linux/fs/buffer.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25#include <linux/percpu.h>
  26#include <linux/slab.h>
  27#include <linux/capability.h>
  28#include <linux/blkdev.h>
  29#include <linux/file.h>
  30#include <linux/quotaops.h>
  31#include <linux/highmem.h>
  32#include <linux/module.h>
  33#include <linux/writeback.h>
  34#include <linux/hash.h>
  35#include <linux/suspend.h>
  36#include <linux/buffer_head.h>
  37#include <linux/task_io_accounting_ops.h>
  38#include <linux/bio.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/bitops.h>
  42#include <linux/mpage.h>
  43#include <linux/bit_spinlock.h>
  44
  45static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  46
  47#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  48
  49inline void
  50init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  51{
  52        bh->b_end_io = handler;
  53        bh->b_private = private;
  54}
  55
  56static int sync_buffer(void *word)
  57{
  58        struct block_device *bd;
  59        struct buffer_head *bh
  60                = container_of(word, struct buffer_head, b_state);
  61
  62        smp_mb();
  63        bd = bh->b_bdev;
  64        if (bd)
  65                blk_run_address_space(bd->bd_inode->i_mapping);
  66        io_schedule();
  67        return 0;
  68}
  69
  70void fastcall __lock_buffer(struct buffer_head *bh)
  71{
  72        wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
  73                                                        TASK_UNINTERRUPTIBLE);
  74}
  75EXPORT_SYMBOL(__lock_buffer);
  76
  77void fastcall unlock_buffer(struct buffer_head *bh)
  78{
  79        smp_mb__before_clear_bit();
  80        clear_buffer_locked(bh);
  81        smp_mb__after_clear_bit();
  82        wake_up_bit(&bh->b_state, BH_Lock);
  83}
  84
  85/*
  86 * Block until a buffer comes unlocked.  This doesn't stop it
  87 * from becoming locked again - you have to lock it yourself
  88 * if you want to preserve its state.
  89 */
  90void __wait_on_buffer(struct buffer_head * bh)
  91{
  92        wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
  93}
  94
  95static void
  96__clear_page_buffers(struct page *page)
  97{
  98        ClearPagePrivate(page);
  99        set_page_private(page, 0);
 100        page_cache_release(page);
 101}
 102
 103static void buffer_io_error(struct buffer_head *bh)
 104{
 105        char b[BDEVNAME_SIZE];
 106
 107        printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
 108                        bdevname(bh->b_bdev, b),
 109                        (unsigned long long)bh->b_blocknr);
 110}
 111
 112/*
 113 * End-of-IO handler helper function which does not touch the bh after
 114 * unlocking it.
 115 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 116 * a race there is benign: unlock_buffer() only use the bh's address for
 117 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 118 * itself.
 119 */
 120static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 121{
 122        if (uptodate) {
 123                set_buffer_uptodate(bh);
 124        } else {
 125                /* This happens, due to failed READA attempts. */
 126                clear_buffer_uptodate(bh);
 127        }
 128        unlock_buffer(bh);
 129}
 130
 131/*
 132 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 133 * unlock the buffer. This is what ll_rw_block uses too.
 134 */
 135void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 136{
 137        __end_buffer_read_notouch(bh, uptodate);
 138        put_bh(bh);
 139}
 140
 141void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 142{
 143        char b[BDEVNAME_SIZE];
 144
 145        if (uptodate) {
 146                set_buffer_uptodate(bh);
 147        } else {
 148                if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
 149                        buffer_io_error(bh);
 150                        printk(KERN_WARNING "lost page write due to "
 151                                        "I/O error on %s\n",
 152                                       bdevname(bh->b_bdev, b));
 153                }
 154                set_buffer_write_io_error(bh);
 155                clear_buffer_uptodate(bh);
 156        }
 157        unlock_buffer(bh);
 158        put_bh(bh);
 159}
 160
 161/*
 162 * Write out and wait upon all the dirty data associated with a block
 163 * device via its mapping.  Does not take the superblock lock.
 164 */
 165int sync_blockdev(struct block_device *bdev)
 166{
 167        int ret = 0;
 168
 169        if (bdev)
 170                ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
 171        return ret;
 172}
 173EXPORT_SYMBOL(sync_blockdev);
 174
 175/*
 176 * Write out and wait upon all dirty data associated with this
 177 * device.   Filesystem data as well as the underlying block
 178 * device.  Takes the superblock lock.
 179 */
 180int fsync_bdev(struct block_device *bdev)
 181{
 182        struct super_block *sb = get_super(bdev);
 183        if (sb) {
 184                int res = fsync_super(sb);
 185                drop_super(sb);
 186                return res;
 187        }
 188        return sync_blockdev(bdev);
 189}
 190
 191/**
 192 * freeze_bdev  --  lock a filesystem and force it into a consistent state
 193 * @bdev:       blockdevice to lock
 194 *
 195 * This takes the block device bd_mount_sem to make sure no new mounts
 196 * happen on bdev until thaw_bdev() is called.
 197 * If a superblock is found on this device, we take the s_umount semaphore
 198 * on it to make sure nobody unmounts until the snapshot creation is done.
 199 */
 200struct super_block *freeze_bdev(struct block_device *bdev)
 201{
 202        struct super_block *sb;
 203
 204        down(&bdev->bd_mount_sem);
 205        sb = get_super(bdev);
 206        if (sb && !(sb->s_flags & MS_RDONLY)) {
 207                sb->s_frozen = SB_FREEZE_WRITE;
 208                smp_wmb();
 209
 210                __fsync_super(sb);
 211
 212                sb->s_frozen = SB_FREEZE_TRANS;
 213                smp_wmb();
 214
 215                sync_blockdev(sb->s_bdev);
 216
 217                if (sb->s_op->write_super_lockfs)
 218                        sb->s_op->write_super_lockfs(sb);
 219        }
 220
 221        sync_blockdev(bdev);
 222        return sb;      /* thaw_bdev releases s->s_umount and bd_mount_sem */
 223}
 224EXPORT_SYMBOL(freeze_bdev);
 225
 226/**
 227 * thaw_bdev  -- unlock filesystem
 228 * @bdev:       blockdevice to unlock
 229 * @sb:         associated superblock
 230 *
 231 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
 232 */
 233void thaw_bdev(struct block_device *bdev, struct super_block *sb)
 234{
 235        if (sb) {
 236                BUG_ON(sb->s_bdev != bdev);
 237
 238                if (sb->s_op->unlockfs)
 239                        sb->s_op->unlockfs(sb);
 240                sb->s_frozen = SB_UNFROZEN;
 241                smp_wmb();
 242                wake_up(&sb->s_wait_unfrozen);
 243                drop_super(sb);
 244        }
 245
 246        up(&bdev->bd_mount_sem);
 247}
 248EXPORT_SYMBOL(thaw_bdev);
 249
 250/*
 251 * Various filesystems appear to want __find_get_block to be non-blocking.
 252 * But it's the page lock which protects the buffers.  To get around this,
 253 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 254 * private_lock.
 255 *
 256 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 257 * may be quite high.  This code could TryLock the page, and if that
 258 * succeeds, there is no need to take private_lock. (But if
 259 * private_lock is contended then so is mapping->tree_lock).
 260 */
 261static struct buffer_head *
 262__find_get_block_slow(struct block_device *bdev, sector_t block)
 263{
 264        struct inode *bd_inode = bdev->bd_inode;
 265        struct address_space *bd_mapping = bd_inode->i_mapping;
 266        struct buffer_head *ret = NULL;
 267        pgoff_t index;
 268        struct buffer_head *bh;
 269        struct buffer_head *head;
 270        struct page *page;
 271        int all_mapped = 1;
 272
 273        index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
 274        page = find_get_page(bd_mapping, index);
 275        if (!page)
 276                goto out;
 277
 278        spin_lock(&bd_mapping->private_lock);
 279        if (!page_has_buffers(page))
 280                goto out_unlock;
 281        head = page_buffers(page);
 282        bh = head;
 283        do {
 284                if (bh->b_blocknr == block) {
 285                        ret = bh;
 286                        get_bh(bh);
 287                        goto out_unlock;
 288                }
 289                if (!buffer_mapped(bh))
 290                        all_mapped = 0;
 291                bh = bh->b_this_page;
 292        } while (bh != head);
 293
 294        /* we might be here because some of the buffers on this page are
 295         * not mapped.  This is due to various races between
 296         * file io on the block device and getblk.  It gets dealt with
 297         * elsewhere, don't buffer_error if we had some unmapped buffers
 298         */
 299        if (all_mapped) {
 300                printk("__find_get_block_slow() failed. "
 301                        "block=%llu, b_blocknr=%llu\n",
 302                        (unsigned long long)block,
 303                        (unsigned long long)bh->b_blocknr);
 304                printk("b_state=0x%08lx, b_size=%zu\n",
 305                        bh->b_state, bh->b_size);
 306                printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
 307        }
 308out_unlock:
 309        spin_unlock(&bd_mapping->private_lock);
 310        page_cache_release(page);
 311out:
 312        return ret;
 313}
 314
 315/* If invalidate_buffers() will trash dirty buffers, it means some kind
 316   of fs corruption is going on. Trashing dirty data always imply losing
 317   information that was supposed to be just stored on the physical layer
 318   by the user.
 319
 320   Thus invalidate_buffers in general usage is not allwowed to trash
 321   dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
 322   be preserved.  These buffers are simply skipped.
 323  
 324   We also skip buffers which are still in use.  For example this can
 325   happen if a userspace program is reading the block device.
 326
 327   NOTE: In the case where the user removed a removable-media-disk even if
 328   there's still dirty data not synced on disk (due a bug in the device driver
 329   or due an error of the user), by not destroying the dirty buffers we could
 330   generate corruption also on the next media inserted, thus a parameter is
 331   necessary to handle this case in the most safe way possible (trying
 332   to not corrupt also the new disk inserted with the data belonging to
 333   the old now corrupted disk). Also for the ramdisk the natural thing
 334   to do in order to release the ramdisk memory is to destroy dirty buffers.
 335
 336   These are two special cases. Normal usage imply the device driver
 337   to issue a sync on the device (without waiting I/O completion) and
 338   then an invalidate_buffers call that doesn't trash dirty buffers.
 339
 340   For handling cache coherency with the blkdev pagecache the 'update' case
 341   is been introduced. It is needed to re-read from disk any pinned
 342   buffer. NOTE: re-reading from disk is destructive so we can do it only
 343   when we assume nobody is changing the buffercache under our I/O and when
 344   we think the disk contains more recent information than the buffercache.
 345   The update == 1 pass marks the buffers we need to update, the update == 2
 346   pass does the actual I/O. */
 347void invalidate_bdev(struct block_device *bdev)
 348{
 349        struct address_space *mapping = bdev->bd_inode->i_mapping;
 350
 351        if (mapping->nrpages == 0)
 352                return;
 353
 354        invalidate_bh_lrus();
 355        invalidate_mapping_pages(mapping, 0, -1);
 356}
 357
 358/*
 359 * Kick pdflush then try to free up some ZONE_NORMAL memory.
 360 */
 361static void free_more_memory(void)
 362{
 363        struct zone **zones;
 364        pg_data_t *pgdat;
 365
 366        wakeup_pdflush(1024);
 367        yield();
 368
 369        for_each_online_pgdat(pgdat) {
 370                zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
 371                if (*zones)
 372                        try_to_free_pages(zones, 0, GFP_NOFS);
 373        }
 374}
 375
 376/*
 377 * I/O completion handler for block_read_full_page() - pages
 378 * which come unlocked at the end of I/O.
 379 */
 380static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 381{
 382        unsigned long flags;
 383        struct buffer_head *first;
 384        struct buffer_head *tmp;
 385        struct page *page;
 386        int page_uptodate = 1;
 387
 388        BUG_ON(!buffer_async_read(bh));
 389
 390        page = bh->b_page;
 391        if (uptodate) {
 392                set_buffer_uptodate(bh);
 393        } else {
 394                clear_buffer_uptodate(bh);
 395                if (printk_ratelimit())
 396                        buffer_io_error(bh);
 397                SetPageError(page);
 398        }
 399
 400        /*
 401         * Be _very_ careful from here on. Bad things can happen if
 402         * two buffer heads end IO at almost the same time and both
 403         * decide that the page is now completely done.
 404         */
 405        first = page_buffers(page);
 406        local_irq_save(flags);
 407        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 408        clear_buffer_async_read(bh);
 409        unlock_buffer(bh);
 410        tmp = bh;
 411        do {
 412                if (!buffer_uptodate(tmp))
 413                        page_uptodate = 0;
 414                if (buffer_async_read(tmp)) {
 415                        BUG_ON(!buffer_locked(tmp));
 416                        goto still_busy;
 417                }
 418                tmp = tmp->b_this_page;
 419        } while (tmp != bh);
 420        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 421        local_irq_restore(flags);
 422
 423        /*
 424         * If none of the buffers had errors and they are all
 425         * uptodate then we can set the page uptodate.
 426         */
 427        if (page_uptodate && !PageError(page))
 428                SetPageUptodate(page);
 429        unlock_page(page);
 430        return;
 431
 432still_busy:
 433        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 434        local_irq_restore(flags);
 435        return;
 436}
 437
 438/*
 439 * Completion handler for block_write_full_page() - pages which are unlocked
 440 * during I/O, and which have PageWriteback cleared upon I/O completion.
 441 */
 442static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 443{
 444        char b[BDEVNAME_SIZE];
 445        unsigned long flags;
 446        struct buffer_head *first;
 447        struct buffer_head *tmp;
 448        struct page *page;
 449
 450        BUG_ON(!buffer_async_write(bh));
 451
 452        page = bh->b_page;
 453        if (uptodate) {
 454                set_buffer_uptodate(bh);
 455        } else {
 456                if (printk_ratelimit()) {
 457                        buffer_io_error(bh);
 458                        printk(KERN_WARNING "lost page write due to "
 459                                        "I/O error on %s\n",
 460                               bdevname(bh->b_bdev, b));
 461                }
 462                set_bit(AS_EIO, &page->mapping->flags);
 463                set_buffer_write_io_error(bh);
 464                clear_buffer_uptodate(bh);
 465                SetPageError(page);
 466        }
 467
 468        first = page_buffers(page);
 469        local_irq_save(flags);
 470        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 471
 472        clear_buffer_async_write(bh);
 473        unlock_buffer(bh);
 474        tmp = bh->b_this_page;
 475        while (tmp != bh) {
 476                if (buffer_async_write(tmp)) {
 477                        BUG_ON(!buffer_locked(tmp));
 478                        goto still_busy;
 479                }
 480                tmp = tmp->b_this_page;
 481        }
 482        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 483        local_irq_restore(flags);
 484        end_page_writeback(page);
 485        return;
 486
 487still_busy:
 488        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 489        local_irq_restore(flags);
 490        return;
 491}
 492
 493/*
 494 * If a page's buffers are under async readin (end_buffer_async_read
 495 * completion) then there is a possibility that another thread of
 496 * control could lock one of the buffers after it has completed
 497 * but while some of the other buffers have not completed.  This
 498 * locked buffer would confuse end_buffer_async_read() into not unlocking
 499 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 500 * that this buffer is not under async I/O.
 501 *
 502 * The page comes unlocked when it has no locked buffer_async buffers
 503 * left.
 504 *
 505 * PageLocked prevents anyone starting new async I/O reads any of
 506 * the buffers.
 507 *
 508 * PageWriteback is used to prevent simultaneous writeout of the same
 509 * page.
 510 *
 511 * PageLocked prevents anyone from starting writeback of a page which is
 512 * under read I/O (PageWriteback is only ever set against a locked page).
 513 */
 514static void mark_buffer_async_read(struct buffer_head *bh)
 515{
 516        bh->b_end_io = end_buffer_async_read;
 517        set_buffer_async_read(bh);
 518}
 519
 520void mark_buffer_async_write(struct buffer_head *bh)
 521{
 522        bh->b_end_io = end_buffer_async_write;
 523        set_buffer_async_write(bh);
 524}
 525EXPORT_SYMBOL(mark_buffer_async_write);
 526
 527
 528/*
 529 * fs/buffer.c contains helper functions for buffer-backed address space's
 530 * fsync functions.  A common requirement for buffer-based filesystems is
 531 * that certain data from the backing blockdev needs to be written out for
 532 * a successful fsync().  For example, ext2 indirect blocks need to be
 533 * written back and waited upon before fsync() returns.
 534 *
 535 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 536 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 537 * management of a list of dependent buffers at ->i_mapping->private_list.
 538 *
 539 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 540 * from their controlling inode's queue when they are being freed.  But
 541 * try_to_free_buffers() will be operating against the *blockdev* mapping
 542 * at the time, not against the S_ISREG file which depends on those buffers.
 543 * So the locking for private_list is via the private_lock in the address_space
 544 * which backs the buffers.  Which is different from the address_space 
 545 * against which the buffers are listed.  So for a particular address_space,
 546 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 547 * mapping->private_list will always be protected by the backing blockdev's
 548 * ->private_lock.
 549 *
 550 * Which introduces a requirement: all buffers on an address_space's
 551 * ->private_list must be from the same address_space: the blockdev's.
 552 *
 553 * address_spaces which do not place buffers at ->private_list via these
 554 * utility functions are free to use private_lock and private_list for
 555 * whatever they want.  The only requirement is that list_empty(private_list)
 556 * be true at clear_inode() time.
 557 *
 558 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 559 * filesystems should do that.  invalidate_inode_buffers() should just go
 560 * BUG_ON(!list_empty).
 561 *
 562 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 563 * take an address_space, not an inode.  And it should be called
 564 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 565 * queued up.
 566 *
 567 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 568 * list if it is already on a list.  Because if the buffer is on a list,
 569 * it *must* already be on the right one.  If not, the filesystem is being
 570 * silly.  This will save a ton of locking.  But first we have to ensure
 571 * that buffers are taken *off* the old inode's list when they are freed
 572 * (presumably in truncate).  That requires careful auditing of all
 573 * filesystems (do it inside bforget()).  It could also be done by bringing
 574 * b_inode back.
 575 */
 576
 577/*
 578 * The buffer's backing address_space's private_lock must be held
 579 */
 580static inline void __remove_assoc_queue(struct buffer_head *bh)
 581{
 582        list_del_init(&bh->b_assoc_buffers);
 583        WARN_ON(!bh->b_assoc_map);
 584        if (buffer_write_io_error(bh))
 585                set_bit(AS_EIO, &bh->b_assoc_map->flags);
 586        bh->b_assoc_map = NULL;
 587}
 588
 589int inode_has_buffers(struct inode *inode)
 590{
 591        return !list_empty(&inode->i_data.private_list);
 592}
 593
 594/*
 595 * osync is designed to support O_SYNC io.  It waits synchronously for
 596 * all already-submitted IO to complete, but does not queue any new
 597 * writes to the disk.
 598 *
 599 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 600 * you dirty the buffers, and then use osync_inode_buffers to wait for
 601 * completion.  Any other dirty buffers which are not yet queued for
 602 * write will not be flushed to disk by the osync.
 603 */
 604static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 605{
 606        struct buffer_head *bh;
 607        struct list_head *p;
 608        int err = 0;
 609
 610        spin_lock(lock);
 611repeat:
 612        list_for_each_prev(p, list) {
 613                bh = BH_ENTRY(p);
 614                if (buffer_locked(bh)) {
 615                        get_bh(bh);
 616                        spin_unlock(lock);
 617                        wait_on_buffer(bh);
 618                        if (!buffer_uptodate(bh))
 619                                err = -EIO;
 620                        brelse(bh);
 621                        spin_lock(lock);
 622                        goto repeat;
 623                }
 624        }
 625        spin_unlock(lock);
 626        return err;
 627}
 628
 629/**
 630 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
 631 *                        buffers
 632 * @mapping: the mapping which wants those buffers written
 633 *
 634 * Starts I/O against the buffers at mapping->private_list, and waits upon
 635 * that I/O.
 636 *
 637 * Basically, this is a convenience function for fsync().
 638 * @mapping is a file or directory which needs those buffers to be written for
 639 * a successful fsync().
 640 */
 641int sync_mapping_buffers(struct address_space *mapping)
 642{
 643        struct address_space *buffer_mapping = mapping->assoc_mapping;
 644
 645        if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 646                return 0;
 647
 648        return fsync_buffers_list(&buffer_mapping->private_lock,
 649                                        &mapping->private_list);
 650}
 651EXPORT_SYMBOL(sync_mapping_buffers);
 652
 653/*
 654 * Called when we've recently written block `bblock', and it is known that
 655 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 656 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 657 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 658 */
 659void write_boundary_block(struct block_device *bdev,
 660                        sector_t bblock, unsigned blocksize)
 661{
 662        struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 663        if (bh) {
 664                if (buffer_dirty(bh))
 665                        ll_rw_block(WRITE, 1, &bh);
 666                put_bh(bh);
 667        }
 668}
 669
 670void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 671{
 672        struct address_space *mapping = inode->i_mapping;
 673        struct address_space *buffer_mapping = bh->b_page->mapping;
 674
 675        mark_buffer_dirty(bh);
 676        if (!mapping->assoc_mapping) {
 677                mapping->assoc_mapping = buffer_mapping;
 678        } else {
 679                BUG_ON(mapping->assoc_mapping != buffer_mapping);
 680        }
 681        if (list_empty(&bh->b_assoc_buffers)) {
 682                spin_lock(&buffer_mapping->private_lock);
 683                list_move_tail(&bh->b_assoc_buffers,
 684                                &mapping->private_list);
 685                bh->b_assoc_map = mapping;
 686                spin_unlock(&buffer_mapping->private_lock);
 687        }
 688}
 689EXPORT_SYMBOL(mark_buffer_dirty_inode);
 690
 691/*
 692 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 693 * dirty.
 694 *
 695 * If warn is true, then emit a warning if the page is not uptodate and has
 696 * not been truncated.
 697 */
 698static int __set_page_dirty(struct page *page,
 699                struct address_space *mapping, int warn)
 700{
 701        if (unlikely(!mapping))
 702                return !TestSetPageDirty(page);
 703
 704        if (TestSetPageDirty(page))
 705                return 0;
 706
 707        write_lock_irq(&mapping->tree_lock);
 708        if (page->mapping) {    /* Race with truncate? */
 709                WARN_ON_ONCE(warn && !PageUptodate(page));
 710
 711                if (mapping_cap_account_dirty(mapping)) {
 712                        __inc_zone_page_state(page, NR_FILE_DIRTY);
 713                        __inc_bdi_stat(mapping->backing_dev_info,
 714                                        BDI_RECLAIMABLE);
 715                        task_io_account_write(PAGE_CACHE_SIZE);
 716                }
 717                radix_tree_tag_set(&mapping->page_tree,
 718                                page_index(page), PAGECACHE_TAG_DIRTY);
 719        }
 720        write_unlock_irq(&mapping->tree_lock);
 721        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 722
 723        return 1;
 724}
 725
 726/*
 727 * Add a page to the dirty page list.
 728 *
 729 * It is a sad fact of life that this function is called from several places
 730 * deeply under spinlocking.  It may not sleep.
 731 *
 732 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 733 * dirty-state coherency between the page and the buffers.  It the page does
 734 * not have buffers then when they are later attached they will all be set
 735 * dirty.
 736 *
 737 * The buffers are dirtied before the page is dirtied.  There's a small race
 738 * window in which a writepage caller may see the page cleanness but not the
 739 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 740 * before the buffers, a concurrent writepage caller could clear the page dirty
 741 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 742 * page on the dirty page list.
 743 *
 744 * We use private_lock to lock against try_to_free_buffers while using the
 745 * page's buffer list.  Also use this to protect against clean buffers being
 746 * added to the page after it was set dirty.
 747 *
 748 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 749 * address_space though.
 750 */
 751int __set_page_dirty_buffers(struct page *page)
 752{
 753        struct address_space *mapping = page_mapping(page);
 754
 755        if (unlikely(!mapping))
 756                return !TestSetPageDirty(page);
 757
 758        spin_lock(&mapping->private_lock);
 759        if (page_has_buffers(page)) {
 760                struct buffer_head *head = page_buffers(page);
 761                struct buffer_head *bh = head;
 762
 763                do {
 764                        set_buffer_dirty(bh);
 765                        bh = bh->b_this_page;
 766                } while (bh != head);
 767        }
 768        spin_unlock(&mapping->private_lock);
 769
 770        return __set_page_dirty(page, mapping, 1);
 771}
 772EXPORT_SYMBOL(__set_page_dirty_buffers);
 773
 774/*
 775 * Write out and wait upon a list of buffers.
 776 *
 777 * We have conflicting pressures: we want to make sure that all
 778 * initially dirty buffers get waited on, but that any subsequently
 779 * dirtied buffers don't.  After all, we don't want fsync to last
 780 * forever if somebody is actively writing to the file.
 781 *
 782 * Do this in two main stages: first we copy dirty buffers to a
 783 * temporary inode list, queueing the writes as we go.  Then we clean
 784 * up, waiting for those writes to complete.
 785 * 
 786 * During this second stage, any subsequent updates to the file may end
 787 * up refiling the buffer on the original inode's dirty list again, so
 788 * there is a chance we will end up with a buffer queued for write but
 789 * not yet completed on that list.  So, as a final cleanup we go through
 790 * the osync code to catch these locked, dirty buffers without requeuing
 791 * any newly dirty buffers for write.
 792 */
 793static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 794{
 795        struct buffer_head *bh;
 796        struct list_head tmp;
 797        int err = 0, err2;
 798
 799        INIT_LIST_HEAD(&tmp);
 800
 801        spin_lock(lock);
 802        while (!list_empty(list)) {
 803                bh = BH_ENTRY(list->next);
 804                __remove_assoc_queue(bh);
 805                if (buffer_dirty(bh) || buffer_locked(bh)) {
 806                        list_add(&bh->b_assoc_buffers, &tmp);
 807                        if (buffer_dirty(bh)) {
 808                                get_bh(bh);
 809                                spin_unlock(lock);
 810                                /*
 811                                 * Ensure any pending I/O completes so that
 812                                 * ll_rw_block() actually writes the current
 813                                 * contents - it is a noop if I/O is still in
 814                                 * flight on potentially older contents.
 815                                 */
 816                                ll_rw_block(SWRITE, 1, &bh);
 817                                brelse(bh);
 818                                spin_lock(lock);
 819                        }
 820                }
 821        }
 822
 823        while (!list_empty(&tmp)) {
 824                bh = BH_ENTRY(tmp.prev);
 825                list_del_init(&bh->b_assoc_buffers);
 826                get_bh(bh);
 827                spin_unlock(lock);
 828                wait_on_buffer(bh);
 829                if (!buffer_uptodate(bh))
 830                        err = -EIO;
 831                brelse(bh);
 832                spin_lock(lock);
 833        }
 834        
 835        spin_unlock(lock);
 836        err2 = osync_buffers_list(lock, list);
 837        if (err)
 838                return err;
 839        else
 840                return err2;
 841}
 842
 843/*
 844 * Invalidate any and all dirty buffers on a given inode.  We are
 845 * probably unmounting the fs, but that doesn't mean we have already
 846 * done a sync().  Just drop the buffers from the inode list.
 847 *
 848 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 849 * assumes that all the buffers are against the blockdev.  Not true
 850 * for reiserfs.
 851 */
 852void invalidate_inode_buffers(struct inode *inode)
 853{
 854        if (inode_has_buffers(inode)) {
 855                struct address_space *mapping = &inode->i_data;
 856                struct list_head *list = &mapping->private_list;
 857                struct address_space *buffer_mapping = mapping->assoc_mapping;
 858
 859                spin_lock(&buffer_mapping->private_lock);
 860                while (!list_empty(list))
 861                        __remove_assoc_queue(BH_ENTRY(list->next));
 862                spin_unlock(&buffer_mapping->private_lock);
 863        }
 864}
 865
 866/*
 867 * Remove any clean buffers from the inode's buffer list.  This is called
 868 * when we're trying to free the inode itself.  Those buffers can pin it.
 869 *
 870 * Returns true if all buffers were removed.
 871 */
 872int remove_inode_buffers(struct inode *inode)
 873{
 874        int ret = 1;
 875
 876        if (inode_has_buffers(inode)) {
 877                struct address_space *mapping = &inode->i_data;
 878                struct list_head *list = &mapping->private_list;
 879                struct address_space *buffer_mapping = mapping->assoc_mapping;
 880
 881                spin_lock(&buffer_mapping->private_lock);
 882                while (!list_empty(list)) {
 883                        struct buffer_head *bh = BH_ENTRY(list->next);
 884                        if (buffer_dirty(bh)) {
 885                                ret = 0;
 886                                break;
 887                        }
 888                        __remove_assoc_queue(bh);
 889                }
 890                spin_unlock(&buffer_mapping->private_lock);
 891        }
 892        return ret;
 893}
 894
 895/*
 896 * Create the appropriate buffers when given a page for data area and
 897 * the size of each buffer.. Use the bh->b_this_page linked list to
 898 * follow the buffers created.  Return NULL if unable to create more
 899 * buffers.
 900 *
 901 * The retry flag is used to differentiate async IO (paging, swapping)
 902 * which may not fail from ordinary buffer allocations.
 903 */
 904struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 905                int retry)
 906{
 907        struct buffer_head *bh, *head;
 908        long offset;
 909
 910try_again:
 911        head = NULL;
 912        offset = PAGE_SIZE;
 913        while ((offset -= size) >= 0) {
 914                bh = alloc_buffer_head(GFP_NOFS);
 915                if (!bh)
 916                        goto no_grow;
 917
 918                bh->b_bdev = NULL;
 919                bh->b_this_page = head;
 920                bh->b_blocknr = -1;
 921                head = bh;
 922
 923                bh->b_state = 0;
 924                atomic_set(&bh->b_count, 0);
 925                bh->b_private = NULL;
 926                bh->b_size = size;
 927
 928                /* Link the buffer to its page */
 929                set_bh_page(bh, page, offset);
 930
 931                init_buffer(bh, NULL, NULL);
 932        }
 933        return head;
 934/*
 935 * In case anything failed, we just free everything we got.
 936 */
 937no_grow:
 938        if (head) {
 939                do {
 940                        bh = head;
 941                        head = head->b_this_page;
 942                        free_buffer_head(bh);
 943                } while (head);
 944        }
 945
 946        /*
 947         * Return failure for non-async IO requests.  Async IO requests
 948         * are not allowed to fail, so we have to wait until buffer heads
 949         * become available.  But we don't want tasks sleeping with 
 950         * partially complete buffers, so all were released above.
 951         */
 952        if (!retry)
 953                return NULL;
 954
 955        /* We're _really_ low on memory. Now we just
 956         * wait for old buffer heads to become free due to
 957         * finishing IO.  Since this is an async request and
 958         * the reserve list is empty, we're sure there are 
 959         * async buffer heads in use.
 960         */
 961        free_more_memory();
 962        goto try_again;
 963}
 964EXPORT_SYMBOL_GPL(alloc_page_buffers);
 965
 966static inline void
 967link_dev_buffers(struct page *page, struct buffer_head *head)
 968{
 969        struct buffer_head *bh, *tail;
 970
 971        bh = head;
 972        do {
 973                tail = bh;
 974                bh = bh->b_this_page;
 975        } while (bh);
 976        tail->b_this_page = head;
 977        attach_page_buffers(page, head);
 978}
 979
 980/*
 981 * Initialise the state of a blockdev page's buffers.
 982 */ 
 983static void
 984init_page_buffers(struct page *page, struct block_device *bdev,
 985                        sector_t block, int size)
 986{
 987        struct buffer_head *head = page_buffers(page);
 988        struct buffer_head *bh = head;
 989        int uptodate = PageUptodate(page);
 990
 991        do {
 992                if (!buffer_mapped(bh)) {
 993                        init_buffer(bh, NULL, NULL);
 994                        bh->b_bdev = bdev;
 995                        bh->b_blocknr = block;
 996                        if (uptodate)
 997                                set_buffer_uptodate(bh);
 998                        set_buffer_mapped(bh);
 999                }
1000                block++;
1001                bh = bh->b_this_page;
1002        } while (bh != head);
1003}
1004
1005/*
1006 * Create the page-cache page that contains the requested block.
1007 *
1008 * This is user purely for blockdev mappings.
1009 */
1010static struct page *
1011grow_dev_page(struct block_device *bdev, sector_t block,
1012                pgoff_t index, int size)
1013{
1014        struct inode *inode = bdev->bd_inode;
1015        struct page *page;
1016        struct buffer_head *bh;
1017
1018        page = find_or_create_page(inode->i_mapping, index,
1019                (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1020        if (!page)
1021                return NULL;
1022
1023        BUG_ON(!PageLocked(page));
1024
1025        if (page_has_buffers(page)) {
1026                bh = page_buffers(page);
1027                if (bh->b_size == size) {
1028                        init_page_buffers(page, bdev, block, size);
1029                        return page;
1030                }
1031                if (!try_to_free_buffers(page))
1032                        goto failed;
1033        }
1034
1035        /*
1036         * Allocate some buffers for this page
1037         */
1038        bh = alloc_page_buffers(page, size, 0);
1039        if (!bh)
1040                goto failed;
1041
1042        /*
1043         * Link the page to the buffers and initialise them.  Take the
1044         * lock to be atomic wrt __find_get_block(), which does not
1045         * run under the page lock.
1046         */
1047        spin_lock(&inode->i_mapping->private_lock);
1048        link_dev_buffers(page, bh);
1049        init_page_buffers(page, bdev, block, size);
1050        spin_unlock(&inode->i_mapping->private_lock);
1051        return page;
1052
1053failed:
1054        BUG();
1055        unlock_page(page);
1056        page_cache_release(page);
1057        return NULL;
1058}
1059
1060/*
1061 * Create buffers for the specified block device block's page.  If
1062 * that page was dirty, the buffers are set dirty also.
1063 */
1064static int
1065grow_buffers(struct block_device *bdev, sector_t block, int size)
1066{
1067        struct page *page;
1068        pgoff_t index;
1069        int sizebits;
1070
1071        sizebits = -1;
1072        do {
1073                sizebits++;
1074        } while ((size << sizebits) < PAGE_SIZE);
1075
1076        index = block >> sizebits;
1077
1078        /*
1079         * Check for a block which wants to lie outside our maximum possible
1080         * pagecache index.  (this comparison is done using sector_t types).
1081         */
1082        if (unlikely(index != block >> sizebits)) {
1083                char b[BDEVNAME_SIZE];
1084
1085                printk(KERN_ERR "%s: requested out-of-range block %llu for "
1086                        "device %s\n",
1087                        __FUNCTION__, (unsigned long long)block,
1088                        bdevname(bdev, b));
1089                return -EIO;
1090        }
1091        block = index << sizebits;
1092        /* Create a page with the proper size buffers.. */
1093        page = grow_dev_page(bdev, block, index, size);
1094        if (!page)
1095                return 0;
1096        unlock_page(page);
1097        page_cache_release(page);
1098        return 1;
1099}
1100
1101static struct buffer_head *
1102__getblk_slow(struct block_device *bdev, sector_t block, int size)
1103{
1104        /* Size must be multiple of hard sectorsize */
1105        if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1106                        (size < 512 || size > PAGE_SIZE))) {
1107                printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1108                                        size);
1109                printk(KERN_ERR "hardsect size: %d\n",
1110                                        bdev_hardsect_size(bdev));
1111
1112                dump_stack();
1113                return NULL;
1114        }
1115
1116        for (;;) {
1117                struct buffer_head * bh;
1118                int ret;
1119
1120                bh = __find_get_block(bdev, block, size);
1121                if (bh)
1122                        return bh;
1123
1124                ret = grow_buffers(bdev, block, size);
1125                if (ret < 0)
1126                        return NULL;
1127                if (ret == 0)
1128                        free_more_memory();
1129        }
1130}
1131
1132/*
1133 * The relationship between dirty buffers and dirty pages:
1134 *
1135 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1136 * the page is tagged dirty in its radix tree.
1137 *
1138 * At all times, the dirtiness of the buffers represents the dirtiness of
1139 * subsections of the page.  If the page has buffers, the page dirty bit is
1140 * merely a hint about the true dirty state.
1141 *
1142 * When a page is set dirty in its entirety, all its buffers are marked dirty
1143 * (if the page has buffers).
1144 *
1145 * When a buffer is marked dirty, its page is dirtied, but the page's other
1146 * buffers are not.
1147 *
1148 * Also.  When blockdev buffers are explicitly read with bread(), they
1149 * individually become uptodate.  But their backing page remains not
1150 * uptodate - even if all of its buffers are uptodate.  A subsequent
1151 * block_read_full_page() against that page will discover all the uptodate
1152 * buffers, will set the page uptodate and will perform no I/O.
1153 */
1154
1155/**
1156 * mark_buffer_dirty - mark a buffer_head as needing writeout
1157 * @bh: the buffer_head to mark dirty
1158 *
1159 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1160 * backing page dirty, then tag the page as dirty in its address_space's radix
1161 * tree and then attach the address_space's inode to its superblock's dirty
1162 * inode list.
1163 *
1164 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1165 * mapping->tree_lock and the global inode_lock.
1166 */
1167void fastcall mark_buffer_dirty(struct buffer_head *bh)
1168{
1169        WARN_ON_ONCE(!buffer_uptodate(bh));
1170        if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1171                __set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1172}
1173
1174/*
1175 * Decrement a buffer_head's reference count.  If all buffers against a page
1176 * have zero reference count, are clean and unlocked, and if the page is clean
1177 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1178 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1179 * a page but it ends up not being freed, and buffers may later be reattached).
1180 */
1181void __brelse(struct buffer_head * buf)
1182{
1183        if (atomic_read(&buf->b_count)) {
1184                put_bh(buf);
1185                return;
1186        }
1187        printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1188        WARN_ON(1);
1189}
1190
1191/*
1192 * bforget() is like brelse(), except it discards any
1193 * potentially dirty data.
1194 */
1195void __bforget(struct buffer_head *bh)
1196{
1197        clear_buffer_dirty(bh);
1198        if (!list_empty(&bh->b_assoc_buffers)) {
1199                struct address_space *buffer_mapping = bh->b_page->mapping;
1200
1201                spin_lock(&buffer_mapping->private_lock);
1202                list_del_init(&bh->b_assoc_buffers);
1203                bh->b_assoc_map = NULL;
1204                spin_unlock(&buffer_mapping->private_lock);
1205        }
1206        __brelse(bh);
1207}
1208
1209static struct buffer_head *__bread_slow(struct buffer_head *bh)
1210{
1211        lock_buffer(bh);
1212        if (buffer_uptodate(bh)) {
1213                unlock_buffer(bh);
1214                return bh;
1215        } else {
1216                get_bh(bh);
1217                bh->b_end_io = end_buffer_read_sync;
1218                submit_bh(READ, bh);
1219                wait_on_buffer(bh);
1220                if (buffer_uptodate(bh))
1221                        return bh;
1222        }
1223        brelse(bh);
1224        return NULL;
1225}
1226
1227/*
1228 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1229 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1230 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1231 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1232 * CPU's LRUs at the same time.
1233 *
1234 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1235 * sb_find_get_block().
1236 *
1237 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1238 * a local interrupt disable for that.
1239 */
1240
1241#define BH_LRU_SIZE     8
1242
1243struct bh_lru {
1244        struct buffer_head *bhs[BH_LRU_SIZE];
1245};
1246
1247static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1248
1249#ifdef CONFIG_SMP
1250#define bh_lru_lock()   local_irq_disable()
1251#define bh_lru_unlock() local_irq_enable()
1252#else
1253#define bh_lru_lock()   preempt_disable()
1254#define bh_lru_unlock() preempt_enable()
1255#endif
1256
1257static inline void check_irqs_on(void)
1258{
1259#ifdef irqs_disabled
1260        BUG_ON(irqs_disabled());
1261#endif
1262}
1263
1264/*
1265 * The LRU management algorithm is dopey-but-simple.  Sorry.
1266 */
1267static void bh_lru_install(struct buffer_head *bh)
1268{
1269        struct buffer_head *evictee = NULL;
1270        struct bh_lru *lru;
1271
1272        check_irqs_on();
1273        bh_lru_lock();
1274        lru = &__get_cpu_var(bh_lrus);
1275        if (lru->bhs[0] != bh) {
1276                struct buffer_head *bhs[BH_LRU_SIZE];
1277                int in;
1278                int out = 0;
1279
1280                get_bh(bh);
1281                bhs[out++] = bh;
1282                for (in = 0; in < BH_LRU_SIZE; in++) {
1283                        struct buffer_head *bh2 = lru->bhs[in];
1284
1285                        if (bh2 == bh) {
1286                                __brelse(bh2);
1287                        } else {
1288                                if (out >= BH_LRU_SIZE) {
1289                                        BUG_ON(evictee != NULL);
1290                                        evictee = bh2;
1291                                } else {
1292                                        bhs[out++] = bh2;
1293                                }
1294                        }
1295                }
1296                while (out < BH_LRU_SIZE)
1297                        bhs[out++] = NULL;
1298                memcpy(lru->bhs, bhs, sizeof(bhs));
1299        }
1300        bh_lru_unlock();
1301
1302        if (evictee)
1303                __brelse(evictee);
1304}
1305
1306/*
1307 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1308 */
1309static struct buffer_head *
1310lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1311{
1312        struct buffer_head *ret = NULL;
1313        struct bh_lru *lru;
1314        unsigned int i;
1315
1316        check_irqs_on();
1317        bh_lru_lock();
1318        lru = &__get_cpu_var(bh_lrus);
1319        for (i = 0; i < BH_LRU_SIZE; i++) {
1320                struct buffer_head *bh = lru->bhs[i];
1321
1322                if (bh && bh->b_bdev == bdev &&
1323                                bh->b_blocknr == block && bh->b_size == size) {
1324                        if (i) {
1325                                while (i) {
1326                                        lru->bhs[i] = lru->bhs[i - 1];
1327                                        i--;
1328                                }
1329                                lru->bhs[0] = bh;
1330                        }
1331                        get_bh(bh);
1332                        ret = bh;
1333                        break;
1334                }
1335        }
1336        bh_lru_unlock();
1337        return ret;
1338}
1339
1340/*
1341 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1342 * it in the LRU and mark it as accessed.  If it is not present then return
1343 * NULL
1344 */
1345struct buffer_head *
1346__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1347{
1348        struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349
1350        if (bh == NULL) {
1351                bh = __find_get_block_slow(bdev, block);
1352                if (bh)
1353                        bh_lru_install(bh);
1354        }
1355        if (bh)
1356                touch_buffer(bh);
1357        return bh;
1358}
1359EXPORT_SYMBOL(__find_get_block);
1360
1361/*
1362 * __getblk will locate (and, if necessary, create) the buffer_head
1363 * which corresponds to the passed block_device, block and size. The
1364 * returned buffer has its reference count incremented.
1365 *
1366 * __getblk() cannot fail - it just keeps trying.  If you pass it an
1367 * illegal block number, __getblk() will happily return a buffer_head
1368 * which represents the non-existent block.  Very weird.
1369 *
1370 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1371 * attempt is failing.  FIXME, perhaps?
1372 */
1373struct buffer_head *
1374__getblk(struct block_device *bdev, sector_t block, unsigned size)
1375{
1376        struct buffer_head *bh = __find_get_block(bdev, block, size);
1377
1378        might_sleep();
1379        if (bh == NULL)
1380                bh = __getblk_slow(bdev, block, size);
1381        return bh;
1382}
1383EXPORT_SYMBOL(__getblk);
1384
1385/*
1386 * Do async read-ahead on a buffer..
1387 */
1388void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1389{
1390        struct buffer_head *bh = __getblk(bdev, block, size);
1391        if (likely(bh)) {
1392                ll_rw_block(READA, 1, &bh);
1393                brelse(bh);
1394        }
1395}
1396EXPORT_SYMBOL(__breadahead);
1397
1398/**
1399 *  __bread() - reads a specified block and returns the bh
1400 *  @bdev: the block_device to read from
1401 *  @block: number of block
1402 *  @size: size (in bytes) to read
1403 * 
1404 *  Reads a specified block, and returns buffer head that contains it.
1405 *  It returns NULL if the block was unreadable.
1406 */
1407struct buffer_head *
1408__bread(struct block_device *bdev, sector_t block, unsigned size)
1409{
1410        struct buffer_head *bh = __getblk(bdev, block, size);
1411
1412        if (likely(bh) && !buffer_uptodate(bh))
1413                bh = __bread_slow(bh);
1414        return bh;
1415}
1416EXPORT_SYMBOL(__bread);
1417
1418/*
1419 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1420 * This doesn't race because it runs in each cpu either in irq
1421 * or with preempt disabled.
1422 */
1423static void invalidate_bh_lru(void *arg)
1424{
1425        struct bh_lru *b = &get_cpu_var(bh_lrus);
1426        int i;
1427
1428        for (i = 0; i < BH_LRU_SIZE; i++) {
1429                brelse(b->bhs[i]);
1430                b->bhs[i] = NULL;
1431        }
1432        put_cpu_var(bh_lrus);
1433}
1434        
1435void invalidate_bh_lrus(void)
1436{
1437        on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1438}
1439
1440void set_bh_page(struct buffer_head *bh,
1441                struct page *page, unsigned long offset)
1442{
1443        bh->b_page = page;
1444        BUG_ON(offset >= PAGE_SIZE);
1445        if (PageHighMem(page))
1446                /*
1447                 * This catches illegal uses and preserves the offset:
1448                 */
1449                bh->b_data = (char *)(0 + offset);
1450        else
1451                bh->b_data = page_address(page) + offset;
1452}
1453EXPORT_SYMBOL(set_bh_page);
1454
1455/*
1456 * Called when truncating a buffer on a page completely.
1457 */
1458static void discard_buffer(struct buffer_head * bh)
1459{
1460        lock_buffer(bh);
1461        clear_buffer_dirty(bh);
1462        bh->b_bdev = NULL;
1463        clear_buffer_mapped(bh);
1464        clear_buffer_req(bh);
1465        clear_buffer_new(bh);
1466        clear_buffer_delay(bh);
1467        clear_buffer_unwritten(bh);
1468        unlock_buffer(bh);
1469}
1470
1471/**
1472 * block_invalidatepage - invalidate part of all of a buffer-backed page
1473 *
1474 * @page: the page which is affected
1475 * @offset: the index of the truncation point
1476 *
1477 * block_invalidatepage() is called when all or part of the page has become
1478 * invalidatedby a truncate operation.
1479 *
1480 * block_invalidatepage() does not have to release all buffers, but it must
1481 * ensure that no dirty buffer is left outside @offset and that no I/O
1482 * is underway against any of the blocks which are outside the truncation
1483 * point.  Because the caller is about to free (and possibly reuse) those
1484 * blocks on-disk.
1485 */
1486void block_invalidatepage(struct page *page, unsigned long offset)
1487{
1488        struct buffer_head *head, *bh, *next;
1489        unsigned int curr_off = 0;
1490
1491        BUG_ON(!PageLocked(page));
1492        if (!page_has_buffers(page))
1493                goto out;
1494
1495        head = page_buffers(page);
1496        bh = head;
1497        do {
1498                unsigned int next_off = curr_off + bh->b_size;
1499                next = bh->b_this_page;
1500
1501                /*
1502                 * is this block fully invalidated?
1503                 */
1504                if (offset <= curr_off)
1505                        discard_buffer(bh);
1506                curr_off = next_off;
1507                bh = next;
1508        } while (bh != head);
1509
1510        /*
1511         * We release buffers only if the entire page is being invalidated.
1512         * The get_block cached value has been unconditionally invalidated,
1513         * so real IO is not possible anymore.
1514         */
1515        if (offset == 0)
1516                try_to_release_page(page, 0);
1517out:
1518        return;
1519}
1520EXPORT_SYMBOL(block_invalidatepage);
1521
1522/*
1523 * We attach and possibly dirty the buffers atomically wrt
1524 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1525 * is already excluded via the page lock.
1526 */
1527void create_empty_buffers(struct page *page,
1528                        unsigned long blocksize, unsigned long b_state)
1529{
1530        struct buffer_head *bh, *head, *tail;
1531
1532        head = alloc_page_buffers(page, blocksize, 1);
1533        bh = head;
1534        do {
1535                bh->b_state |= b_state;
1536                tail = bh;
1537                bh = bh->b_this_page;
1538        } while (bh);
1539        tail->b_this_page = head;
1540
1541        spin_lock(&page->mapping->private_lock);
1542        if (PageUptodate(page) || PageDirty(page)) {
1543                bh = head;
1544                do {
1545                        if (PageDirty(page))
1546                                set_buffer_dirty(bh);
1547                        if (PageUptodate(page))
1548                                set_buffer_uptodate(bh);
1549                        bh = bh->b_this_page;
1550                } while (bh != head);
1551        }
1552        attach_page_buffers(page, head);
1553        spin_unlock(&page->mapping->private_lock);
1554}
1555EXPORT_SYMBOL(create_empty_buffers);
1556
1557/*
1558 * We are taking a block for data and we don't want any output from any
1559 * buffer-cache aliases starting from return from that function and
1560 * until the moment when something will explicitly mark the buffer
1561 * dirty (hopefully that will not happen until we will free that block ;-)
1562 * We don't even need to mark it not-uptodate - nobody can expect
1563 * anything from a newly allocated buffer anyway. We used to used
1564 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1565 * don't want to mark the alias unmapped, for example - it would confuse
1566 * anyone who might pick it with bread() afterwards...
1567 *
1568 * Also..  Note that bforget() doesn't lock the buffer.  So there can
1569 * be writeout I/O going on against recently-freed buffers.  We don't
1570 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1571 * only if we really need to.  That happens here.
1572 */
1573void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1574{
1575        struct buffer_head *old_bh;
1576
1577        might_sleep();
1578
1579        old_bh = __find_get_block_slow(bdev, block);
1580        if (old_bh) {
1581                clear_buffer_dirty(old_bh);
1582                wait_on_buffer(old_bh);
1583                clear_buffer_req(old_bh);
1584                __brelse(old_bh);
1585        }
1586}
1587EXPORT_SYMBOL(unmap_underlying_metadata);
1588
1589/*
1590 * NOTE! All mapped/uptodate combinations are valid:
1591 *
1592 *      Mapped  Uptodate        Meaning
1593 *
1594 *      No      No              "unknown" - must do get_block()
1595 *      No      Yes             "hole" - zero-filled
1596 *      Yes     No              "allocated" - allocated on disk, not read in
1597 *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1598 *
1599 * "Dirty" is valid only with the last case (mapped+uptodate).
1600 */
1601
1602/*
1603 * While block_write_full_page is writing back the dirty buffers under
1604 * the page lock, whoever dirtied the buffers may decide to clean them
1605 * again at any time.  We handle that by only looking at the buffer
1606 * state inside lock_buffer().
1607 *
1608 * If block_write_full_page() is called for regular writeback
1609 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1610 * locked buffer.   This only can happen if someone has written the buffer
1611 * directly, with submit_bh().  At the address_space level PageWriteback
1612 * prevents this contention from occurring.
1613 */
1614static int __block_write_full_page(struct inode *inode, struct page *page,
1615                        get_block_t *get_block, struct writeback_control *wbc)
1616{
1617        int err;
1618        sector_t block;
1619        sector_t last_block;
1620        struct buffer_head *bh, *head;
1621        const unsigned blocksize = 1 << inode->i_blkbits;
1622        int nr_underway = 0;
1623
1624        BUG_ON(!PageLocked(page));
1625
1626        last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1627
1628        if (!page_has_buffers(page)) {
1629                create_empty_buffers(page, blocksize,
1630                                        (1 << BH_Dirty)|(1 << BH_Uptodate));
1631        }
1632
1633        /*
1634         * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1635         * here, and the (potentially unmapped) buffers may become dirty at
1636         * any time.  If a buffer becomes dirty here after we've inspected it
1637         * then we just miss that fact, and the page stays dirty.
1638         *
1639         * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1640         * handle that here by just cleaning them.
1641         */
1642
1643        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1644        head = page_buffers(page);
1645        bh = head;
1646
1647        /*
1648         * Get all the dirty buffers mapped to disk addresses and
1649         * handle any aliases from the underlying blockdev's mapping.
1650         */
1651        do {
1652                if (block > last_block) {
1653                        /*
1654                         * mapped buffers outside i_size will occur, because
1655                         * this page can be outside i_size when there is a
1656                         * truncate in progress.
1657                         */
1658                        /*
1659                         * The buffer was zeroed by block_write_full_page()
1660                         */
1661                        clear_buffer_dirty(bh);
1662                        set_buffer_uptodate(bh);
1663                } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1664                        WARN_ON(bh->b_size != blocksize);
1665                        err = get_block(inode, block, bh, 1);
1666                        if (err)
1667                                goto recover;
1668                        if (buffer_new(bh)) {
1669                                /* blockdev mappings never come here */
1670                                clear_buffer_new(bh);
1671                                unmap_underlying_metadata(bh->b_bdev,
1672                                                        bh->b_blocknr);
1673                        }
1674                }
1675                bh = bh->b_this_page;
1676                block++;
1677        } while (bh != head);
1678
1679        do {
1680                if (!buffer_mapped(bh))
1681                        continue;
1682                /*
1683                 * If it's a fully non-blocking write attempt and we cannot
1684                 * lock the buffer then redirty the page.  Note that this can
1685                 * potentially cause a busy-wait loop from pdflush and kswapd
1686                 * activity, but those code paths have their own higher-level
1687                 * throttling.
1688                 */
1689                if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1690                        lock_buffer(bh);
1691                } else if (test_set_buffer_locked(bh)) {
1692                        redirty_page_for_writepage(wbc, page);
1693                        continue;
1694                }
1695                if (test_clear_buffer_dirty(bh)) {
1696                        mark_buffer_async_write(bh);
1697                } else {
1698                        unlock_buffer(bh);
1699                }
1700        } while ((bh = bh->b_this_page) != head);
1701
1702        /*
1703         * The page and its buffers are protected by PageWriteback(), so we can
1704         * drop the bh refcounts early.
1705         */
1706        BUG_ON(PageWriteback(page));
1707        set_page_writeback(page);
1708
1709        do {
1710                struct buffer_head *next = bh->b_this_page;
1711                if (buffer_async_write(bh)) {
1712                        submit_bh(WRITE, bh);
1713                        nr_underway++;
1714                }
1715                bh = next;
1716        } while (bh != head);
1717        unlock_page(page);
1718
1719        err = 0;
1720done:
1721        if (nr_underway == 0) {
1722                /*
1723                 * The page was marked dirty, but the buffers were
1724                 * clean.  Someone wrote them back by hand with
1725                 * ll_rw_block/submit_bh.  A rare case.
1726                 */
1727                end_page_writeback(page);
1728
1729                /*
1730                 * The page and buffer_heads can be released at any time from
1731                 * here on.
1732                 */
1733        }
1734        return err;
1735
1736recover:
1737        /*
1738         * ENOSPC, or some other error.  We may already have added some
1739         * blocks to the file, so we need to write these out to avoid
1740         * exposing stale data.
1741         * The page is currently locked and not marked for writeback
1742         */
1743        bh = head;
1744        /* Recovery: lock and submit the mapped buffers */
1745        do {
1746                if (buffer_mapped(bh) && buffer_dirty(bh)) {
1747                        lock_buffer(bh);
1748                        mark_buffer_async_write(bh);
1749                } else {
1750                        /*
1751                         * The buffer may have been set dirty during
1752                         * attachment to a dirty page.
1753                         */
1754                        clear_buffer_dirty(bh);
1755                }
1756        } while ((bh = bh->b_this_page) != head);
1757        SetPageError(page);
1758        BUG_ON(PageWriteback(page));
1759        mapping_set_error(page->mapping, err);
1760        set_page_writeback(page);
1761        do {
1762                struct buffer_head *next = bh->b_this_page;
1763                if (buffer_async_write(bh)) {
1764                        clear_buffer_dirty(bh);
1765                        submit_bh(WRITE, bh);
1766                        nr_underway++;
1767                }
1768                bh = next;
1769        } while (bh != head);
1770        unlock_page(page);
1771        goto done;
1772}
1773
1774/*
1775 * If a page has any new buffers, zero them out here, and mark them uptodate
1776 * and dirty so they'll be written out (in order to prevent uninitialised
1777 * block data from leaking). And clear the new bit.
1778 */
1779void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1780{
1781        unsigned int block_start, block_end;
1782        struct buffer_head *head, *bh;
1783
1784        BUG_ON(!PageLocked(page));
1785        if (!page_has_buffers(page))
1786                return;
1787
1788        bh = head = page_buffers(page);
1789        block_start = 0;
1790        do {
1791                block_end = block_start + bh->b_size;
1792
1793                if (buffer_new(bh)) {
1794                        if (block_end > from && block_start < to) {
1795                                if (!PageUptodate(page)) {
1796                                        unsigned start, size;
1797
1798                                        start = max(from, block_start);
1799                                        size = min(to, block_end) - start;
1800
1801                                        zero_user_page(page, start, size, KM_USER0);
1802                                        set_buffer_uptodate(bh);
1803                                }
1804
1805                                clear_buffer_new(bh);
1806                                mark_buffer_dirty(bh);
1807                        }
1808                }
1809
1810                block_start = block_end;
1811                bh = bh->b_this_page;
1812        } while (bh != head);
1813}
1814EXPORT_SYMBOL(page_zero_new_buffers);
1815
1816static int __block_prepare_write(struct inode *inode, struct page *page,
1817                unsigned from, unsigned to, get_block_t *get_block)
1818{
1819        unsigned block_start, block_end;
1820        sector_t block;
1821        int err = 0;
1822        unsigned blocksize, bbits;
1823        struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1824
1825        BUG_ON(!PageLocked(page));
1826        BUG_ON(from > PAGE_CACHE_SIZE);
1827        BUG_ON(to > PAGE_CACHE_SIZE);
1828        BUG_ON(from > to);
1829
1830        blocksize = 1 << inode->i_blkbits;
1831        if (!page_has_buffers(page))
1832                create_empty_buffers(page, blocksize, 0);
1833        head = page_buffers(page);
1834
1835        bbits = inode->i_blkbits;
1836        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1837
1838        for(bh = head, block_start = 0; bh != head || !block_start;
1839            block++, block_start=block_end, bh = bh->b_this_page) {
1840                block_end = block_start + blocksize;
1841                if (block_end <= from || block_start >= to) {
1842                        if (PageUptodate(page)) {
1843                                if (!buffer_uptodate(bh))
1844                                        set_buffer_uptodate(bh);
1845                        }
1846                        continue;
1847                }
1848                if (buffer_new(bh))
1849                        clear_buffer_new(bh);
1850                if (!buffer_mapped(bh)) {
1851                        WARN_ON(bh->b_size != blocksize);
1852                        err = get_block(inode, block, bh, 1);
1853                        if (err)
1854                                break;
1855                        if (buffer_new(bh)) {
1856                                unmap_underlying_metadata(bh->b_bdev,
1857                                                        bh->b_blocknr);
1858                                if (PageUptodate(page)) {
1859                                        clear_buffer_new(bh);
1860                                        set_buffer_uptodate(bh);
1861                                        mark_buffer_dirty(bh);
1862                                        continue;
1863                                }
1864                                if (block_end > to || block_start < from) {
1865                                        void *kaddr;
1866
1867                                        kaddr = kmap_atomic(page, KM_USER0);
1868                                        if (block_end > to)
1869                                                memset(kaddr+to, 0,
1870                                                        block_end-to);
1871                                        if (block_start < from)
1872                                                memset(kaddr+block_start,
1873                                                        0, from-block_start);
1874                                        flush_dcache_page(page);
1875                                        kunmap_atomic(kaddr, KM_USER0);
1876                                }
1877                                continue;
1878                        }
1879                }
1880                if (PageUptodate(page)) {
1881                        if (!buffer_uptodate(bh))
1882                                set_buffer_uptodate(bh);
1883                        continue; 
1884                }
1885                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1886                    !buffer_unwritten(bh) &&
1887                     (block_start < from || block_end > to)) {
1888                        ll_rw_block(READ, 1, &bh);
1889                        *wait_bh++=bh;
1890                }
1891        }
1892        /*
1893         * If we issued read requests - let them complete.
1894         */
1895        while(wait_bh > wait) {
1896                wait_on_buffer(*--wait_bh);
1897                if (!buffer_uptodate(*wait_bh))
1898                        err = -EIO;
1899        }
1900        if (unlikely(err))
1901                page_zero_new_buffers(page, from, to);
1902        return err;
1903}
1904
1905static int __block_commit_write(struct inode *inode, struct page *page,
1906                unsigned from, unsigned to)
1907{
1908        unsigned block_start, block_end;
1909        int partial = 0;
1910        unsigned blocksize;
1911        struct buffer_head *bh, *head;
1912
1913        blocksize = 1 << inode->i_blkbits;
1914
1915        for(bh = head = page_buffers(page), block_start = 0;
1916            bh != head || !block_start;
1917            block_start=block_end, bh = bh->b_this_page) {
1918                block_end = block_start + blocksize;
1919                if (block_end <= from || block_start >= to) {
1920                        if (!buffer_uptodate(bh))
1921                                partial = 1;
1922                } else {
1923                        set_buffer_uptodate(bh);
1924                        mark_buffer_dirty(bh);
1925                }
1926                clear_buffer_new(bh);
1927        }
1928
1929        /*
1930         * If this is a partial write which happened to make all buffers
1931         * uptodate then we can optimize away a bogus readpage() for
1932         * the next read(). Here we 'discover' whether the page went
1933         * uptodate as a result of this (potentially partial) write.
1934         */
1935        if (!partial)
1936                SetPageUptodate(page);
1937        return 0;
1938}
1939
1940/*
1941 * block_write_begin takes care of the basic task of block allocation and
1942 * bringing partial write blocks uptodate first.
1943 *
1944 * If *pagep is not NULL, then block_write_begin uses the locked page
1945 * at *pagep rather than allocating its own. In this case, the page will
1946 * not be unlocked or deallocated on failure.
1947 */
1948int block_write_begin(struct file *file, struct address_space *mapping,
1949                        loff_t pos, unsigned len, unsigned flags,
1950                        struct page **pagep, void **fsdata,
1951                        get_block_t *get_block)
1952{
1953        struct inode *inode = mapping->host;
1954        int status = 0;
1955        struct page *page;
1956        pgoff_t index;
1957        unsigned start, end;
1958        int ownpage = 0;
1959
1960        index = pos >> PAGE_CACHE_SHIFT;
1961        start = pos & (PAGE_CACHE_SIZE - 1);
1962        end = start + len;
1963
1964        page = *pagep;
1965        if (page == NULL) {
1966                ownpage = 1;
1967                page = __grab_cache_page(mapping, index);
1968                if (!page) {
1969                        status = -ENOMEM;
1970                        goto out;
1971                }
1972                *pagep = page;
1973        } else
1974                BUG_ON(!PageLocked(page));
1975
1976        status = __block_prepare_write(inode, page, start, end, get_block);
1977        if (unlikely(status)) {
1978                ClearPageUptodate(page);
1979
1980                if (ownpage) {
1981                        unlock_page(page);
1982                        page_cache_release(page);
1983                        *pagep = NULL;
1984
1985                        /*
1986                         * prepare_write() may have instantiated a few blocks
1987                         * outside i_size.  Trim these off again. Don't need
1988                         * i_size_read because we hold i_mutex.
1989                         */
1990                        if (pos + len > inode->i_size)
1991                                vmtruncate(inode, inode->i_size);
1992                }
1993                goto out;
1994        }
1995
1996out:
1997        return status;
1998}
1999EXPORT_SYMBOL(block_write_begin);
2000
2001int block_write_end(struct file *file, struct address_space *mapping,
2002                        loff_t pos, unsigned len, unsigned copied,
2003                        struct page *page, void *fsdata)
2004{
2005        struct inode *inode = mapping->host;
2006        unsigned start;
2007
2008        start = pos & (PAGE_CACHE_SIZE - 1);
2009
2010        if (unlikely(copied < len)) {
2011                /*
2012                 * The buffers that were written will now be uptodate, so we
2013                 * don't have to worry about a readpage reading them and
2014                 * overwriting a partial write. However if we have encountered
2015                 * a short write and only partially written into a buffer, it
2016                 * will not be marked uptodate, so a readpage might come in and
2017                 * destroy our partial write.
2018                 *
2019                 * Do the simplest thing, and just treat any short write to a
2020                 * non uptodate page as a zero-length write, and force the
2021                 * caller to redo the whole thing.
2022                 */
2023                if (!PageUptodate(page))
2024                        copied = 0;
2025
2026                page_zero_new_buffers(page, start+copied, start+len);
2027        }
2028        flush_dcache_page(page);
2029
2030        /* This could be a short (even 0-length) commit */
2031        __block_commit_write(inode, page, start, start+copied);
2032
2033        return copied;
2034}
2035EXPORT_SYMBOL(block_write_end);
2036
2037int generic_write_end(struct file *file, struct address_space *mapping,
2038                        loff_t pos, unsigned len, unsigned copied,
2039                        struct page *page, void *fsdata)
2040{
2041        struct inode *inode = mapping->host;
2042
2043        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2044
2045        /*
2046         * No need to use i_size_read() here, the i_size
2047         * cannot change under us because we hold i_mutex.
2048         *
2049         * But it's important to update i_size while still holding page lock:
2050         * page writeout could otherwise come in and zero beyond i_size.
2051         */
2052        if (pos+copied > inode->i_size) {
2053                i_size_write(inode, pos+copied);
2054                mark_inode_dirty(inode);
2055        }
2056
2057        unlock_page(page);
2058        page_cache_release(page);
2059
2060        return copied;
2061}
2062EXPORT_SYMBOL(generic_write_end);
2063
2064/*
2065 * Generic "read page" function for block devices that have the normal
2066 * get_block functionality. This is most of the block device filesystems.
2067 * Reads the page asynchronously --- the unlock_buffer() and
2068 * set/clear_buffer_uptodate() functions propagate buffer state into the
2069 * page struct once IO has completed.
2070 */
2071int block_read_full_page(struct page *page, get_block_t *get_block)
2072{
2073        struct inode *inode = page->mapping->host;
2074        sector_t iblock, lblock;
2075        struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2076        unsigned int blocksize;
2077        int nr, i;
2078        int fully_mapped = 1;
2079
2080        BUG_ON(!PageLocked(page));
2081        blocksize = 1 << inode->i_blkbits;
2082        if (!page_has_buffers(page))
2083                create_empty_buffers(page, blocksize, 0);
2084        head = page_buffers(page);
2085
2086        iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2087        lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2088        bh = head;
2089        nr = 0;
2090        i = 0;
2091
2092        do {
2093                if (buffer_uptodate(bh))
2094                        continue;
2095
2096                if (!buffer_mapped(bh)) {
2097                        int err = 0;
2098
2099                        fully_mapped = 0;
2100                        if (iblock < lblock) {
2101                                WARN_ON(bh->b_size != blocksize);
2102                                err = get_block(inode, iblock, bh, 0);
2103                                if (err)
2104                                        SetPageError(page);
2105                        }
2106                        if (!buffer_mapped(bh)) {
2107                                zero_user_page(page, i * blocksize, blocksize,
2108                                                KM_USER0);
2109                                if (!err)
2110                                        set_buffer_uptodate(bh);
2111                                continue;
2112                        }
2113                        /*
2114                         * get_block() might have updated the buffer
2115                         * synchronously
2116                         */
2117                        if (buffer_uptodate(bh))
2118                                continue;
2119                }
2120                arr[nr++] = bh;
2121        } while (i++, iblock++, (bh = bh->b_this_page) != head);
2122
2123        if (fully_mapped)
2124                SetPageMappedToDisk(page);
2125
2126        if (!nr) {
2127                /*
2128                 * All buffers are uptodate - we can set the page uptodate
2129                 * as well. But not if get_block() returned an error.
2130                 */
2131                if (!PageError(page))
2132                        SetPageUptodate(page);
2133                unlock_page(page);
2134                return 0;
2135        }
2136
2137        /* Stage two: lock the buffers */
2138        for (i = 0; i < nr; i++) {
2139                bh = arr[i];
2140                lock_buffer(bh);
2141                mark_buffer_async_read(bh);
2142        }
2143
2144        /*
2145         * Stage 3: start the IO.  Check for uptodateness
2146         * inside the buffer lock in case another process reading
2147         * the underlying blockdev brought it uptodate (the sct fix).
2148         */
2149        for (i = 0; i < nr; i++) {
2150                bh = arr[i];
2151                if (buffer_uptodate(bh))
2152                        end_buffer_async_read(bh, 1);
2153                else
2154                        submit_bh(READ, bh);
2155        }
2156        return 0;
2157}
2158
2159/* utility function for filesystems that need to do work on expanding
2160 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2161 * deal with the hole.  
2162 */
2163int generic_cont_expand_simple(struct inode *inode, loff_t size)
2164{
2165        struct address_space *mapping = inode->i_mapping;
2166        struct page *page;
2167        void *fsdata;
2168        unsigned long limit;
2169        int err;
2170
2171        err = -EFBIG;
2172        limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2173        if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2174                send_sig(SIGXFSZ, current, 0);
2175                goto out;
2176        }
2177        if (size > inode->i_sb->s_maxbytes)
2178                goto out;
2179
2180        err = pagecache_write_begin(NULL, mapping, size, 0,
2181                                AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2182                                &page, &fsdata);
2183        if (err)
2184                goto out;
2185
2186        err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2187        BUG_ON(err > 0);
2188
2189out:
2190        return err;
2191}
2192
2193int cont_expand_zero(struct file *file, struct address_space *mapping,
2194                        loff_t pos, loff_t *bytes)
2195{
2196        struct inode *inode = mapping->host;
2197        unsigned blocksize = 1 << inode->i_blkbits;
2198        struct page *page;
2199        void *fsdata;
2200        pgoff_t index, curidx;
2201        loff_t curpos;
2202        unsigned zerofrom, offset, len;
2203        int err = 0;
2204
2205        index = pos >> PAGE_CACHE_SHIFT;
2206        offset = pos & ~PAGE_CACHE_MASK;
2207
2208        while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2209                zerofrom = curpos & ~PAGE_CACHE_MASK;
2210                if (zerofrom & (blocksize-1)) {
2211                        *bytes |= (blocksize-1);
2212                        (*bytes)++;
2213                }
2214                len = PAGE_CACHE_SIZE - zerofrom;
2215
2216                err = pagecache_write_begin(file, mapping, curpos, len,
2217                                                AOP_FLAG_UNINTERRUPTIBLE,
2218                                                &page, &fsdata);
2219                if (err)
2220                        goto out;
2221                zero_user_page(page, zerofrom, len, KM_USER0);
2222                err = pagecache_write_end(file, mapping, curpos, len, len,
2223                                                page, fsdata);
2224                if (err < 0)
2225                        goto out;
2226                BUG_ON(err != len);
2227                err = 0;
2228        }
2229
2230        /* page covers the boundary, find the boundary offset */
2231        if (index == curidx) {
2232                zerofrom = curpos & ~PAGE_CACHE_MASK;
2233                /* if we will expand the thing last block will be filled */
2234                if (offset <= zerofrom) {
2235                        goto out;
2236                }
2237                if (zerofrom & (blocksize-1)) {
2238                        *bytes |= (blocksize-1);
2239                        (*bytes)++;
2240                }
2241                len = offset - zerofrom;
2242
2243                err = pagecache_write_begin(file, mapping, curpos, len,
2244                                                AOP_FLAG_UNINTERRUPTIBLE,
2245                                                &page, &fsdata);
2246                if (err)
2247                        goto out;
2248                zero_user_page(page, zerofrom, len, KM_USER0);
2249                err = pagecache_write_end(file, mapping, curpos, len, len,
2250                                                page, fsdata);
2251                if (err < 0)
2252                        goto out;
2253                BUG_ON(err != len);
2254                err = 0;
2255        }
2256out:
2257        return err;
2258}
2259
2260/*
2261 * For moronic filesystems that do not allow holes in file.
2262 * We may have to extend the file.
2263 */
2264int cont_write_begin(struct file *file, struct address_space *mapping,
2265                        loff_t pos, unsigned len, unsigned flags,
2266                        struct page **pagep, void **fsdata,
2267                        get_block_t *get_block, loff_t *bytes)
2268{
2269        struct inode *inode = mapping->host;
2270        unsigned blocksize = 1 << inode->i_blkbits;
2271        unsigned zerofrom;
2272        int err;
2273
2274        err = cont_expand_zero(file, mapping, pos, bytes);
2275        if (err)
2276                goto out;
2277
2278        zerofrom = *bytes & ~PAGE_CACHE_MASK;
2279        if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2280                *bytes |= (blocksize-1);
2281                (*bytes)++;
2282        }
2283
2284        *pagep = NULL;
2285        err = block_write_begin(file, mapping, pos, len,
2286                                flags, pagep, fsdata, get_block);
2287out:
2288        return err;
2289}
2290
2291int block_prepare_write(struct page *page, unsigned from, unsigned to,
2292                        get_block_t *get_block)
2293{
2294        struct inode *inode = page->mapping->host;
2295        int err = __block_prepare_write(inode, page, from, to, get_block);
2296        if (err)
2297                ClearPageUptodate(page);
2298        return err;
2299}
2300
2301int block_commit_write(struct page *page, unsigned from, unsigned to)
2302{
2303        struct inode *inode = page->mapping->host;
2304        __block_commit_write(inode,page,from,to);
2305        return 0;
2306}
2307
2308int generic_commit_write(struct file *file, struct page *page,
2309                unsigned from, unsigned to)
2310{
2311        struct inode *inode = page->mapping->host;
2312        loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2313        __block_commit_write(inode,page,from,to);
2314        /*
2315         * No need to use i_size_read() here, the i_size
2316         * cannot change under us because we hold i_mutex.
2317         */
2318        if (pos > inode->i_size) {
2319                i_size_write(inode, pos);
2320                mark_inode_dirty(inode);
2321        }
2322        return 0;
2323}
2324
2325/*
2326 * block_page_mkwrite() is not allowed to change the file size as it gets
2327 * called from a page fault handler when a page is first dirtied. Hence we must
2328 * be careful to check for EOF conditions here. We set the page up correctly
2329 * for a written page which means we get ENOSPC checking when writing into
2330 * holes and correct delalloc and unwritten extent mapping on filesystems that
2331 * support these features.
2332 *
2333 * We are not allowed to take the i_mutex here so we have to play games to
2334 * protect against truncate races as the page could now be beyond EOF.  Because
2335 * vmtruncate() writes the inode size before removing pages, once we have the
2336 * page lock we can determine safely if the page is beyond EOF. If it is not
2337 * beyond EOF, then the page is guaranteed safe against truncation until we
2338 * unlock the page.
2339 */
2340int
2341block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2342                   get_block_t get_block)
2343{
2344        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2345        unsigned long end;
2346        loff_t size;
2347        int ret = -EINVAL;
2348
2349        lock_page(page);
2350        size = i_size_read(inode);
2351        if ((page->mapping != inode->i_mapping) ||
2352            (page_offset(page) > size)) {
2353                /* page got truncated out from underneath us */
2354                goto out_unlock;
2355        }
2356
2357        /* page is wholly or partially inside EOF */
2358        if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2359                end = size & ~PAGE_CACHE_MASK;
2360        else
2361                end = PAGE_CACHE_SIZE;
2362
2363        ret = block_prepare_write(page, 0, end, get_block);
2364        if (!ret)
2365                ret = block_commit_write(page, 0, end);
2366
2367out_unlock:
2368        unlock_page(page);
2369        return ret;
2370}
2371
2372/*
2373 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2374 * immediately, while under the page lock.  So it needs a special end_io
2375 * handler which does not touch the bh after unlocking it.
2376 */
2377static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2378{
2379        __end_buffer_read_notouch(bh, uptodate);
2380}
2381
2382/*
2383 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2384 * the page (converting it to circular linked list and taking care of page
2385 * dirty races).
2386 */
2387static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2388{
2389        struct buffer_head *bh;
2390
2391        BUG_ON(!PageLocked(page));
2392
2393        spin_lock(&page->mapping->private_lock);
2394        bh = head;
2395        do {
2396                if (PageDirty(page))
2397                        set_buffer_dirty(bh);
2398                if (!bh->b_this_page)
2399                        bh->b_this_page = head;
2400                bh = bh->b_this_page;
2401        } while (bh != head);
2402        attach_page_buffers(page, head);
2403        spin_unlock(&page->mapping->private_lock);
2404}
2405
2406/*
2407 * On entry, the page is fully not uptodate.
2408 * On exit the page is fully uptodate in the areas outside (from,to)
2409 */
2410int nobh_write_begin(struct file *file, struct address_space *mapping,
2411                        loff_t pos, unsigned len, unsigned flags,
2412                        struct page **pagep, void **fsdata,
2413                        get_block_t *get_block)
2414{
2415        struct inode *inode = mapping->host;
2416        const unsigned blkbits = inode->i_blkbits;
2417        const unsigned blocksize = 1 << blkbits;
2418        struct buffer_head *head, *bh;
2419        struct page *page;
2420        pgoff_t index;
2421        unsigned from, to;
2422        unsigned block_in_page;
2423        unsigned block_start, block_end;
2424        sector_t block_in_file;
2425        char *kaddr;
2426        int nr_reads = 0;
2427        int ret = 0;
2428        int is_mapped_to_disk = 1;
2429
2430        index = pos >> PAGE_CACHE_SHIFT;
2431        from = pos & (PAGE_CACHE_SIZE - 1);
2432        to = from + len;
2433
2434        page = __grab_cache_page(mapping, index);
2435        if (!page)
2436                return -ENOMEM;
2437        *pagep = page;
2438        *fsdata = NULL;
2439
2440        if (page_has_buffers(page)) {
2441                unlock_page(page);
2442                page_cache_release(page);
2443                *pagep = NULL;
2444                return block_write_begin(file, mapping, pos, len, flags, pagep,
2445                                        fsdata, get_block);
2446        }
2447
2448        if (PageMappedToDisk(page))
2449                return 0;
2450
2451        /*
2452         * Allocate buffers so that we can keep track of state, and potentially
2453         * attach them to the page if an error occurs. In the common case of
2454         * no error, they will just be freed again without ever being attached
2455         * to the page (which is all OK, because we're under the page lock).
2456         *
2457         * Be careful: the buffer linked list is a NULL terminated one, rather
2458         * than the circular one we're used to.
2459         */
2460        head = alloc_page_buffers(page, blocksize, 0);
2461        if (!head) {
2462                ret = -ENOMEM;
2463                goto out_release;
2464        }
2465
2466        block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2467
2468        /*
2469         * We loop across all blocks in the page, whether or not they are
2470         * part of the affected region.  This is so we can discover if the
2471         * page is fully mapped-to-disk.
2472         */
2473        for (block_start = 0, block_in_page = 0, bh = head;
2474                  block_start < PAGE_CACHE_SIZE;
2475                  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2476                int create;
2477
2478                block_end = block_start + blocksize;
2479                bh->b_state = 0;
2480                create = 1;
2481                if (block_start >= to)
2482                        create = 0;
2483                ret = get_block(inode, block_in_file + block_in_page,
2484                                        bh, create);
2485                if (ret)
2486                        goto failed;
2487                if (!buffer_mapped(bh))
2488                        is_mapped_to_disk = 0;
2489                if (buffer_new(bh))
2490                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2491                if (PageUptodate(page)) {
2492                        set_buffer_uptodate(bh);
2493                        continue;
2494                }
2495                if (buffer_new(bh) || !buffer_mapped(bh)) {
2496                        kaddr = kmap_atomic(page, KM_USER0);
2497                        if (block_start < from)
2498                                memset(kaddr+block_start, 0, from-block_start);
2499                        if (block_end > to)
2500                                memset(kaddr + to, 0, block_end - to);
2501                        flush_dcache_page(page);
2502                        kunmap_atomic(kaddr, KM_USER0);
2503                        continue;
2504                }
2505                if (buffer_uptodate(bh))
2506                        continue;       /* reiserfs does this */
2507                if (block_start < from || block_end > to) {
2508                        lock_buffer(bh);
2509                        bh->b_end_io = end_buffer_read_nobh;
2510                        submit_bh(READ, bh);
2511                        nr_reads++;
2512                }
2513        }
2514
2515        if (nr_reads) {
2516                /*
2517                 * The page is locked, so these buffers are protected from
2518                 * any VM or truncate activity.  Hence we don't need to care
2519                 * for the buffer_head refcounts.
2520                 */
2521                for (bh = head; bh; bh = bh->b_this_page) {
2522                        wait_on_buffer(bh);
2523                        if (!buffer_uptodate(bh))
2524                                ret = -EIO;
2525                }
2526                if (ret)
2527                        goto failed;
2528        }
2529
2530        if (is_mapped_to_disk)
2531                SetPageMappedToDisk(page);
2532
2533        *fsdata = head; /* to be released by nobh_write_end */
2534
2535        return 0;
2536
2537failed:
2538        BUG_ON(!ret);
2539        /*
2540         * Error recovery is a bit difficult. We need to zero out blocks that
2541         * were newly allocated, and dirty them to ensure they get written out.
2542         * Buffers need to be attached to the page at this point, otherwise
2543         * the handling of potential IO errors during writeout would be hard
2544         * (could try doing synchronous writeout, but what if that fails too?)
2545         */
2546        attach_nobh_buffers(page, head);
2547        page_zero_new_buffers(page, from, to);
2548
2549out_release:
2550        unlock_page(page);
2551        page_cache_release(page);
2552        *pagep = NULL;
2553
2554        if (pos + len > inode->i_size)
2555                vmtruncate(inode, inode->i_size);
2556
2557        return ret;
2558}
2559EXPORT_SYMBOL(nobh_write_begin);
2560
2561int nobh_write_end(struct file *file, struct address_space *mapping,
2562                        loff_t pos, unsigned len, unsigned copied,
2563                        struct page *page, void *fsdata)
2564{
2565        struct inode *inode = page->mapping->host;
2566        struct buffer_head *head = fsdata;
2567        struct buffer_head *bh;
2568
2569        if (!PageMappedToDisk(page)) {
2570                if (unlikely(copied < len) && !page_has_buffers(page))
2571                        attach_nobh_buffers(page, head);
2572                if (page_has_buffers(page))
2573                        return generic_write_end(file, mapping, pos, len,
2574                                                copied, page, fsdata);
2575        }
2576
2577        SetPageUptodate(page);
2578        set_page_dirty(page);
2579        if (pos+copied > inode->i_size) {
2580                i_size_write(inode, pos+copied);
2581                mark_inode_dirty(inode);
2582        }
2583
2584        unlock_page(page);
2585        page_cache_release(page);
2586
2587        while (head) {
2588                bh = head;
2589                head = head->b_this_page;
2590                free_buffer_head(bh);
2591        }
2592
2593        return copied;
2594}
2595EXPORT_SYMBOL(nobh_write_end);
2596
2597/*
2598 * nobh_writepage() - based on block_full_write_page() except
2599 * that it tries to operate without attaching bufferheads to
2600 * the page.
2601 */
2602int nobh_writepage(struct page *page, get_block_t *get_block,
2603                        struct writeback_control *wbc)
2604{
2605        struct inode * const inode = page->mapping->host;
2606        loff_t i_size = i_size_read(inode);
2607        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2608        unsigned offset;
2609        int ret;
2610
2611        /* Is the page fully inside i_size? */
2612        if (page->index < end_index)
2613                goto out;
2614
2615        /* Is the page fully outside i_size? (truncate in progress) */
2616        offset = i_size & (PAGE_CACHE_SIZE-1);
2617        if (page->index >= end_index+1 || !offset) {
2618                /*
2619                 * The page may have dirty, unmapped buffers.  For example,
2620                 * they may have been added in ext3_writepage().  Make them
2621                 * freeable here, so the page does not leak.
2622                 */
2623#if 0
2624                /* Not really sure about this  - do we need this ? */
2625                if (page->mapping->a_ops->invalidatepage)
2626                        page->mapping->a_ops->invalidatepage(page, offset);
2627#endif
2628                unlock_page(page);
2629                return 0; /* don't care */
2630        }
2631
2632        /*
2633         * The page straddles i_size.  It must be zeroed out on each and every
2634         * writepage invocation because it may be mmapped.  "A file is mapped
2635         * in multiples of the page size.  For a file that is not a multiple of
2636         * the  page size, the remaining memory is zeroed when mapped, and
2637         * writes to that region are not written out to the file."
2638         */
2639        zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2640out:
2641        ret = mpage_writepage(page, get_block, wbc);
2642        if (ret == -EAGAIN)
2643                ret = __block_write_full_page(inode, page, get_block, wbc);
2644        return ret;
2645}
2646EXPORT_SYMBOL(nobh_writepage);
2647
2648int nobh_truncate_page(struct address_space *mapping,
2649                        loff_t from, get_block_t *get_block)
2650{
2651        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2652        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2653        unsigned blocksize;
2654        sector_t iblock;
2655        unsigned length, pos;
2656        struct inode *inode = mapping->host;
2657        struct page *page;
2658        struct buffer_head map_bh;
2659        int err;
2660
2661        blocksize = 1 << inode->i_blkbits;
2662        length = offset & (blocksize - 1);
2663
2664        /* Block boundary? Nothing to do */
2665        if (!length)
2666                return 0;
2667
2668        length = blocksize - length;
2669        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2670
2671        page = grab_cache_page(mapping, index);
2672        err = -ENOMEM;
2673        if (!page)
2674                goto out;
2675
2676        if (page_has_buffers(page)) {
2677has_buffers:
2678                unlock_page(page);
2679                page_cache_release(page);
2680                return block_truncate_page(mapping, from, get_block);
2681        }
2682
2683        /* Find the buffer that contains "offset" */
2684        pos = blocksize;
2685        while (offset >= pos) {
2686                iblock++;
2687                pos += blocksize;
2688        }
2689
2690        err = get_block(inode, iblock, &map_bh, 0);
2691        if (err)
2692                goto unlock;
2693        /* unmapped? It's a hole - nothing to do */
2694        if (!buffer_mapped(&map_bh))
2695                goto unlock;
2696
2697        /* Ok, it's mapped. Make sure it's up-to-date */
2698        if (!PageUptodate(page)) {
2699                err = mapping->a_ops->readpage(NULL, page);
2700                if (err) {
2701                        page_cache_release(page);
2702                        goto out;
2703                }
2704                lock_page(page);
2705                if (!PageUptodate(page)) {
2706                        err = -EIO;
2707                        goto unlock;
2708                }
2709                if (page_has_buffers(page))
2710                        goto has_buffers;
2711        }
2712        zero_user_page(page, offset, length, KM_USER0);
2713        set_page_dirty(page);
2714        err = 0;
2715
2716unlock:
2717        unlock_page(page);
2718        page_cache_release(page);
2719out:
2720        return err;
2721}
2722EXPORT_SYMBOL(nobh_truncate_page);
2723
2724int block_truncate_page(struct address_space *mapping,
2725                        loff_t from, get_block_t *get_block)
2726{
2727        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2728        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2729        unsigned blocksize;
2730        sector_t iblock;
2731        unsigned length, pos;
2732        struct inode *inode = mapping->host;
2733        struct page *page;
2734        struct buffer_head *bh;
2735        int err;
2736
2737        blocksize = 1 << inode->i_blkbits;
2738        length = offset & (blocksize - 1);
2739
2740        /* Block boundary? Nothing to do */
2741        if (!length)
2742                return 0;
2743
2744        length = blocksize - length;
2745        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2746        
2747        page = grab_cache_page(mapping, index);
2748        err = -ENOMEM;
2749        if (!page)
2750                goto out;
2751
2752        if (!page_has_buffers(page))
2753                create_empty_buffers(page, blocksize, 0);
2754
2755        /* Find the buffer that contains "offset" */
2756        bh = page_buffers(page);
2757        pos = blocksize;
2758        while (offset >= pos) {
2759                bh = bh->b_this_page;
2760                iblock++;
2761                pos += blocksize;
2762        }
2763
2764        err = 0;
2765        if (!buffer_mapped(bh)) {
2766                WARN_ON(bh->b_size != blocksize);
2767                err = get_block(inode, iblock, bh, 0);
2768                if (err)
2769                        goto unlock;
2770                /* unmapped? It's a hole - nothing to do */
2771                if (!buffer_mapped(bh))
2772                        goto unlock;
2773        }
2774
2775        /* Ok, it's mapped. Make sure it's up-to-date */
2776        if (PageUptodate(page))
2777                set_buffer_uptodate(bh);
2778
2779        if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2780                err = -EIO;
2781                ll_rw_block(READ, 1, &bh);
2782                wait_on_buffer(bh);
2783                /* Uhhuh. Read error. Complain and punt. */
2784                if (!buffer_uptodate(bh))
2785                        goto unlock;
2786        }
2787
2788        zero_user_page(page, offset, length, KM_USER0);
2789        mark_buffer_dirty(bh);
2790        err = 0;
2791
2792unlock:
2793        unlock_page(page);
2794        page_cache_release(page);
2795out:
2796        return err;
2797}
2798
2799/*
2800 * The generic ->writepage function for buffer-backed address_spaces
2801 */
2802int block_write_full_page(struct page *page, get_block_t *get_block,
2803                        struct writeback_control *wbc)
2804{
2805        struct inode * const inode = page->mapping->host;
2806        loff_t i_size = i_size_read(inode);
2807        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2808        unsigned offset;
2809
2810        /* Is the page fully inside i_size? */
2811        if (page->index < end_index)
2812                return __block_write_full_page(inode, page, get_block, wbc);
2813
2814        /* Is the page fully outside i_size? (truncate in progress) */
2815        offset = i_size & (PAGE_CACHE_SIZE-1);
2816        if (page->index >= end_index+1 || !offset) {
2817                /*
2818                 * The page may have dirty, unmapped buffers.  For example,
2819                 * they may have been added in ext3_writepage().  Make them
2820                 * freeable here, so the page does not leak.
2821                 */
2822                do_invalidatepage(page, 0);
2823                unlock_page(page);
2824                return 0; /* don't care */
2825        }
2826
2827        /*
2828         * The page straddles i_size.  It must be zeroed out on each and every
2829         * writepage invokation because it may be mmapped.  "A file is mapped
2830         * in multiples of the page size.  For a file that is not a multiple of
2831         * the  page size, the remaining memory is zeroed when mapped, and
2832         * writes to that region are not written out to the file."
2833         */
2834        zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2835        return __block_write_full_page(inode, page, get_block, wbc);
2836}
2837
2838sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2839                            get_block_t *get_block)
2840{
2841        struct buffer_head tmp;
2842        struct inode *inode = mapping->host;
2843        tmp.b_state = 0;
2844        tmp.b_blocknr = 0;
2845        tmp.b_size = 1 << inode->i_blkbits;
2846        get_block(inode, block, &tmp, 0);
2847        return tmp.b_blocknr;
2848}
2849
2850static void end_bio_bh_io_sync(struct bio *bio, int err)
2851{
2852        struct buffer_head *bh = bio->bi_private;
2853
2854        if (err == -EOPNOTSUPP) {
2855                set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2856                set_bit(BH_Eopnotsupp, &bh->b_state);
2857        }
2858
2859        bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2860        bio_put(bio);
2861}
2862
2863int submit_bh(int rw, struct buffer_head * bh)
2864{
2865        struct bio *bio;
2866        int ret = 0;
2867
2868        BUG_ON(!buffer_locked(bh));
2869        BUG_ON(!buffer_mapped(bh));
2870        BUG_ON(!bh->b_end_io);
2871
2872        if (buffer_ordered(bh) && (rw == WRITE))
2873                rw = WRITE_BARRIER;
2874
2875        /*
2876         * Only clear out a write error when rewriting, should this
2877         * include WRITE_SYNC as well?
2878         */
2879        if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2880                clear_buffer_write_io_error(bh);
2881
2882        /*
2883         * from here on down, it's all bio -- do the initial mapping,
2884         * submit_bio -> generic_make_request may further map this bio around
2885         */
2886        bio = bio_alloc(GFP_NOIO, 1);
2887
2888        bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2889        bio->bi_bdev = bh->b_bdev;
2890        bio->bi_io_vec[0].bv_page = bh->b_page;
2891        bio->bi_io_vec[0].bv_len = bh->b_size;
2892        bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2893
2894        bio->bi_vcnt = 1;
2895        bio->bi_idx = 0;
2896        bio->bi_size = bh->b_size;
2897
2898        bio->bi_end_io = end_bio_bh_io_sync;
2899        bio->bi_private = bh;
2900
2901        bio_get(bio);
2902        submit_bio(rw, bio);
2903
2904        if (bio_flagged(bio, BIO_EOPNOTSUPP))
2905                ret = -EOPNOTSUPP;
2906
2907        bio_put(bio);
2908        return ret;
2909}
2910
2911/**
2912 * ll_rw_block: low-level access to block devices (DEPRECATED)
2913 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2914 * @nr: number of &struct buffer_heads in the array
2915 * @bhs: array of pointers to &struct buffer_head
2916 *
2917 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2918 * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2919 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2920 * are sent to disk. The fourth %READA option is described in the documentation
2921 * for generic_make_request() which ll_rw_block() calls.
2922 *
2923 * This function drops any buffer that it cannot get a lock on (with the
2924 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2925 * clean when doing a write request, and any buffer that appears to be
2926 * up-to-date when doing read request.  Further it marks as clean buffers that
2927 * are processed for writing (the buffer cache won't assume that they are
2928 * actually clean until the buffer gets unlocked).
2929 *
2930 * ll_rw_block sets b_end_io to simple completion handler that marks
2931 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2932 * any waiters. 
2933 *
2934 * All of the buffers must be for the same device, and must also be a
2935 * multiple of the current approved size for the device.
2936 */
2937void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2938{
2939        int i;
2940
2941        for (i = 0; i < nr; i++) {
2942                struct buffer_head *bh = bhs[i];
2943
2944                if (rw == SWRITE)
2945                        lock_buffer(bh);
2946                else if (test_set_buffer_locked(bh))
2947                        continue;
2948
2949                if (rw == WRITE || rw == SWRITE) {
2950                        if (test_clear_buffer_dirty(bh)) {
2951                                bh->b_end_io = end_buffer_write_sync;
2952                                get_bh(bh);
2953                                submit_bh(WRITE, bh);
2954                                continue;
2955                        }
2956                } else {
2957                        if (!buffer_uptodate(bh)) {
2958                                bh->b_end_io = end_buffer_read_sync;
2959                                get_bh(bh);
2960                                submit_bh(rw, bh);
2961                                continue;
2962                        }
2963                }
2964                unlock_buffer(bh);
2965        }
2966}
2967
2968/*
2969 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2970 * and then start new I/O and then wait upon it.  The caller must have a ref on
2971 * the buffer_head.
2972 */
2973int sync_dirty_buffer(struct buffer_head *bh)
2974{
2975        int ret = 0;
2976
2977        WARN_ON(atomic_read(&bh->b_count) < 1);
2978        lock_buffer(bh);
2979        if (test_clear_buffer_dirty(bh)) {
2980                get_bh(bh);
2981                bh->b_end_io = end_buffer_write_sync;
2982                ret = submit_bh(WRITE, bh);
2983                wait_on_buffer(bh);
2984                if (buffer_eopnotsupp(bh)) {
2985                        clear_buffer_eopnotsupp(bh);
2986                        ret = -EOPNOTSUPP;
2987                }
2988                if (!ret && !buffer_uptodate(bh))
2989                        ret = -EIO;
2990        } else {
2991                unlock_buffer(bh);
2992        }
2993        return ret;
2994}
2995
2996/*
2997 * try_to_free_buffers() checks if all the buffers on this particular page
2998 * are unused, and releases them if so.
2999 *
3000 * Exclusion against try_to_free_buffers may be obtained by either
3001 * locking the page or by holding its mapping's private_lock.
3002 *
3003 * If the page is dirty but all the buffers are clean then we need to
3004 * be sure to mark the page clean as well.  This is because the page
3005 * may be against a block device, and a later reattachment of buffers
3006 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3007 * filesystem data on the same device.
3008 *
3009 * The same applies to regular filesystem pages: if all the buffers are
3010 * clean then we set the page clean and proceed.  To do that, we require
3011 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3012 * private_lock.
3013 *
3014 * try_to_free_buffers() is non-blocking.
3015 */
3016static inline int buffer_busy(struct buffer_head *bh)
3017{
3018        return atomic_read(&bh->b_count) |
3019                (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3020}
3021
3022static int
3023drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3024{
3025        struct buffer_head *head = page_buffers(page);
3026        struct buffer_head *bh;
3027
3028        bh = head;
3029        do {
3030                if (buffer_write_io_error(bh) && page->mapping)
3031                        set_bit(AS_EIO, &page->mapping->flags);
3032                if (buffer_busy(bh))
3033                        goto failed;
3034                bh = bh->b_this_page;
3035        } while (bh != head);
3036
3037        do {
3038                struct buffer_head *next = bh->b_this_page;
3039
3040                if (!list_empty(&bh->b_assoc_buffers))
3041                        __remove_assoc_queue(bh);
3042                bh = next;
3043        } while (bh != head);
3044        *buffers_to_free = head;
3045        __clear_page_buffers(page);
3046        return 1;
3047failed:
3048        return 0;
3049}
3050
3051int try_to_free_buffers(struct page *page)
3052{
3053        struct address_space * const mapping = page->mapping;
3054        struct buffer_head *buffers_to_free = NULL;
3055        int ret = 0;
3056
3057        BUG_ON(!PageLocked(page));
3058        if (PageWriteback(page))
3059                return 0;
3060
3061        if (mapping == NULL) {          /* can this still happen? */
3062                ret = drop_buffers(page, &buffers_to_free);
3063                goto out;
3064        }
3065
3066        spin_lock(&mapping->private_lock);
3067        ret = drop_buffers(page, &buffers_to_free);
3068
3069        /*
3070         * If the filesystem writes its buffers by hand (eg ext3)
3071         * then we can have clean buffers against a dirty page.  We
3072         * clean the page here; otherwise the VM will never notice
3073         * that the filesystem did any IO at all.
3074         *
3075         * Also, during truncate, discard_buffer will have marked all
3076         * the page's buffers clean.  We discover that here and clean
3077         * the page also.
3078         *
3079         * private_lock must be held over this entire operation in order
3080         * to synchronise against __set_page_dirty_buffers and prevent the
3081         * dirty bit from being lost.
3082         */
3083        if (ret)
3084                cancel_dirty_page(page, PAGE_CACHE_SIZE);
3085        spin_unlock(&mapping->private_lock);
3086out:
3087        if (buffers_to_free) {
3088                struct buffer_head *bh = buffers_to_free;
3089
3090                do {
3091                        struct buffer_head *next = bh->b_this_page;
3092                        free_buffer_head(bh);
3093                        bh = next;
3094                } while (bh != buffers_to_free);
3095        }
3096        return ret;
3097}
3098EXPORT_SYMBOL(try_to_free_buffers);
3099
3100void block_sync_page(struct page *page)
3101{
3102        struct address_space *mapping;
3103
3104        smp_mb();
3105        mapping = page_mapping(page);
3106        if (mapping)
3107                blk_run_backing_dev(mapping->backing_dev_info, page);
3108}
3109
3110/*
3111 * There are no bdflush tunables left.  But distributions are
3112 * still running obsolete flush daemons, so we terminate them here.
3113 *
3114 * Use of bdflush() is deprecated and will be removed in a future kernel.
3115 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3116 */
3117asmlinkage long sys_bdflush(int func, long data)
3118{
3119        static int msg_count;
3120
3121        if (!capable(CAP_SYS_ADMIN))
3122                return -EPERM;
3123
3124        if (msg_count < 5) {
3125                msg_count++;
3126                printk(KERN_INFO
3127                        "warning: process `%s' used the obsolete bdflush"
3128                        " system call\n", current->comm);
3129                printk(KERN_INFO "Fix your initscripts?\n");
3130        }
3131
3132        if (func == 1)
3133                do_exit(0);
3134        return 0;
3135}
3136
3137/*
3138 * Buffer-head allocation
3139 */
3140static struct kmem_cache *bh_cachep;
3141
3142/*
3143 * Once the number of bh's in the machine exceeds this level, we start
3144 * stripping them in writeback.
3145 */
3146static int max_buffer_heads;
3147
3148int buffer_heads_over_limit;
3149
3150struct bh_accounting {
3151        int nr;                 /* Number of live bh's */
3152        int ratelimit;          /* Limit cacheline bouncing */
3153};
3154
3155static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3156
3157static void recalc_bh_state(void)
3158{
3159        int i;
3160        int tot = 0;
3161
3162        if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3163                return;
3164        __get_cpu_var(bh_accounting).ratelimit = 0;
3165        for_each_online_cpu(i)
3166                tot += per_cpu(bh_accounting, i).nr;
3167        buffer_heads_over_limit = (tot > max_buffer_heads);
3168}
3169        
3170struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3171{
3172        struct buffer_head *ret = kmem_cache_zalloc(bh_cachep,
3173                                set_migrateflags(gfp_flags, __GFP_RECLAIMABLE));
3174        if (ret) {
3175                INIT_LIST_HEAD(&ret->b_assoc_buffers);
3176                get_cpu_var(bh_accounting).nr++;
3177                recalc_bh_state();
3178                put_cpu_var(bh_accounting);
3179        }
3180        return ret;
3181}
3182EXPORT_SYMBOL(alloc_buffer_head);
3183
3184void free_buffer_head(struct buffer_head *bh)
3185{
3186        BUG_ON(!list_empty(&bh->b_assoc_buffers));
3187        kmem_cache_free(bh_cachep, bh);
3188        get_cpu_var(bh_accounting).nr--;
3189        recalc_bh_state();
3190        put_cpu_var(bh_accounting);
3191}
3192EXPORT_SYMBOL(free_buffer_head);
3193
3194static void buffer_exit_cpu(int cpu)
3195{
3196        int i;
3197        struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3198
3199        for (i = 0; i < BH_LRU_SIZE; i++) {
3200                brelse(b->bhs[i]);
3201                b->bhs[i] = NULL;
3202        }
3203        get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3204        per_cpu(bh_accounting, cpu).nr = 0;
3205        put_cpu_var(bh_accounting);
3206}
3207
3208static int buffer_cpu_notify(struct notifier_block *self,
3209                              unsigned long action, void *hcpu)
3210{
3211        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3212                buffer_exit_cpu((unsigned long)hcpu);
3213        return NOTIFY_OK;
3214}
3215
3216void __init buffer_init(void)
3217{
3218        int nrpages;
3219
3220        bh_cachep = KMEM_CACHE(buffer_head,
3221                        SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3222
3223        /*
3224         * Limit the bh occupancy to 10% of ZONE_NORMAL
3225         */
3226        nrpages = (nr_free_buffer_pages() * 10) / 100;
3227        max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3228        hotcpu_notifier(buffer_cpu_notify, 0);
3229}
3230
3231EXPORT_SYMBOL(__bforget);
3232EXPORT_SYMBOL(__brelse);
3233EXPORT_SYMBOL(__wait_on_buffer);
3234EXPORT_SYMBOL(block_commit_write);
3235EXPORT_SYMBOL(block_prepare_write);
3236EXPORT_SYMBOL(block_page_mkwrite);
3237EXPORT_SYMBOL(block_read_full_page);
3238EXPORT_SYMBOL(block_sync_page);
3239EXPORT_SYMBOL(block_truncate_page);
3240EXPORT_SYMBOL(block_write_full_page);
3241EXPORT_SYMBOL(cont_write_begin);
3242EXPORT_SYMBOL(end_buffer_read_sync);
3243EXPORT_SYMBOL(end_buffer_write_sync);
3244EXPORT_SYMBOL(file_fsync);
3245EXPORT_SYMBOL(fsync_bdev);
3246EXPORT_SYMBOL(generic_block_bmap);
3247EXPORT_SYMBOL(generic_commit_write);
3248EXPORT_SYMBOL(generic_cont_expand_simple);
3249EXPORT_SYMBOL(init_buffer);
3250EXPORT_SYMBOL(invalidate_bdev);
3251EXPORT_SYMBOL(ll_rw_block);
3252EXPORT_SYMBOL(mark_buffer_dirty);
3253EXPORT_SYMBOL(submit_bh);
3254EXPORT_SYMBOL(sync_dirty_buffer);
3255EXPORT_SYMBOL(unlock_buffer);
3256