linux/fs/ext2/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext2/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@dcs.ed.ac.uk), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext2_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/smp_lock.h>
  26#include <linux/time.h>
  27#include <linux/highuid.h>
  28#include <linux/pagemap.h>
  29#include <linux/quotaops.h>
  30#include <linux/module.h>
  31#include <linux/writeback.h>
  32#include <linux/buffer_head.h>
  33#include <linux/mpage.h>
  34#include "ext2.h"
  35#include "acl.h"
  36#include "xip.h"
  37
  38MODULE_AUTHOR("Remy Card and others");
  39MODULE_DESCRIPTION("Second Extended Filesystem");
  40MODULE_LICENSE("GPL");
  41
  42static int ext2_update_inode(struct inode * inode, int do_sync);
  43
  44/*
  45 * Test whether an inode is a fast symlink.
  46 */
  47static inline int ext2_inode_is_fast_symlink(struct inode *inode)
  48{
  49        int ea_blocks = EXT2_I(inode)->i_file_acl ?
  50                (inode->i_sb->s_blocksize >> 9) : 0;
  51
  52        return (S_ISLNK(inode->i_mode) &&
  53                inode->i_blocks - ea_blocks == 0);
  54}
  55
  56/*
  57 * Called at the last iput() if i_nlink is zero.
  58 */
  59void ext2_delete_inode (struct inode * inode)
  60{
  61        truncate_inode_pages(&inode->i_data, 0);
  62
  63        if (is_bad_inode(inode))
  64                goto no_delete;
  65        EXT2_I(inode)->i_dtime  = get_seconds();
  66        mark_inode_dirty(inode);
  67        ext2_update_inode(inode, inode_needs_sync(inode));
  68
  69        inode->i_size = 0;
  70        if (inode->i_blocks)
  71                ext2_truncate (inode);
  72        ext2_free_inode (inode);
  73
  74        return;
  75no_delete:
  76        clear_inode(inode);     /* We must guarantee clearing of inode... */
  77}
  78
  79typedef struct {
  80        __le32  *p;
  81        __le32  key;
  82        struct buffer_head *bh;
  83} Indirect;
  84
  85static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  86{
  87        p->key = *(p->p = v);
  88        p->bh = bh;
  89}
  90
  91static inline int verify_chain(Indirect *from, Indirect *to)
  92{
  93        while (from <= to && from->key == *from->p)
  94                from++;
  95        return (from > to);
  96}
  97
  98/**
  99 *      ext2_block_to_path - parse the block number into array of offsets
 100 *      @inode: inode in question (we are only interested in its superblock)
 101 *      @i_block: block number to be parsed
 102 *      @offsets: array to store the offsets in
 103 *      @boundary: set this non-zero if the referred-to block is likely to be
 104 *             followed (on disk) by an indirect block.
 105 *      To store the locations of file's data ext2 uses a data structure common
 106 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 107 *      data blocks at leaves and indirect blocks in intermediate nodes.
 108 *      This function translates the block number into path in that tree -
 109 *      return value is the path length and @offsets[n] is the offset of
 110 *      pointer to (n+1)th node in the nth one. If @block is out of range
 111 *      (negative or too large) warning is printed and zero returned.
 112 *
 113 *      Note: function doesn't find node addresses, so no IO is needed. All
 114 *      we need to know is the capacity of indirect blocks (taken from the
 115 *      inode->i_sb).
 116 */
 117
 118/*
 119 * Portability note: the last comparison (check that we fit into triple
 120 * indirect block) is spelled differently, because otherwise on an
 121 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 122 * if our filesystem had 8Kb blocks. We might use long long, but that would
 123 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 124 * i_block would have to be negative in the very beginning, so we would not
 125 * get there at all.
 126 */
 127
 128static int ext2_block_to_path(struct inode *inode,
 129                        long i_block, int offsets[4], int *boundary)
 130{
 131        int ptrs = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 132        int ptrs_bits = EXT2_ADDR_PER_BLOCK_BITS(inode->i_sb);
 133        const long direct_blocks = EXT2_NDIR_BLOCKS,
 134                indirect_blocks = ptrs,
 135                double_blocks = (1 << (ptrs_bits * 2));
 136        int n = 0;
 137        int final = 0;
 138
 139        if (i_block < 0) {
 140                ext2_warning (inode->i_sb, "ext2_block_to_path", "block < 0");
 141        } else if (i_block < direct_blocks) {
 142                offsets[n++] = i_block;
 143                final = direct_blocks;
 144        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 145                offsets[n++] = EXT2_IND_BLOCK;
 146                offsets[n++] = i_block;
 147                final = ptrs;
 148        } else if ((i_block -= indirect_blocks) < double_blocks) {
 149                offsets[n++] = EXT2_DIND_BLOCK;
 150                offsets[n++] = i_block >> ptrs_bits;
 151                offsets[n++] = i_block & (ptrs - 1);
 152                final = ptrs;
 153        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 154                offsets[n++] = EXT2_TIND_BLOCK;
 155                offsets[n++] = i_block >> (ptrs_bits * 2);
 156                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 157                offsets[n++] = i_block & (ptrs - 1);
 158                final = ptrs;
 159        } else {
 160                ext2_warning (inode->i_sb, "ext2_block_to_path", "block > big");
 161        }
 162        if (boundary)
 163                *boundary = final - 1 - (i_block & (ptrs - 1));
 164
 165        return n;
 166}
 167
 168/**
 169 *      ext2_get_branch - read the chain of indirect blocks leading to data
 170 *      @inode: inode in question
 171 *      @depth: depth of the chain (1 - direct pointer, etc.)
 172 *      @offsets: offsets of pointers in inode/indirect blocks
 173 *      @chain: place to store the result
 174 *      @err: here we store the error value
 175 *
 176 *      Function fills the array of triples <key, p, bh> and returns %NULL
 177 *      if everything went OK or the pointer to the last filled triple
 178 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 179 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 180 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 181 *      number (it points into struct inode for i==0 and into the bh->b_data
 182 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 183 *      block for i>0 and NULL for i==0. In other words, it holds the block
 184 *      numbers of the chain, addresses they were taken from (and where we can
 185 *      verify that chain did not change) and buffer_heads hosting these
 186 *      numbers.
 187 *
 188 *      Function stops when it stumbles upon zero pointer (absent block)
 189 *              (pointer to last triple returned, *@err == 0)
 190 *      or when it gets an IO error reading an indirect block
 191 *              (ditto, *@err == -EIO)
 192 *      or when it notices that chain had been changed while it was reading
 193 *              (ditto, *@err == -EAGAIN)
 194 *      or when it reads all @depth-1 indirect blocks successfully and finds
 195 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 196 */
 197static Indirect *ext2_get_branch(struct inode *inode,
 198                                 int depth,
 199                                 int *offsets,
 200                                 Indirect chain[4],
 201                                 int *err)
 202{
 203        struct super_block *sb = inode->i_sb;
 204        Indirect *p = chain;
 205        struct buffer_head *bh;
 206
 207        *err = 0;
 208        /* i_data is not going away, no lock needed */
 209        add_chain (chain, NULL, EXT2_I(inode)->i_data + *offsets);
 210        if (!p->key)
 211                goto no_block;
 212        while (--depth) {
 213                bh = sb_bread(sb, le32_to_cpu(p->key));
 214                if (!bh)
 215                        goto failure;
 216                read_lock(&EXT2_I(inode)->i_meta_lock);
 217                if (!verify_chain(chain, p))
 218                        goto changed;
 219                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 220                read_unlock(&EXT2_I(inode)->i_meta_lock);
 221                if (!p->key)
 222                        goto no_block;
 223        }
 224        return NULL;
 225
 226changed:
 227        read_unlock(&EXT2_I(inode)->i_meta_lock);
 228        brelse(bh);
 229        *err = -EAGAIN;
 230        goto no_block;
 231failure:
 232        *err = -EIO;
 233no_block:
 234        return p;
 235}
 236
 237/**
 238 *      ext2_find_near - find a place for allocation with sufficient locality
 239 *      @inode: owner
 240 *      @ind: descriptor of indirect block.
 241 *
 242 *      This function returns the prefered place for block allocation.
 243 *      It is used when heuristic for sequential allocation fails.
 244 *      Rules are:
 245 *        + if there is a block to the left of our position - allocate near it.
 246 *        + if pointer will live in indirect block - allocate near that block.
 247 *        + if pointer will live in inode - allocate in the same cylinder group.
 248 *
 249 * In the latter case we colour the starting block by the callers PID to
 250 * prevent it from clashing with concurrent allocations for a different inode
 251 * in the same block group.   The PID is used here so that functionally related
 252 * files will be close-by on-disk.
 253 *
 254 *      Caller must make sure that @ind is valid and will stay that way.
 255 */
 256
 257static unsigned long ext2_find_near(struct inode *inode, Indirect *ind)
 258{
 259        struct ext2_inode_info *ei = EXT2_I(inode);
 260        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 261        __le32 *p;
 262        unsigned long bg_start;
 263        unsigned long colour;
 264
 265        /* Try to find previous block */
 266        for (p = ind->p - 1; p >= start; p--)
 267                if (*p)
 268                        return le32_to_cpu(*p);
 269
 270        /* No such thing, so let's try location of indirect block */
 271        if (ind->bh)
 272                return ind->bh->b_blocknr;
 273
 274        /*
 275         * It is going to be refered from inode itself? OK, just put it into
 276         * the same cylinder group then.
 277         */
 278        bg_start = (ei->i_block_group * EXT2_BLOCKS_PER_GROUP(inode->i_sb)) +
 279                le32_to_cpu(EXT2_SB(inode->i_sb)->s_es->s_first_data_block);
 280        colour = (current->pid % 16) *
 281                        (EXT2_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 282        return bg_start + colour;
 283}
 284
 285/**
 286 *      ext2_find_goal - find a prefered place for allocation.
 287 *      @inode: owner
 288 *      @block:  block we want
 289 *      @chain:  chain of indirect blocks
 290 *      @partial: pointer to the last triple within a chain
 291 *
 292 *      Returns preferred place for a block (the goal).
 293 */
 294
 295static inline int ext2_find_goal(struct inode *inode,
 296                                 long block,
 297                                 Indirect chain[4],
 298                                 Indirect *partial)
 299{
 300        struct ext2_block_alloc_info *block_i;
 301
 302        block_i = EXT2_I(inode)->i_block_alloc_info;
 303
 304        /*
 305         * try the heuristic for sequential allocation,
 306         * failing that at least try to get decent locality.
 307         */
 308        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 309                && (block_i->last_alloc_physical_block != 0)) {
 310                return block_i->last_alloc_physical_block + 1;
 311        }
 312
 313        return ext2_find_near(inode, partial);
 314}
 315
 316/**
 317 *      ext2_blks_to_allocate: Look up the block map and count the number
 318 *      of direct blocks need to be allocated for the given branch.
 319 *
 320 *      @branch: chain of indirect blocks
 321 *      @k: number of blocks need for indirect blocks
 322 *      @blks: number of data blocks to be mapped.
 323 *      @blocks_to_boundary:  the offset in the indirect block
 324 *
 325 *      return the total number of blocks to be allocate, including the
 326 *      direct and indirect blocks.
 327 */
 328static int
 329ext2_blks_to_allocate(Indirect * branch, int k, unsigned long blks,
 330                int blocks_to_boundary)
 331{
 332        unsigned long count = 0;
 333
 334        /*
 335         * Simple case, [t,d]Indirect block(s) has not allocated yet
 336         * then it's clear blocks on that path have not allocated
 337         */
 338        if (k > 0) {
 339                /* right now don't hanel cross boundary allocation */
 340                if (blks < blocks_to_boundary + 1)
 341                        count += blks;
 342                else
 343                        count += blocks_to_boundary + 1;
 344                return count;
 345        }
 346
 347        count++;
 348        while (count < blks && count <= blocks_to_boundary
 349                && le32_to_cpu(*(branch[0].p + count)) == 0) {
 350                count++;
 351        }
 352        return count;
 353}
 354
 355/**
 356 *      ext2_alloc_blocks: multiple allocate blocks needed for a branch
 357 *      @indirect_blks: the number of blocks need to allocate for indirect
 358 *                      blocks
 359 *
 360 *      @new_blocks: on return it will store the new block numbers for
 361 *      the indirect blocks(if needed) and the first direct block,
 362 *      @blks:  on return it will store the total number of allocated
 363 *              direct blocks
 364 */
 365static int ext2_alloc_blocks(struct inode *inode,
 366                        ext2_fsblk_t goal, int indirect_blks, int blks,
 367                        ext2_fsblk_t new_blocks[4], int *err)
 368{
 369        int target, i;
 370        unsigned long count = 0;
 371        int index = 0;
 372        ext2_fsblk_t current_block = 0;
 373        int ret = 0;
 374
 375        /*
 376         * Here we try to allocate the requested multiple blocks at once,
 377         * on a best-effort basis.
 378         * To build a branch, we should allocate blocks for
 379         * the indirect blocks(if not allocated yet), and at least
 380         * the first direct block of this branch.  That's the
 381         * minimum number of blocks need to allocate(required)
 382         */
 383        target = blks + indirect_blks;
 384
 385        while (1) {
 386                count = target;
 387                /* allocating blocks for indirect blocks and direct blocks */
 388                current_block = ext2_new_blocks(inode,goal,&count,err);
 389                if (*err)
 390                        goto failed_out;
 391
 392                target -= count;
 393                /* allocate blocks for indirect blocks */
 394                while (index < indirect_blks && count) {
 395                        new_blocks[index++] = current_block++;
 396                        count--;
 397                }
 398
 399                if (count > 0)
 400                        break;
 401        }
 402
 403        /* save the new block number for the first direct block */
 404        new_blocks[index] = current_block;
 405
 406        /* total number of blocks allocated for direct blocks */
 407        ret = count;
 408        *err = 0;
 409        return ret;
 410failed_out:
 411        for (i = 0; i <index; i++)
 412                ext2_free_blocks(inode, new_blocks[i], 1);
 413        return ret;
 414}
 415
 416/**
 417 *      ext2_alloc_branch - allocate and set up a chain of blocks.
 418 *      @inode: owner
 419 *      @num: depth of the chain (number of blocks to allocate)
 420 *      @offsets: offsets (in the blocks) to store the pointers to next.
 421 *      @branch: place to store the chain in.
 422 *
 423 *      This function allocates @num blocks, zeroes out all but the last one,
 424 *      links them into chain and (if we are synchronous) writes them to disk.
 425 *      In other words, it prepares a branch that can be spliced onto the
 426 *      inode. It stores the information about that chain in the branch[], in
 427 *      the same format as ext2_get_branch() would do. We are calling it after
 428 *      we had read the existing part of chain and partial points to the last
 429 *      triple of that (one with zero ->key). Upon the exit we have the same
 430 *      picture as after the successful ext2_get_block(), excpet that in one
 431 *      place chain is disconnected - *branch->p is still zero (we did not
 432 *      set the last link), but branch->key contains the number that should
 433 *      be placed into *branch->p to fill that gap.
 434 *
 435 *      If allocation fails we free all blocks we've allocated (and forget
 436 *      their buffer_heads) and return the error value the from failed
 437 *      ext2_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 438 *      as described above and return 0.
 439 */
 440
 441static int ext2_alloc_branch(struct inode *inode,
 442                        int indirect_blks, int *blks, ext2_fsblk_t goal,
 443                        int *offsets, Indirect *branch)
 444{
 445        int blocksize = inode->i_sb->s_blocksize;
 446        int i, n = 0;
 447        int err = 0;
 448        struct buffer_head *bh;
 449        int num;
 450        ext2_fsblk_t new_blocks[4];
 451        ext2_fsblk_t current_block;
 452
 453        num = ext2_alloc_blocks(inode, goal, indirect_blks,
 454                                *blks, new_blocks, &err);
 455        if (err)
 456                return err;
 457
 458        branch[0].key = cpu_to_le32(new_blocks[0]);
 459        /*
 460         * metadata blocks and data blocks are allocated.
 461         */
 462        for (n = 1; n <= indirect_blks;  n++) {
 463                /*
 464                 * Get buffer_head for parent block, zero it out
 465                 * and set the pointer to new one, then send
 466                 * parent to disk.
 467                 */
 468                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 469                branch[n].bh = bh;
 470                lock_buffer(bh);
 471                memset(bh->b_data, 0, blocksize);
 472                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 473                branch[n].key = cpu_to_le32(new_blocks[n]);
 474                *branch[n].p = branch[n].key;
 475                if ( n == indirect_blks) {
 476                        current_block = new_blocks[n];
 477                        /*
 478                         * End of chain, update the last new metablock of
 479                         * the chain to point to the new allocated
 480                         * data blocks numbers
 481                         */
 482                        for (i=1; i < num; i++)
 483                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 484                }
 485                set_buffer_uptodate(bh);
 486                unlock_buffer(bh);
 487                mark_buffer_dirty_inode(bh, inode);
 488                /* We used to sync bh here if IS_SYNC(inode).
 489                 * But we now rely upon generic_osync_inode()
 490                 * and b_inode_buffers.  But not for directories.
 491                 */
 492                if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
 493                        sync_dirty_buffer(bh);
 494        }
 495        *blks = num;
 496        return err;
 497}
 498
 499/**
 500 * ext2_splice_branch - splice the allocated branch onto inode.
 501 * @inode: owner
 502 * @block: (logical) number of block we are adding
 503 * @chain: chain of indirect blocks (with a missing link - see
 504 *      ext2_alloc_branch)
 505 * @where: location of missing link
 506 * @num:   number of indirect blocks we are adding
 507 * @blks:  number of direct blocks we are adding
 508 *
 509 * This function fills the missing link and does all housekeeping needed in
 510 * inode (->i_blocks, etc.). In case of success we end up with the full
 511 * chain to new block and return 0.
 512 */
 513static void ext2_splice_branch(struct inode *inode,
 514                        long block, Indirect *where, int num, int blks)
 515{
 516        int i;
 517        struct ext2_block_alloc_info *block_i;
 518        ext2_fsblk_t current_block;
 519
 520        block_i = EXT2_I(inode)->i_block_alloc_info;
 521
 522        /* XXX LOCKING probably should have i_meta_lock ?*/
 523        /* That's it */
 524
 525        *where->p = where->key;
 526
 527        /*
 528         * Update the host buffer_head or inode to point to more just allocated
 529         * direct blocks blocks
 530         */
 531        if (num == 0 && blks > 1) {
 532                current_block = le32_to_cpu(where->key) + 1;
 533                for (i = 1; i < blks; i++)
 534                        *(where->p + i ) = cpu_to_le32(current_block++);
 535        }
 536
 537        /*
 538         * update the most recently allocated logical & physical block
 539         * in i_block_alloc_info, to assist find the proper goal block for next
 540         * allocation
 541         */
 542        if (block_i) {
 543                block_i->last_alloc_logical_block = block + blks - 1;
 544                block_i->last_alloc_physical_block =
 545                                le32_to_cpu(where[num].key) + blks - 1;
 546        }
 547
 548        /* We are done with atomic stuff, now do the rest of housekeeping */
 549
 550        /* had we spliced it onto indirect block? */
 551        if (where->bh)
 552                mark_buffer_dirty_inode(where->bh, inode);
 553
 554        inode->i_ctime = CURRENT_TIME_SEC;
 555        mark_inode_dirty(inode);
 556}
 557
 558/*
 559 * Allocation strategy is simple: if we have to allocate something, we will
 560 * have to go the whole way to leaf. So let's do it before attaching anything
 561 * to tree, set linkage between the newborn blocks, write them if sync is
 562 * required, recheck the path, free and repeat if check fails, otherwise
 563 * set the last missing link (that will protect us from any truncate-generated
 564 * removals - all blocks on the path are immune now) and possibly force the
 565 * write on the parent block.
 566 * That has a nice additional property: no special recovery from the failed
 567 * allocations is needed - we simply release blocks and do not touch anything
 568 * reachable from inode.
 569 *
 570 * `handle' can be NULL if create == 0.
 571 *
 572 * The BKL may not be held on entry here.  Be sure to take it early.
 573 * return > 0, # of blocks mapped or allocated.
 574 * return = 0, if plain lookup failed.
 575 * return < 0, error case.
 576 */
 577static int ext2_get_blocks(struct inode *inode,
 578                           sector_t iblock, unsigned long maxblocks,
 579                           struct buffer_head *bh_result,
 580                           int create)
 581{
 582        int err = -EIO;
 583        int offsets[4];
 584        Indirect chain[4];
 585        Indirect *partial;
 586        ext2_fsblk_t goal;
 587        int indirect_blks;
 588        int blocks_to_boundary = 0;
 589        int depth;
 590        struct ext2_inode_info *ei = EXT2_I(inode);
 591        int count = 0;
 592        ext2_fsblk_t first_block = 0;
 593
 594        depth = ext2_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 595
 596        if (depth == 0)
 597                return (err);
 598reread:
 599        partial = ext2_get_branch(inode, depth, offsets, chain, &err);
 600
 601        /* Simplest case - block found, no allocation needed */
 602        if (!partial) {
 603                first_block = le32_to_cpu(chain[depth - 1].key);
 604                clear_buffer_new(bh_result); /* What's this do? */
 605                count++;
 606                /*map more blocks*/
 607                while (count < maxblocks && count <= blocks_to_boundary) {
 608                        ext2_fsblk_t blk;
 609
 610                        if (!verify_chain(chain, partial)) {
 611                                /*
 612                                 * Indirect block might be removed by
 613                                 * truncate while we were reading it.
 614                                 * Handling of that case: forget what we've
 615                                 * got now, go to reread.
 616                                 */
 617                                count = 0;
 618                                goto changed;
 619                        }
 620                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 621                        if (blk == first_block + count)
 622                                count++;
 623                        else
 624                                break;
 625                }
 626                goto got_it;
 627        }
 628
 629        /* Next simple case - plain lookup or failed read of indirect block */
 630        if (!create || err == -EIO)
 631                goto cleanup;
 632
 633        mutex_lock(&ei->truncate_mutex);
 634
 635        /*
 636         * Okay, we need to do block allocation.  Lazily initialize the block
 637         * allocation info here if necessary
 638        */
 639        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 640                ext2_init_block_alloc_info(inode);
 641
 642        goal = ext2_find_goal(inode, iblock, chain, partial);
 643
 644        /* the number of blocks need to allocate for [d,t]indirect blocks */
 645        indirect_blks = (chain + depth) - partial - 1;
 646        /*
 647         * Next look up the indirect map to count the totoal number of
 648         * direct blocks to allocate for this branch.
 649         */
 650        count = ext2_blks_to_allocate(partial, indirect_blks,
 651                                        maxblocks, blocks_to_boundary);
 652        /*
 653         * XXX ???? Block out ext2_truncate while we alter the tree
 654         */
 655        err = ext2_alloc_branch(inode, indirect_blks, &count, goal,
 656                                offsets + (partial - chain), partial);
 657
 658        if (err) {
 659                mutex_unlock(&ei->truncate_mutex);
 660                goto cleanup;
 661        }
 662
 663        if (ext2_use_xip(inode->i_sb)) {
 664                /*
 665                 * we need to clear the block
 666                 */
 667                err = ext2_clear_xip_target (inode,
 668                        le32_to_cpu(chain[depth-1].key));
 669                if (err) {
 670                        mutex_unlock(&ei->truncate_mutex);
 671                        goto cleanup;
 672                }
 673        }
 674
 675        ext2_splice_branch(inode, iblock, partial, indirect_blks, count);
 676        mutex_unlock(&ei->truncate_mutex);
 677        set_buffer_new(bh_result);
 678got_it:
 679        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 680        if (count > blocks_to_boundary)
 681                set_buffer_boundary(bh_result);
 682        err = count;
 683        /* Clean up and exit */
 684        partial = chain + depth - 1;    /* the whole chain */
 685cleanup:
 686        while (partial > chain) {
 687                brelse(partial->bh);
 688                partial--;
 689        }
 690        return err;
 691changed:
 692        while (partial > chain) {
 693                brelse(partial->bh);
 694                partial--;
 695        }
 696        goto reread;
 697}
 698
 699int ext2_get_block(struct inode *inode, sector_t iblock, struct buffer_head *bh_result, int create)
 700{
 701        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 702        int ret = ext2_get_blocks(inode, iblock, max_blocks,
 703                              bh_result, create);
 704        if (ret > 0) {
 705                bh_result->b_size = (ret << inode->i_blkbits);
 706                ret = 0;
 707        }
 708        return ret;
 709
 710}
 711
 712static int ext2_writepage(struct page *page, struct writeback_control *wbc)
 713{
 714        return block_write_full_page(page, ext2_get_block, wbc);
 715}
 716
 717static int ext2_readpage(struct file *file, struct page *page)
 718{
 719        return mpage_readpage(page, ext2_get_block);
 720}
 721
 722static int
 723ext2_readpages(struct file *file, struct address_space *mapping,
 724                struct list_head *pages, unsigned nr_pages)
 725{
 726        return mpage_readpages(mapping, pages, nr_pages, ext2_get_block);
 727}
 728
 729int __ext2_write_begin(struct file *file, struct address_space *mapping,
 730                loff_t pos, unsigned len, unsigned flags,
 731                struct page **pagep, void **fsdata)
 732{
 733        return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
 734                                                        ext2_get_block);
 735}
 736
 737static int
 738ext2_write_begin(struct file *file, struct address_space *mapping,
 739                loff_t pos, unsigned len, unsigned flags,
 740                struct page **pagep, void **fsdata)
 741{
 742        *pagep = NULL;
 743        return __ext2_write_begin(file, mapping, pos, len, flags, pagep,fsdata);
 744}
 745
 746static int
 747ext2_nobh_write_begin(struct file *file, struct address_space *mapping,
 748                loff_t pos, unsigned len, unsigned flags,
 749                struct page **pagep, void **fsdata)
 750{
 751        /*
 752         * Dir-in-pagecache still uses ext2_write_begin. Would have to rework
 753         * directory handling code to pass around offsets rather than struct
 754         * pages in order to make this work easily.
 755         */
 756        return nobh_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
 757                                                        ext2_get_block);
 758}
 759
 760static int ext2_nobh_writepage(struct page *page,
 761                        struct writeback_control *wbc)
 762{
 763        return nobh_writepage(page, ext2_get_block, wbc);
 764}
 765
 766static sector_t ext2_bmap(struct address_space *mapping, sector_t block)
 767{
 768        return generic_block_bmap(mapping,block,ext2_get_block);
 769}
 770
 771static ssize_t
 772ext2_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
 773                        loff_t offset, unsigned long nr_segs)
 774{
 775        struct file *file = iocb->ki_filp;
 776        struct inode *inode = file->f_mapping->host;
 777
 778        return blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
 779                                offset, nr_segs, ext2_get_block, NULL);
 780}
 781
 782static int
 783ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
 784{
 785        return mpage_writepages(mapping, wbc, ext2_get_block);
 786}
 787
 788const struct address_space_operations ext2_aops = {
 789        .readpage               = ext2_readpage,
 790        .readpages              = ext2_readpages,
 791        .writepage              = ext2_writepage,
 792        .sync_page              = block_sync_page,
 793        .write_begin            = ext2_write_begin,
 794        .write_end              = generic_write_end,
 795        .bmap                   = ext2_bmap,
 796        .direct_IO              = ext2_direct_IO,
 797        .writepages             = ext2_writepages,
 798        .migratepage            = buffer_migrate_page,
 799};
 800
 801const struct address_space_operations ext2_aops_xip = {
 802        .bmap                   = ext2_bmap,
 803        .get_xip_page           = ext2_get_xip_page,
 804};
 805
 806const struct address_space_operations ext2_nobh_aops = {
 807        .readpage               = ext2_readpage,
 808        .readpages              = ext2_readpages,
 809        .writepage              = ext2_nobh_writepage,
 810        .sync_page              = block_sync_page,
 811        .write_begin            = ext2_nobh_write_begin,
 812        .write_end              = nobh_write_end,
 813        .bmap                   = ext2_bmap,
 814        .direct_IO              = ext2_direct_IO,
 815        .writepages             = ext2_writepages,
 816        .migratepage            = buffer_migrate_page,
 817};
 818
 819/*
 820 * Probably it should be a library function... search for first non-zero word
 821 * or memcmp with zero_page, whatever is better for particular architecture.
 822 * Linus?
 823 */
 824static inline int all_zeroes(__le32 *p, __le32 *q)
 825{
 826        while (p < q)
 827                if (*p++)
 828                        return 0;
 829        return 1;
 830}
 831
 832/**
 833 *      ext2_find_shared - find the indirect blocks for partial truncation.
 834 *      @inode:   inode in question
 835 *      @depth:   depth of the affected branch
 836 *      @offsets: offsets of pointers in that branch (see ext2_block_to_path)
 837 *      @chain:   place to store the pointers to partial indirect blocks
 838 *      @top:     place to the (detached) top of branch
 839 *
 840 *      This is a helper function used by ext2_truncate().
 841 *
 842 *      When we do truncate() we may have to clean the ends of several indirect
 843 *      blocks but leave the blocks themselves alive. Block is partially
 844 *      truncated if some data below the new i_size is refered from it (and
 845 *      it is on the path to the first completely truncated data block, indeed).
 846 *      We have to free the top of that path along with everything to the right
 847 *      of the path. Since no allocation past the truncation point is possible
 848 *      until ext2_truncate() finishes, we may safely do the latter, but top
 849 *      of branch may require special attention - pageout below the truncation
 850 *      point might try to populate it.
 851 *
 852 *      We atomically detach the top of branch from the tree, store the block
 853 *      number of its root in *@top, pointers to buffer_heads of partially
 854 *      truncated blocks - in @chain[].bh and pointers to their last elements
 855 *      that should not be removed - in @chain[].p. Return value is the pointer
 856 *      to last filled element of @chain.
 857 *
 858 *      The work left to caller to do the actual freeing of subtrees:
 859 *              a) free the subtree starting from *@top
 860 *              b) free the subtrees whose roots are stored in
 861 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 862 *              c) free the subtrees growing from the inode past the @chain[0].p
 863 *                      (no partially truncated stuff there).
 864 */
 865
 866static Indirect *ext2_find_shared(struct inode *inode,
 867                                int depth,
 868                                int offsets[4],
 869                                Indirect chain[4],
 870                                __le32 *top)
 871{
 872        Indirect *partial, *p;
 873        int k, err;
 874
 875        *top = 0;
 876        for (k = depth; k > 1 && !offsets[k-1]; k--)
 877                ;
 878        partial = ext2_get_branch(inode, k, offsets, chain, &err);
 879        if (!partial)
 880                partial = chain + k-1;
 881        /*
 882         * If the branch acquired continuation since we've looked at it -
 883         * fine, it should all survive and (new) top doesn't belong to us.
 884         */
 885        write_lock(&EXT2_I(inode)->i_meta_lock);
 886        if (!partial->key && *partial->p) {
 887                write_unlock(&EXT2_I(inode)->i_meta_lock);
 888                goto no_top;
 889        }
 890        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
 891                ;
 892        /*
 893         * OK, we've found the last block that must survive. The rest of our
 894         * branch should be detached before unlocking. However, if that rest
 895         * of branch is all ours and does not grow immediately from the inode
 896         * it's easier to cheat and just decrement partial->p.
 897         */
 898        if (p == chain + k - 1 && p > chain) {
 899                p->p--;
 900        } else {
 901                *top = *p->p;
 902                *p->p = 0;
 903        }
 904        write_unlock(&EXT2_I(inode)->i_meta_lock);
 905
 906        while(partial > p)
 907        {
 908                brelse(partial->bh);
 909                partial--;
 910        }
 911no_top:
 912        return partial;
 913}
 914
 915/**
 916 *      ext2_free_data - free a list of data blocks
 917 *      @inode: inode we are dealing with
 918 *      @p:     array of block numbers
 919 *      @q:     points immediately past the end of array
 920 *
 921 *      We are freeing all blocks refered from that array (numbers are
 922 *      stored as little-endian 32-bit) and updating @inode->i_blocks
 923 *      appropriately.
 924 */
 925static inline void ext2_free_data(struct inode *inode, __le32 *p, __le32 *q)
 926{
 927        unsigned long block_to_free = 0, count = 0;
 928        unsigned long nr;
 929
 930        for ( ; p < q ; p++) {
 931                nr = le32_to_cpu(*p);
 932                if (nr) {
 933                        *p = 0;
 934                        /* accumulate blocks to free if they're contiguous */
 935                        if (count == 0)
 936                                goto free_this;
 937                        else if (block_to_free == nr - count)
 938                                count++;
 939                        else {
 940                                mark_inode_dirty(inode);
 941                                ext2_free_blocks (inode, block_to_free, count);
 942                        free_this:
 943                                block_to_free = nr;
 944                                count = 1;
 945                        }
 946                }
 947        }
 948        if (count > 0) {
 949                mark_inode_dirty(inode);
 950                ext2_free_blocks (inode, block_to_free, count);
 951        }
 952}
 953
 954/**
 955 *      ext2_free_branches - free an array of branches
 956 *      @inode: inode we are dealing with
 957 *      @p:     array of block numbers
 958 *      @q:     pointer immediately past the end of array
 959 *      @depth: depth of the branches to free
 960 *
 961 *      We are freeing all blocks refered from these branches (numbers are
 962 *      stored as little-endian 32-bit) and updating @inode->i_blocks
 963 *      appropriately.
 964 */
 965static void ext2_free_branches(struct inode *inode, __le32 *p, __le32 *q, int depth)
 966{
 967        struct buffer_head * bh;
 968        unsigned long nr;
 969
 970        if (depth--) {
 971                int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
 972                for ( ; p < q ; p++) {
 973                        nr = le32_to_cpu(*p);
 974                        if (!nr)
 975                                continue;
 976                        *p = 0;
 977                        bh = sb_bread(inode->i_sb, nr);
 978                        /*
 979                         * A read failure? Report error and clear slot
 980                         * (should be rare).
 981                         */ 
 982                        if (!bh) {
 983                                ext2_error(inode->i_sb, "ext2_free_branches",
 984                                        "Read failure, inode=%ld, block=%ld",
 985                                        inode->i_ino, nr);
 986                                continue;
 987                        }
 988                        ext2_free_branches(inode,
 989                                           (__le32*)bh->b_data,
 990                                           (__le32*)bh->b_data + addr_per_block,
 991                                           depth);
 992                        bforget(bh);
 993                        ext2_free_blocks(inode, nr, 1);
 994                        mark_inode_dirty(inode);
 995                }
 996        } else
 997                ext2_free_data(inode, p, q);
 998}
 999
1000void ext2_truncate(struct inode *inode)
1001{
1002        __le32 *i_data = EXT2_I(inode)->i_data;
1003        struct ext2_inode_info *ei = EXT2_I(inode);
1004        int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
1005        int offsets[4];
1006        Indirect chain[4];
1007        Indirect *partial;
1008        __le32 nr = 0;
1009        int n;
1010        long iblock;
1011        unsigned blocksize;
1012
1013        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1014            S_ISLNK(inode->i_mode)))
1015                return;
1016        if (ext2_inode_is_fast_symlink(inode))
1017                return;
1018        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1019                return;
1020
1021        blocksize = inode->i_sb->s_blocksize;
1022        iblock = (inode->i_size + blocksize-1)
1023                                        >> EXT2_BLOCK_SIZE_BITS(inode->i_sb);
1024
1025        if (mapping_is_xip(inode->i_mapping))
1026                xip_truncate_page(inode->i_mapping, inode->i_size);
1027        else if (test_opt(inode->i_sb, NOBH))
1028                nobh_truncate_page(inode->i_mapping,
1029                                inode->i_size, ext2_get_block);
1030        else
1031                block_truncate_page(inode->i_mapping,
1032                                inode->i_size, ext2_get_block);
1033
1034        n = ext2_block_to_path(inode, iblock, offsets, NULL);
1035        if (n == 0)
1036                return;
1037
1038        /*
1039         * From here we block out all ext2_get_block() callers who want to
1040         * modify the block allocation tree.
1041         */
1042        mutex_lock(&ei->truncate_mutex);
1043
1044        if (n == 1) {
1045                ext2_free_data(inode, i_data+offsets[0],
1046                                        i_data + EXT2_NDIR_BLOCKS);
1047                goto do_indirects;
1048        }
1049
1050        partial = ext2_find_shared(inode, n, offsets, chain, &nr);
1051        /* Kill the top of shared branch (already detached) */
1052        if (nr) {
1053                if (partial == chain)
1054                        mark_inode_dirty(inode);
1055                else
1056                        mark_buffer_dirty_inode(partial->bh, inode);
1057                ext2_free_branches(inode, &nr, &nr+1, (chain+n-1) - partial);
1058        }
1059        /* Clear the ends of indirect blocks on the shared branch */
1060        while (partial > chain) {
1061                ext2_free_branches(inode,
1062                                   partial->p + 1,
1063                                   (__le32*)partial->bh->b_data+addr_per_block,
1064                                   (chain+n-1) - partial);
1065                mark_buffer_dirty_inode(partial->bh, inode);
1066                brelse (partial->bh);
1067                partial--;
1068        }
1069do_indirects:
1070        /* Kill the remaining (whole) subtrees */
1071        switch (offsets[0]) {
1072                default:
1073                        nr = i_data[EXT2_IND_BLOCK];
1074                        if (nr) {
1075                                i_data[EXT2_IND_BLOCK] = 0;
1076                                mark_inode_dirty(inode);
1077                                ext2_free_branches(inode, &nr, &nr+1, 1);
1078                        }
1079                case EXT2_IND_BLOCK:
1080                        nr = i_data[EXT2_DIND_BLOCK];
1081                        if (nr) {
1082                                i_data[EXT2_DIND_BLOCK] = 0;
1083                                mark_inode_dirty(inode);
1084                                ext2_free_branches(inode, &nr, &nr+1, 2);
1085                        }
1086                case EXT2_DIND_BLOCK:
1087                        nr = i_data[EXT2_TIND_BLOCK];
1088                        if (nr) {
1089                                i_data[EXT2_TIND_BLOCK] = 0;
1090                                mark_inode_dirty(inode);
1091                                ext2_free_branches(inode, &nr, &nr+1, 3);
1092                        }
1093                case EXT2_TIND_BLOCK:
1094                        ;
1095        }
1096
1097        ext2_discard_reservation(inode);
1098
1099        mutex_unlock(&ei->truncate_mutex);
1100        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1101        if (inode_needs_sync(inode)) {
1102                sync_mapping_buffers(inode->i_mapping);
1103                ext2_sync_inode (inode);
1104        } else {
1105                mark_inode_dirty(inode);
1106        }
1107}
1108
1109static struct ext2_inode *ext2_get_inode(struct super_block *sb, ino_t ino,
1110                                        struct buffer_head **p)
1111{
1112        struct buffer_head * bh;
1113        unsigned long block_group;
1114        unsigned long block;
1115        unsigned long offset;
1116        struct ext2_group_desc * gdp;
1117
1118        *p = NULL;
1119        if ((ino != EXT2_ROOT_INO && ino < EXT2_FIRST_INO(sb)) ||
1120            ino > le32_to_cpu(EXT2_SB(sb)->s_es->s_inodes_count))
1121                goto Einval;
1122
1123        block_group = (ino - 1) / EXT2_INODES_PER_GROUP(sb);
1124        gdp = ext2_get_group_desc(sb, block_group, NULL);
1125        if (!gdp)
1126                goto Egdp;
1127        /*
1128         * Figure out the offset within the block group inode table
1129         */
1130        offset = ((ino - 1) % EXT2_INODES_PER_GROUP(sb)) * EXT2_INODE_SIZE(sb);
1131        block = le32_to_cpu(gdp->bg_inode_table) +
1132                (offset >> EXT2_BLOCK_SIZE_BITS(sb));
1133        if (!(bh = sb_bread(sb, block)))
1134                goto Eio;
1135
1136        *p = bh;
1137        offset &= (EXT2_BLOCK_SIZE(sb) - 1);
1138        return (struct ext2_inode *) (bh->b_data + offset);
1139
1140Einval:
1141        ext2_error(sb, "ext2_get_inode", "bad inode number: %lu",
1142                   (unsigned long) ino);
1143        return ERR_PTR(-EINVAL);
1144Eio:
1145        ext2_error(sb, "ext2_get_inode",
1146                   "unable to read inode block - inode=%lu, block=%lu",
1147                   (unsigned long) ino, block);
1148Egdp:
1149        return ERR_PTR(-EIO);
1150}
1151
1152void ext2_set_inode_flags(struct inode *inode)
1153{
1154        unsigned int flags = EXT2_I(inode)->i_flags;
1155
1156        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
1157        if (flags & EXT2_SYNC_FL)
1158                inode->i_flags |= S_SYNC;
1159        if (flags & EXT2_APPEND_FL)
1160                inode->i_flags |= S_APPEND;
1161        if (flags & EXT2_IMMUTABLE_FL)
1162                inode->i_flags |= S_IMMUTABLE;
1163        if (flags & EXT2_NOATIME_FL)
1164                inode->i_flags |= S_NOATIME;
1165        if (flags & EXT2_DIRSYNC_FL)
1166                inode->i_flags |= S_DIRSYNC;
1167}
1168
1169/* Propagate flags from i_flags to EXT2_I(inode)->i_flags */
1170void ext2_get_inode_flags(struct ext2_inode_info *ei)
1171{
1172        unsigned int flags = ei->vfs_inode.i_flags;
1173
1174        ei->i_flags &= ~(EXT2_SYNC_FL|EXT2_APPEND_FL|
1175                        EXT2_IMMUTABLE_FL|EXT2_NOATIME_FL|EXT2_DIRSYNC_FL);
1176        if (flags & S_SYNC)
1177                ei->i_flags |= EXT2_SYNC_FL;
1178        if (flags & S_APPEND)
1179                ei->i_flags |= EXT2_APPEND_FL;
1180        if (flags & S_IMMUTABLE)
1181                ei->i_flags |= EXT2_IMMUTABLE_FL;
1182        if (flags & S_NOATIME)
1183                ei->i_flags |= EXT2_NOATIME_FL;
1184        if (flags & S_DIRSYNC)
1185                ei->i_flags |= EXT2_DIRSYNC_FL;
1186}
1187
1188void ext2_read_inode (struct inode * inode)
1189{
1190        struct ext2_inode_info *ei = EXT2_I(inode);
1191        ino_t ino = inode->i_ino;
1192        struct buffer_head * bh;
1193        struct ext2_inode * raw_inode = ext2_get_inode(inode->i_sb, ino, &bh);
1194        int n;
1195
1196#ifdef CONFIG_EXT2_FS_POSIX_ACL
1197        ei->i_acl = EXT2_ACL_NOT_CACHED;
1198        ei->i_default_acl = EXT2_ACL_NOT_CACHED;
1199#endif
1200        ei->i_block_alloc_info = NULL;
1201
1202        if (IS_ERR(raw_inode))
1203                goto bad_inode;
1204
1205        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
1206        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
1207        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
1208        if (!(test_opt (inode->i_sb, NO_UID32))) {
1209                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
1210                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
1211        }
1212        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
1213        inode->i_size = le32_to_cpu(raw_inode->i_size);
1214        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
1215        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
1216        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
1217        inode->i_atime.tv_nsec = inode->i_mtime.tv_nsec = inode->i_ctime.tv_nsec = 0;
1218        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
1219        /* We now have enough fields to check if the inode was active or not.
1220         * This is needed because nfsd might try to access dead inodes
1221         * the test is that same one that e2fsck uses
1222         * NeilBrown 1999oct15
1223         */
1224        if (inode->i_nlink == 0 && (inode->i_mode == 0 || ei->i_dtime)) {
1225                /* this inode is deleted */
1226                brelse (bh);
1227                goto bad_inode;
1228        }
1229        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
1230        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
1231        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
1232        ei->i_frag_no = raw_inode->i_frag;
1233        ei->i_frag_size = raw_inode->i_fsize;
1234        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
1235        ei->i_dir_acl = 0;
1236        if (S_ISREG(inode->i_mode))
1237                inode->i_size |= ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
1238        else
1239                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
1240        ei->i_dtime = 0;
1241        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
1242        ei->i_state = 0;
1243        ei->i_block_group = (ino - 1) / EXT2_INODES_PER_GROUP(inode->i_sb);
1244        ei->i_dir_start_lookup = 0;
1245
1246        /*
1247         * NOTE! The in-memory inode i_data array is in little-endian order
1248         * even on big-endian machines: we do NOT byteswap the block numbers!
1249         */
1250        for (n = 0; n < EXT2_N_BLOCKS; n++)
1251                ei->i_data[n] = raw_inode->i_block[n];
1252
1253        if (S_ISREG(inode->i_mode)) {
1254                inode->i_op = &ext2_file_inode_operations;
1255                if (ext2_use_xip(inode->i_sb)) {
1256                        inode->i_mapping->a_ops = &ext2_aops_xip;
1257                        inode->i_fop = &ext2_xip_file_operations;
1258                } else if (test_opt(inode->i_sb, NOBH)) {
1259                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1260                        inode->i_fop = &ext2_file_operations;
1261                } else {
1262                        inode->i_mapping->a_ops = &ext2_aops;
1263                        inode->i_fop = &ext2_file_operations;
1264                }
1265        } else if (S_ISDIR(inode->i_mode)) {
1266                inode->i_op = &ext2_dir_inode_operations;
1267                inode->i_fop = &ext2_dir_operations;
1268                if (test_opt(inode->i_sb, NOBH))
1269                        inode->i_mapping->a_ops = &ext2_nobh_aops;
1270                else
1271                        inode->i_mapping->a_ops = &ext2_aops;
1272        } else if (S_ISLNK(inode->i_mode)) {
1273                if (ext2_inode_is_fast_symlink(inode))
1274                        inode->i_op = &ext2_fast_symlink_inode_operations;
1275                else {
1276                        inode->i_op = &ext2_symlink_inode_operations;
1277                        if (test_opt(inode->i_sb, NOBH))
1278                                inode->i_mapping->a_ops = &ext2_nobh_aops;
1279                        else
1280                                inode->i_mapping->a_ops = &ext2_aops;
1281                }
1282        } else {
1283                inode->i_op = &ext2_special_inode_operations;
1284                if (raw_inode->i_block[0])
1285                        init_special_inode(inode, inode->i_mode,
1286                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
1287                else 
1288                        init_special_inode(inode, inode->i_mode,
1289                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
1290        }
1291        brelse (bh);
1292        ext2_set_inode_flags(inode);
1293        return;
1294        
1295bad_inode:
1296        make_bad_inode(inode);
1297        return;
1298}
1299
1300static int ext2_update_inode(struct inode * inode, int do_sync)
1301{
1302        struct ext2_inode_info *ei = EXT2_I(inode);
1303        struct super_block *sb = inode->i_sb;
1304        ino_t ino = inode->i_ino;
1305        uid_t uid = inode->i_uid;
1306        gid_t gid = inode->i_gid;
1307        struct buffer_head * bh;
1308        struct ext2_inode * raw_inode = ext2_get_inode(sb, ino, &bh);
1309        int n;
1310        int err = 0;
1311
1312        if (IS_ERR(raw_inode))
1313                return -EIO;
1314
1315        /* For fields not not tracking in the in-memory inode,
1316         * initialise them to zero for new inodes. */
1317        if (ei->i_state & EXT2_STATE_NEW)
1318                memset(raw_inode, 0, EXT2_SB(sb)->s_inode_size);
1319
1320        ext2_get_inode_flags(ei);
1321        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
1322        if (!(test_opt(sb, NO_UID32))) {
1323                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(uid));
1324                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(gid));
1325/*
1326 * Fix up interoperability with old kernels. Otherwise, old inodes get
1327 * re-used with the upper 16 bits of the uid/gid intact
1328 */
1329                if (!ei->i_dtime) {
1330                        raw_inode->i_uid_high = cpu_to_le16(high_16_bits(uid));
1331                        raw_inode->i_gid_high = cpu_to_le16(high_16_bits(gid));
1332                } else {
1333                        raw_inode->i_uid_high = 0;
1334                        raw_inode->i_gid_high = 0;
1335                }
1336        } else {
1337                raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(uid));
1338                raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(gid));
1339                raw_inode->i_uid_high = 0;
1340                raw_inode->i_gid_high = 0;
1341        }
1342        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
1343        raw_inode->i_size = cpu_to_le32(inode->i_size);
1344        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
1345        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
1346        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
1347
1348        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
1349        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
1350        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
1351        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
1352        raw_inode->i_frag = ei->i_frag_no;
1353        raw_inode->i_fsize = ei->i_frag_size;
1354        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
1355        if (!S_ISREG(inode->i_mode))
1356                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
1357        else {
1358                raw_inode->i_size_high = cpu_to_le32(inode->i_size >> 32);
1359                if (inode->i_size > 0x7fffffffULL) {
1360                        if (!EXT2_HAS_RO_COMPAT_FEATURE(sb,
1361                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE) ||
1362                            EXT2_SB(sb)->s_es->s_rev_level ==
1363                                        cpu_to_le32(EXT2_GOOD_OLD_REV)) {
1364                               /* If this is the first large file
1365                                * created, add a flag to the superblock.
1366                                */
1367                                lock_kernel();
1368                                ext2_update_dynamic_rev(sb);
1369                                EXT2_SET_RO_COMPAT_FEATURE(sb,
1370                                        EXT2_FEATURE_RO_COMPAT_LARGE_FILE);
1371                                unlock_kernel();
1372                                ext2_write_super(sb);
1373                        }
1374                }
1375        }
1376        
1377        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
1378        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1379                if (old_valid_dev(inode->i_rdev)) {
1380                        raw_inode->i_block[0] =
1381                                cpu_to_le32(old_encode_dev(inode->i_rdev));
1382                        raw_inode->i_block[1] = 0;
1383                } else {
1384                        raw_inode->i_block[0] = 0;
1385                        raw_inode->i_block[1] =
1386                                cpu_to_le32(new_encode_dev(inode->i_rdev));
1387                        raw_inode->i_block[2] = 0;
1388                }
1389        } else for (n = 0; n < EXT2_N_BLOCKS; n++)
1390                raw_inode->i_block[n] = ei->i_data[n];
1391        mark_buffer_dirty(bh);
1392        if (do_sync) {
1393                sync_dirty_buffer(bh);
1394                if (buffer_req(bh) && !buffer_uptodate(bh)) {
1395                        printk ("IO error syncing ext2 inode [%s:%08lx]\n",
1396                                sb->s_id, (unsigned long) ino);
1397                        err = -EIO;
1398                }
1399        }
1400        ei->i_state &= ~EXT2_STATE_NEW;
1401        brelse (bh);
1402        return err;
1403}
1404
1405int ext2_write_inode(struct inode *inode, int wait)
1406{
1407        return ext2_update_inode(inode, wait);
1408}
1409
1410int ext2_sync_inode(struct inode *inode)
1411{
1412        struct writeback_control wbc = {
1413                .sync_mode = WB_SYNC_ALL,
1414                .nr_to_write = 0,       /* sys_fsync did this */
1415        };
1416        return sync_inode(inode, &wbc);
1417}
1418
1419int ext2_setattr(struct dentry *dentry, struct iattr *iattr)
1420{
1421        struct inode *inode = dentry->d_inode;
1422        int error;
1423
1424        error = inode_change_ok(inode, iattr);
1425        if (error)
1426                return error;
1427        if ((iattr->ia_valid & ATTR_UID && iattr->ia_uid != inode->i_uid) ||
1428            (iattr->ia_valid & ATTR_GID && iattr->ia_gid != inode->i_gid)) {
1429                error = DQUOT_TRANSFER(inode, iattr) ? -EDQUOT : 0;
1430                if (error)
1431                        return error;
1432        }
1433        error = inode_setattr(inode, iattr);
1434        if (!error && (iattr->ia_valid & ATTR_MODE))
1435                error = ext2_acl_chmod(inode);
1436        return error;
1437}
1438