455        if (gp->opened) {
2456                /* Restart MAC */
2457                gem_do_start(dev);
2458
2459                /* Re-attach net device */
2460                netif_device_attach(dev);
2461
2462                napi_enable(&gp->napi);
2463        }
2464
2465        spin_lock_irqsave(&gp->lock, flags);
2466        spin_lock(&gp->tx_lock);
2467
2468        /* If we had WOL enabled, the cell clock was never turned off during
2469         * sleep, so we end up beeing unbalanced. Fix that here
2470         */
2471        if (gp->asleep_wol)
2472                gem_put_cell(gp);
2473
2474        /* This function doesn't need to hold the cell, it will be held if the
2475         * driver is open by gem_do_start().
2476         */
2477        gem_put_cell(gp);
2478
2479        spin_unlock(&gp->tx_lock);
2480        spin_unlock_irqrestore(&gp->lock, flags);
2481
2482        mutex_unlock(&gp->pm_mutex);
2483
2484        return 0;
2485}
2486#endif /* CONFIG_PM */
2487
2488static struct net_device_stats *gem_get_stats(struct net_device *dev)
2489{
2490        struct gem *gp = dev->priv;
2491        struct net_device_stats *stats = &gp->net_stats;
2492
2493        spin_lock_irq(&gp->lock);
2494        spin_lock(&gp->tx_lock);
2495
2496        /* I have seen this being called while the PM was in progress,
2497         * so we shield against this
2498         */
2499        if (gp->running) {
2500                stats->rx_crc_errors += readl(gp->regs + MAC_FCSERR);
2501                writel(0, gp->regs + MAC_FCSERR);
2502
2503                stats->rx_frame_errors += readl(gp->regs + MAC_AERR);
2504                writel(0, gp->regs + MAC_AERR);
2505
2506                stats->rx_length_errors += readl(gp->regs + MAC_LERR);
2507                writel(0, gp->regs + MAC_LERR);
2508
2509                stats->tx_aborted_errors += readl(gp->regs + MAC_ECOLL);
2510                stats->collisions +=
2511                        (readl(gp->regs + MAC_ECOLL) +
2512                         readl(gp->regs + MAC_LCOLL));
2513                writel(0, gp->regs + MAC_ECOLL);
2514                writel(0, gp->regs + MAC_LCOLL);
2515        }
2516
2517        spin_unlock(&gp->tx_lock);
2518        spin_unlock_irq(&gp->lock);
2519
2520        return &gp->net_stats;
2521}
2522
2523static int gem_set_mac_address(struct net_device *dev, void *addr)
2524{
2525        struct sockaddr *macaddr = (struct sockaddr *) addr;
2526        struct gem *gp = dev->priv;
2527        unsigned char *e = &dev->dev_addr[0];
2528
2529        if (!is_valid_ether_addr(macaddr->sa_data))
2530                return -EADDRNOTAVAIL;
2531
2532        if (!netif_running(dev) || !netif_device_present(dev)) {
2533                /* We'll just catch it later when the
2534                 * device is up'd or resumed.
2535                 */
2536                memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2537                return 0;
2538        }
2539
2540        mutex_lock(&gp->pm_mutex);
2541        memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len);
2542        if (gp->running) {
2543                writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0);
2544                writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1);
2545                writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2);
2546        }
2547        mutex_unlock(&gp->pm_mutex);
2548
2549        return 0;
2550}
2551
2552static void gem_set_multicast(struct net_device *dev)
2553{
2554        struct gem *gp = dev->priv;
2555        u32 rxcfg, rxcfg_new;
2556        int limit = 10000;
2557
2558
2559        spin_lock_irq(&gp->lock);
2560        spin_lock(&gp->tx_lock);
2561
2562        if (!gp->running)
2563                goto bail;
2564
2565        netif_stop_queue(dev);
2566
2567        rxcfg = readl(gp->regs + MAC_RXCFG);
2568        rxcfg_new = gem_setup_multicast(gp);
2569#ifdef STRIP_FCS
2570        rxcfg_new |= MAC_RXCFG_SFCS;
2571#endif
2572        gp->mac_rx_cfg = rxcfg_new;
2573
2574        writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG);
2575        while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) {
2576                if (!limit--)
2577                        break;
2578                udelay(10);
2579        }
2580
2581        rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE);
2582        rxcfg |= rxcfg_new;
2583
2584        writel(rxcfg, gp->regs + MAC_RXCFG);
2585
2586        netif_wake_queue(dev);
2587
2588 bail:
2589        spin_unlock(&gp->tx_lock);
2590        spin_unlock_irq(&gp->lock);
2591}
2592
2593/* Jumbo-grams don't seem to work :-( */
2594#define GEM_MIN_MTU     68
2595#if 1
2596#define GEM_MAX_MTU     1500
2597#else
2598#define GEM_MAX_MTU     9000
2599#endif
2600
2601static int gem_change_mtu(struct net_device *dev, int new_mtu)
2602{
2603        struct gem *gp = dev->priv;
2604
2605        if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU)
2606                return -EINVAL;
2607
2608        if (!netif_running(dev) || !netif_device_present(dev)) {
2609                /* We'll just catch it later when the
2610                 * device is up'd or resumed.
2611                 */
2612                dev->mtu = new_mtu;
2613                return 0;
2614        }
2615
2616        mutex_lock(&gp->pm_mutex);
2617        spin_lock_irq(&gp->lock);
2618        spin_lock(&gp->tx_lock);
2619        dev->mtu = new_mtu;
2620        if (gp->running) {
2621                gem_reinit_chip(gp);
2622                if (gp->lstate == link_up)
2623                        gem_set_link_modes(gp);
2624        }
2625        spin_unlock(&gp->tx_lock);
2626        spin_unlock_irq(&gp->lock);
2627        mutex_unlock(&gp->pm_mutex);
2628
2629        return 0;
2630}
2631
2632static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2633{
2634        struct gem *gp = dev->priv;
2635
2636        strcpy(info->driver, DRV_NAME);
2637        strcpy(info->version, DRV_VERSION);
2638        strcpy(info->bus_info, pci_name(gp->pdev));
2639}
2640
2641static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2642{
2643        struct gem *gp = dev->priv;
2644
2645        if (gp->phy_type == phy_mii_mdio0 ||
2646            gp->phy_type == phy_mii_mdio1) {
2647                if (gp->phy_mii.def)
2648                        cmd->supported = gp->phy_mii.def->features;
2649                else
2650                        cmd->supported = (SUPPORTED_10baseT_Half |
2651                                          SUPPORTED_10baseT_Full);
2652
2653                /* XXX hardcoded stuff for now */
2654                cmd->port = PORT_MII;
2655                cmd->transceiver = XCVR_EXTERNAL;
2656                cmd->phy_address = 0; /* XXX fixed PHYAD */
2657
2658                /* Return current PHY settings */
2659                spin_lock_irq(&gp->lock);
2660                cmd->autoneg = gp->want_autoneg;
2661                cmd->speed = gp->phy_mii.speed;
2662                cmd->duplex = gp->phy_mii.duplex;
2663                cmd->advertising = gp->phy_mii.advertising;
2664
2665                /* If we started with a forced mode, we don't have a default
2666                 * advertise set, we need to return something sensible so
2667                 * userland can re-enable autoneg properly.
2668                 */
2669                if (cmd->advertising == 0)
2670                        cmd->advertising = cmd->supported;
2671                spin_unlock_irq(&gp->lock);
2672        } else { // XXX PCS ?
2673                cmd->supported =
2674                        (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2675                         SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2676                         SUPPORTED_Autoneg);
2677                cmd->advertising = cmd->supported;
2678                cmd->speed = 0;
2679                cmd->duplex = cmd->port = cmd->phy_address =
2680                        cmd->transceiver = cmd->autoneg = 0;
2681        }
2682        cmd->maxtxpkt = cmd->maxrxpkt = 0;
2683
2684        return 0;
2685}
2686
2687static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2688{
2689        struct gem *gp = dev->priv;
2690
2691        /* Verify the settings we care about. */
2692        if (cmd->autoneg != AUTONEG_ENABLE &&
2693            cmd->autoneg != AUTONEG_DISABLE)
2694                return -EINVAL;
2695
2696        if (cmd->autoneg == AUTONEG_ENABLE &&
2697            cmd->advertising == 0)
2698                return -EINVAL;
2699
2700        if (cmd->autoneg == AUTONEG_DISABLE &&
2701            ((cmd->speed != SPEED_1000 &&
2702              cmd->speed != SPEED_100 &&
2703              cmd->speed != SPEED_10) ||
2704             (cmd->duplex != DUPLEX_HALF &&
2705              cmd->duplex != DUPLEX_FULL)))
2706                return -EINVAL;
2707
2708        /* Apply settings and restart link process. */
2709        spin_lock_irq(&gp->lock);
2710        gem_get_cell(gp);
2711        gem_begin_auto_negotiation(gp, cmd);
2712        gem_put_cell(gp);
2713        spin_unlock_irq(&gp->lock);
2714
2715        return 0;
2716}
2717
2718static int gem_nway_reset(struct net_device *dev)
2719{
2720        struct gem *gp = dev->priv;
2721
2722        if (!gp->want_autoneg)
2723                return -EINVAL;
2724
2725        /* Restart link process. */
2726        spin_lock_irq(&gp->lock);
2727        gem_get_cell(gp);
2728        gem_begin_auto_negotiation(gp, NULL);
2729        gem_put_cell(gp);
2730        spin_unlock_irq(&gp->lock);
2731
2732        return 0;
2733}
2734
2735static u32 gem_get_msglevel(struct net_device *dev)
2736{
2737        struct gem *gp = dev->priv;
2738        return gp->msg_enable;
2739}
2740
2741static void gem_set_msglevel(struct net_device *dev, u32 value)
2742{
2743        struct gem *gp = dev->priv;
2744        gp->msg_enable = value;
2745}
2746
2747
2748/* Add more when I understand how to program the chip */
2749/* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */
2750
2751#define WOL_SUPPORTED_MASK      (WAKE_MAGIC)
2752
2753static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2754{
2755        struct gem *gp = dev->priv;
2756
2757        /* Add more when I understand how to program the chip */
2758        if (gp->has_wol) {
2759                wol->supported = WOL_SUPPORTED_MASK;
2760                wol->wolopts = gp->wake_on_lan;
2761        } else {
2762                wol->supported = 0;
2763                wol->wolopts = 0;
2764        }
2765}
2766
2767static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2768{
2769        struct gem *gp = dev->priv;
2770
2771        if (!gp->has_wol)
2772                return -EOPNOTSUPP;
2773        gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK;
2774        return 0;
2775}
2776
2777static const struct ethtool_ops gem_ethtool_ops = {
2778        .get_drvinfo            = gem_get_drvinfo,
2779        .get_link               = ethtool_op_get_link,
2780        .get_settings           = gem_get_settings,
2781        .set_settings           = gem_set_settings,
2782        .nway_reset             = gem_nway_reset,
2783        .get_msglevel           = gem_get_msglevel,
2784        .set_msglevel           = gem_set_msglevel,
2785        .get_wol                = gem_get_wol,
2786        .set_wol                = gem_set_wol,
2787};
2788
2789static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2790{
2791        struct gem *gp = dev->priv;
2792        struct mii_ioctl_data *data = if_mii(ifr);
2793        int rc = -EOPNOTSUPP;
2794        unsigned long flags;
2795
2796        /* Hold the PM mutex while doing ioctl's or we may collide
2797         * with power management.
2798         */
2799        mutex_lock(&gp->pm_mutex);
2800
2801        spin_lock_irqsave(&gp->lock, flags);
2802        gem_get_cell(gp);
2803        spin_unlock_irqrestore(&gp->lock, flags);
2804
2805        switch (cmd) {
2806        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
2807                data->phy_id = gp->mii_phy_addr;
2808                /* Fallthrough... */
2809
2810        case SIOCGMIIREG:               /* Read MII PHY register. */
2811                if (!gp->running)
2812                        rc = -EAGAIN;
2813                else {
2814                        data->val_out = __phy_read(gp, data->phy_id & 0x1f,
2815                                                   data->reg_num & 0x1f);
2816                        rc = 0;
2817                }
2818                break;
2819
2820        case SIOCSMIIREG:               /* Write MII PHY register. */
2821                if (!capable(CAP_NET_ADMIN))
2822                        rc = -EPERM;
2823                else if (!gp->running)
2824                        rc = -EAGAIN;
2825                else {
2826                        __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f,
2827                                    data->val_in);
2828                        rc = 0;
2829                }
2830                break;
2831        };
2832
2833        spin_lock_irqsave(&gp->lock, flags);
2834        gem_put_cell(gp);
2835        spin_unlock_irqrestore(&gp->lock, flags);
2836
2837        mutex_unlock(&gp->pm_mutex);
2838
2839        return rc;
2840}
2841
2842#if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC))
2843/* Fetch MAC address from vital product data of PCI ROM. */
2844static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr)
2845{
2846        int this_offset;
2847
2848        for (this_offset = 0x20; this_offset < len; this_offset++) {
2849                void __iomem *p = rom_base + this_offset;
2850                int i;
2851
2852                if (readb(p + 0) != 0x90 ||
2853                    readb(p + 1) != 0x00 ||
2854                    readb(p + 2) != 0x09 ||
2855                    readb(p + 3) != 0x4e ||
2856                    readb(p + 4) != 0x41 ||
2857                    readb(p + 5) != 0x06)
2858                        continue;
2859
2860                this_offset += 6;
2861                p += 6;
2862
2863                for (i = 0; i < 6; i++)
2864                        dev_addr[i] = readb(p + i);
2865                return 1;
2866        }
2867        return 0;
2868}
2869
2870static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr)
2871{
2872        size_t size;
2873        void __iomem *p = pci_map_rom(pdev, &size);
2874
2875        if (p) {
2876                        int found;
2877
2878                found = readb(p) == 0x55 &&
2879                        readb(p + 1) == 0xaa &&
2880                        find_eth_addr_in_vpd(p, (64 * 1024), dev_addr);
2881                pci_unmap_rom(pdev, p);
2882                if (found)
2883                        return;
2884        }
2885
2886        /* Sun MAC prefix then 3 random bytes. */
2887        dev_addr[0] = 0x08;
2888        dev_addr[1] = 0x00;
2889        dev_addr[2] = 0x20;
2890        get_random_bytes(dev_addr + 3, 3);
2891        return;
2892}
2893#endif /* not Sparc and not PPC */
2894
2895static int __devinit gem_get_device_address(struct gem *gp)
2896{
2897#if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC)
2898        struct net_device *dev = gp->dev;
2899        const unsigned char *addr;
2900
2901        addr = of_get_property(gp->of_node, "local-mac-address", NULL);
2902        if (addr == NULL) {
2903#ifdef CONFIG_SPARC
2904                addr = idprom->id_ethaddr;
2905#else
2906                printk("\n");
2907                printk(KERN_ERR "%s: can't get mac-address\n", dev->name);
2908                return -1;
2909#endif
2910        }
2911        memcpy(dev->dev_addr, addr, 6);
2912#else
2913        get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr);
2914#endif
2915        return 0;
2916}
2917
2918static void gem_remove_one(struct pci_dev *pdev)
2919{
2920        struct net_device *dev = pci_get_drvdata(pdev);
2921
2922        if (dev) {
2923                struct gem *gp = dev->priv;
2924
2925                unregister_netdev(dev);
2926
2927                /* Stop the link timer */
2928                del_timer_sync(&gp->link_timer);
2929
2930                /* We shouldn't need any locking here */
2931                gem_get_cell(gp);
2932
2933                /* Wait for a pending reset task to complete */
2934                while (gp->reset_task_pending)
2935                        yield();
2936                flush_scheduled_work();
2937
2938                /* Shut the PHY down */
2939                gem_stop_phy(gp, 0);
2940
2941                gem_put_cell(gp);
2942
2943                /* Make sure bus master is disabled */
2944                pci_disable_device(gp->pdev);
2945
2946                /* Free resources */
2947                pci_free_consistent(pdev,
2948                                    sizeof(struct gem_init_block),
2949                                    gp->init_block,
2950                                    gp->gblock_dvma);
2951                iounmap(gp->regs);
2952                pci_release_regions(pdev);
2953                free_netdev(dev);
2954
2955                pci_set_drvdata(pdev, NULL);
2956        }
2957}
2958
2959static int __devinit gem_init_one(struct pci_dev *pdev,
2960                                  const struct pci_device_id *ent)
2961{
2962        static int gem_version_printed = 0;
2963        unsigned long gemreg_base, gemreg_len;
2964        struct net_device *dev;
2965        struct gem *gp;
2966        int err, pci_using_dac;
2967        DECLARE_MAC_BUF(mac);
2968
2969        if (gem_version_printed++ == 0)
2970                printk(KERN_INFO "%s", version);
2971
2972        /* Apple gmac note: during probe, the chip is powered up by
2973         * the arch code to allow the code below to work (and to let
2974         * the chip be probed on the config space. It won't stay powered
2975         * up until the interface is brought up however, so we can't rely
2976         * on register configuration done at this point.
2977         */
2978        err = pci_enable_device(pdev);
2979        if (err) {
2980                printk(KERN_ERR PFX "Cannot enable MMIO operation, "
2981                       "aborting.\n");
2982                return err;
2983        }
2984        pci_set_master(pdev);
2985
2986        /* Configure DMA attributes. */
2987
2988        /* All of the GEM documentation states that 64-bit DMA addressing
2989         * is fully supported and should work just fine.  However the
2990         * front end for RIO based GEMs is different and only supports
2991         * 32-bit addressing.
2992         *
2993         * For now we assume the various PPC GEMs are 32-bit only as well.
2994         */
2995        if (pdev->vendor == PCI_VENDOR_ID_SUN &&
2996            pdev->device == PCI_DEVICE_ID_SUN_GEM &&
2997            !pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
2998                pci_using_dac = 1;
2999        } else {
3000                err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
3001                if (err) {
3002                        printk(KERN_ERR PFX "No usable DMA configuration, "
3003                               "aborting.\n");
3004                        goto err_disable_device;
3005                }
3006                pci_using_dac = 0;
3007        }
3008
3009        gemreg_base = pci_resource_start(pdev, 0);
3010        gemreg_len = pci_resource_len(pdev, 0);
3011
3012        if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) {
3013                printk(KERN_ERR PFX "Cannot find proper PCI device "
3014                       "base address, aborting.\n");
3015                err = -ENODEV;
3016                goto err_disable_device;
3017        }
3018
3019        dev = alloc_etherdev(sizeof(*gp));
3020        if (!dev) {
3021                printk(KERN_ERR PFX "Etherdev alloc failed, aborting.\n");
3022                err = -ENOMEM;
3023                goto err_disable_device;
3024        }
3025        SET_NETDEV_DEV(dev, &pdev->dev);
3026
3027        gp = dev->priv;
3028
3029        err = pci_request_regions(pdev, DRV_NAME);
3030        if (err) {
3031                printk(KERN_ERR PFX "Cannot obtain PCI resources, "
3032                       "aborting.\n");
3033                goto err_out_free_netdev;
3034        }
3035
3036        gp->pdev = pdev;
3037        dev->base_addr = (long) pdev;
3038        gp->dev = dev;
3039
3040        gp->msg_enable = DEFAULT_MSG;
3041
3042        spin_lock_init(&gp->lock);
3043        spin_lock_init(&gp->tx_lock);
3044        mutex_init(&gp->pm_mutex);
3045
3046        init_timer(&gp->link_timer);
3047        gp->link_timer.function = gem_link_timer;
3048        gp->link_timer.data = (unsigned long) gp;
3049
3050        INIT_WORK(&gp->reset_task, gem_reset_task);
3051
3052        gp->lstate = link_down;
3053        gp->timer_ticks = 0;
3054        netif_carrier_off(dev);
3055
3056        gp->regs = ioremap(gemreg_base, gemreg_len);
3057        if (gp->regs == 0UL) {
3058                printk(KERN_ERR PFX "Cannot map device registers, "
3059                       "aborting.\n");
3060                err = -EIO;
3061                goto err_out_free_res;
3062        }
3063
3064        /* On Apple, we want a reference to the Open Firmware device-tree
3065         * node. We use it for clock control.
3066         */
3067#if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC)
3068        gp->of_node = pci_device_to_OF_node(pdev);
3069#endif
3070
3071        /* Only Apple version supports WOL afaik */
3072        if (pdev->vendor == PCI_VENDOR_ID_APPLE)
3073                gp->has_wol = 1;
3074
3075        /* Make sure cell is enabled */
3076        gem_get_cell(gp);
3077
3078        /* Make sure everything is stopped and in init state */
3079        gem_reset(gp);
3080
3081        /* Fill up the mii_phy structure (even if we won't use it) */
3082        gp->phy_mii.dev = dev;
3083        gp->phy_mii.mdio_read = _phy_read;
3084        gp->phy_mii.mdio_write = _phy_write;
3085#ifdef CONFIG_PPC_PMAC
3086        gp->phy_mii.platform_data = gp->of_node;
3087#endif
3088        /* By default, we start with autoneg */
3089        gp->want_autoneg = 1;
3090
3091        /* Check fifo sizes, PHY type, etc... */
3092        if (gem_check_invariants(gp)) {
3093                err = -ENODEV;
3094                goto err_out_iounmap;
3095        }
3096
3097        /* It is guaranteed that the returned buffer will be at least
3098         * PAGE_SIZE aligned.
3099         */
3100        gp->init_block = (struct gem_init_block *)
3101                pci_alloc_consistent(pdev, sizeof(struct gem_init_block),
3102                                     &gp->gblock_dvma);
3103        if (!gp->init_block) {
3104                printk(KERN_ERR PFX "Cannot allocate init block, "
3105                       "aborting.\n");
3106                err = -ENOMEM;
3107                goto err_out_iounmap;
3108        }
3109
3110        if (gem_get_device_address(gp))
3111                goto err_out_free_consistent;
3112
3113        dev->open = gem_open;
3114        dev->stop = gem_close;
3115        dev->hard_start_xmit = gem_start_xmit;
3116        dev->get_stats = gem_get_stats;
3117        dev->set_multicast_list = gem_set_multicast;
3118        dev->do_ioctl = gem_ioctl;
3119        netif_napi_add(dev, &gp->napi, gem_poll, 64);
3120        dev->ethtool_ops = &gem_ethtool_ops;
3121        dev->tx_timeout = gem_tx_timeout;
3122        dev->watchdog_timeo = 5 * HZ;
3123        dev->change_mtu = gem_change_mtu;
3124        dev->irq = pdev->irq;
3125        dev->dma = 0;
3126        dev->set_mac_address = gem_set_mac_address;
3127#ifdef CONFIG_NET_POLL_CONTROLLER
3128        dev->poll_controller = gem_poll_controller;
3129#endif
3130
3131        /* Set that now, in case PM kicks in now */
3132        pci_set_drvdata(pdev, dev);
3133
3134        /* Detect & init PHY, start autoneg, we release the cell now
3135         * too, it will be managed by whoever needs it
3136         */
3137        gem_init_phy(gp);
3138
3139        spin_lock_irq(&gp->lock);
3140        gem_put_cell(gp);
3141        spin_unlock_irq(&gp->lock);
3142
3143        /* Register with kernel */
3144        if (register_netdev(dev)) {
3145                printk(KERN_ERR PFX "Cannot register net device, "
3146                       "aborting.\n");
3147                err = -ENOMEM;
3148                goto err_out_free_consistent;
3149        }
3150
3151        printk(KERN_INFO "%s: Sun GEM (PCI) 10/100/1000BaseT Ethernet "
3152               "%s\n",
3153               dev->name, print_mac(mac, dev->dev_addr));
3154
3155        if (gp->phy_type == phy_mii_mdio0 ||
3156            gp->phy_type == phy_mii_mdio1)
3157                printk(KERN_INFO "%s: Found %s PHY\n", dev->name,
3158                        gp->phy_mii.def ? gp->phy_mii.def->name : "no");
3159
3160        /* GEM can do it all... */
3161        dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_LLTX;
3162        if (pci_using_dac)
3163                dev->features |= NETIF_F_HIGHDMA;
3164
3165        return 0;
3166
3167err_out_free_consistent:
3168        gem_remove_one(pdev);
3169err_out_iounmap:
3170        gem_put_cell(gp);
3171        iounmap(gp->regs);
3172
3173err_out_free_res:
3174        pci_release_regions(pdev);
3175
3176err_out_free_netdev:
3177        free_netdev(dev);
3178err_disable_device:
3179        pci_disable_device(pdev);
3180        return err;
3181
3182}
3183
3184
3185static struct pci_driver gem_driver = {
3186        .name           = GEM_MODULE_NAME,
3187        .id_table       = gem_pci_tbl,
3188        .probe          = gem_init_one,
3189        .remove         = gem_remove_one,
3190#ifdef CONFIG_PM
3191        .suspend        = gem_suspend,
3192        .resume         = gem_resume,
3193#endif /* CONFIG_PM */
3194};
3195
3196static int __init gem_init(void)
3197{
3198        return pci_register_driver(&gem_driver);
3199}
3200
3201static void __exit gem_cleanup(void)
3202{
3203        pci_unregister_driver(&gem_driver);
3204}
3205
3206module_init(gem_init);
3207module_exit(gem_cleanup);
3208