linux/drivers/net/wan/z85230.c
<<
>>
Prefs
   1/*
   2 *      This program is free software; you can redistribute it and/or
   3 *      modify it under the terms of the GNU General Public License
   4 *      as published by the Free Software Foundation; either version
   5 *      2 of the License, or (at your option) any later version.
   6 *
   7 *      (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
   8 *      (c) Copyright 2000, 2001 Red Hat Inc
   9 *
  10 *      Development of this driver was funded by Equiinet Ltd
  11 *                      http://www.equiinet.com
  12 *
  13 *      ChangeLog:
  14 *
  15 *      Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
  16 *      unification of all the Z85x30 asynchronous drivers for real.
  17 *
  18 *      DMA now uses get_free_page as kmalloc buffers may span a 64K 
  19 *      boundary.
  20 *
  21 *      Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com>
  22 *
  23 *      Performance
  24 *
  25 *      Z85230:
  26 *      Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
  27 *      X.25 is not unrealistic on all machines. DMA mode can in theory
  28 *      handle T1/E1 quite nicely. In practice the limit seems to be about
  29 *      512Kbit->1Mbit depending on motherboard.
  30 *
  31 *      Z85C30:
  32 *      64K will take DMA, 9600 baud X.25 should be ok.
  33 *
  34 *      Z8530:
  35 *      Synchronous mode without DMA is unlikely to pass about 2400 baud.
  36 */
  37
  38#include <linux/module.h>
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/net.h>
  42#include <linux/skbuff.h>
  43#include <linux/netdevice.h>
  44#include <linux/if_arp.h>
  45#include <linux/delay.h>
  46#include <linux/ioport.h>
  47#include <linux/init.h>
  48#include <asm/dma.h>
  49#include <asm/io.h>
  50#define RT_LOCK
  51#define RT_UNLOCK
  52#include <linux/spinlock.h>
  53
  54#include <net/syncppp.h>
  55#include "z85230.h"
  56
  57
  58/**
  59 *      z8530_read_port - Architecture specific interface function
  60 *      @p: port to read
  61 *
  62 *      Provided port access methods. The Comtrol SV11 requires no delays
  63 *      between accesses and uses PC I/O. Some drivers may need a 5uS delay
  64 *      
  65 *      In the longer term this should become an architecture specific
  66 *      section so that this can become a generic driver interface for all
  67 *      platforms. For now we only handle PC I/O ports with or without the
  68 *      dread 5uS sanity delay.
  69 *
  70 *      The caller must hold sufficient locks to avoid violating the horrible
  71 *      5uS delay rule.
  72 */
  73
  74static inline int z8530_read_port(unsigned long p)
  75{
  76        u8 r=inb(Z8530_PORT_OF(p));
  77        if(p&Z8530_PORT_SLEEP)  /* gcc should figure this out efficiently ! */
  78                udelay(5);
  79        return r;
  80}
  81
  82/**
  83 *      z8530_write_port - Architecture specific interface function
  84 *      @p: port to write
  85 *      @d: value to write
  86 *
  87 *      Write a value to a port with delays if need be. Note that the
  88 *      caller must hold locks to avoid read/writes from other contexts
  89 *      violating the 5uS rule
  90 *
  91 *      In the longer term this should become an architecture specific
  92 *      section so that this can become a generic driver interface for all
  93 *      platforms. For now we only handle PC I/O ports with or without the
  94 *      dread 5uS sanity delay.
  95 */
  96
  97
  98static inline void z8530_write_port(unsigned long p, u8 d)
  99{
 100        outb(d,Z8530_PORT_OF(p));
 101        if(p&Z8530_PORT_SLEEP)
 102                udelay(5);
 103}
 104
 105
 106
 107static void z8530_rx_done(struct z8530_channel *c);
 108static void z8530_tx_done(struct z8530_channel *c);
 109
 110
 111/**
 112 *      read_zsreg - Read a register from a Z85230 
 113 *      @c: Z8530 channel to read from (2 per chip)
 114 *      @reg: Register to read
 115 *      FIXME: Use a spinlock.
 116 *      
 117 *      Most of the Z8530 registers are indexed off the control registers.
 118 *      A read is done by writing to the control register and reading the
 119 *      register back.  The caller must hold the lock
 120 */
 121 
 122static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
 123{
 124        if(reg)
 125                z8530_write_port(c->ctrlio, reg);
 126        return z8530_read_port(c->ctrlio);
 127}
 128
 129/**
 130 *      read_zsdata - Read the data port of a Z8530 channel
 131 *      @c: The Z8530 channel to read the data port from
 132 *
 133 *      The data port provides fast access to some things. We still
 134 *      have all the 5uS delays to worry about.
 135 */
 136
 137static inline u8 read_zsdata(struct z8530_channel *c)
 138{
 139        u8 r;
 140        r=z8530_read_port(c->dataio);
 141        return r;
 142}
 143
 144/**
 145 *      write_zsreg - Write to a Z8530 channel register
 146 *      @c: The Z8530 channel
 147 *      @reg: Register number
 148 *      @val: Value to write
 149 *
 150 *      Write a value to an indexed register. The caller must hold the lock
 151 *      to honour the irritating delay rules. We know about register 0
 152 *      being fast to access.
 153 *
 154 *      Assumes c->lock is held.
 155 */
 156static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
 157{
 158        if(reg)
 159                z8530_write_port(c->ctrlio, reg);
 160        z8530_write_port(c->ctrlio, val);
 161
 162}
 163
 164/**
 165 *      write_zsctrl - Write to a Z8530 control register
 166 *      @c: The Z8530 channel
 167 *      @val: Value to write
 168 *
 169 *      Write directly to the control register on the Z8530
 170 */
 171
 172static inline void write_zsctrl(struct z8530_channel *c, u8 val)
 173{
 174        z8530_write_port(c->ctrlio, val);
 175}
 176
 177/**
 178 *      write_zsdata - Write to a Z8530 control register
 179 *      @c: The Z8530 channel
 180 *      @val: Value to write
 181 *
 182 *      Write directly to the data register on the Z8530
 183 */
 184
 185
 186static inline void write_zsdata(struct z8530_channel *c, u8 val)
 187{
 188        z8530_write_port(c->dataio, val);
 189}
 190
 191/*
 192 *      Register loading parameters for a dead port
 193 */
 194 
 195u8 z8530_dead_port[]=
 196{
 197        255
 198};
 199
 200EXPORT_SYMBOL(z8530_dead_port);
 201
 202/*
 203 *      Register loading parameters for currently supported circuit types
 204 */
 205
 206
 207/*
 208 *      Data clocked by telco end. This is the correct data for the UK
 209 *      "kilostream" service, and most other similar services.
 210 */
 211 
 212u8 z8530_hdlc_kilostream[]=
 213{
 214        4,      SYNC_ENAB|SDLC|X1CLK,
 215        2,      0,      /* No vector */
 216        1,      0,
 217        3,      ENT_HM|RxCRC_ENAB|Rx8,
 218        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 219        9,      0,              /* Disable interrupts */
 220        6,      0xFF,
 221        7,      FLAG,
 222        10,     ABUNDER|NRZ|CRCPS,/*MARKIDLE ??*/
 223        11,     TCTRxCP,
 224        14,     DISDPLL,
 225        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 226        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 227        9,      NV|MIE|NORESET,
 228        255
 229};
 230
 231EXPORT_SYMBOL(z8530_hdlc_kilostream);
 232
 233/*
 234 *      As above but for enhanced chips.
 235 */
 236 
 237u8 z8530_hdlc_kilostream_85230[]=
 238{
 239        4,      SYNC_ENAB|SDLC|X1CLK,
 240        2,      0,      /* No vector */
 241        1,      0,
 242        3,      ENT_HM|RxCRC_ENAB|Rx8,
 243        5,      TxCRC_ENAB|RTS|TxENAB|Tx8|DTR,
 244        9,      0,              /* Disable interrupts */
 245        6,      0xFF,
 246        7,      FLAG,
 247        10,     ABUNDER|NRZ|CRCPS,      /* MARKIDLE?? */
 248        11,     TCTRxCP,
 249        14,     DISDPLL,
 250        15,     DCDIE|SYNCIE|CTSIE|TxUIE|BRKIE,
 251        1,      EXT_INT_ENAB|TxINT_ENAB|INT_ALL_Rx,
 252        9,      NV|MIE|NORESET,
 253        23,     3,              /* Extended mode AUTO TX and EOM*/
 254        
 255        255
 256};
 257
 258EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);
 259
 260/**
 261 *      z8530_flush_fifo - Flush on chip RX FIFO
 262 *      @c: Channel to flush
 263 *
 264 *      Flush the receive FIFO. There is no specific option for this, we 
 265 *      blindly read bytes and discard them. Reading when there is no data
 266 *      is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 267 *      
 268 *      All locking is handled for the caller. On return data may still be
 269 *      present if it arrived during the flush.
 270 */
 271 
 272static void z8530_flush_fifo(struct z8530_channel *c)
 273{
 274        read_zsreg(c, R1);
 275        read_zsreg(c, R1);
 276        read_zsreg(c, R1);
 277        read_zsreg(c, R1);
 278        if(c->dev->type==Z85230)
 279        {
 280                read_zsreg(c, R1);
 281                read_zsreg(c, R1);
 282                read_zsreg(c, R1);
 283                read_zsreg(c, R1);
 284        }
 285}       
 286
 287/**
 288 *      z8530_rtsdtr - Control the outgoing DTS/RTS line
 289 *      @c: The Z8530 channel to control;
 290 *      @set: 1 to set, 0 to clear
 291 *
 292 *      Sets or clears DTR/RTS on the requested line. All locking is handled
 293 *      by the caller. For now we assume all boards use the actual RTS/DTR
 294 *      on the chip. Apparently one or two don't. We'll scream about them
 295 *      later.
 296 */
 297
 298static void z8530_rtsdtr(struct z8530_channel *c, int set)
 299{
 300        if (set)
 301                c->regs[5] |= (RTS | DTR);
 302        else
 303                c->regs[5] &= ~(RTS | DTR);
 304        write_zsreg(c, R5, c->regs[5]);
 305}
 306
 307/**
 308 *      z8530_rx - Handle a PIO receive event
 309 *      @c: Z8530 channel to process
 310 *
 311 *      Receive handler for receiving in PIO mode. This is much like the 
 312 *      async one but not quite the same or as complex
 313 *
 314 *      Note: Its intended that this handler can easily be separated from
 315 *      the main code to run realtime. That'll be needed for some machines
 316 *      (eg to ever clock 64kbits on a sparc ;)).
 317 *
 318 *      The RT_LOCK macros don't do anything now. Keep the code covered
 319 *      by them as short as possible in all circumstances - clocks cost
 320 *      baud. The interrupt handler is assumed to be atomic w.r.t. to
 321 *      other code - this is true in the RT case too.
 322 *
 323 *      We only cover the sync cases for this. If you want 2Mbit async
 324 *      do it yourself but consider medical assistance first. This non DMA 
 325 *      synchronous mode is portable code. The DMA mode assumes PCI like 
 326 *      ISA DMA
 327 *
 328 *      Called with the device lock held
 329 */
 330 
 331static void z8530_rx(struct z8530_channel *c)
 332{
 333        u8 ch,stat;
 334
 335        while(1)
 336        {
 337                /* FIFO empty ? */
 338                if(!(read_zsreg(c, R0)&1))
 339                        break;
 340                ch=read_zsdata(c);
 341                stat=read_zsreg(c, R1);
 342        
 343                /*
 344                 *      Overrun ?
 345                 */
 346                if(c->count < c->max)
 347                {
 348                        *c->dptr++=ch;
 349                        c->count++;
 350                }
 351
 352                if(stat&END_FR)
 353                {
 354                
 355                        /*
 356                         *      Error ?
 357                         */
 358                        if(stat&(Rx_OVR|CRC_ERR))
 359                        {
 360                                /* Rewind the buffer and return */
 361                                if(c->skb)
 362                                        c->dptr=c->skb->data;
 363                                c->count=0;
 364                                if(stat&Rx_OVR)
 365                                {
 366                                        printk(KERN_WARNING "%s: overrun\n", c->dev->name);
 367                                        c->rx_overrun++;
 368                                }
 369                                if(stat&CRC_ERR)
 370                                {
 371                                        c->rx_crc_err++;
 372                                        /* printk("crc error\n"); */
 373                                }
 374                                /* Shove the frame upstream */
 375                        }
 376                        else
 377                        {
 378                                /*
 379                                 *      Drop the lock for RX processing, or
 380                                 *      there are deadlocks
 381                                 */
 382                                z8530_rx_done(c);
 383                                write_zsctrl(c, RES_Rx_CRC);
 384                        }
 385                }
 386        }
 387        /*
 388         *      Clear irq
 389         */
 390        write_zsctrl(c, ERR_RES);
 391        write_zsctrl(c, RES_H_IUS);
 392}
 393
 394
 395/**
 396 *      z8530_tx - Handle a PIO transmit event
 397 *      @c: Z8530 channel to process
 398 *
 399 *      Z8530 transmit interrupt handler for the PIO mode. The basic
 400 *      idea is to attempt to keep the FIFO fed. We fill as many bytes
 401 *      in as possible, its quite possible that we won't keep up with the
 402 *      data rate otherwise.
 403 */
 404 
 405static void z8530_tx(struct z8530_channel *c)
 406{
 407        while(c->txcount) {
 408                /* FIFO full ? */
 409                if(!(read_zsreg(c, R0)&4))
 410                        return;
 411                c->txcount--;
 412                /*
 413                 *      Shovel out the byte
 414                 */
 415                write_zsreg(c, R8, *c->tx_ptr++);
 416                write_zsctrl(c, RES_H_IUS);
 417                /* We are about to underflow */
 418                if(c->txcount==0)
 419                {
 420                        write_zsctrl(c, RES_EOM_L);
 421                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
 422                }
 423        }
 424
 425        
 426        /*
 427         *      End of frame TX - fire another one
 428         */
 429         
 430        write_zsctrl(c, RES_Tx_P);
 431
 432        z8530_tx_done(c);        
 433        write_zsctrl(c, RES_H_IUS);
 434}
 435
 436/**
 437 *      z8530_status - Handle a PIO status exception
 438 *      @chan: Z8530 channel to process
 439 *
 440 *      A status event occurred in PIO synchronous mode. There are several
 441 *      reasons the chip will bother us here. A transmit underrun means we
 442 *      failed to feed the chip fast enough and just broke a packet. A DCD
 443 *      change is a line up or down. We communicate that back to the protocol
 444 *      layer for synchronous PPP to renegotiate.
 445 */
 446
 447static void z8530_status(struct z8530_channel *chan)
 448{
 449        u8 status, altered;
 450
 451        status=read_zsreg(chan, R0);
 452        altered=chan->status^status;
 453        
 454        chan->status=status;
 455        
 456        if(status&TxEOM)
 457        {
 458/*              printk("%s: Tx underrun.\n", chan->dev->name); */
 459                chan->stats.tx_fifo_errors++;
 460                write_zsctrl(chan, ERR_RES);
 461                z8530_tx_done(chan);
 462        }
 463                
 464        if(altered&chan->dcdcheck)
 465        {
 466                if(status&chan->dcdcheck)
 467                {
 468                        printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
 469                        write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
 470                        if(chan->netdevice &&
 471                            ((chan->netdevice->type == ARPHRD_HDLC) ||
 472                            (chan->netdevice->type == ARPHRD_PPP)))
 473                                sppp_reopen(chan->netdevice);
 474                }
 475                else
 476                {
 477                        printk(KERN_INFO "%s: DCD lost\n", chan->dev->name);
 478                        write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
 479                        z8530_flush_fifo(chan);
 480                }
 481                
 482        }       
 483        write_zsctrl(chan, RES_EXT_INT);
 484        write_zsctrl(chan, RES_H_IUS);
 485}
 486
 487struct z8530_irqhandler z8530_sync=
 488{
 489        z8530_rx,
 490        z8530_tx,
 491        z8530_status
 492};
 493
 494EXPORT_SYMBOL(z8530_sync);
 495
 496/**
 497 *      z8530_dma_rx - Handle a DMA RX event
 498 *      @chan: Channel to handle
 499 *
 500 *      Non bus mastering DMA interfaces for the Z8x30 devices. This
 501 *      is really pretty PC specific. The DMA mode means that most receive
 502 *      events are handled by the DMA hardware. We get a kick here only if
 503 *      a frame ended.
 504 */
 505 
 506static void z8530_dma_rx(struct z8530_channel *chan)
 507{
 508        if(chan->rxdma_on)
 509        {
 510                /* Special condition check only */
 511                u8 status;
 512        
 513                read_zsreg(chan, R7);
 514                read_zsreg(chan, R6);
 515                
 516                status=read_zsreg(chan, R1);
 517        
 518                if(status&END_FR)
 519                {
 520                        z8530_rx_done(chan);    /* Fire up the next one */
 521                }               
 522                write_zsctrl(chan, ERR_RES);
 523                write_zsctrl(chan, RES_H_IUS);
 524        }
 525        else
 526        {
 527                /* DMA is off right now, drain the slow way */
 528                z8530_rx(chan);
 529        }       
 530}
 531
 532/**
 533 *      z8530_dma_tx - Handle a DMA TX event
 534 *      @chan:  The Z8530 channel to handle
 535 *
 536 *      We have received an interrupt while doing DMA transmissions. It
 537 *      shouldn't happen. Scream loudly if it does.
 538 */
 539 
 540static void z8530_dma_tx(struct z8530_channel *chan)
 541{
 542        if(!chan->dma_tx)
 543        {
 544                printk(KERN_WARNING "Hey who turned the DMA off?\n");
 545                z8530_tx(chan);
 546                return;
 547        }
 548        /* This shouldnt occur in DMA mode */
 549        printk(KERN_ERR "DMA tx - bogus event!\n");
 550        z8530_tx(chan);
 551}
 552
 553/**
 554 *      z8530_dma_status - Handle a DMA status exception
 555 *      @chan: Z8530 channel to process
 556 *      
 557 *      A status event occurred on the Z8530. We receive these for two reasons
 558 *      when in DMA mode. Firstly if we finished a packet transfer we get one
 559 *      and kick the next packet out. Secondly we may see a DCD change and
 560 *      have to poke the protocol layer.
 561 *
 562 */
 563 
 564static void z8530_dma_status(struct z8530_channel *chan)
 565{
 566        u8 status, altered;
 567
 568        status=read_zsreg(chan, R0);
 569        altered=chan->status^status;
 570        
 571        chan->status=status;
 572
 573
 574        if(chan->dma_tx)
 575        {
 576                if(status&TxEOM)
 577                {
 578                        unsigned long flags;
 579        
 580                        flags=claim_dma_lock();
 581                        disable_dma(chan->txdma);
 582                        clear_dma_ff(chan->txdma);      
 583                        chan->txdma_on=0;
 584                        release_dma_lock(flags);
 585                        z8530_tx_done(chan);
 586                }
 587        }
 588
 589        if(altered&chan->dcdcheck)
 590        {
 591                if(status&chan->dcdcheck)
 592                {
 593                        printk(KERN_INFO "%s: DCD raised\n", chan->dev->name);
 594                        write_zsreg(chan, R3, chan->regs[3]|RxENABLE);
 595                        if(chan->netdevice &&
 596                            ((chan->netdevice->type == ARPHRD_HDLC) ||
 597                            (chan->netdevice->type == ARPHRD_PPP)))
 598                                sppp_reopen(chan->netdevice);
 599                }
 600                else
 601                {
 602                        printk(KERN_INFO "%s:DCD lost\n", chan->dev->name);
 603                        write_zsreg(chan, R3, chan->regs[3]&~RxENABLE);
 604                        z8530_flush_fifo(chan);
 605                }
 606        }       
 607
 608        write_zsctrl(chan, RES_EXT_INT);
 609        write_zsctrl(chan, RES_H_IUS);
 610}
 611
 612struct z8530_irqhandler z8530_dma_sync=
 613{
 614        z8530_dma_rx,
 615        z8530_dma_tx,
 616        z8530_dma_status
 617};
 618
 619EXPORT_SYMBOL(z8530_dma_sync);
 620
 621struct z8530_irqhandler z8530_txdma_sync=
 622{
 623        z8530_rx,
 624        z8530_dma_tx,
 625        z8530_dma_status
 626};
 627
 628EXPORT_SYMBOL(z8530_txdma_sync);
 629
 630/**
 631 *      z8530_rx_clear - Handle RX events from a stopped chip
 632 *      @c: Z8530 channel to shut up
 633 *
 634 *      Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 635 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 636 *      (eg the MacII) we must clear the interrupt cause or die.
 637 */
 638
 639
 640static void z8530_rx_clear(struct z8530_channel *c)
 641{
 642        /*
 643         *      Data and status bytes
 644         */
 645        u8 stat;
 646
 647        read_zsdata(c);
 648        stat=read_zsreg(c, R1);
 649        
 650        if(stat&END_FR)
 651                write_zsctrl(c, RES_Rx_CRC);
 652        /*
 653         *      Clear irq
 654         */
 655        write_zsctrl(c, ERR_RES);
 656        write_zsctrl(c, RES_H_IUS);
 657}
 658
 659/**
 660 *      z8530_tx_clear - Handle TX events from a stopped chip
 661 *      @c: Z8530 channel to shut up
 662 *
 663 *      Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 664 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 665 *      (eg the MacII) we must clear the interrupt cause or die.
 666 */
 667
 668static void z8530_tx_clear(struct z8530_channel *c)
 669{
 670        write_zsctrl(c, RES_Tx_P);
 671        write_zsctrl(c, RES_H_IUS);
 672}
 673
 674/**
 675 *      z8530_status_clear - Handle status events from a stopped chip
 676 *      @chan: Z8530 channel to shut up
 677 *
 678 *      Status interrupt vectors for a Z8530 that is in 'parked' mode.
 679 *      For machines with PCI Z85x30 cards, or level triggered interrupts
 680 *      (eg the MacII) we must clear the interrupt cause or die.
 681 */
 682
 683static void z8530_status_clear(struct z8530_channel *chan)
 684{
 685        u8 status=read_zsreg(chan, R0);
 686        if(status&TxEOM)
 687                write_zsctrl(chan, ERR_RES);
 688        write_zsctrl(chan, RES_EXT_INT);
 689        write_zsctrl(chan, RES_H_IUS);
 690}
 691
 692struct z8530_irqhandler z8530_nop=
 693{
 694        z8530_rx_clear,
 695        z8530_tx_clear,
 696        z8530_status_clear
 697};
 698
 699
 700EXPORT_SYMBOL(z8530_nop);
 701
 702/**
 703 *      z8530_interrupt - Handle an interrupt from a Z8530
 704 *      @irq:   Interrupt number
 705 *      @dev_id: The Z8530 device that is interrupting.
 706 *      @regs: unused
 707 *
 708 *      A Z85[2]30 device has stuck its hand in the air for attention.
 709 *      We scan both the channels on the chip for events and then call
 710 *      the channel specific call backs for each channel that has events.
 711 *      We have to use callback functions because the two channels can be
 712 *      in different modes.
 713 *
 714 *      Locking is done for the handlers. Note that locking is done
 715 *      at the chip level (the 5uS delay issue is per chip not per
 716 *      channel). c->lock for both channels points to dev->lock
 717 */
 718
 719irqreturn_t z8530_interrupt(int irq, void *dev_id)
 720{
 721        struct z8530_dev *dev=dev_id;
 722        u8 intr;
 723        static volatile int locker=0;
 724        int work=0;
 725        struct z8530_irqhandler *irqs;
 726        
 727        if(locker)
 728        {
 729                printk(KERN_ERR "IRQ re-enter\n");
 730                return IRQ_NONE;
 731        }
 732        locker=1;
 733
 734        spin_lock(&dev->lock);
 735
 736        while(++work<5000)
 737        {
 738
 739                intr = read_zsreg(&dev->chanA, R3);
 740                if(!(intr & (CHARxIP|CHATxIP|CHAEXT|CHBRxIP|CHBTxIP|CHBEXT)))
 741                        break;
 742        
 743                /* This holds the IRQ status. On the 8530 you must read it from chan 
 744                   A even though it applies to the whole chip */
 745                
 746                /* Now walk the chip and see what it is wanting - it may be
 747                   an IRQ for someone else remember */
 748                   
 749                irqs=dev->chanA.irqs;
 750
 751                if(intr & (CHARxIP|CHATxIP|CHAEXT))
 752                {
 753                        if(intr&CHARxIP)
 754                                irqs->rx(&dev->chanA);
 755                        if(intr&CHATxIP)
 756                                irqs->tx(&dev->chanA);
 757                        if(intr&CHAEXT)
 758                                irqs->status(&dev->chanA);
 759                }
 760
 761                irqs=dev->chanB.irqs;
 762
 763                if(intr & (CHBRxIP|CHBTxIP|CHBEXT))
 764                {
 765                        if(intr&CHBRxIP)
 766                                irqs->rx(&dev->chanB);
 767                        if(intr&CHBTxIP)
 768                                irqs->tx(&dev->chanB);
 769                        if(intr&CHBEXT)
 770                                irqs->status(&dev->chanB);
 771                }
 772        }
 773        spin_unlock(&dev->lock);
 774        if(work==5000)
 775                printk(KERN_ERR "%s: interrupt jammed - abort(0x%X)!\n", dev->name, intr);
 776        /* Ok all done */
 777        locker=0;
 778        return IRQ_HANDLED;
 779}
 780
 781EXPORT_SYMBOL(z8530_interrupt);
 782
 783static char reg_init[16]=
 784{
 785        0,0,0,0,
 786        0,0,0,0,
 787        0,0,0,0,
 788        0x55,0,0,0
 789};
 790
 791
 792/**
 793 *      z8530_sync_open - Open a Z8530 channel for PIO
 794 *      @dev:   The network interface we are using
 795 *      @c:     The Z8530 channel to open in synchronous PIO mode
 796 *
 797 *      Switch a Z8530 into synchronous mode without DMA assist. We
 798 *      raise the RTS/DTR and commence network operation.
 799 */
 800 
 801int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
 802{
 803        unsigned long flags;
 804
 805        spin_lock_irqsave(c->lock, flags);
 806
 807        c->sync = 1;
 808        c->mtu = dev->mtu+64;
 809        c->count = 0;
 810        c->skb = NULL;
 811        c->skb2 = NULL;
 812        c->irqs = &z8530_sync;
 813
 814        /* This loads the double buffer up */
 815        z8530_rx_done(c);       /* Load the frame ring */
 816        z8530_rx_done(c);       /* Load the backup frame */
 817        z8530_rtsdtr(c,1);
 818        c->dma_tx = 0;
 819        c->regs[R1]|=TxINT_ENAB;
 820        write_zsreg(c, R1, c->regs[R1]);
 821        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 822
 823        spin_unlock_irqrestore(c->lock, flags);
 824        return 0;
 825}
 826
 827
 828EXPORT_SYMBOL(z8530_sync_open);
 829
 830/**
 831 *      z8530_sync_close - Close a PIO Z8530 channel
 832 *      @dev: Network device to close
 833 *      @c: Z8530 channel to disassociate and move to idle
 834 *
 835 *      Close down a Z8530 interface and switch its interrupt handlers
 836 *      to discard future events.
 837 */
 838 
 839int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
 840{
 841        u8 chk;
 842        unsigned long flags;
 843        
 844        spin_lock_irqsave(c->lock, flags);
 845        c->irqs = &z8530_nop;
 846        c->max = 0;
 847        c->sync = 0;
 848        
 849        chk=read_zsreg(c,R0);
 850        write_zsreg(c, R3, c->regs[R3]);
 851        z8530_rtsdtr(c,0);
 852
 853        spin_unlock_irqrestore(c->lock, flags);
 854        return 0;
 855}
 856
 857EXPORT_SYMBOL(z8530_sync_close);
 858
 859/**
 860 *      z8530_sync_dma_open - Open a Z8530 for DMA I/O
 861 *      @dev: The network device to attach
 862 *      @c: The Z8530 channel to configure in sync DMA mode.
 863 *
 864 *      Set up a Z85x30 device for synchronous DMA in both directions. Two
 865 *      ISA DMA channels must be available for this to work. We assume ISA
 866 *      DMA driven I/O and PC limits on access.
 867 */
 868 
 869int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
 870{
 871        unsigned long cflags, dflags;
 872        
 873        c->sync = 1;
 874        c->mtu = dev->mtu+64;
 875        c->count = 0;
 876        c->skb = NULL;
 877        c->skb2 = NULL;
 878        /*
 879         *      Load the DMA interfaces up
 880         */
 881        c->rxdma_on = 0;
 882        c->txdma_on = 0;
 883        
 884        /*
 885         *      Allocate the DMA flip buffers. Limit by page size.
 886         *      Everyone runs 1500 mtu or less on wan links so this
 887         *      should be fine.
 888         */
 889         
 890        if(c->mtu  > PAGE_SIZE/2)
 891                return -EMSGSIZE;
 892         
 893        c->rx_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 894        if(c->rx_buf[0]==NULL)
 895                return -ENOBUFS;
 896        c->rx_buf[1]=c->rx_buf[0]+PAGE_SIZE/2;
 897        
 898        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
 899        if(c->tx_dma_buf[0]==NULL)
 900        {
 901                free_page((unsigned long)c->rx_buf[0]);
 902                c->rx_buf[0]=NULL;
 903                return -ENOBUFS;
 904        }
 905        c->tx_dma_buf[1]=c->tx_dma_buf[0]+PAGE_SIZE/2;
 906
 907        c->tx_dma_used=0;
 908        c->dma_tx = 1;
 909        c->dma_num=0;
 910        c->dma_ready=1;
 911        
 912        /*
 913         *      Enable DMA control mode
 914         */
 915
 916        spin_lock_irqsave(c->lock, cflags);
 917         
 918        /*
 919         *      TX DMA via DIR/REQ
 920         */
 921         
 922        c->regs[R14]|= DTRREQ;
 923        write_zsreg(c, R14, c->regs[R14]);     
 924
 925        c->regs[R1]&= ~TxINT_ENAB;
 926        write_zsreg(c, R1, c->regs[R1]);
 927        
 928        /*
 929         *      RX DMA via W/Req
 930         */      
 931
 932        c->regs[R1]|= WT_FN_RDYFN;
 933        c->regs[R1]|= WT_RDY_RT;
 934        c->regs[R1]|= INT_ERR_Rx;
 935        c->regs[R1]&= ~TxINT_ENAB;
 936        write_zsreg(c, R1, c->regs[R1]);
 937        c->regs[R1]|= WT_RDY_ENAB;
 938        write_zsreg(c, R1, c->regs[R1]);            
 939        
 940        /*
 941         *      DMA interrupts
 942         */
 943         
 944        /*
 945         *      Set up the DMA configuration
 946         */     
 947         
 948        dflags=claim_dma_lock();
 949         
 950        disable_dma(c->rxdma);
 951        clear_dma_ff(c->rxdma);
 952        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
 953        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
 954        set_dma_count(c->rxdma, c->mtu);
 955        enable_dma(c->rxdma);
 956
 957        disable_dma(c->txdma);
 958        clear_dma_ff(c->txdma);
 959        set_dma_mode(c->txdma, DMA_MODE_WRITE);
 960        disable_dma(c->txdma);
 961        
 962        release_dma_lock(dflags);
 963        
 964        /*
 965         *      Select the DMA interrupt handlers
 966         */
 967
 968        c->rxdma_on = 1;
 969        c->txdma_on = 1;
 970        c->tx_dma_used = 1;
 971         
 972        c->irqs = &z8530_dma_sync;
 973        z8530_rtsdtr(c,1);
 974        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
 975
 976        spin_unlock_irqrestore(c->lock, cflags);
 977        
 978        return 0;
 979}
 980
 981EXPORT_SYMBOL(z8530_sync_dma_open);
 982
 983/**
 984 *      z8530_sync_dma_close - Close down DMA I/O
 985 *      @dev: Network device to detach
 986 *      @c: Z8530 channel to move into discard mode
 987 *
 988 *      Shut down a DMA mode synchronous interface. Halt the DMA, and
 989 *      free the buffers.
 990 */
 991 
 992int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
 993{
 994        u8 chk;
 995        unsigned long flags;
 996        
 997        c->irqs = &z8530_nop;
 998        c->max = 0;
 999        c->sync = 0;
1000        
1001        /*
1002         *      Disable the PC DMA channels
1003         */
1004        
1005        flags=claim_dma_lock(); 
1006        disable_dma(c->rxdma);
1007        clear_dma_ff(c->rxdma);
1008        
1009        c->rxdma_on = 0;
1010        
1011        disable_dma(c->txdma);
1012        clear_dma_ff(c->txdma);
1013        release_dma_lock(flags);
1014        
1015        c->txdma_on = 0;
1016        c->tx_dma_used = 0;
1017
1018        spin_lock_irqsave(c->lock, flags);
1019
1020        /*
1021         *      Disable DMA control mode
1022         */
1023         
1024        c->regs[R1]&= ~WT_RDY_ENAB;
1025        write_zsreg(c, R1, c->regs[R1]);            
1026        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1027        c->regs[R1]|= INT_ALL_Rx;
1028        write_zsreg(c, R1, c->regs[R1]);
1029        c->regs[R14]&= ~DTRREQ;
1030        write_zsreg(c, R14, c->regs[R14]);   
1031        
1032        if(c->rx_buf[0])
1033        {
1034                free_page((unsigned long)c->rx_buf[0]);
1035                c->rx_buf[0]=NULL;
1036        }
1037        if(c->tx_dma_buf[0])
1038        {
1039                free_page((unsigned  long)c->tx_dma_buf[0]);
1040                c->tx_dma_buf[0]=NULL;
1041        }
1042        chk=read_zsreg(c,R0);
1043        write_zsreg(c, R3, c->regs[R3]);
1044        z8530_rtsdtr(c,0);
1045
1046        spin_unlock_irqrestore(c->lock, flags);
1047
1048        return 0;
1049}
1050
1051EXPORT_SYMBOL(z8530_sync_dma_close);
1052
1053/**
1054 *      z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1055 *      @dev: The network device to attach
1056 *      @c: The Z8530 channel to configure in sync DMA mode.
1057 *
1058 *      Set up a Z85x30 device for synchronous DMA tranmission. One
1059 *      ISA DMA channel must be available for this to work. The receive
1060 *      side is run in PIO mode, but then it has the bigger FIFO.
1061 */
1062
1063int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
1064{
1065        unsigned long cflags, dflags;
1066
1067        printk("Opening sync interface for TX-DMA\n");
1068        c->sync = 1;
1069        c->mtu = dev->mtu+64;
1070        c->count = 0;
1071        c->skb = NULL;
1072        c->skb2 = NULL;
1073        
1074        /*
1075         *      Allocate the DMA flip buffers. Limit by page size.
1076         *      Everyone runs 1500 mtu or less on wan links so this
1077         *      should be fine.
1078         */
1079         
1080        if(c->mtu  > PAGE_SIZE/2)
1081                return -EMSGSIZE;
1082         
1083        c->tx_dma_buf[0]=(void *)get_zeroed_page(GFP_KERNEL|GFP_DMA);
1084        if(c->tx_dma_buf[0]==NULL)
1085                return -ENOBUFS;
1086
1087        c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE/2;
1088
1089
1090        spin_lock_irqsave(c->lock, cflags);
1091
1092        /*
1093         *      Load the PIO receive ring
1094         */
1095
1096        z8530_rx_done(c);
1097        z8530_rx_done(c);
1098
1099        /*
1100         *      Load the DMA interfaces up
1101         */
1102
1103        c->rxdma_on = 0;
1104        c->txdma_on = 0;
1105        
1106        c->tx_dma_used=0;
1107        c->dma_num=0;
1108        c->dma_ready=1;
1109        c->dma_tx = 1;
1110
1111        /*
1112         *      Enable DMA control mode
1113         */
1114
1115        /*
1116         *      TX DMA via DIR/REQ
1117         */
1118        c->regs[R14]|= DTRREQ;
1119        write_zsreg(c, R14, c->regs[R14]);     
1120        
1121        c->regs[R1]&= ~TxINT_ENAB;
1122        write_zsreg(c, R1, c->regs[R1]);
1123        
1124        /*
1125         *      Set up the DMA configuration
1126         */     
1127         
1128        dflags = claim_dma_lock();
1129
1130        disable_dma(c->txdma);
1131        clear_dma_ff(c->txdma);
1132        set_dma_mode(c->txdma, DMA_MODE_WRITE);
1133        disable_dma(c->txdma);
1134
1135        release_dma_lock(dflags);
1136        
1137        /*
1138         *      Select the DMA interrupt handlers
1139         */
1140
1141        c->rxdma_on = 0;
1142        c->txdma_on = 1;
1143        c->tx_dma_used = 1;
1144         
1145        c->irqs = &z8530_txdma_sync;
1146        z8530_rtsdtr(c,1);
1147        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1148        spin_unlock_irqrestore(c->lock, cflags);
1149        
1150        return 0;
1151}
1152
1153EXPORT_SYMBOL(z8530_sync_txdma_open);
1154
1155/**
1156 *      z8530_sync_txdma_close - Close down a TX driven DMA channel
1157 *      @dev: Network device to detach
1158 *      @c: Z8530 channel to move into discard mode
1159 *
1160 *      Shut down a DMA/PIO split mode synchronous interface. Halt the DMA, 
1161 *      and  free the buffers.
1162 */
1163
1164int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
1165{
1166        unsigned long dflags, cflags;
1167        u8 chk;
1168
1169        
1170        spin_lock_irqsave(c->lock, cflags);
1171        
1172        c->irqs = &z8530_nop;
1173        c->max = 0;
1174        c->sync = 0;
1175        
1176        /*
1177         *      Disable the PC DMA channels
1178         */
1179         
1180        dflags = claim_dma_lock();
1181
1182        disable_dma(c->txdma);
1183        clear_dma_ff(c->txdma);
1184        c->txdma_on = 0;
1185        c->tx_dma_used = 0;
1186
1187        release_dma_lock(dflags);
1188
1189        /*
1190         *      Disable DMA control mode
1191         */
1192         
1193        c->regs[R1]&= ~WT_RDY_ENAB;
1194        write_zsreg(c, R1, c->regs[R1]);            
1195        c->regs[R1]&= ~(WT_RDY_RT|WT_FN_RDYFN|INT_ERR_Rx);
1196        c->regs[R1]|= INT_ALL_Rx;
1197        write_zsreg(c, R1, c->regs[R1]);
1198        c->regs[R14]&= ~DTRREQ;
1199        write_zsreg(c, R14, c->regs[R14]);   
1200        
1201        if(c->tx_dma_buf[0])
1202        {
1203                free_page((unsigned long)c->tx_dma_buf[0]);
1204                c->tx_dma_buf[0]=NULL;
1205        }
1206        chk=read_zsreg(c,R0);
1207        write_zsreg(c, R3, c->regs[R3]);
1208        z8530_rtsdtr(c,0);
1209
1210        spin_unlock_irqrestore(c->lock, cflags);
1211        return 0;
1212}
1213
1214
1215EXPORT_SYMBOL(z8530_sync_txdma_close);
1216
1217
1218/*
1219 *      Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1220 *      it exists...
1221 */
1222 
1223static char *z8530_type_name[]={
1224        "Z8530",
1225        "Z85C30",
1226        "Z85230"
1227};
1228
1229/**
1230 *      z8530_describe - Uniformly describe a Z8530 port
1231 *      @dev: Z8530 device to describe
1232 *      @mapping: string holding mapping type (eg "I/O" or "Mem")
1233 *      @io: the port value in question
1234 *
1235 *      Describe a Z8530 in a standard format. We must pass the I/O as
1236 *      the port offset isnt predictable. The main reason for this function
1237 *      is to try and get a common format of report.
1238 */
1239
1240void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
1241{
1242        printk(KERN_INFO "%s: %s found at %s 0x%lX, IRQ %d.\n",
1243                dev->name, 
1244                z8530_type_name[dev->type],
1245                mapping,
1246                Z8530_PORT_OF(io),
1247                dev->irq);
1248}
1249
1250EXPORT_SYMBOL(z8530_describe);
1251
1252/*
1253 *      Locked operation part of the z8530 init code
1254 */
1255 
1256static inline int do_z8530_init(struct z8530_dev *dev)
1257{
1258        /* NOP the interrupt handlers first - we might get a
1259           floating IRQ transition when we reset the chip */
1260        dev->chanA.irqs=&z8530_nop;
1261        dev->chanB.irqs=&z8530_nop;
1262        dev->chanA.dcdcheck=DCD;
1263        dev->chanB.dcdcheck=DCD;
1264
1265        /* Reset the chip */
1266        write_zsreg(&dev->chanA, R9, 0xC0);
1267        udelay(200);
1268        /* Now check its valid */
1269        write_zsreg(&dev->chanA, R12, 0xAA);
1270        if(read_zsreg(&dev->chanA, R12)!=0xAA)
1271                return -ENODEV;
1272        write_zsreg(&dev->chanA, R12, 0x55);
1273        if(read_zsreg(&dev->chanA, R12)!=0x55)
1274                return -ENODEV;
1275                
1276        dev->type=Z8530;
1277        
1278        /*
1279         *      See the application note.
1280         */
1281         
1282        write_zsreg(&dev->chanA, R15, 0x01);
1283        
1284        /*
1285         *      If we can set the low bit of R15 then
1286         *      the chip is enhanced.
1287         */
1288         
1289        if(read_zsreg(&dev->chanA, R15)==0x01)
1290        {
1291                /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1292                /* Put a char in the fifo */
1293                write_zsreg(&dev->chanA, R8, 0);
1294                if(read_zsreg(&dev->chanA, R0)&Tx_BUF_EMP)
1295                        dev->type = Z85230;     /* Has a FIFO */
1296                else
1297                        dev->type = Z85C30;     /* Z85C30, 1 byte FIFO */
1298        }
1299                
1300        /*
1301         *      The code assumes R7' and friends are
1302         *      off. Use write_zsext() for these and keep
1303         *      this bit clear.
1304         */
1305         
1306        write_zsreg(&dev->chanA, R15, 0);
1307                
1308        /*
1309         *      At this point it looks like the chip is behaving
1310         */
1311         
1312        memcpy(dev->chanA.regs, reg_init, 16);
1313        memcpy(dev->chanB.regs, reg_init ,16);
1314        
1315        return 0;
1316}
1317
1318/**
1319 *      z8530_init - Initialise a Z8530 device
1320 *      @dev: Z8530 device to initialise.
1321 *
1322 *      Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1323 *      is present, identify the type and then program it to hopefully
1324 *      keep quite and behave. This matters a lot, a Z8530 in the wrong
1325 *      state will sometimes get into stupid modes generating 10Khz
1326 *      interrupt streams and the like.
1327 *
1328 *      We set the interrupt handler up to discard any events, in case
1329 *      we get them during reset or setp.
1330 *
1331 *      Return 0 for success, or a negative value indicating the problem
1332 *      in errno form.
1333 */
1334
1335int z8530_init(struct z8530_dev *dev)
1336{
1337        unsigned long flags;
1338        int ret;
1339
1340        /* Set up the chip level lock */
1341        spin_lock_init(&dev->lock);
1342        dev->chanA.lock = &dev->lock;
1343        dev->chanB.lock = &dev->lock;
1344
1345        spin_lock_irqsave(&dev->lock, flags);
1346        ret = do_z8530_init(dev);
1347        spin_unlock_irqrestore(&dev->lock, flags);
1348
1349        return ret;
1350}
1351
1352
1353EXPORT_SYMBOL(z8530_init);
1354
1355/**
1356 *      z8530_shutdown - Shutdown a Z8530 device
1357 *      @dev: The Z8530 chip to shutdown
1358 *
1359 *      We set the interrupt handlers to silence any interrupts. We then 
1360 *      reset the chip and wait 100uS to be sure the reset completed. Just
1361 *      in case the caller then tries to do stuff.
1362 *
1363 *      This is called without the lock held
1364 */
1365 
1366int z8530_shutdown(struct z8530_dev *dev)
1367{
1368        unsigned long flags;
1369        /* Reset the chip */
1370
1371        spin_lock_irqsave(&dev->lock, flags);
1372        dev->chanA.irqs=&z8530_nop;
1373        dev->chanB.irqs=&z8530_nop;
1374        write_zsreg(&dev->chanA, R9, 0xC0);
1375        /* We must lock the udelay, the chip is offlimits here */
1376        udelay(100);
1377        spin_unlock_irqrestore(&dev->lock, flags);
1378        return 0;
1379}
1380
1381EXPORT_SYMBOL(z8530_shutdown);
1382
1383/**
1384 *      z8530_channel_load - Load channel data
1385 *      @c: Z8530 channel to configure
1386 *      @rtable: table of register, value pairs
1387 *      FIXME: ioctl to allow user uploaded tables
1388 *
1389 *      Load a Z8530 channel up from the system data. We use +16 to 
1390 *      indicate the "prime" registers. The value 255 terminates the
1391 *      table.
1392 */
1393
1394int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
1395{
1396        unsigned long flags;
1397
1398        spin_lock_irqsave(c->lock, flags);
1399
1400        while(*rtable!=255)
1401        {
1402                int reg=*rtable++;
1403                if(reg>0x0F)
1404                        write_zsreg(c, R15, c->regs[15]|1);
1405                write_zsreg(c, reg&0x0F, *rtable);
1406                if(reg>0x0F)
1407                        write_zsreg(c, R15, c->regs[15]&~1);
1408                c->regs[reg]=*rtable++;
1409        }
1410        c->rx_function=z8530_null_rx;
1411        c->skb=NULL;
1412        c->tx_skb=NULL;
1413        c->tx_next_skb=NULL;
1414        c->mtu=1500;
1415        c->max=0;
1416        c->count=0;
1417        c->status=read_zsreg(c, R0);
1418        c->sync=1;
1419        write_zsreg(c, R3, c->regs[R3]|RxENABLE);
1420
1421        spin_unlock_irqrestore(c->lock, flags);
1422        return 0;
1423}
1424
1425EXPORT_SYMBOL(z8530_channel_load);
1426
1427
1428/**
1429 *      z8530_tx_begin - Begin packet transmission
1430 *      @c: The Z8530 channel to kick
1431 *
1432 *      This is the speed sensitive side of transmission. If we are called
1433 *      and no buffer is being transmitted we commence the next buffer. If
1434 *      nothing is queued we idle the sync. 
1435 *
1436 *      Note: We are handling this code path in the interrupt path, keep it
1437 *      fast or bad things will happen.
1438 *
1439 *      Called with the lock held.
1440 */
1441
1442static void z8530_tx_begin(struct z8530_channel *c)
1443{
1444        unsigned long flags;
1445        if(c->tx_skb)
1446                return;
1447                
1448        c->tx_skb=c->tx_next_skb;
1449        c->tx_next_skb=NULL;
1450        c->tx_ptr=c->tx_next_ptr;
1451        
1452        if(c->tx_skb==NULL)
1453        {
1454                /* Idle on */
1455                if(c->dma_tx)
1456                {
1457                        flags=claim_dma_lock();
1458                        disable_dma(c->txdma);
1459                        /*
1460                         *      Check if we crapped out.
1461                         */
1462                        if(get_dma_residue(c->txdma))
1463                        {
1464                                c->stats.tx_dropped++;
1465                                c->stats.tx_fifo_errors++;
1466                        }
1467                        release_dma_lock(flags);
1468                }
1469                c->txcount=0;
1470        }
1471        else
1472        {
1473                c->txcount=c->tx_skb->len;
1474                
1475                
1476                if(c->dma_tx)
1477                {
1478                        /*
1479                         *      FIXME. DMA is broken for the original 8530,
1480                         *      on the older parts we need to set a flag and
1481                         *      wait for a further TX interrupt to fire this
1482                         *      stage off       
1483                         */
1484                         
1485                        flags=claim_dma_lock();
1486                        disable_dma(c->txdma);
1487
1488                        /*
1489                         *      These two are needed by the 8530/85C30
1490                         *      and must be issued when idling.
1491                         */
1492                         
1493                        if(c->dev->type!=Z85230)
1494                        {
1495                                write_zsctrl(c, RES_Tx_CRC);
1496                                write_zsctrl(c, RES_EOM_L);
1497                        }       
1498                        write_zsreg(c, R10, c->regs[10]&~ABUNDER);
1499                        clear_dma_ff(c->txdma);
1500                        set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
1501                        set_dma_count(c->txdma, c->txcount);
1502                        enable_dma(c->txdma);
1503                        release_dma_lock(flags);
1504                        write_zsctrl(c, RES_EOM_L);
1505                        write_zsreg(c, R5, c->regs[R5]|TxENAB);
1506                }
1507                else
1508                {
1509
1510                        /* ABUNDER off */
1511                        write_zsreg(c, R10, c->regs[10]);
1512                        write_zsctrl(c, RES_Tx_CRC);
1513        
1514                        while(c->txcount && (read_zsreg(c,R0)&Tx_BUF_EMP))
1515                        {               
1516                                write_zsreg(c, R8, *c->tx_ptr++);
1517                                c->txcount--;
1518                        }
1519
1520                }
1521        }
1522        /*
1523         *      Since we emptied tx_skb we can ask for more
1524         */
1525        netif_wake_queue(c->netdevice);
1526}
1527
1528/**
1529 *      z8530_tx_done - TX complete callback
1530 *      @c: The channel that completed a transmit.
1531 *
1532 *      This is called when we complete a packet send. We wake the queue,
1533 *      start the next packet going and then free the buffer of the existing
1534 *      packet. This code is fairly timing sensitive.
1535 *
1536 *      Called with the register lock held.
1537 */ 
1538 
1539static void z8530_tx_done(struct z8530_channel *c)
1540{
1541        struct sk_buff *skb;
1542
1543        /* Actually this can happen.*/
1544        if(c->tx_skb==NULL)
1545                return;
1546
1547        skb=c->tx_skb;
1548        c->tx_skb=NULL;
1549        z8530_tx_begin(c);
1550        c->stats.tx_packets++;
1551        c->stats.tx_bytes+=skb->len;
1552        dev_kfree_skb_irq(skb);
1553}
1554
1555/**
1556 *      z8530_null_rx - Discard a packet
1557 *      @c: The channel the packet arrived on
1558 *      @skb: The buffer
1559 *
1560 *      We point the receive handler at this function when idle. Instead
1561 *      of syncppp processing the frames we get to throw them away.
1562 */
1563 
1564void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
1565{
1566        dev_kfree_skb_any(skb);
1567}
1568
1569EXPORT_SYMBOL(z8530_null_rx);
1570
1571/**
1572 *      z8530_rx_done - Receive completion callback
1573 *      @c: The channel that completed a receive
1574 *
1575 *      A new packet is complete. Our goal here is to get back into receive
1576 *      mode as fast as possible. On the Z85230 we could change to using
1577 *      ESCC mode, but on the older chips we have no choice. We flip to the
1578 *      new buffer immediately in DMA mode so that the DMA of the next
1579 *      frame can occur while we are copying the previous buffer to an sk_buff
1580 *
1581 *      Called with the lock held
1582 */
1583 
1584static void z8530_rx_done(struct z8530_channel *c)
1585{
1586        struct sk_buff *skb;
1587        int ct;
1588        
1589        /*
1590         *      Is our receive engine in DMA mode
1591         */
1592         
1593        if(c->rxdma_on)
1594        {
1595                /*
1596                 *      Save the ready state and the buffer currently
1597                 *      being used as the DMA target
1598                 */
1599                 
1600                int ready=c->dma_ready;
1601                unsigned char *rxb=c->rx_buf[c->dma_num];
1602                unsigned long flags;
1603                
1604                /*
1605                 *      Complete this DMA. Neccessary to find the length
1606                 */             
1607                 
1608                flags=claim_dma_lock();
1609                
1610                disable_dma(c->rxdma);
1611                clear_dma_ff(c->rxdma);
1612                c->rxdma_on=0;
1613                ct=c->mtu-get_dma_residue(c->rxdma);
1614                if(ct<0)
1615                        ct=2;   /* Shit happens.. */
1616                c->dma_ready=0;
1617                
1618                /*
1619                 *      Normal case: the other slot is free, start the next DMA
1620                 *      into it immediately.
1621                 */
1622                 
1623                if(ready)
1624                {
1625                        c->dma_num^=1;
1626                        set_dma_mode(c->rxdma, DMA_MODE_READ|0x10);
1627                        set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
1628                        set_dma_count(c->rxdma, c->mtu);
1629                        c->rxdma_on = 1;
1630                        enable_dma(c->rxdma);
1631                        /* Stop any frames that we missed the head of 
1632                           from passing */
1633                        write_zsreg(c, R0, RES_Rx_CRC);
1634                }
1635                else
1636                        /* Can't occur as we dont reenable the DMA irq until
1637                           after the flip is done */
1638                        printk(KERN_WARNING "%s: DMA flip overrun!\n", c->netdevice->name);
1639                        
1640                release_dma_lock(flags);
1641                
1642                /*
1643                 *      Shove the old buffer into an sk_buff. We can't DMA
1644                 *      directly into one on a PC - it might be above the 16Mb
1645                 *      boundary. Optimisation - we could check to see if we
1646                 *      can avoid the copy. Optimisation 2 - make the memcpy
1647                 *      a copychecksum.
1648                 */
1649                 
1650                skb=dev_alloc_skb(ct);
1651                if(skb==NULL)
1652                {
1653                        c->stats.rx_dropped++;
1654                        printk(KERN_WARNING "%s: Memory squeeze.\n", c->netdevice->name);
1655                }
1656                else
1657                {
1658                        skb_put(skb, ct);
1659                        skb_copy_to_linear_data(skb, rxb, ct);
1660                        c->stats.rx_packets++;
1661                        c->stats.rx_bytes+=ct;
1662                }
1663                c->dma_ready=1;
1664        }
1665        else
1666        {
1667                RT_LOCK;        
1668                skb=c->skb;
1669                
1670                /*
1671                 *      The game we play for non DMA is similar. We want to
1672                 *      get the controller set up for the next packet as fast
1673                 *      as possible. We potentially only have one byte + the
1674                 *      fifo length for this. Thus we want to flip to the new
1675                 *      buffer and then mess around copying and allocating
1676                 *      things. For the current case it doesn't matter but
1677                 *      if you build a system where the sync irq isnt blocked
1678                 *      by the kernel IRQ disable then you need only block the
1679                 *      sync IRQ for the RT_LOCK area.
1680                 *      
1681                 */
1682                ct=c->count;
1683                
1684                c->skb = c->skb2;
1685                c->count = 0;
1686                c->max = c->mtu;
1687                if(c->skb)
1688                {
1689                        c->dptr = c->skb->data;
1690                        c->max = c->mtu;
1691                }
1692                else
1693                {
1694                        c->count= 0;
1695                        c->max = 0;
1696                }
1697                RT_UNLOCK;
1698
1699                c->skb2 = dev_alloc_skb(c->mtu);
1700                if(c->skb2==NULL)
1701                        printk(KERN_WARNING "%s: memory squeeze.\n",
1702                                c->netdevice->name);
1703                else
1704                {
1705                        skb_put(c->skb2,c->mtu);
1706                }
1707                c->stats.rx_packets++;
1708                c->stats.rx_bytes+=ct;
1709                
1710        }
1711        /*
1712         *      If we received a frame we must now process it.
1713         */
1714        if(skb)
1715        {
1716                skb_trim(skb, ct);
1717                c->rx_function(c,skb);
1718        }
1719        else
1720        {
1721                c->stats.rx_dropped++;
1722                printk(KERN_ERR "%s: Lost a frame\n", c->netdevice->name);
1723        }
1724}
1725
1726/**
1727 *      spans_boundary - Check a packet can be ISA DMA'd
1728 *      @skb: The buffer to check
1729 *
1730 *      Returns true if the buffer cross a DMA boundary on a PC. The poor
1731 *      thing can only DMA within a 64K block not across the edges of it.
1732 */
1733 
1734static inline int spans_boundary(struct sk_buff *skb)
1735{
1736        unsigned long a=(unsigned long)skb->data;
1737        a^=(a+skb->len);
1738        if(a&0x00010000)        /* If the 64K bit is different.. */
1739                return 1;
1740        return 0;
1741}
1742
1743/**
1744 *      z8530_queue_xmit - Queue a packet
1745 *      @c: The channel to use
1746 *      @skb: The packet to kick down the channel
1747 *
1748 *      Queue a packet for transmission. Because we have rather
1749 *      hard to hit interrupt latencies for the Z85230 per packet 
1750 *      even in DMA mode we do the flip to DMA buffer if needed here
1751 *      not in the IRQ.
1752 *
1753 *      Called from the network code. The lock is not held at this 
1754 *      point.
1755 */
1756
1757int z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
1758{
1759        unsigned long flags;
1760        
1761        netif_stop_queue(c->netdevice);
1762        if(c->tx_next_skb)
1763        {
1764                return 1;
1765        }
1766        
1767        /* PC SPECIFIC - DMA limits */
1768        
1769        /*
1770         *      If we will DMA the transmit and its gone over the ISA bus
1771         *      limit, then copy to the flip buffer
1772         */
1773         
1774        if(c->dma_tx && ((unsigned long)(virt_to_bus(skb->data+skb->len))>=16*1024*1024 || spans_boundary(skb)))
1775        {
1776                /* 
1777                 *      Send the flip buffer, and flip the flippy bit.
1778                 *      We don't care which is used when just so long as
1779                 *      we never use the same buffer twice in a row. Since
1780                 *      only one buffer can be going out at a time the other
1781                 *      has to be safe.
1782                 */
1783                c->tx_next_ptr=c->tx_dma_buf[c->tx_dma_used];
1784                c->tx_dma_used^=1;      /* Flip temp buffer */
1785                skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
1786        }
1787        else
1788                c->tx_next_ptr=skb->data;       
1789        RT_LOCK;
1790        c->tx_next_skb=skb;
1791        RT_UNLOCK;
1792        
1793        spin_lock_irqsave(c->lock, flags);
1794        z8530_tx_begin(c);
1795        spin_unlock_irqrestore(c->lock, flags);
1796        
1797        return 0;
1798}
1799
1800EXPORT_SYMBOL(z8530_queue_xmit);
1801
1802/**
1803 *      z8530_get_stats - Get network statistics
1804 *      @c: The channel to use
1805 *
1806 *      Get the statistics block. We keep the statistics in software as
1807 *      the chip doesn't do it for us.
1808 *
1809 *      Locking is ignored here - we could lock for a copy but its
1810 *      not likely to be that big an issue
1811 */
1812 
1813struct net_device_stats *z8530_get_stats(struct z8530_channel *c)
1814{
1815        return &c->stats;
1816}
1817
1818EXPORT_SYMBOL(z8530_get_stats);
1819
1820/*
1821 *      Module support
1822 */
1823static char banner[] __initdata = KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";
1824
1825static int __init z85230_init_driver(void)
1826{
1827        printk(banner);
1828        return 0;
1829}
1830module_init(z85230_init_driver);
1831
1832static void __exit z85230_cleanup_driver(void)
1833{
1834}
1835module_exit(z85230_cleanup_driver);
1836
1837MODULE_AUTHOR("Red Hat Inc.");
1838MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1839MODULE_LICENSE("GPL");
1840