linux/drivers/net/tsi108_eth.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Copyright(c) 2006 Tundra Semiconductor Corporation.
   4
   5  This program is free software; you can redistribute it and/or modify it
   6  under the terms of the GNU General Public License as published by the Free
   7  Software Foundation; either version 2 of the License, or (at your option)
   8  any later version.
   9
  10  This program is distributed in the hope that it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc., 59
  17  Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  18
  19*******************************************************************************/
  20
  21/* This driver is based on the driver code originally developed
  22 * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
  23 * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
  24 *
  25 * Currently changes from original version are:
  26 * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
  27 * - modifications to handle two ports independently and support for
  28 *   additional PHY devices (alexandre.bounine@tundra.com)
  29 * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
  30 *
  31 */
  32
  33#include <linux/module.h>
  34#include <linux/types.h>
  35#include <linux/init.h>
  36#include <linux/net.h>
  37#include <linux/netdevice.h>
  38#include <linux/etherdevice.h>
  39#include <linux/skbuff.h>
  40#include <linux/slab.h>
  41#include <linux/spinlock.h>
  42#include <linux/delay.h>
  43#include <linux/crc32.h>
  44#include <linux/mii.h>
  45#include <linux/device.h>
  46#include <linux/pci.h>
  47#include <linux/rtnetlink.h>
  48#include <linux/timer.h>
  49#include <linux/platform_device.h>
  50
  51#include <asm/system.h>
  52#include <asm/io.h>
  53#include <asm/tsi108.h>
  54
  55#include "tsi108_eth.h"
  56
  57#define MII_READ_DELAY 10000    /* max link wait time in msec */
  58
  59#define TSI108_RXRING_LEN     256
  60
  61/* NOTE: The driver currently does not support receiving packets
  62 * larger than the buffer size, so don't decrease this (unless you
  63 * want to add such support).
  64 */
  65#define TSI108_RXBUF_SIZE     1536
  66
  67#define TSI108_TXRING_LEN     256
  68
  69#define TSI108_TX_INT_FREQ    64
  70
  71/* Check the phy status every half a second. */
  72#define CHECK_PHY_INTERVAL (HZ/2)
  73
  74static int tsi108_init_one(struct platform_device *pdev);
  75static int tsi108_ether_remove(struct platform_device *pdev);
  76
  77struct tsi108_prv_data {
  78        void  __iomem *regs;    /* Base of normal regs */
  79        void  __iomem *phyregs; /* Base of register bank used for PHY access */
  80
  81        struct net_device *dev;
  82        struct napi_struct napi;
  83
  84        unsigned int phy;               /* Index of PHY for this interface */
  85        unsigned int irq_num;
  86        unsigned int id;
  87        unsigned int phy_type;
  88
  89        struct timer_list timer;/* Timer that triggers the check phy function */
  90        unsigned int rxtail;    /* Next entry in rxring to read */
  91        unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
  92        unsigned int rxfree;    /* Number of free, allocated RX buffers */
  93
  94        unsigned int rxpending; /* Non-zero if there are still descriptors
  95                                 * to be processed from a previous descriptor
  96                                 * interrupt condition that has been cleared */
  97
  98        unsigned int txtail;    /* Next TX descriptor to check status on */
  99        unsigned int txhead;    /* Next TX descriptor to use */
 100
 101        /* Number of free TX descriptors.  This could be calculated from
 102         * rxhead and rxtail if one descriptor were left unused to disambiguate
 103         * full and empty conditions, but it's simpler to just keep track
 104         * explicitly. */
 105
 106        unsigned int txfree;
 107
 108        unsigned int phy_ok;            /* The PHY is currently powered on. */
 109
 110        /* PHY status (duplex is 1 for half, 2 for full,
 111         * so that the default 0 indicates that neither has
 112         * yet been configured). */
 113
 114        unsigned int link_up;
 115        unsigned int speed;
 116        unsigned int duplex;
 117
 118        tx_desc *txring;
 119        rx_desc *rxring;
 120        struct sk_buff *txskbs[TSI108_TXRING_LEN];
 121        struct sk_buff *rxskbs[TSI108_RXRING_LEN];
 122
 123        dma_addr_t txdma, rxdma;
 124
 125        /* txlock nests in misclock and phy_lock */
 126
 127        spinlock_t txlock, misclock;
 128
 129        /* stats is used to hold the upper bits of each hardware counter,
 130         * and tmpstats is used to hold the full values for returning
 131         * to the caller of get_stats().  They must be separate in case
 132         * an overflow interrupt occurs before the stats are consumed.
 133         */
 134
 135        struct net_device_stats stats;
 136        struct net_device_stats tmpstats;
 137
 138        /* These stats are kept separate in hardware, thus require individual
 139         * fields for handling carry.  They are combined in get_stats.
 140         */
 141
 142        unsigned long rx_fcs;   /* Add to rx_frame_errors */
 143        unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
 144        unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
 145        unsigned long rx_underruns;     /* Add to rx_length_errors */
 146        unsigned long rx_overruns;      /* Add to rx_length_errors */
 147
 148        unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
 149        unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
 150
 151        unsigned long mc_hash[16];
 152        u32 msg_enable;                 /* debug message level */
 153        struct mii_if_info mii_if;
 154        unsigned int init_media;
 155};
 156
 157/* Structure for a device driver */
 158
 159static struct platform_driver tsi_eth_driver = {
 160        .probe = tsi108_init_one,
 161        .remove = tsi108_ether_remove,
 162        .driver = {
 163                .name = "tsi-ethernet",
 164        },
 165};
 166
 167static void tsi108_timed_checker(unsigned long dev_ptr);
 168
 169static void dump_eth_one(struct net_device *dev)
 170{
 171        struct tsi108_prv_data *data = netdev_priv(dev);
 172
 173        printk("Dumping %s...\n", dev->name);
 174        printk("intstat %x intmask %x phy_ok %d"
 175               " link %d speed %d duplex %d\n",
 176               TSI_READ(TSI108_EC_INTSTAT),
 177               TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
 178               data->link_up, data->speed, data->duplex);
 179
 180        printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
 181               data->txhead, data->txtail, data->txfree,
 182               TSI_READ(TSI108_EC_TXSTAT),
 183               TSI_READ(TSI108_EC_TXESTAT),
 184               TSI_READ(TSI108_EC_TXERR));
 185
 186        printk("RX: head %d, tail %d, free %d, stat %x,"
 187               " estat %x, err %x, pending %d\n\n",
 188               data->rxhead, data->rxtail, data->rxfree,
 189               TSI_READ(TSI108_EC_RXSTAT),
 190               TSI_READ(TSI108_EC_RXESTAT),
 191               TSI_READ(TSI108_EC_RXERR), data->rxpending);
 192}
 193
 194/* Synchronization is needed between the thread and up/down events.
 195 * Note that the PHY is accessed through the same registers for both
 196 * interfaces, so this can't be made interface-specific.
 197 */
 198
 199static DEFINE_SPINLOCK(phy_lock);
 200
 201static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
 202{
 203        unsigned i;
 204
 205        TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 206                                (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 207                                (reg << TSI108_MAC_MII_ADDR_REG));
 208        TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
 209        TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
 210        for (i = 0; i < 100; i++) {
 211                if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 212                      (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
 213                        break;
 214                udelay(10);
 215        }
 216
 217        if (i == 100)
 218                return 0xffff;
 219        else
 220                return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
 221}
 222
 223static void tsi108_write_mii(struct tsi108_prv_data *data,
 224                                int reg, u16 val)
 225{
 226        unsigned i = 100;
 227        TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
 228                                (data->phy << TSI108_MAC_MII_ADDR_PHY) |
 229                                (reg << TSI108_MAC_MII_ADDR_REG));
 230        TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
 231        while (i--) {
 232                if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
 233                        TSI108_MAC_MII_IND_BUSY))
 234                        break;
 235                udelay(10);
 236        }
 237}
 238
 239static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
 240{
 241        struct tsi108_prv_data *data = netdev_priv(dev);
 242        return tsi108_read_mii(data, reg);
 243}
 244
 245static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
 246{
 247        struct tsi108_prv_data *data = netdev_priv(dev);
 248        tsi108_write_mii(data, reg, val);
 249}
 250
 251static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
 252                                        int reg, u16 val)
 253{
 254        unsigned i = 1000;
 255        TSI_WRITE(TSI108_MAC_MII_ADDR,
 256                             (0x1e << TSI108_MAC_MII_ADDR_PHY)
 257                             | (reg << TSI108_MAC_MII_ADDR_REG));
 258        TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
 259        while(i--) {
 260                if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
 261                        return;
 262                udelay(10);
 263        }
 264        printk(KERN_ERR "%s function time out \n", __FUNCTION__);
 265}
 266
 267static int mii_speed(struct mii_if_info *mii)
 268{
 269        int advert, lpa, val, media;
 270        int lpa2 = 0;
 271        int speed;
 272
 273        if (!mii_link_ok(mii))
 274                return 0;
 275
 276        val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
 277        if ((val & BMSR_ANEGCOMPLETE) == 0)
 278                return 0;
 279
 280        advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
 281        lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
 282        media = mii_nway_result(advert & lpa);
 283
 284        if (mii->supports_gmii)
 285                lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
 286
 287        speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
 288                        (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
 289        return speed;
 290}
 291
 292static void tsi108_check_phy(struct net_device *dev)
 293{
 294        struct tsi108_prv_data *data = netdev_priv(dev);
 295        u32 mac_cfg2_reg, portctrl_reg;
 296        u32 duplex;
 297        u32 speed;
 298        unsigned long flags;
 299
 300        /* Do a dummy read, as for some reason the first read
 301         * after a link becomes up returns link down, even if
 302         * it's been a while since the link came up.
 303         */
 304
 305        spin_lock_irqsave(&phy_lock, flags);
 306
 307        if (!data->phy_ok)
 308                goto out;
 309
 310        tsi108_read_mii(data, MII_BMSR);
 311
 312        duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
 313        data->init_media = 0;
 314
 315        if (netif_carrier_ok(dev)) {
 316
 317                speed = mii_speed(&data->mii_if);
 318
 319                if ((speed != data->speed) || duplex) {
 320
 321                        mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
 322                        portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
 323
 324                        mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
 325
 326                        if (speed == 1000) {
 327                                mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
 328                                portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
 329                        } else {
 330                                mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
 331                                portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
 332                        }
 333
 334                        data->speed = speed;
 335
 336                        if (data->mii_if.full_duplex) {
 337                                mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
 338                                portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
 339                                data->duplex = 2;
 340                        } else {
 341                                mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
 342                                portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
 343                                data->duplex = 1;
 344                        }
 345
 346                        TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
 347                        TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
 348
 349                        if (data->link_up == 0) {
 350                                /* The manual says it can take 3-4 usecs for the speed change
 351                                 * to take effect.
 352                                 */
 353                                udelay(5);
 354
 355                                spin_lock(&data->txlock);
 356                                if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
 357                                        netif_wake_queue(dev);
 358
 359                                data->link_up = 1;
 360                                spin_unlock(&data->txlock);
 361                        }
 362                }
 363
 364        } else {
 365                if (data->link_up == 1) {
 366                        netif_stop_queue(dev);
 367                        data->link_up = 0;
 368                        printk(KERN_NOTICE "%s : link is down\n", dev->name);
 369                }
 370
 371                goto out;
 372        }
 373
 374
 375out:
 376        spin_unlock_irqrestore(&phy_lock, flags);
 377}
 378
 379static inline void
 380tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
 381                      unsigned long *upper)
 382{
 383        if (carry & carry_bit)
 384                *upper += carry_shift;
 385}
 386
 387static void tsi108_stat_carry(struct net_device *dev)
 388{
 389        struct tsi108_prv_data *data = netdev_priv(dev);
 390        u32 carry1, carry2;
 391
 392        spin_lock_irq(&data->misclock);
 393
 394        carry1 = TSI_READ(TSI108_STAT_CARRY1);
 395        carry2 = TSI_READ(TSI108_STAT_CARRY2);
 396
 397        TSI_WRITE(TSI108_STAT_CARRY1, carry1);
 398        TSI_WRITE(TSI108_STAT_CARRY2, carry2);
 399
 400        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
 401                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 402
 403        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
 404                              TSI108_STAT_RXPKTS_CARRY,
 405                              &data->stats.rx_packets);
 406
 407        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
 408                              TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
 409
 410        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
 411                              TSI108_STAT_RXMCAST_CARRY,
 412                              &data->stats.multicast);
 413
 414        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
 415                              TSI108_STAT_RXALIGN_CARRY,
 416                              &data->stats.rx_frame_errors);
 417
 418        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
 419                              TSI108_STAT_RXLENGTH_CARRY,
 420                              &data->stats.rx_length_errors);
 421
 422        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
 423                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 424
 425        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
 426                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 427
 428        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
 429                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 430
 431        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
 432                              TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
 433
 434        tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
 435                              TSI108_STAT_RXDROP_CARRY,
 436                              &data->stats.rx_missed_errors);
 437
 438        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
 439                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 440
 441        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
 442                              TSI108_STAT_TXPKTS_CARRY,
 443                              &data->stats.tx_packets);
 444
 445        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
 446                              TSI108_STAT_TXEXDEF_CARRY,
 447                              &data->stats.tx_aborted_errors);
 448
 449        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
 450                              TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
 451
 452        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
 453                              TSI108_STAT_TXTCOL_CARRY,
 454                              &data->stats.collisions);
 455
 456        tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
 457                              TSI108_STAT_TXPAUSEDROP_CARRY,
 458                              &data->tx_pause_drop);
 459
 460        spin_unlock_irq(&data->misclock);
 461}
 462
 463/* Read a stat counter atomically with respect to carries.
 464 * data->misclock must be held.
 465 */
 466static inline unsigned long
 467tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
 468                 int carry_shift, unsigned long *upper)
 469{
 470        int carryreg;
 471        unsigned long val;
 472
 473        if (reg < 0xb0)
 474                carryreg = TSI108_STAT_CARRY1;
 475        else
 476                carryreg = TSI108_STAT_CARRY2;
 477
 478      again:
 479        val = TSI_READ(reg) | *upper;
 480
 481        /* Check to see if it overflowed, but the interrupt hasn't
 482         * been serviced yet.  If so, handle the carry here, and
 483         * try again.
 484         */
 485
 486        if (unlikely(TSI_READ(carryreg) & carry_bit)) {
 487                *upper += carry_shift;
 488                TSI_WRITE(carryreg, carry_bit);
 489                goto again;
 490        }
 491
 492        return val;
 493}
 494
 495static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
 496{
 497        unsigned long excol;
 498
 499        struct tsi108_prv_data *data = netdev_priv(dev);
 500        spin_lock_irq(&data->misclock);
 501
 502        data->tmpstats.rx_packets =
 503            tsi108_read_stat(data, TSI108_STAT_RXPKTS,
 504                             TSI108_STAT_CARRY1_RXPKTS,
 505                             TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
 506
 507        data->tmpstats.tx_packets =
 508            tsi108_read_stat(data, TSI108_STAT_TXPKTS,
 509                             TSI108_STAT_CARRY2_TXPKTS,
 510                             TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
 511
 512        data->tmpstats.rx_bytes =
 513            tsi108_read_stat(data, TSI108_STAT_RXBYTES,
 514                             TSI108_STAT_CARRY1_RXBYTES,
 515                             TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
 516
 517        data->tmpstats.tx_bytes =
 518            tsi108_read_stat(data, TSI108_STAT_TXBYTES,
 519                             TSI108_STAT_CARRY2_TXBYTES,
 520                             TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
 521
 522        data->tmpstats.multicast =
 523            tsi108_read_stat(data, TSI108_STAT_RXMCAST,
 524                             TSI108_STAT_CARRY1_RXMCAST,
 525                             TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
 526
 527        excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
 528                                 TSI108_STAT_CARRY2_TXEXCOL,
 529                                 TSI108_STAT_TXEXCOL_CARRY,
 530                                 &data->tx_coll_abort);
 531
 532        data->tmpstats.collisions =
 533            tsi108_read_stat(data, TSI108_STAT_TXTCOL,
 534                             TSI108_STAT_CARRY2_TXTCOL,
 535                             TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
 536
 537        data->tmpstats.collisions += excol;
 538
 539        data->tmpstats.rx_length_errors =
 540            tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
 541                             TSI108_STAT_CARRY1_RXLENGTH,
 542                             TSI108_STAT_RXLENGTH_CARRY,
 543                             &data->stats.rx_length_errors);
 544
 545        data->tmpstats.rx_length_errors +=
 546            tsi108_read_stat(data, TSI108_STAT_RXRUNT,
 547                             TSI108_STAT_CARRY1_RXRUNT,
 548                             TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
 549
 550        data->tmpstats.rx_length_errors +=
 551            tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
 552                             TSI108_STAT_CARRY1_RXJUMBO,
 553                             TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
 554
 555        data->tmpstats.rx_frame_errors =
 556            tsi108_read_stat(data, TSI108_STAT_RXALIGN,
 557                             TSI108_STAT_CARRY1_RXALIGN,
 558                             TSI108_STAT_RXALIGN_CARRY,
 559                             &data->stats.rx_frame_errors);
 560
 561        data->tmpstats.rx_frame_errors +=
 562            tsi108_read_stat(data, TSI108_STAT_RXFCS,
 563                             TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
 564                             &data->rx_fcs);
 565
 566        data->tmpstats.rx_frame_errors +=
 567            tsi108_read_stat(data, TSI108_STAT_RXFRAG,
 568                             TSI108_STAT_CARRY1_RXFRAG,
 569                             TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
 570
 571        data->tmpstats.rx_missed_errors =
 572            tsi108_read_stat(data, TSI108_STAT_RXDROP,
 573                             TSI108_STAT_CARRY1_RXDROP,
 574                             TSI108_STAT_RXDROP_CARRY,
 575                             &data->stats.rx_missed_errors);
 576
 577        /* These three are maintained by software. */
 578        data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
 579        data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
 580
 581        data->tmpstats.tx_aborted_errors =
 582            tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
 583                             TSI108_STAT_CARRY2_TXEXDEF,
 584                             TSI108_STAT_TXEXDEF_CARRY,
 585                             &data->stats.tx_aborted_errors);
 586
 587        data->tmpstats.tx_aborted_errors +=
 588            tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
 589                             TSI108_STAT_CARRY2_TXPAUSE,
 590                             TSI108_STAT_TXPAUSEDROP_CARRY,
 591                             &data->tx_pause_drop);
 592
 593        data->tmpstats.tx_aborted_errors += excol;
 594
 595        data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
 596        data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
 597            data->tmpstats.rx_crc_errors +
 598            data->tmpstats.rx_frame_errors +
 599            data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
 600
 601        spin_unlock_irq(&data->misclock);
 602        return &data->tmpstats;
 603}
 604
 605static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
 606{
 607        TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
 608                             TSI108_EC_RXQ_PTRHIGH_VALID);
 609
 610        TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
 611                             | TSI108_EC_RXCTRL_QUEUE0);
 612}
 613
 614static void tsi108_restart_tx(struct tsi108_prv_data * data)
 615{
 616        TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
 617                             TSI108_EC_TXQ_PTRHIGH_VALID);
 618
 619        TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
 620                             TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
 621}
 622
 623/* txlock must be held by caller, with IRQs disabled, and
 624 * with permission to re-enable them when the lock is dropped.
 625 */
 626static void tsi108_complete_tx(struct net_device *dev)
 627{
 628        struct tsi108_prv_data *data = netdev_priv(dev);
 629        int tx;
 630        struct sk_buff *skb;
 631        int release = 0;
 632
 633        while (!data->txfree || data->txhead != data->txtail) {
 634                tx = data->txtail;
 635
 636                if (data->txring[tx].misc & TSI108_TX_OWN)
 637                        break;
 638
 639                skb = data->txskbs[tx];
 640
 641                if (!(data->txring[tx].misc & TSI108_TX_OK))
 642                        printk("%s: bad tx packet, misc %x\n",
 643                               dev->name, data->txring[tx].misc);
 644
 645                data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
 646                data->txfree++;
 647
 648                if (data->txring[tx].misc & TSI108_TX_EOF) {
 649                        dev_kfree_skb_any(skb);
 650                        release++;
 651                }
 652        }
 653
 654        if (release) {
 655                if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
 656                        netif_wake_queue(dev);
 657        }
 658}
 659
 660static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
 661{
 662        struct tsi108_prv_data *data = netdev_priv(dev);
 663        int frags = skb_shinfo(skb)->nr_frags + 1;
 664        int i;
 665
 666        if (!data->phy_ok && net_ratelimit())
 667                printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
 668
 669        if (!data->link_up) {
 670                printk(KERN_ERR "%s: Transmit while link is down!\n",
 671                       dev->name);
 672                netif_stop_queue(dev);
 673                return NETDEV_TX_BUSY;
 674        }
 675
 676        if (data->txfree < MAX_SKB_FRAGS + 1) {
 677                netif_stop_queue(dev);
 678
 679                if (net_ratelimit())
 680                        printk(KERN_ERR "%s: Transmit with full tx ring!\n",
 681                               dev->name);
 682                return NETDEV_TX_BUSY;
 683        }
 684
 685        if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
 686                netif_stop_queue(dev);
 687        }
 688
 689        spin_lock_irq(&data->txlock);
 690
 691        for (i = 0; i < frags; i++) {
 692                int misc = 0;
 693                int tx = data->txhead;
 694
 695                /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
 696                 * the interrupt bit.  TX descriptor-complete interrupts are
 697                 * enabled when the queue fills up, and masked when there is
 698                 * still free space.  This way, when saturating the outbound
 699                 * link, the tx interrupts are kept to a reasonable level.
 700                 * When the queue is not full, reclamation of skbs still occurs
 701                 * as new packets are transmitted, or on a queue-empty
 702                 * interrupt.
 703                 */
 704
 705                if ((tx % TSI108_TX_INT_FREQ == 0) &&
 706                    ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
 707                        misc = TSI108_TX_INT;
 708
 709                data->txskbs[tx] = skb;
 710
 711                if (i == 0) {
 712                        data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
 713                                        skb->len - skb->data_len, DMA_TO_DEVICE);
 714                        data->txring[tx].len = skb->len - skb->data_len;
 715                        misc |= TSI108_TX_SOF;
 716                } else {
 717                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
 718
 719                        data->txring[tx].buf0 =
 720                            dma_map_page(NULL, frag->page, frag->page_offset,
 721                                            frag->size, DMA_TO_DEVICE);
 722                        data->txring[tx].len = frag->size;
 723                }
 724
 725                if (i == frags - 1)
 726                        misc |= TSI108_TX_EOF;
 727
 728                if (netif_msg_pktdata(data)) {
 729                        int i;
 730                        printk("%s: Tx Frame contents (%d)\n", dev->name,
 731                               skb->len);
 732                        for (i = 0; i < skb->len; i++)
 733                                printk(" %2.2x", skb->data[i]);
 734                        printk(".\n");
 735                }
 736                data->txring[tx].misc = misc | TSI108_TX_OWN;
 737
 738                data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
 739                data->txfree--;
 740        }
 741
 742        tsi108_complete_tx(dev);
 743
 744        /* This must be done after the check for completed tx descriptors,
 745         * so that the tail pointer is correct.
 746         */
 747
 748        if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
 749                tsi108_restart_tx(data);
 750
 751        spin_unlock_irq(&data->txlock);
 752        return NETDEV_TX_OK;
 753}
 754
 755static int tsi108_complete_rx(struct net_device *dev, int budget)
 756{
 757        struct tsi108_prv_data *data = netdev_priv(dev);
 758        int done = 0;
 759
 760        while (data->rxfree && done != budget) {
 761                int rx = data->rxtail;
 762                struct sk_buff *skb;
 763
 764                if (data->rxring[rx].misc & TSI108_RX_OWN)
 765                        break;
 766
 767                skb = data->rxskbs[rx];
 768                data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
 769                data->rxfree--;
 770                done++;
 771
 772                if (data->rxring[rx].misc & TSI108_RX_BAD) {
 773                        spin_lock_irq(&data->misclock);
 774
 775                        if (data->rxring[rx].misc & TSI108_RX_CRC)
 776                                data->stats.rx_crc_errors++;
 777                        if (data->rxring[rx].misc & TSI108_RX_OVER)
 778                                data->stats.rx_fifo_errors++;
 779
 780                        spin_unlock_irq(&data->misclock);
 781
 782                        dev_kfree_skb_any(skb);
 783                        continue;
 784                }
 785                if (netif_msg_pktdata(data)) {
 786                        int i;
 787                        printk("%s: Rx Frame contents (%d)\n",
 788                               dev->name, data->rxring[rx].len);
 789                        for (i = 0; i < data->rxring[rx].len; i++)
 790                                printk(" %2.2x", skb->data[i]);
 791                        printk(".\n");
 792                }
 793
 794                skb_put(skb, data->rxring[rx].len);
 795                skb->protocol = eth_type_trans(skb, dev);
 796                netif_receive_skb(skb);
 797                dev->last_rx = jiffies;
 798        }
 799
 800        return done;
 801}
 802
 803static int tsi108_refill_rx(struct net_device *dev, int budget)
 804{
 805        struct tsi108_prv_data *data = netdev_priv(dev);
 806        int done = 0;
 807
 808        while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
 809                int rx = data->rxhead;
 810                struct sk_buff *skb;
 811
 812                data->rxskbs[rx] = skb = dev_alloc_skb(TSI108_RXBUF_SIZE + 2);
 813                if (!skb)
 814                        break;
 815
 816                skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
 817
 818                data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
 819                                                        TSI108_RX_SKB_SIZE,
 820                                                        DMA_FROM_DEVICE);
 821
 822                /* Sometimes the hardware sets blen to zero after packet
 823                 * reception, even though the manual says that it's only ever
 824                 * modified by the driver.
 825                 */
 826
 827                data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
 828                data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
 829
 830                data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
 831                data->rxfree++;
 832                done++;
 833        }
 834
 835        if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
 836                           TSI108_EC_RXSTAT_QUEUE0))
 837                tsi108_restart_rx(data, dev);
 838
 839        return done;
 840}
 841
 842static int tsi108_poll(struct napi_struct *napi, int budget)
 843{
 844        struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
 845        struct net_device *dev = data->dev;
 846        u32 estat = TSI_READ(TSI108_EC_RXESTAT);
 847        u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
 848        int num_received = 0, num_filled = 0;
 849
 850        intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
 851            TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
 852
 853        TSI_WRITE(TSI108_EC_RXESTAT, estat);
 854        TSI_WRITE(TSI108_EC_INTSTAT, intstat);
 855
 856        if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
 857                num_received = tsi108_complete_rx(dev, budget);
 858
 859        /* This should normally fill no more slots than the number of
 860         * packets received in tsi108_complete_rx().  The exception
 861         * is when we previously ran out of memory for RX SKBs.  In that
 862         * case, it's helpful to obey the budget, not only so that the
 863         * CPU isn't hogged, but so that memory (which may still be low)
 864         * is not hogged by one device.
 865         *
 866         * A work unit is considered to be two SKBs to allow us to catch
 867         * up when the ring has shrunk due to out-of-memory but we're
 868         * still removing the full budget's worth of packets each time.
 869         */
 870
 871        if (data->rxfree < TSI108_RXRING_LEN)
 872                num_filled = tsi108_refill_rx(dev, budget * 2);
 873
 874        if (intstat & TSI108_INT_RXERROR) {
 875                u32 err = TSI_READ(TSI108_EC_RXERR);
 876                TSI_WRITE(TSI108_EC_RXERR, err);
 877
 878                if (err) {
 879                        if (net_ratelimit())
 880                                printk(KERN_DEBUG "%s: RX error %x\n",
 881                                       dev->name, err);
 882
 883                        if (!(TSI_READ(TSI108_EC_RXSTAT) &
 884                              TSI108_EC_RXSTAT_QUEUE0))
 885                                tsi108_restart_rx(data, dev);
 886                }
 887        }
 888
 889        if (intstat & TSI108_INT_RXOVERRUN) {
 890                spin_lock_irq(&data->misclock);
 891                data->stats.rx_fifo_errors++;
 892                spin_unlock_irq(&data->misclock);
 893        }
 894
 895        if (num_received < budget) {
 896                data->rxpending = 0;
 897                netif_rx_complete(dev, napi);
 898
 899                TSI_WRITE(TSI108_EC_INTMASK,
 900                                     TSI_READ(TSI108_EC_INTMASK)
 901                                     & ~(TSI108_INT_RXQUEUE0
 902                                         | TSI108_INT_RXTHRESH |
 903                                         TSI108_INT_RXOVERRUN |
 904                                         TSI108_INT_RXERROR |
 905                                         TSI108_INT_RXWAIT));
 906        } else {
 907                data->rxpending = 1;
 908        }
 909
 910        return num_received;
 911}
 912
 913static void tsi108_rx_int(struct net_device *dev)
 914{
 915        struct tsi108_prv_data *data = netdev_priv(dev);
 916
 917        /* A race could cause dev to already be scheduled, so it's not an
 918         * error if that happens (and interrupts shouldn't be re-masked,
 919         * because that can cause harmful races, if poll has already
 920         * unmasked them but not cleared LINK_STATE_SCHED).
 921         *
 922         * This can happen if this code races with tsi108_poll(), which masks
 923         * the interrupts after tsi108_irq_one() read the mask, but before
 924         * netif_rx_schedule is called.  It could also happen due to calls
 925         * from tsi108_check_rxring().
 926         */
 927
 928        if (netif_rx_schedule_prep(dev, &data->napi)) {
 929                /* Mask, rather than ack, the receive interrupts.  The ack
 930                 * will happen in tsi108_poll().
 931                 */
 932
 933                TSI_WRITE(TSI108_EC_INTMASK,
 934                                     TSI_READ(TSI108_EC_INTMASK) |
 935                                     TSI108_INT_RXQUEUE0
 936                                     | TSI108_INT_RXTHRESH |
 937                                     TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
 938                                     TSI108_INT_RXWAIT);
 939                __netif_rx_schedule(dev, &data->napi);
 940        } else {
 941                if (!netif_running(dev)) {
 942                        /* This can happen if an interrupt occurs while the
 943                         * interface is being brought down, as the START
 944                         * bit is cleared before the stop function is called.
 945                         *
 946                         * In this case, the interrupts must be masked, or
 947                         * they will continue indefinitely.
 948                         *
 949                         * There's a race here if the interface is brought down
 950                         * and then up in rapid succession, as the device could
 951                         * be made running after the above check and before
 952                         * the masking below.  This will only happen if the IRQ
 953                         * thread has a lower priority than the task brining
 954                         * up the interface.  Fixing this race would likely
 955                         * require changes in generic code.
 956                         */
 957
 958                        TSI_WRITE(TSI108_EC_INTMASK,
 959                                             TSI_READ
 960                                             (TSI108_EC_INTMASK) |
 961                                             TSI108_INT_RXQUEUE0 |
 962                                             TSI108_INT_RXTHRESH |
 963                                             TSI108_INT_RXOVERRUN |
 964                                             TSI108_INT_RXERROR |
 965                                             TSI108_INT_RXWAIT);
 966                }
 967        }
 968}
 969
 970/* If the RX ring has run out of memory, try periodically
 971 * to allocate some more, as otherwise poll would never
 972 * get called (apart from the initial end-of-queue condition).
 973 *
 974 * This is called once per second (by default) from the thread.
 975 */
 976
 977static void tsi108_check_rxring(struct net_device *dev)
 978{
 979        struct tsi108_prv_data *data = netdev_priv(dev);
 980
 981        /* A poll is scheduled, as opposed to caling tsi108_refill_rx
 982         * directly, so as to keep the receive path single-threaded
 983         * (and thus not needing a lock).
 984         */
 985
 986        if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
 987                tsi108_rx_int(dev);
 988}
 989
 990static void tsi108_tx_int(struct net_device *dev)
 991{
 992        struct tsi108_prv_data *data = netdev_priv(dev);
 993        u32 estat = TSI_READ(TSI108_EC_TXESTAT);
 994
 995        TSI_WRITE(TSI108_EC_TXESTAT, estat);
 996        TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
 997                             TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
 998        if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
 999                u32 err = TSI_READ(TSI108_EC_TXERR);
1000                TSI_WRITE(TSI108_EC_TXERR, err);
1001
1002                if (err && net_ratelimit())
1003                        printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
1004        }
1005
1006        if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1007                spin_lock(&data->txlock);
1008                tsi108_complete_tx(dev);
1009                spin_unlock(&data->txlock);
1010        }
1011}
1012
1013
1014static irqreturn_t tsi108_irq(int irq, void *dev_id)
1015{
1016        struct net_device *dev = dev_id;
1017        struct tsi108_prv_data *data = netdev_priv(dev);
1018        u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1019
1020        if (!(stat & TSI108_INT_ANY))
1021                return IRQ_NONE;        /* Not our interrupt */
1022
1023        stat &= ~TSI_READ(TSI108_EC_INTMASK);
1024
1025        if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1026                    TSI108_INT_TXERROR))
1027                tsi108_tx_int(dev);
1028        if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1029                    TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1030                    TSI108_INT_RXERROR))
1031                tsi108_rx_int(dev);
1032
1033        if (stat & TSI108_INT_SFN) {
1034                if (net_ratelimit())
1035                        printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1036                TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1037        }
1038
1039        if (stat & TSI108_INT_STATCARRY) {
1040                tsi108_stat_carry(dev);
1041                TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1042        }
1043
1044        return IRQ_HANDLED;
1045}
1046
1047static void tsi108_stop_ethernet(struct net_device *dev)
1048{
1049        struct tsi108_prv_data *data = netdev_priv(dev);
1050        int i = 1000;
1051        /* Disable all TX and RX queues ... */
1052        TSI_WRITE(TSI108_EC_TXCTRL, 0);
1053        TSI_WRITE(TSI108_EC_RXCTRL, 0);
1054
1055        /* ...and wait for them to become idle */
1056        while(i--) {
1057                if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1058                        break;
1059                udelay(10);
1060        }
1061        i = 1000;
1062        while(i--){
1063                if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1064                        return;
1065                udelay(10);
1066        }
1067        printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1068}
1069
1070static void tsi108_reset_ether(struct tsi108_prv_data * data)
1071{
1072        TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1073        udelay(100);
1074        TSI_WRITE(TSI108_MAC_CFG1, 0);
1075
1076        TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1077        udelay(100);
1078        TSI_WRITE(TSI108_EC_PORTCTRL,
1079                             TSI_READ(TSI108_EC_PORTCTRL) &
1080                             ~TSI108_EC_PORTCTRL_STATRST);
1081
1082        TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1083        udelay(100);
1084        TSI_WRITE(TSI108_EC_TXCFG,
1085                             TSI_READ(TSI108_EC_TXCFG) &
1086                             ~TSI108_EC_TXCFG_RST);
1087
1088        TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1089        udelay(100);
1090        TSI_WRITE(TSI108_EC_RXCFG,
1091                             TSI_READ(TSI108_EC_RXCFG) &
1092                             ~TSI108_EC_RXCFG_RST);
1093
1094        TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1095                             TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1096                             TSI108_MAC_MII_MGMT_RST);
1097        udelay(100);
1098        TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1099                             (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1100                             ~(TSI108_MAC_MII_MGMT_RST |
1101                               TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1102}
1103
1104static int tsi108_get_mac(struct net_device *dev)
1105{
1106        struct tsi108_prv_data *data = netdev_priv(dev);
1107        u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1108        u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1109
1110        /* Note that the octets are reversed from what the manual says,
1111         * producing an even weirder ordering...
1112         */
1113        if (word2 == 0 && word1 == 0) {
1114                dev->dev_addr[0] = 0x00;
1115                dev->dev_addr[1] = 0x06;
1116                dev->dev_addr[2] = 0xd2;
1117                dev->dev_addr[3] = 0x00;
1118                dev->dev_addr[4] = 0x00;
1119                if (0x8 == data->phy)
1120                        dev->dev_addr[5] = 0x01;
1121                else
1122                        dev->dev_addr[5] = 0x02;
1123
1124                word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1125
1126                word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1127                    (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1128
1129                TSI_WRITE(TSI108_MAC_ADDR1, word1);
1130                TSI_WRITE(TSI108_MAC_ADDR2, word2);
1131        } else {
1132                dev->dev_addr[0] = (word2 >> 16) & 0xff;
1133                dev->dev_addr[1] = (word2 >> 24) & 0xff;
1134                dev->dev_addr[2] = (word1 >> 0) & 0xff;
1135                dev->dev_addr[3] = (word1 >> 8) & 0xff;
1136                dev->dev_addr[4] = (word1 >> 16) & 0xff;
1137                dev->dev_addr[5] = (word1 >> 24) & 0xff;
1138        }
1139
1140        if (!is_valid_ether_addr(dev->dev_addr)) {
1141                printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1142                return -EINVAL;
1143        }
1144
1145        return 0;
1146}
1147
1148static int tsi108_set_mac(struct net_device *dev, void *addr)
1149{
1150        struct tsi108_prv_data *data = netdev_priv(dev);
1151        u32 word1, word2;
1152        int i;
1153
1154        if (!is_valid_ether_addr(addr))
1155                return -EINVAL;
1156
1157        for (i = 0; i < 6; i++)
1158                /* +2 is for the offset of the HW addr type */
1159                dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1160
1161        word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1162
1163        word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1164            (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1165
1166        spin_lock_irq(&data->misclock);
1167        TSI_WRITE(TSI108_MAC_ADDR1, word1);
1168        TSI_WRITE(TSI108_MAC_ADDR2, word2);
1169        spin_lock(&data->txlock);
1170
1171        if (data->txfree && data->link_up)
1172                netif_wake_queue(dev);
1173
1174        spin_unlock(&data->txlock);
1175        spin_unlock_irq(&data->misclock);
1176        return 0;
1177}
1178
1179/* Protected by dev->xmit_lock. */
1180static void tsi108_set_rx_mode(struct net_device *dev)
1181{
1182        struct tsi108_prv_data *data = netdev_priv(dev);
1183        u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1184
1185        if (dev->flags & IFF_PROMISC) {
1186                rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1187                rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1188                goto out;
1189        }
1190
1191        rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1192
1193        if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1194                int i;
1195                struct dev_mc_list *mc = dev->mc_list;
1196                rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1197
1198                memset(data->mc_hash, 0, sizeof(data->mc_hash));
1199
1200                while (mc) {
1201                        u32 hash, crc;
1202
1203                        if (mc->dmi_addrlen == 6) {
1204                                crc = ether_crc(6, mc->dmi_addr);
1205                                hash = crc >> 23;
1206
1207                                __set_bit(hash, &data->mc_hash[0]);
1208                        } else {
1209                                printk(KERN_ERR
1210                                       "%s: got multicast address of length %d "
1211                                       "instead of 6.\n", dev->name,
1212                                       mc->dmi_addrlen);
1213                        }
1214
1215                        mc = mc->next;
1216                }
1217
1218                TSI_WRITE(TSI108_EC_HASHADDR,
1219                                     TSI108_EC_HASHADDR_AUTOINC |
1220                                     TSI108_EC_HASHADDR_MCAST);
1221
1222                for (i = 0; i < 16; i++) {
1223                        /* The manual says that the hardware may drop
1224                         * back-to-back writes to the data register.
1225                         */
1226                        udelay(1);
1227                        TSI_WRITE(TSI108_EC_HASHDATA,
1228                                             data->mc_hash[i]);
1229                }
1230        }
1231
1232      out:
1233        TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1234}
1235
1236static void tsi108_init_phy(struct net_device *dev)
1237{
1238        struct tsi108_prv_data *data = netdev_priv(dev);
1239        u32 i = 0;
1240        u16 phyval = 0;
1241        unsigned long flags;
1242
1243        spin_lock_irqsave(&phy_lock, flags);
1244
1245        tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1246        while (i--){
1247                if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1248                        break;
1249                udelay(10);
1250        }
1251        if (i == 0)
1252                printk(KERN_ERR "%s function time out \n", __FUNCTION__);
1253
1254        if (data->phy_type == TSI108_PHY_BCM54XX) {
1255                tsi108_write_mii(data, 0x09, 0x0300);
1256                tsi108_write_mii(data, 0x10, 0x1020);
1257                tsi108_write_mii(data, 0x1c, 0x8c00);
1258        }
1259
1260        tsi108_write_mii(data,
1261                         MII_BMCR,
1262                         BMCR_ANENABLE | BMCR_ANRESTART);
1263        while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1264                cpu_relax();
1265
1266        /* Set G/MII mode and receive clock select in TBI control #2.  The
1267         * second port won't work if this isn't done, even though we don't
1268         * use TBI mode.
1269         */
1270
1271        tsi108_write_tbi(data, 0x11, 0x30);
1272
1273        /* FIXME: It seems to take more than 2 back-to-back reads to the
1274         * PHY_STAT register before the link up status bit is set.
1275         */
1276
1277        data->link_up = 1;
1278
1279        while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1280                 BMSR_LSTATUS)) {
1281                if (i++ > (MII_READ_DELAY / 10)) {
1282                        data->link_up = 0;
1283                        break;
1284                }
1285                spin_unlock_irqrestore(&phy_lock, flags);
1286                msleep(10);
1287                spin_lock_irqsave(&phy_lock, flags);
1288        }
1289
1290        printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1291        data->phy_ok = 1;
1292        data->init_media = 1;
1293        spin_unlock_irqrestore(&phy_lock, flags);
1294}
1295
1296static void tsi108_kill_phy(struct net_device *dev)
1297{
1298        struct tsi108_prv_data *data = netdev_priv(dev);
1299        unsigned long flags;
1300
1301        spin_lock_irqsave(&phy_lock, flags);
1302        tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1303        data->phy_ok = 0;
1304        spin_unlock_irqrestore(&phy_lock, flags);
1305}
1306
1307static int tsi108_open(struct net_device *dev)
1308{
1309        int i;
1310        struct tsi108_prv_data *data = netdev_priv(dev);
1311        unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1312        unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1313
1314        i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1315        if (i != 0) {
1316                printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1317                       data->id, data->irq_num);
1318                return i;
1319        } else {
1320                dev->irq = data->irq_num;
1321                printk(KERN_NOTICE
1322                       "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1323                       data->id, dev->irq, dev->name);
1324        }
1325
1326        data->rxring = dma_alloc_coherent(NULL, rxring_size,
1327                        &data->rxdma, GFP_KERNEL);
1328
1329        if (!data->rxring) {
1330                printk(KERN_DEBUG
1331                       "TSI108_ETH: failed to allocate memory for rxring!\n");
1332                return -ENOMEM;
1333        } else {
1334                memset(data->rxring, 0, rxring_size);
1335        }
1336
1337        data->txring = dma_alloc_coherent(NULL, txring_size,
1338                        &data->txdma, GFP_KERNEL);
1339
1340        if (!data->txring) {
1341                printk(KERN_DEBUG
1342                       "TSI108_ETH: failed to allocate memory for txring!\n");
1343                pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1344                return -ENOMEM;
1345        } else {
1346                memset(data->txring, 0, txring_size);
1347        }
1348
1349        for (i = 0; i < TSI108_RXRING_LEN; i++) {
1350                data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1351                data->rxring[i].blen = TSI108_RXBUF_SIZE;
1352                data->rxring[i].vlan = 0;
1353        }
1354
1355        data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1356
1357        data->rxtail = 0;
1358        data->rxhead = 0;
1359
1360        for (i = 0; i < TSI108_RXRING_LEN; i++) {
1361                struct sk_buff *skb = dev_alloc_skb(TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1362
1363                if (!skb) {
1364                        /* Bah.  No memory for now, but maybe we'll get
1365                         * some more later.
1366                         * For now, we'll live with the smaller ring.
1367                         */
1368                        printk(KERN_WARNING
1369                               "%s: Could only allocate %d receive skb(s).\n",
1370                               dev->name, i);
1371                        data->rxhead = i;
1372                        break;
1373                }
1374
1375                data->rxskbs[i] = skb;
1376                /* Align the payload on a 4-byte boundary */
1377                skb_reserve(skb, 2);
1378                data->rxskbs[i] = skb;
1379                data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1380                data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1381        }
1382
1383        data->rxfree = i;
1384        TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1385
1386        for (i = 0; i < TSI108_TXRING_LEN; i++) {
1387                data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1388                data->txring[i].misc = 0;
1389        }
1390
1391        data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1392        data->txtail = 0;
1393        data->txhead = 0;
1394        data->txfree = TSI108_TXRING_LEN;
1395        TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1396        tsi108_init_phy(dev);
1397
1398        napi_enable(&data->napi);
1399
1400        setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1401        mod_timer(&data->timer, jiffies + 1);
1402
1403        tsi108_restart_rx(data, dev);
1404
1405        TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1406
1407        TSI_WRITE(TSI108_EC_INTMASK,
1408                             ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1409                               TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1410                               TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1411                               TSI108_INT_SFN | TSI108_INT_STATCARRY));
1412
1413        TSI_WRITE(TSI108_MAC_CFG1,
1414                             TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1415        netif_start_queue(dev);
1416        return 0;
1417}
1418
1419static int tsi108_close(struct net_device *dev)
1420{
1421        struct tsi108_prv_data *data = netdev_priv(dev);
1422
1423        netif_stop_queue(dev);
1424        napi_disable(&data->napi);
1425
1426        del_timer_sync(&data->timer);
1427
1428        tsi108_stop_ethernet(dev);
1429        tsi108_kill_phy(dev);
1430        TSI_WRITE(TSI108_EC_INTMASK, ~0);
1431        TSI_WRITE(TSI108_MAC_CFG1, 0);
1432
1433        /* Check for any pending TX packets, and drop them. */
1434
1435        while (!data->txfree || data->txhead != data->txtail) {
1436                int tx = data->txtail;
1437                struct sk_buff *skb;
1438                skb = data->txskbs[tx];
1439                data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1440                data->txfree++;
1441                dev_kfree_skb(skb);
1442        }
1443
1444        synchronize_irq(data->irq_num);
1445        free_irq(data->irq_num, dev);
1446
1447        /* Discard the RX ring. */
1448
1449        while (data->rxfree) {
1450                int rx = data->rxtail;
1451                struct sk_buff *skb;
1452
1453                skb = data->rxskbs[rx];
1454                data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1455                data->rxfree--;
1456                dev_kfree_skb(skb);
1457        }
1458
1459        dma_free_coherent(0,
1460                            TSI108_RXRING_LEN * sizeof(rx_desc),
1461                            data->rxring, data->rxdma);
1462        dma_free_coherent(0,
1463                            TSI108_TXRING_LEN * sizeof(tx_desc),
1464                            data->txring, data->txdma);
1465
1466        return 0;
1467}
1468
1469static void tsi108_init_mac(struct net_device *dev)
1470{
1471        struct tsi108_prv_data *data = netdev_priv(dev);
1472
1473        TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1474                             TSI108_MAC_CFG2_PADCRC);
1475
1476        TSI_WRITE(TSI108_EC_TXTHRESH,
1477                             (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1478                             (192 << TSI108_EC_TXTHRESH_STOPFILL));
1479
1480        TSI_WRITE(TSI108_STAT_CARRYMASK1,
1481                             ~(TSI108_STAT_CARRY1_RXBYTES |
1482                               TSI108_STAT_CARRY1_RXPKTS |
1483                               TSI108_STAT_CARRY1_RXFCS |
1484                               TSI108_STAT_CARRY1_RXMCAST |
1485                               TSI108_STAT_CARRY1_RXALIGN |
1486                               TSI108_STAT_CARRY1_RXLENGTH |
1487                               TSI108_STAT_CARRY1_RXRUNT |
1488                               TSI108_STAT_CARRY1_RXJUMBO |
1489                               TSI108_STAT_CARRY1_RXFRAG |
1490                               TSI108_STAT_CARRY1_RXJABBER |
1491                               TSI108_STAT_CARRY1_RXDROP));
1492
1493        TSI_WRITE(TSI108_STAT_CARRYMASK2,
1494                             ~(TSI108_STAT_CARRY2_TXBYTES |
1495                               TSI108_STAT_CARRY2_TXPKTS |
1496                               TSI108_STAT_CARRY2_TXEXDEF |
1497                               TSI108_STAT_CARRY2_TXEXCOL |
1498                               TSI108_STAT_CARRY2_TXTCOL |
1499                               TSI108_STAT_CARRY2_TXPAUSE));
1500
1501        TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1502        TSI_WRITE(TSI108_MAC_CFG1, 0);
1503
1504        TSI_WRITE(TSI108_EC_RXCFG,
1505                             TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1506
1507        TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1508                             TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1509                             TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1510                                                TSI108_EC_TXQ_CFG_SFNPORT));
1511
1512        TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1513                             TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1514                             TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1515                                                TSI108_EC_RXQ_CFG_SFNPORT));
1516
1517        TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1518                             TSI108_EC_TXQ_BUFCFG_BURST256 |
1519                             TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1520                                                TSI108_EC_TXQ_BUFCFG_SFNPORT));
1521
1522        TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1523                             TSI108_EC_RXQ_BUFCFG_BURST256 |
1524                             TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1525                                                TSI108_EC_RXQ_BUFCFG_SFNPORT));
1526
1527        TSI_WRITE(TSI108_EC_INTMASK, ~0);
1528}
1529
1530static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1531{
1532        struct tsi108_prv_data *data = netdev_priv(dev);
1533        return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1534}
1535
1536static int
1537tsi108_init_one(struct platform_device *pdev)
1538{
1539        struct net_device *dev = NULL;
1540        struct tsi108_prv_data *data = NULL;
1541        hw_info *einfo;
1542        int err = 0;
1543        DECLARE_MAC_BUF(mac);
1544
1545        einfo = pdev->dev.platform_data;
1546
1547        if (NULL == einfo) {
1548                printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1549                       pdev->id);
1550                return -ENODEV;
1551        }
1552
1553        /* Create an ethernet device instance */
1554
1555        dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1556        if (!dev) {
1557                printk("tsi108_eth: Could not allocate a device structure\n");
1558                return -ENOMEM;
1559        }
1560
1561        printk("tsi108_eth%d: probe...\n", pdev->id);
1562        data = netdev_priv(dev);
1563        data->dev = dev;
1564
1565        pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1566                        pdev->id, einfo->regs, einfo->phyregs,
1567                        einfo->phy, einfo->irq_num);
1568
1569        data->regs = ioremap(einfo->regs, 0x400);
1570        if (NULL == data->regs) {
1571                err = -ENOMEM;
1572                goto regs_fail;
1573        }
1574
1575        data->phyregs = ioremap(einfo->phyregs, 0x400);
1576        if (NULL == data->phyregs) {
1577                err = -ENOMEM;
1578                goto regs_fail;
1579        }
1580/* MII setup */
1581        data->mii_if.dev = dev;
1582        data->mii_if.mdio_read = tsi108_mdio_read;
1583        data->mii_if.mdio_write = tsi108_mdio_write;
1584        data->mii_if.phy_id = einfo->phy;
1585        data->mii_if.phy_id_mask = 0x1f;
1586        data->mii_if.reg_num_mask = 0x1f;
1587        data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1588
1589        data->phy = einfo->phy;
1590        data->phy_type = einfo->phy_type;
1591        data->irq_num = einfo->irq_num;
1592        data->id = pdev->id;
1593        dev->open = tsi108_open;
1594        dev->stop = tsi108_close;
1595        dev->hard_start_xmit = tsi108_send_packet;
1596        dev->set_mac_address = tsi108_set_mac;
1597        dev->set_multicast_list = tsi108_set_rx_mode;
1598        dev->get_stats = tsi108_get_stats;
1599        netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1600        dev->do_ioctl = tsi108_do_ioctl;
1601
1602        /* Apparently, the Linux networking code won't use scatter-gather
1603         * if the hardware doesn't do checksums.  However, it's faster
1604         * to checksum in place and use SG, as (among other reasons)
1605         * the cache won't be dirtied (which then has to be flushed
1606         * before DMA).  The checksumming is done by the driver (via
1607         * a new function skb_csum_dev() in net/core/skbuff.c).
1608         */
1609
1610        dev->features = NETIF_F_HIGHDMA;
1611
1612        spin_lock_init(&data->txlock);
1613        spin_lock_init(&data->misclock);
1614
1615        tsi108_reset_ether(data);
1616        tsi108_kill_phy(dev);
1617
1618        if ((err = tsi108_get_mac(dev)) != 0) {
1619                printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1620                       dev->name);
1621                goto register_fail;
1622        }
1623
1624        tsi108_init_mac(dev);
1625        err = register_netdev(dev);
1626        if (err) {
1627                printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1628                                dev->name);
1629                goto register_fail;
1630        }
1631
1632        printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %s\n",
1633               dev->name, print_mac(mac, dev->dev_addr));
1634#ifdef DEBUG
1635        data->msg_enable = DEBUG;
1636        dump_eth_one(dev);
1637#endif
1638
1639        return 0;
1640
1641register_fail:
1642        iounmap(data->regs);
1643        iounmap(data->phyregs);
1644
1645regs_fail:
1646        free_netdev(dev);
1647        return err;
1648}
1649
1650/* There's no way to either get interrupts from the PHY when
1651 * something changes, or to have the Tsi108 automatically communicate
1652 * with the PHY to reconfigure itself.
1653 *
1654 * Thus, we have to do it using a timer.
1655 */
1656
1657static void tsi108_timed_checker(unsigned long dev_ptr)
1658{
1659        struct net_device *dev = (struct net_device *)dev_ptr;
1660        struct tsi108_prv_data *data = netdev_priv(dev);
1661
1662        tsi108_check_phy(dev);
1663        tsi108_check_rxring(dev);
1664        mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1665}
1666
1667static int tsi108_ether_init(void)
1668{
1669        int ret;
1670        ret = platform_driver_register (&tsi_eth_driver);
1671        if (ret < 0){
1672                printk("tsi108_ether_init: error initializing ethernet "
1673                       "device\n");
1674                return ret;
1675        }
1676        return 0;
1677}
1678
1679static int tsi108_ether_remove(struct platform_device *pdev)
1680{
1681        struct net_device *dev = platform_get_drvdata(pdev);
1682        struct tsi108_prv_data *priv = netdev_priv(dev);
1683
1684        unregister_netdev(dev);
1685        tsi108_stop_ethernet(dev);
1686        platform_set_drvdata(pdev, NULL);
1687        iounmap(priv->regs);
1688        iounmap(priv->phyregs);
1689        free_netdev(dev);
1690
1691        return 0;
1692}
1693static void tsi108_ether_exit(void)
1694{
1695        platform_driver_unregister(&tsi_eth_driver);
1696}
1697
1698module_init(tsi108_ether_init);
1699module_exit(tsi108_ether_exit);
1700
1701MODULE_AUTHOR("Tundra Semiconductor Corporation");
1702MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1703MODULE_LICENSE("GPL");
1704