linux/fs/ext3/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext3/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@redhat.com), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/fs.h>
  27#include <linux/time.h>
  28#include <linux/ext3_jbd.h>
  29#include <linux/jbd.h>
  30#include <linux/highuid.h>
  31#include <linux/pagemap.h>
  32#include <linux/quotaops.h>
  33#include <linux/string.h>
  34#include <linux/buffer_head.h>
  35#include <linux/writeback.h>
  36#include <linux/mpage.h>
  37#include <linux/uio.h>
  38#include <linux/bio.h>
  39#include "xattr.h"
  40#include "acl.h"
  41
  42static int ext3_writepage_trans_blocks(struct inode *inode);
  43
  44/*
  45 * Test whether an inode is a fast symlink.
  46 */
  47static int ext3_inode_is_fast_symlink(struct inode *inode)
  48{
  49        int ea_blocks = EXT3_I(inode)->i_file_acl ?
  50                (inode->i_sb->s_blocksize >> 9) : 0;
  51
  52        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  53}
  54
  55/*
  56 * The ext3 forget function must perform a revoke if we are freeing data
  57 * which has been journaled.  Metadata (eg. indirect blocks) must be
  58 * revoked in all cases.
  59 *
  60 * "bh" may be NULL: a metadata block may have been freed from memory
  61 * but there may still be a record of it in the journal, and that record
  62 * still needs to be revoked.
  63 */
  64int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  65                        struct buffer_head *bh, ext3_fsblk_t blocknr)
  66{
  67        int err;
  68
  69        might_sleep();
  70
  71        BUFFER_TRACE(bh, "enter");
  72
  73        jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  74                  "data mode %lx\n",
  75                  bh, is_metadata, inode->i_mode,
  76                  test_opt(inode->i_sb, DATA_FLAGS));
  77
  78        /* Never use the revoke function if we are doing full data
  79         * journaling: there is no need to, and a V1 superblock won't
  80         * support it.  Otherwise, only skip the revoke on un-journaled
  81         * data blocks. */
  82
  83        if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  84            (!is_metadata && !ext3_should_journal_data(inode))) {
  85                if (bh) {
  86                        BUFFER_TRACE(bh, "call journal_forget");
  87                        return ext3_journal_forget(handle, bh);
  88                }
  89                return 0;
  90        }
  91
  92        /*
  93         * data!=journal && (is_metadata || should_journal_data(inode))
  94         */
  95        BUFFER_TRACE(bh, "call ext3_journal_revoke");
  96        err = ext3_journal_revoke(handle, blocknr, bh);
  97        if (err)
  98                ext3_abort(inode->i_sb, __FUNCTION__,
  99                           "error %d when attempting revoke", err);
 100        BUFFER_TRACE(bh, "exit");
 101        return err;
 102}
 103
 104/*
 105 * Work out how many blocks we need to proceed with the next chunk of a
 106 * truncate transaction.
 107 */
 108static unsigned long blocks_for_truncate(struct inode *inode)
 109{
 110        unsigned long needed;
 111
 112        needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
 113
 114        /* Give ourselves just enough room to cope with inodes in which
 115         * i_blocks is corrupt: we've seen disk corruptions in the past
 116         * which resulted in random data in an inode which looked enough
 117         * like a regular file for ext3 to try to delete it.  Things
 118         * will go a bit crazy if that happens, but at least we should
 119         * try not to panic the whole kernel. */
 120        if (needed < 2)
 121                needed = 2;
 122
 123        /* But we need to bound the transaction so we don't overflow the
 124         * journal. */
 125        if (needed > EXT3_MAX_TRANS_DATA)
 126                needed = EXT3_MAX_TRANS_DATA;
 127
 128        return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
 129}
 130
 131/*
 132 * Truncate transactions can be complex and absolutely huge.  So we need to
 133 * be able to restart the transaction at a conventient checkpoint to make
 134 * sure we don't overflow the journal.
 135 *
 136 * start_transaction gets us a new handle for a truncate transaction,
 137 * and extend_transaction tries to extend the existing one a bit.  If
 138 * extend fails, we need to propagate the failure up and restart the
 139 * transaction in the top-level truncate loop. --sct
 140 */
 141static handle_t *start_transaction(struct inode *inode)
 142{
 143        handle_t *result;
 144
 145        result = ext3_journal_start(inode, blocks_for_truncate(inode));
 146        if (!IS_ERR(result))
 147                return result;
 148
 149        ext3_std_error(inode->i_sb, PTR_ERR(result));
 150        return result;
 151}
 152
 153/*
 154 * Try to extend this transaction for the purposes of truncation.
 155 *
 156 * Returns 0 if we managed to create more room.  If we can't create more
 157 * room, and the transaction must be restarted we return 1.
 158 */
 159static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 160{
 161        if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
 162                return 0;
 163        if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
 164                return 0;
 165        return 1;
 166}
 167
 168/*
 169 * Restart the transaction associated with *handle.  This does a commit,
 170 * so before we call here everything must be consistently dirtied against
 171 * this transaction.
 172 */
 173static int ext3_journal_test_restart(handle_t *handle, struct inode *inode)
 174{
 175        jbd_debug(2, "restarting handle %p\n", handle);
 176        return ext3_journal_restart(handle, blocks_for_truncate(inode));
 177}
 178
 179/*
 180 * Called at the last iput() if i_nlink is zero.
 181 */
 182void ext3_delete_inode (struct inode * inode)
 183{
 184        handle_t *handle;
 185
 186        truncate_inode_pages(&inode->i_data, 0);
 187
 188        if (is_bad_inode(inode))
 189                goto no_delete;
 190
 191        handle = start_transaction(inode);
 192        if (IS_ERR(handle)) {
 193                /*
 194                 * If we're going to skip the normal cleanup, we still need to
 195                 * make sure that the in-core orphan linked list is properly
 196                 * cleaned up.
 197                 */
 198                ext3_orphan_del(NULL, inode);
 199                goto no_delete;
 200        }
 201
 202        if (IS_SYNC(inode))
 203                handle->h_sync = 1;
 204        inode->i_size = 0;
 205        if (inode->i_blocks)
 206                ext3_truncate(inode);
 207        /*
 208         * Kill off the orphan record which ext3_truncate created.
 209         * AKPM: I think this can be inside the above `if'.
 210         * Note that ext3_orphan_del() has to be able to cope with the
 211         * deletion of a non-existent orphan - this is because we don't
 212         * know if ext3_truncate() actually created an orphan record.
 213         * (Well, we could do this if we need to, but heck - it works)
 214         */
 215        ext3_orphan_del(handle, inode);
 216        EXT3_I(inode)->i_dtime  = get_seconds();
 217
 218        /*
 219         * One subtle ordering requirement: if anything has gone wrong
 220         * (transaction abort, IO errors, whatever), then we can still
 221         * do these next steps (the fs will already have been marked as
 222         * having errors), but we can't free the inode if the mark_dirty
 223         * fails.
 224         */
 225        if (ext3_mark_inode_dirty(handle, inode))
 226                /* If that failed, just do the required in-core inode clear. */
 227                clear_inode(inode);
 228        else
 229                ext3_free_inode(handle, inode);
 230        ext3_journal_stop(handle);
 231        return;
 232no_delete:
 233        clear_inode(inode);     /* We must guarantee clearing of inode... */
 234}
 235
 236typedef struct {
 237        __le32  *p;
 238        __le32  key;
 239        struct buffer_head *bh;
 240} Indirect;
 241
 242static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 243{
 244        p->key = *(p->p = v);
 245        p->bh = bh;
 246}
 247
 248static int verify_chain(Indirect *from, Indirect *to)
 249{
 250        while (from <= to && from->key == *from->p)
 251                from++;
 252        return (from > to);
 253}
 254
 255/**
 256 *      ext3_block_to_path - parse the block number into array of offsets
 257 *      @inode: inode in question (we are only interested in its superblock)
 258 *      @i_block: block number to be parsed
 259 *      @offsets: array to store the offsets in
 260 *      @boundary: set this non-zero if the referred-to block is likely to be
 261 *             followed (on disk) by an indirect block.
 262 *
 263 *      To store the locations of file's data ext3 uses a data structure common
 264 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 265 *      data blocks at leaves and indirect blocks in intermediate nodes.
 266 *      This function translates the block number into path in that tree -
 267 *      return value is the path length and @offsets[n] is the offset of
 268 *      pointer to (n+1)th node in the nth one. If @block is out of range
 269 *      (negative or too large) warning is printed and zero returned.
 270 *
 271 *      Note: function doesn't find node addresses, so no IO is needed. All
 272 *      we need to know is the capacity of indirect blocks (taken from the
 273 *      inode->i_sb).
 274 */
 275
 276/*
 277 * Portability note: the last comparison (check that we fit into triple
 278 * indirect block) is spelled differently, because otherwise on an
 279 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 280 * if our filesystem had 8Kb blocks. We might use long long, but that would
 281 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 282 * i_block would have to be negative in the very beginning, so we would not
 283 * get there at all.
 284 */
 285
 286static int ext3_block_to_path(struct inode *inode,
 287                        long i_block, int offsets[4], int *boundary)
 288{
 289        int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
 290        int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
 291        const long direct_blocks = EXT3_NDIR_BLOCKS,
 292                indirect_blocks = ptrs,
 293                double_blocks = (1 << (ptrs_bits * 2));
 294        int n = 0;
 295        int final = 0;
 296
 297        if (i_block < 0) {
 298                ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
 299        } else if (i_block < direct_blocks) {
 300                offsets[n++] = i_block;
 301                final = direct_blocks;
 302        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 303                offsets[n++] = EXT3_IND_BLOCK;
 304                offsets[n++] = i_block;
 305                final = ptrs;
 306        } else if ((i_block -= indirect_blocks) < double_blocks) {
 307                offsets[n++] = EXT3_DIND_BLOCK;
 308                offsets[n++] = i_block >> ptrs_bits;
 309                offsets[n++] = i_block & (ptrs - 1);
 310                final = ptrs;
 311        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 312                offsets[n++] = EXT3_TIND_BLOCK;
 313                offsets[n++] = i_block >> (ptrs_bits * 2);
 314                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 315                offsets[n++] = i_block & (ptrs - 1);
 316                final = ptrs;
 317        } else {
 318                ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
 319        }
 320        if (boundary)
 321                *boundary = final - 1 - (i_block & (ptrs - 1));
 322        return n;
 323}
 324
 325/**
 326 *      ext3_get_branch - read the chain of indirect blocks leading to data
 327 *      @inode: inode in question
 328 *      @depth: depth of the chain (1 - direct pointer, etc.)
 329 *      @offsets: offsets of pointers in inode/indirect blocks
 330 *      @chain: place to store the result
 331 *      @err: here we store the error value
 332 *
 333 *      Function fills the array of triples <key, p, bh> and returns %NULL
 334 *      if everything went OK or the pointer to the last filled triple
 335 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 336 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 337 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 338 *      number (it points into struct inode for i==0 and into the bh->b_data
 339 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 340 *      block for i>0 and NULL for i==0. In other words, it holds the block
 341 *      numbers of the chain, addresses they were taken from (and where we can
 342 *      verify that chain did not change) and buffer_heads hosting these
 343 *      numbers.
 344 *
 345 *      Function stops when it stumbles upon zero pointer (absent block)
 346 *              (pointer to last triple returned, *@err == 0)
 347 *      or when it gets an IO error reading an indirect block
 348 *              (ditto, *@err == -EIO)
 349 *      or when it notices that chain had been changed while it was reading
 350 *              (ditto, *@err == -EAGAIN)
 351 *      or when it reads all @depth-1 indirect blocks successfully and finds
 352 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 353 */
 354static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
 355                                 Indirect chain[4], int *err)
 356{
 357        struct super_block *sb = inode->i_sb;
 358        Indirect *p = chain;
 359        struct buffer_head *bh;
 360
 361        *err = 0;
 362        /* i_data is not going away, no lock needed */
 363        add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
 364        if (!p->key)
 365                goto no_block;
 366        while (--depth) {
 367                bh = sb_bread(sb, le32_to_cpu(p->key));
 368                if (!bh)
 369                        goto failure;
 370                /* Reader: pointers */
 371                if (!verify_chain(chain, p))
 372                        goto changed;
 373                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 374                /* Reader: end */
 375                if (!p->key)
 376                        goto no_block;
 377        }
 378        return NULL;
 379
 380changed:
 381        brelse(bh);
 382        *err = -EAGAIN;
 383        goto no_block;
 384failure:
 385        *err = -EIO;
 386no_block:
 387        return p;
 388}
 389
 390/**
 391 *      ext3_find_near - find a place for allocation with sufficient locality
 392 *      @inode: owner
 393 *      @ind: descriptor of indirect block.
 394 *
 395 *      This function returns the prefered place for block allocation.
 396 *      It is used when heuristic for sequential allocation fails.
 397 *      Rules are:
 398 *        + if there is a block to the left of our position - allocate near it.
 399 *        + if pointer will live in indirect block - allocate near that block.
 400 *        + if pointer will live in inode - allocate in the same
 401 *          cylinder group.
 402 *
 403 * In the latter case we colour the starting block by the callers PID to
 404 * prevent it from clashing with concurrent allocations for a different inode
 405 * in the same block group.   The PID is used here so that functionally related
 406 * files will be close-by on-disk.
 407 *
 408 *      Caller must make sure that @ind is valid and will stay that way.
 409 */
 410static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
 411{
 412        struct ext3_inode_info *ei = EXT3_I(inode);
 413        __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
 414        __le32 *p;
 415        ext3_fsblk_t bg_start;
 416        ext3_grpblk_t colour;
 417
 418        /* Try to find previous block */
 419        for (p = ind->p - 1; p >= start; p--) {
 420                if (*p)
 421                        return le32_to_cpu(*p);
 422        }
 423
 424        /* No such thing, so let's try location of indirect block */
 425        if (ind->bh)
 426                return ind->bh->b_blocknr;
 427
 428        /*
 429         * It is going to be referred to from the inode itself? OK, just put it
 430         * into the same cylinder group then.
 431         */
 432        bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
 433        colour = (current->pid % 16) *
 434                        (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 435        return bg_start + colour;
 436}
 437
 438/**
 439 *      ext3_find_goal - find a prefered place for allocation.
 440 *      @inode: owner
 441 *      @block:  block we want
 442 *      @chain:  chain of indirect blocks
 443 *      @partial: pointer to the last triple within a chain
 444 *      @goal:  place to store the result.
 445 *
 446 *      Normally this function find the prefered place for block allocation,
 447 *      stores it in *@goal and returns zero.
 448 */
 449
 450static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
 451                Indirect chain[4], Indirect *partial)
 452{
 453        struct ext3_block_alloc_info *block_i;
 454
 455        block_i =  EXT3_I(inode)->i_block_alloc_info;
 456
 457        /*
 458         * try the heuristic for sequential allocation,
 459         * failing that at least try to get decent locality.
 460         */
 461        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 462                && (block_i->last_alloc_physical_block != 0)) {
 463                return block_i->last_alloc_physical_block + 1;
 464        }
 465
 466        return ext3_find_near(inode, partial);
 467}
 468
 469/**
 470 *      ext3_blks_to_allocate: Look up the block map and count the number
 471 *      of direct blocks need to be allocated for the given branch.
 472 *
 473 *      @branch: chain of indirect blocks
 474 *      @k: number of blocks need for indirect blocks
 475 *      @blks: number of data blocks to be mapped.
 476 *      @blocks_to_boundary:  the offset in the indirect block
 477 *
 478 *      return the total number of blocks to be allocate, including the
 479 *      direct and indirect blocks.
 480 */
 481static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
 482                int blocks_to_boundary)
 483{
 484        unsigned long count = 0;
 485
 486        /*
 487         * Simple case, [t,d]Indirect block(s) has not allocated yet
 488         * then it's clear blocks on that path have not allocated
 489         */
 490        if (k > 0) {
 491                /* right now we don't handle cross boundary allocation */
 492                if (blks < blocks_to_boundary + 1)
 493                        count += blks;
 494                else
 495                        count += blocks_to_boundary + 1;
 496                return count;
 497        }
 498
 499        count++;
 500        while (count < blks && count <= blocks_to_boundary &&
 501                le32_to_cpu(*(branch[0].p + count)) == 0) {
 502                count++;
 503        }
 504        return count;
 505}
 506
 507/**
 508 *      ext3_alloc_blocks: multiple allocate blocks needed for a branch
 509 *      @indirect_blks: the number of blocks need to allocate for indirect
 510 *                      blocks
 511 *
 512 *      @new_blocks: on return it will store the new block numbers for
 513 *      the indirect blocks(if needed) and the first direct block,
 514 *      @blks:  on return it will store the total number of allocated
 515 *              direct blocks
 516 */
 517static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
 518                        ext3_fsblk_t goal, int indirect_blks, int blks,
 519                        ext3_fsblk_t new_blocks[4], int *err)
 520{
 521        int target, i;
 522        unsigned long count = 0;
 523        int index = 0;
 524        ext3_fsblk_t current_block = 0;
 525        int ret = 0;
 526
 527        /*
 528         * Here we try to allocate the requested multiple blocks at once,
 529         * on a best-effort basis.
 530         * To build a branch, we should allocate blocks for
 531         * the indirect blocks(if not allocated yet), and at least
 532         * the first direct block of this branch.  That's the
 533         * minimum number of blocks need to allocate(required)
 534         */
 535        target = blks + indirect_blks;
 536
 537        while (1) {
 538                count = target;
 539                /* allocating blocks for indirect blocks and direct blocks */
 540                current_block = ext3_new_blocks(handle,inode,goal,&count,err);
 541                if (*err)
 542                        goto failed_out;
 543
 544                target -= count;
 545                /* allocate blocks for indirect blocks */
 546                while (index < indirect_blks && count) {
 547                        new_blocks[index++] = current_block++;
 548                        count--;
 549                }
 550
 551                if (count > 0)
 552                        break;
 553        }
 554
 555        /* save the new block number for the first direct block */
 556        new_blocks[index] = current_block;
 557
 558        /* total number of blocks allocated for direct blocks */
 559        ret = count;
 560        *err = 0;
 561        return ret;
 562failed_out:
 563        for (i = 0; i <index; i++)
 564                ext3_free_blocks(handle, inode, new_blocks[i], 1);
 565        return ret;
 566}
 567
 568/**
 569 *      ext3_alloc_branch - allocate and set up a chain of blocks.
 570 *      @inode: owner
 571 *      @indirect_blks: number of allocated indirect blocks
 572 *      @blks: number of allocated direct blocks
 573 *      @offsets: offsets (in the blocks) to store the pointers to next.
 574 *      @branch: place to store the chain in.
 575 *
 576 *      This function allocates blocks, zeroes out all but the last one,
 577 *      links them into chain and (if we are synchronous) writes them to disk.
 578 *      In other words, it prepares a branch that can be spliced onto the
 579 *      inode. It stores the information about that chain in the branch[], in
 580 *      the same format as ext3_get_branch() would do. We are calling it after
 581 *      we had read the existing part of chain and partial points to the last
 582 *      triple of that (one with zero ->key). Upon the exit we have the same
 583 *      picture as after the successful ext3_get_block(), except that in one
 584 *      place chain is disconnected - *branch->p is still zero (we did not
 585 *      set the last link), but branch->key contains the number that should
 586 *      be placed into *branch->p to fill that gap.
 587 *
 588 *      If allocation fails we free all blocks we've allocated (and forget
 589 *      their buffer_heads) and return the error value the from failed
 590 *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 591 *      as described above and return 0.
 592 */
 593static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
 594                        int indirect_blks, int *blks, ext3_fsblk_t goal,
 595                        int *offsets, Indirect *branch)
 596{
 597        int blocksize = inode->i_sb->s_blocksize;
 598        int i, n = 0;
 599        int err = 0;
 600        struct buffer_head *bh;
 601        int num;
 602        ext3_fsblk_t new_blocks[4];
 603        ext3_fsblk_t current_block;
 604
 605        num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
 606                                *blks, new_blocks, &err);
 607        if (err)
 608                return err;
 609
 610        branch[0].key = cpu_to_le32(new_blocks[0]);
 611        /*
 612         * metadata blocks and data blocks are allocated.
 613         */
 614        for (n = 1; n <= indirect_blks;  n++) {
 615                /*
 616                 * Get buffer_head for parent block, zero it out
 617                 * and set the pointer to new one, then send
 618                 * parent to disk.
 619                 */
 620                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 621                branch[n].bh = bh;
 622                lock_buffer(bh);
 623                BUFFER_TRACE(bh, "call get_create_access");
 624                err = ext3_journal_get_create_access(handle, bh);
 625                if (err) {
 626                        unlock_buffer(bh);
 627                        brelse(bh);
 628                        goto failed;
 629                }
 630
 631                memset(bh->b_data, 0, blocksize);
 632                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 633                branch[n].key = cpu_to_le32(new_blocks[n]);
 634                *branch[n].p = branch[n].key;
 635                if ( n == indirect_blks) {
 636                        current_block = new_blocks[n];
 637                        /*
 638                         * End of chain, update the last new metablock of
 639                         * the chain to point to the new allocated
 640                         * data blocks numbers
 641                         */
 642                        for (i=1; i < num; i++)
 643                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 644                }
 645                BUFFER_TRACE(bh, "marking uptodate");
 646                set_buffer_uptodate(bh);
 647                unlock_buffer(bh);
 648
 649                BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
 650                err = ext3_journal_dirty_metadata(handle, bh);
 651                if (err)
 652                        goto failed;
 653        }
 654        *blks = num;
 655        return err;
 656failed:
 657        /* Allocation failed, free what we already allocated */
 658        for (i = 1; i <= n ; i++) {
 659                BUFFER_TRACE(branch[i].bh, "call journal_forget");
 660                ext3_journal_forget(handle, branch[i].bh);
 661        }
 662        for (i = 0; i <indirect_blks; i++)
 663                ext3_free_blocks(handle, inode, new_blocks[i], 1);
 664
 665        ext3_free_blocks(handle, inode, new_blocks[i], num);
 666
 667        return err;
 668}
 669
 670/**
 671 * ext3_splice_branch - splice the allocated branch onto inode.
 672 * @inode: owner
 673 * @block: (logical) number of block we are adding
 674 * @chain: chain of indirect blocks (with a missing link - see
 675 *      ext3_alloc_branch)
 676 * @where: location of missing link
 677 * @num:   number of indirect blocks we are adding
 678 * @blks:  number of direct blocks we are adding
 679 *
 680 * This function fills the missing link and does all housekeeping needed in
 681 * inode (->i_blocks, etc.). In case of success we end up with the full
 682 * chain to new block and return 0.
 683 */
 684static int ext3_splice_branch(handle_t *handle, struct inode *inode,
 685                        long block, Indirect *where, int num, int blks)
 686{
 687        int i;
 688        int err = 0;
 689        struct ext3_block_alloc_info *block_i;
 690        ext3_fsblk_t current_block;
 691
 692        block_i = EXT3_I(inode)->i_block_alloc_info;
 693        /*
 694         * If we're splicing into a [td]indirect block (as opposed to the
 695         * inode) then we need to get write access to the [td]indirect block
 696         * before the splice.
 697         */
 698        if (where->bh) {
 699                BUFFER_TRACE(where->bh, "get_write_access");
 700                err = ext3_journal_get_write_access(handle, where->bh);
 701                if (err)
 702                        goto err_out;
 703        }
 704        /* That's it */
 705
 706        *where->p = where->key;
 707
 708        /*
 709         * Update the host buffer_head or inode to point to more just allocated
 710         * direct blocks blocks
 711         */
 712        if (num == 0 && blks > 1) {
 713                current_block = le32_to_cpu(where->key) + 1;
 714                for (i = 1; i < blks; i++)
 715                        *(where->p + i ) = cpu_to_le32(current_block++);
 716        }
 717
 718        /*
 719         * update the most recently allocated logical & physical block
 720         * in i_block_alloc_info, to assist find the proper goal block for next
 721         * allocation
 722         */
 723        if (block_i) {
 724                block_i->last_alloc_logical_block = block + blks - 1;
 725                block_i->last_alloc_physical_block =
 726                                le32_to_cpu(where[num].key) + blks - 1;
 727        }
 728
 729        /* We are done with atomic stuff, now do the rest of housekeeping */
 730
 731        inode->i_ctime = CURRENT_TIME_SEC;
 732        ext3_mark_inode_dirty(handle, inode);
 733
 734        /* had we spliced it onto indirect block? */
 735        if (where->bh) {
 736                /*
 737                 * If we spliced it onto an indirect block, we haven't
 738                 * altered the inode.  Note however that if it is being spliced
 739                 * onto an indirect block at the very end of the file (the
 740                 * file is growing) then we *will* alter the inode to reflect
 741                 * the new i_size.  But that is not done here - it is done in
 742                 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
 743                 */
 744                jbd_debug(5, "splicing indirect only\n");
 745                BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
 746                err = ext3_journal_dirty_metadata(handle, where->bh);
 747                if (err)
 748                        goto err_out;
 749        } else {
 750                /*
 751                 * OK, we spliced it into the inode itself on a direct block.
 752                 * Inode was dirtied above.
 753                 */
 754                jbd_debug(5, "splicing direct\n");
 755        }
 756        return err;
 757
 758err_out:
 759        for (i = 1; i <= num; i++) {
 760                BUFFER_TRACE(where[i].bh, "call journal_forget");
 761                ext3_journal_forget(handle, where[i].bh);
 762                ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
 763        }
 764        ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
 765
 766        return err;
 767}
 768
 769/*
 770 * Allocation strategy is simple: if we have to allocate something, we will
 771 * have to go the whole way to leaf. So let's do it before attaching anything
 772 * to tree, set linkage between the newborn blocks, write them if sync is
 773 * required, recheck the path, free and repeat if check fails, otherwise
 774 * set the last missing link (that will protect us from any truncate-generated
 775 * removals - all blocks on the path are immune now) and possibly force the
 776 * write on the parent block.
 777 * That has a nice additional property: no special recovery from the failed
 778 * allocations is needed - we simply release blocks and do not touch anything
 779 * reachable from inode.
 780 *
 781 * `handle' can be NULL if create == 0.
 782 *
 783 * The BKL may not be held on entry here.  Be sure to take it early.
 784 * return > 0, # of blocks mapped or allocated.
 785 * return = 0, if plain lookup failed.
 786 * return < 0, error case.
 787 */
 788int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
 789                sector_t iblock, unsigned long maxblocks,
 790                struct buffer_head *bh_result,
 791                int create, int extend_disksize)
 792{
 793        int err = -EIO;
 794        int offsets[4];
 795        Indirect chain[4];
 796        Indirect *partial;
 797        ext3_fsblk_t goal;
 798        int indirect_blks;
 799        int blocks_to_boundary = 0;
 800        int depth;
 801        struct ext3_inode_info *ei = EXT3_I(inode);
 802        int count = 0;
 803        ext3_fsblk_t first_block = 0;
 804
 805
 806        J_ASSERT(handle != NULL || create == 0);
 807        depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 808
 809        if (depth == 0)
 810                goto out;
 811
 812        partial = ext3_get_branch(inode, depth, offsets, chain, &err);
 813
 814        /* Simplest case - block found, no allocation needed */
 815        if (!partial) {
 816                first_block = le32_to_cpu(chain[depth - 1].key);
 817                clear_buffer_new(bh_result);
 818                count++;
 819                /*map more blocks*/
 820                while (count < maxblocks && count <= blocks_to_boundary) {
 821                        ext3_fsblk_t blk;
 822
 823                        if (!verify_chain(chain, partial)) {
 824                                /*
 825                                 * Indirect block might be removed by
 826                                 * truncate while we were reading it.
 827                                 * Handling of that case: forget what we've
 828                                 * got now. Flag the err as EAGAIN, so it
 829                                 * will reread.
 830                                 */
 831                                err = -EAGAIN;
 832                                count = 0;
 833                                break;
 834                        }
 835                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 836
 837                        if (blk == first_block + count)
 838                                count++;
 839                        else
 840                                break;
 841                }
 842                if (err != -EAGAIN)
 843                        goto got_it;
 844        }
 845
 846        /* Next simple case - plain lookup or failed read of indirect block */
 847        if (!create || err == -EIO)
 848                goto cleanup;
 849
 850        mutex_lock(&ei->truncate_mutex);
 851
 852        /*
 853         * If the indirect block is missing while we are reading
 854         * the chain(ext3_get_branch() returns -EAGAIN err), or
 855         * if the chain has been changed after we grab the semaphore,
 856         * (either because another process truncated this branch, or
 857         * another get_block allocated this branch) re-grab the chain to see if
 858         * the request block has been allocated or not.
 859         *
 860         * Since we already block the truncate/other get_block
 861         * at this point, we will have the current copy of the chain when we
 862         * splice the branch into the tree.
 863         */
 864        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 865                while (partial > chain) {
 866                        brelse(partial->bh);
 867                        partial--;
 868                }
 869                partial = ext3_get_branch(inode, depth, offsets, chain, &err);
 870                if (!partial) {
 871                        count++;
 872                        mutex_unlock(&ei->truncate_mutex);
 873                        if (err)
 874                                goto cleanup;
 875                        clear_buffer_new(bh_result);
 876                        goto got_it;
 877                }
 878        }
 879
 880        /*
 881         * Okay, we need to do block allocation.  Lazily initialize the block
 882         * allocation info here if necessary
 883        */
 884        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 885                ext3_init_block_alloc_info(inode);
 886
 887        goal = ext3_find_goal(inode, iblock, chain, partial);
 888
 889        /* the number of blocks need to allocate for [d,t]indirect blocks */
 890        indirect_blks = (chain + depth) - partial - 1;
 891
 892        /*
 893         * Next look up the indirect map to count the totoal number of
 894         * direct blocks to allocate for this branch.
 895         */
 896        count = ext3_blks_to_allocate(partial, indirect_blks,
 897                                        maxblocks, blocks_to_boundary);
 898        /*
 899         * Block out ext3_truncate while we alter the tree
 900         */
 901        err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
 902                                offsets + (partial - chain), partial);
 903
 904        /*
 905         * The ext3_splice_branch call will free and forget any buffers
 906         * on the new chain if there is a failure, but that risks using
 907         * up transaction credits, especially for bitmaps where the
 908         * credits cannot be returned.  Can we handle this somehow?  We
 909         * may need to return -EAGAIN upwards in the worst case.  --sct
 910         */
 911        if (!err)
 912                err = ext3_splice_branch(handle, inode, iblock,
 913                                        partial, indirect_blks, count);
 914        /*
 915         * i_disksize growing is protected by truncate_mutex.  Don't forget to
 916         * protect it if you're about to implement concurrent
 917         * ext3_get_block() -bzzz
 918        */
 919        if (!err && extend_disksize && inode->i_size > ei->i_disksize)
 920                ei->i_disksize = inode->i_size;
 921        mutex_unlock(&ei->truncate_mutex);
 922        if (err)
 923                goto cleanup;
 924
 925        set_buffer_new(bh_result);
 926got_it:
 927        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 928        if (count > blocks_to_boundary)
 929                set_buffer_boundary(bh_result);
 930        err = count;
 931        /* Clean up and exit */
 932        partial = chain + depth - 1;    /* the whole chain */
 933cleanup:
 934        while (partial > chain) {
 935                BUFFER_TRACE(partial->bh, "call brelse");
 936                brelse(partial->bh);
 937                partial--;
 938        }
 939        BUFFER_TRACE(bh_result, "returned");
 940out:
 941        return err;
 942}
 943
 944#define DIO_CREDITS (EXT3_RESERVE_TRANS_BLOCKS + 32)
 945
 946static int ext3_get_block(struct inode *inode, sector_t iblock,
 947                        struct buffer_head *bh_result, int create)
 948{
 949        handle_t *handle = ext3_journal_current_handle();
 950        int ret = 0;
 951        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 952
 953        if (!create)
 954                goto get_block;         /* A read */
 955
 956        if (max_blocks == 1)
 957                goto get_block;         /* A single block get */
 958
 959        if (handle->h_transaction->t_state == T_LOCKED) {
 960                /*
 961                 * Huge direct-io writes can hold off commits for long
 962                 * periods of time.  Let this commit run.
 963                 */
 964                ext3_journal_stop(handle);
 965                handle = ext3_journal_start(inode, DIO_CREDITS);
 966                if (IS_ERR(handle))
 967                        ret = PTR_ERR(handle);
 968                goto get_block;
 969        }
 970
 971        if (handle->h_buffer_credits <= EXT3_RESERVE_TRANS_BLOCKS) {
 972                /*
 973                 * Getting low on buffer credits...
 974                 */
 975                ret = ext3_journal_extend(handle, DIO_CREDITS);
 976                if (ret > 0) {
 977                        /*
 978                         * Couldn't extend the transaction.  Start a new one.
 979                         */
 980                        ret = ext3_journal_restart(handle, DIO_CREDITS);
 981                }
 982        }
 983
 984get_block:
 985        if (ret == 0) {
 986                ret = ext3_get_blocks_handle(handle, inode, iblock,
 987                                        max_blocks, bh_result, create, 0);
 988                if (ret > 0) {
 989                        bh_result->b_size = (ret << inode->i_blkbits);
 990                        ret = 0;
 991                }
 992        }
 993        return ret;
 994}
 995
 996/*
 997 * `handle' can be NULL if create is zero
 998 */
 999struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1000                                long block, int create, int *errp)
1001{
1002        struct buffer_head dummy;
1003        int fatal = 0, err;
1004
1005        J_ASSERT(handle != NULL || create == 0);
1006
1007        dummy.b_state = 0;
1008        dummy.b_blocknr = -1000;
1009        buffer_trace_init(&dummy.b_history);
1010        err = ext3_get_blocks_handle(handle, inode, block, 1,
1011                                        &dummy, create, 1);
1012        /*
1013         * ext3_get_blocks_handle() returns number of blocks
1014         * mapped. 0 in case of a HOLE.
1015         */
1016        if (err > 0) {
1017                if (err > 1)
1018                        WARN_ON(1);
1019                err = 0;
1020        }
1021        *errp = err;
1022        if (!err && buffer_mapped(&dummy)) {
1023                struct buffer_head *bh;
1024                bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1025                if (!bh) {
1026                        *errp = -EIO;
1027                        goto err;
1028                }
1029                if (buffer_new(&dummy)) {
1030                        J_ASSERT(create != 0);
1031                        J_ASSERT(handle != NULL);
1032
1033                        /*
1034                         * Now that we do not always journal data, we should
1035                         * keep in mind whether this should always journal the
1036                         * new buffer as metadata.  For now, regular file
1037                         * writes use ext3_get_block instead, so it's not a
1038                         * problem.
1039                         */
1040                        lock_buffer(bh);
1041                        BUFFER_TRACE(bh, "call get_create_access");
1042                        fatal = ext3_journal_get_create_access(handle, bh);
1043                        if (!fatal && !buffer_uptodate(bh)) {
1044                                memset(bh->b_data,0,inode->i_sb->s_blocksize);
1045                                set_buffer_uptodate(bh);
1046                        }
1047                        unlock_buffer(bh);
1048                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1049                        err = ext3_journal_dirty_metadata(handle, bh);
1050                        if (!fatal)
1051                                fatal = err;
1052                } else {
1053                        BUFFER_TRACE(bh, "not a new buffer");
1054                }
1055                if (fatal) {
1056                        *errp = fatal;
1057                        brelse(bh);
1058                        bh = NULL;
1059                }
1060                return bh;
1061        }
1062err:
1063        return NULL;
1064}
1065
1066struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1067                               int block, int create, int *err)
1068{
1069        struct buffer_head * bh;
1070
1071        bh = ext3_getblk(handle, inode, block, create, err);
1072        if (!bh)
1073                return bh;
1074        if (buffer_uptodate(bh))
1075                return bh;
1076        ll_rw_block(READ_META, 1, &bh);
1077        wait_on_buffer(bh);
1078        if (buffer_uptodate(bh))
1079                return bh;
1080        put_bh(bh);
1081        *err = -EIO;
1082        return NULL;
1083}
1084
1085static int walk_page_buffers(   handle_t *handle,
1086                                struct buffer_head *head,
1087                                unsigned from,
1088                                unsigned to,
1089                                int *partial,
1090                                int (*fn)(      handle_t *handle,
1091                                                struct buffer_head *bh))
1092{
1093        struct buffer_head *bh;
1094        unsigned block_start, block_end;
1095        unsigned blocksize = head->b_size;
1096        int err, ret = 0;
1097        struct buffer_head *next;
1098
1099        for (   bh = head, block_start = 0;
1100                ret == 0 && (bh != head || !block_start);
1101                block_start = block_end, bh = next)
1102        {
1103                next = bh->b_this_page;
1104                block_end = block_start + blocksize;
1105                if (block_end <= from || block_start >= to) {
1106                        if (partial && !buffer_uptodate(bh))
1107                                *partial = 1;
1108                        continue;
1109                }
1110                err = (*fn)(handle, bh);
1111                if (!ret)
1112                        ret = err;
1113        }
1114        return ret;
1115}
1116
1117/*
1118 * To preserve ordering, it is essential that the hole instantiation and
1119 * the data write be encapsulated in a single transaction.  We cannot
1120 * close off a transaction and start a new one between the ext3_get_block()
1121 * and the commit_write().  So doing the journal_start at the start of
1122 * prepare_write() is the right place.
1123 *
1124 * Also, this function can nest inside ext3_writepage() ->
1125 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1126 * has generated enough buffer credits to do the whole page.  So we won't
1127 * block on the journal in that case, which is good, because the caller may
1128 * be PF_MEMALLOC.
1129 *
1130 * By accident, ext3 can be reentered when a transaction is open via
1131 * quota file writes.  If we were to commit the transaction while thus
1132 * reentered, there can be a deadlock - we would be holding a quota
1133 * lock, and the commit would never complete if another thread had a
1134 * transaction open and was blocking on the quota lock - a ranking
1135 * violation.
1136 *
1137 * So what we do is to rely on the fact that journal_stop/journal_start
1138 * will _not_ run commit under these circumstances because handle->h_ref
1139 * is elevated.  We'll still have enough credits for the tiny quotafile
1140 * write.
1141 */
1142static int do_journal_get_write_access(handle_t *handle,
1143                                        struct buffer_head *bh)
1144{
1145        if (!buffer_mapped(bh) || buffer_freed(bh))
1146                return 0;
1147        return ext3_journal_get_write_access(handle, bh);
1148}
1149
1150static int ext3_write_begin(struct file *file, struct address_space *mapping,
1151                                loff_t pos, unsigned len, unsigned flags,
1152                                struct page **pagep, void **fsdata)
1153{
1154        struct inode *inode = mapping->host;
1155        int ret, needed_blocks = ext3_writepage_trans_blocks(inode);
1156        handle_t *handle;
1157        int retries = 0;
1158        struct page *page;
1159        pgoff_t index;
1160        unsigned from, to;
1161
1162        index = pos >> PAGE_CACHE_SHIFT;
1163        from = pos & (PAGE_CACHE_SIZE - 1);
1164        to = from + len;
1165
1166retry:
1167        page = __grab_cache_page(mapping, index);
1168        if (!page)
1169                return -ENOMEM;
1170        *pagep = page;
1171
1172        handle = ext3_journal_start(inode, needed_blocks);
1173        if (IS_ERR(handle)) {
1174                unlock_page(page);
1175                page_cache_release(page);
1176                ret = PTR_ERR(handle);
1177                goto out;
1178        }
1179        ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1180                                                        ext3_get_block);
1181        if (ret)
1182                goto write_begin_failed;
1183
1184        if (ext3_should_journal_data(inode)) {
1185                ret = walk_page_buffers(handle, page_buffers(page),
1186                                from, to, NULL, do_journal_get_write_access);
1187        }
1188write_begin_failed:
1189        if (ret) {
1190                ext3_journal_stop(handle);
1191                unlock_page(page);
1192                page_cache_release(page);
1193        }
1194        if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1195                goto retry;
1196out:
1197        return ret;
1198}
1199
1200
1201int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1202{
1203        int err = journal_dirty_data(handle, bh);
1204        if (err)
1205                ext3_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1206                                                bh, handle, err);
1207        return err;
1208}
1209
1210/* For write_end() in data=journal mode */
1211static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1212{
1213        if (!buffer_mapped(bh) || buffer_freed(bh))
1214                return 0;
1215        set_buffer_uptodate(bh);
1216        return ext3_journal_dirty_metadata(handle, bh);
1217}
1218
1219/*
1220 * Generic write_end handler for ordered and writeback ext3 journal modes.
1221 * We can't use generic_write_end, because that unlocks the page and we need to
1222 * unlock the page after ext3_journal_stop, but ext3_journal_stop must run
1223 * after block_write_end.
1224 */
1225static int ext3_generic_write_end(struct file *file,
1226                                struct address_space *mapping,
1227                                loff_t pos, unsigned len, unsigned copied,
1228                                struct page *page, void *fsdata)
1229{
1230        struct inode *inode = file->f_mapping->host;
1231
1232        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1233
1234        if (pos+copied > inode->i_size) {
1235                i_size_write(inode, pos+copied);
1236                mark_inode_dirty(inode);
1237        }
1238
1239        return copied;
1240}
1241
1242/*
1243 * We need to pick up the new inode size which generic_commit_write gave us
1244 * `file' can be NULL - eg, when called from page_symlink().
1245 *
1246 * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1247 * buffers are managed internally.
1248 */
1249static int ext3_ordered_write_end(struct file *file,
1250                                struct address_space *mapping,
1251                                loff_t pos, unsigned len, unsigned copied,
1252                                struct page *page, void *fsdata)
1253{
1254        handle_t *handle = ext3_journal_current_handle();
1255        struct inode *inode = file->f_mapping->host;
1256        unsigned from, to;
1257        int ret = 0, ret2;
1258
1259        from = pos & (PAGE_CACHE_SIZE - 1);
1260        to = from + len;
1261
1262        ret = walk_page_buffers(handle, page_buffers(page),
1263                from, to, NULL, ext3_journal_dirty_data);
1264
1265        if (ret == 0) {
1266                /*
1267                 * generic_write_end() will run mark_inode_dirty() if i_size
1268                 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1269                 * into that.
1270                 */
1271                loff_t new_i_size;
1272
1273                new_i_size = pos + copied;
1274                if (new_i_size > EXT3_I(inode)->i_disksize)
1275                        EXT3_I(inode)->i_disksize = new_i_size;
1276                copied = ext3_generic_write_end(file, mapping, pos, len, copied,
1277                                                        page, fsdata);
1278                if (copied < 0)
1279                        ret = copied;
1280        }
1281        ret2 = ext3_journal_stop(handle);
1282        if (!ret)
1283                ret = ret2;
1284        unlock_page(page);
1285        page_cache_release(page);
1286
1287        return ret ? ret : copied;
1288}
1289
1290static int ext3_writeback_write_end(struct file *file,
1291                                struct address_space *mapping,
1292                                loff_t pos, unsigned len, unsigned copied,
1293                                struct page *page, void *fsdata)
1294{
1295        handle_t *handle = ext3_journal_current_handle();
1296        struct inode *inode = file->f_mapping->host;
1297        int ret = 0, ret2;
1298        loff_t new_i_size;
1299
1300        new_i_size = pos + copied;
1301        if (new_i_size > EXT3_I(inode)->i_disksize)
1302                EXT3_I(inode)->i_disksize = new_i_size;
1303
1304        copied = ext3_generic_write_end(file, mapping, pos, len, copied,
1305                                                        page, fsdata);
1306        if (copied < 0)
1307                ret = copied;
1308
1309        ret2 = ext3_journal_stop(handle);
1310        if (!ret)
1311                ret = ret2;
1312        unlock_page(page);
1313        page_cache_release(page);
1314
1315        return ret ? ret : copied;
1316}
1317
1318static int ext3_journalled_write_end(struct file *file,
1319                                struct address_space *mapping,
1320                                loff_t pos, unsigned len, unsigned copied,
1321                                struct page *page, void *fsdata)
1322{
1323        handle_t *handle = ext3_journal_current_handle();
1324        struct inode *inode = mapping->host;
1325        int ret = 0, ret2;
1326        int partial = 0;
1327        unsigned from, to;
1328
1329        from = pos & (PAGE_CACHE_SIZE - 1);
1330        to = from + len;
1331
1332        if (copied < len) {
1333                if (!PageUptodate(page))
1334                        copied = 0;
1335                page_zero_new_buffers(page, from+copied, to);
1336        }
1337
1338        ret = walk_page_buffers(handle, page_buffers(page), from,
1339                                to, &partial, write_end_fn);
1340        if (!partial)
1341                SetPageUptodate(page);
1342        if (pos+copied > inode->i_size)
1343                i_size_write(inode, pos+copied);
1344        EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1345        if (inode->i_size > EXT3_I(inode)->i_disksize) {
1346                EXT3_I(inode)->i_disksize = inode->i_size;
1347                ret2 = ext3_mark_inode_dirty(handle, inode);
1348                if (!ret)
1349                        ret = ret2;
1350        }
1351
1352        ret2 = ext3_journal_stop(handle);
1353        if (!ret)
1354                ret = ret2;
1355        unlock_page(page);
1356        page_cache_release(page);
1357
1358        return ret ? ret : copied;
1359}
1360
1361/*
1362 * bmap() is special.  It gets used by applications such as lilo and by
1363 * the swapper to find the on-disk block of a specific piece of data.
1364 *
1365 * Naturally, this is dangerous if the block concerned is still in the
1366 * journal.  If somebody makes a swapfile on an ext3 data-journaling
1367 * filesystem and enables swap, then they may get a nasty shock when the
1368 * data getting swapped to that swapfile suddenly gets overwritten by
1369 * the original zero's written out previously to the journal and
1370 * awaiting writeback in the kernel's buffer cache.
1371 *
1372 * So, if we see any bmap calls here on a modified, data-journaled file,
1373 * take extra steps to flush any blocks which might be in the cache.
1374 */
1375static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1376{
1377        struct inode *inode = mapping->host;
1378        journal_t *journal;
1379        int err;
1380
1381        if (EXT3_I(inode)->i_state & EXT3_STATE_JDATA) {
1382                /*
1383                 * This is a REALLY heavyweight approach, but the use of
1384                 * bmap on dirty files is expected to be extremely rare:
1385                 * only if we run lilo or swapon on a freshly made file
1386                 * do we expect this to happen.
1387                 *
1388                 * (bmap requires CAP_SYS_RAWIO so this does not
1389                 * represent an unprivileged user DOS attack --- we'd be
1390                 * in trouble if mortal users could trigger this path at
1391                 * will.)
1392                 *
1393                 * NB. EXT3_STATE_JDATA is not set on files other than
1394                 * regular files.  If somebody wants to bmap a directory
1395                 * or symlink and gets confused because the buffer
1396                 * hasn't yet been flushed to disk, they deserve
1397                 * everything they get.
1398                 */
1399
1400                EXT3_I(inode)->i_state &= ~EXT3_STATE_JDATA;
1401                journal = EXT3_JOURNAL(inode);
1402                journal_lock_updates(journal);
1403                err = journal_flush(journal);
1404                journal_unlock_updates(journal);
1405
1406                if (err)
1407                        return 0;
1408        }
1409
1410        return generic_block_bmap(mapping,block,ext3_get_block);
1411}
1412
1413static int bget_one(handle_t *handle, struct buffer_head *bh)
1414{
1415        get_bh(bh);
1416        return 0;
1417}
1418
1419static int bput_one(handle_t *handle, struct buffer_head *bh)
1420{
1421        put_bh(bh);
1422        return 0;
1423}
1424
1425static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1426{
1427        if (buffer_mapped(bh))
1428                return ext3_journal_dirty_data(handle, bh);
1429        return 0;
1430}
1431
1432/*
1433 * Note that we always start a transaction even if we're not journalling
1434 * data.  This is to preserve ordering: any hole instantiation within
1435 * __block_write_full_page -> ext3_get_block() should be journalled
1436 * along with the data so we don't crash and then get metadata which
1437 * refers to old data.
1438 *
1439 * In all journalling modes block_write_full_page() will start the I/O.
1440 *
1441 * Problem:
1442 *
1443 *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1444 *              ext3_writepage()
1445 *
1446 * Similar for:
1447 *
1448 *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1449 *
1450 * Same applies to ext3_get_block().  We will deadlock on various things like
1451 * lock_journal and i_truncate_mutex.
1452 *
1453 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1454 * allocations fail.
1455 *
1456 * 16May01: If we're reentered then journal_current_handle() will be
1457 *          non-zero. We simply *return*.
1458 *
1459 * 1 July 2001: @@@ FIXME:
1460 *   In journalled data mode, a data buffer may be metadata against the
1461 *   current transaction.  But the same file is part of a shared mapping
1462 *   and someone does a writepage() on it.
1463 *
1464 *   We will move the buffer onto the async_data list, but *after* it has
1465 *   been dirtied. So there's a small window where we have dirty data on
1466 *   BJ_Metadata.
1467 *
1468 *   Note that this only applies to the last partial page in the file.  The
1469 *   bit which block_write_full_page() uses prepare/commit for.  (That's
1470 *   broken code anyway: it's wrong for msync()).
1471 *
1472 *   It's a rare case: affects the final partial page, for journalled data
1473 *   where the file is subject to bith write() and writepage() in the same
1474 *   transction.  To fix it we'll need a custom block_write_full_page().
1475 *   We'll probably need that anyway for journalling writepage() output.
1476 *
1477 * We don't honour synchronous mounts for writepage().  That would be
1478 * disastrous.  Any write() or metadata operation will sync the fs for
1479 * us.
1480 *
1481 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1482 * we don't need to open a transaction here.
1483 */
1484static int ext3_ordered_writepage(struct page *page,
1485                                struct writeback_control *wbc)
1486{
1487        struct inode *inode = page->mapping->host;
1488        struct buffer_head *page_bufs;
1489        handle_t *handle = NULL;
1490        int ret = 0;
1491        int err;
1492
1493        J_ASSERT(PageLocked(page));
1494
1495        /*
1496         * We give up here if we're reentered, because it might be for a
1497         * different filesystem.
1498         */
1499        if (ext3_journal_current_handle())
1500                goto out_fail;
1501
1502        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1503
1504        if (IS_ERR(handle)) {
1505                ret = PTR_ERR(handle);
1506                goto out_fail;
1507        }
1508
1509        if (!page_has_buffers(page)) {
1510                create_empty_buffers(page, inode->i_sb->s_blocksize,
1511                                (1 << BH_Dirty)|(1 << BH_Uptodate));
1512        }
1513        page_bufs = page_buffers(page);
1514        walk_page_buffers(handle, page_bufs, 0,
1515                        PAGE_CACHE_SIZE, NULL, bget_one);
1516
1517        ret = block_write_full_page(page, ext3_get_block, wbc);
1518
1519        /*
1520         * The page can become unlocked at any point now, and
1521         * truncate can then come in and change things.  So we
1522         * can't touch *page from now on.  But *page_bufs is
1523         * safe due to elevated refcount.
1524         */
1525
1526        /*
1527         * And attach them to the current transaction.  But only if
1528         * block_write_full_page() succeeded.  Otherwise they are unmapped,
1529         * and generally junk.
1530         */
1531        if (ret == 0) {
1532                err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1533                                        NULL, journal_dirty_data_fn);
1534                if (!ret)
1535                        ret = err;
1536        }
1537        walk_page_buffers(handle, page_bufs, 0,
1538                        PAGE_CACHE_SIZE, NULL, bput_one);
1539        err = ext3_journal_stop(handle);
1540        if (!ret)
1541                ret = err;
1542        return ret;
1543
1544out_fail:
1545        redirty_page_for_writepage(wbc, page);
1546        unlock_page(page);
1547        return ret;
1548}
1549
1550static int ext3_writeback_writepage(struct page *page,
1551                                struct writeback_control *wbc)
1552{
1553        struct inode *inode = page->mapping->host;
1554        handle_t *handle = NULL;
1555        int ret = 0;
1556        int err;
1557
1558        if (ext3_journal_current_handle())
1559                goto out_fail;
1560
1561        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1562        if (IS_ERR(handle)) {
1563                ret = PTR_ERR(handle);
1564                goto out_fail;
1565        }
1566
1567        if (test_opt(inode->i_sb, NOBH) && ext3_should_writeback_data(inode))
1568                ret = nobh_writepage(page, ext3_get_block, wbc);
1569        else
1570                ret = block_write_full_page(page, ext3_get_block, wbc);
1571
1572        err = ext3_journal_stop(handle);
1573        if (!ret)
1574                ret = err;
1575        return ret;
1576
1577out_fail:
1578        redirty_page_for_writepage(wbc, page);
1579        unlock_page(page);
1580        return ret;
1581}
1582
1583static int ext3_journalled_writepage(struct page *page,
1584                                struct writeback_control *wbc)
1585{
1586        struct inode *inode = page->mapping->host;
1587        handle_t *handle = NULL;
1588        int ret = 0;
1589        int err;
1590
1591        if (ext3_journal_current_handle())
1592                goto no_write;
1593
1594        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1595        if (IS_ERR(handle)) {
1596                ret = PTR_ERR(handle);
1597                goto no_write;
1598        }
1599
1600        if (!page_has_buffers(page) || PageChecked(page)) {
1601                /*
1602                 * It's mmapped pagecache.  Add buffers and journal it.  There
1603                 * doesn't seem much point in redirtying the page here.
1604                 */
1605                ClearPageChecked(page);
1606                ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1607                                        ext3_get_block);
1608                if (ret != 0) {
1609                        ext3_journal_stop(handle);
1610                        goto out_unlock;
1611                }
1612                ret = walk_page_buffers(handle, page_buffers(page), 0,
1613                        PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1614
1615                err = walk_page_buffers(handle, page_buffers(page), 0,
1616                                PAGE_CACHE_SIZE, NULL, write_end_fn);
1617                if (ret == 0)
1618                        ret = err;
1619                EXT3_I(inode)->i_state |= EXT3_STATE_JDATA;
1620                unlock_page(page);
1621        } else {
1622                /*
1623                 * It may be a page full of checkpoint-mode buffers.  We don't
1624                 * really know unless we go poke around in the buffer_heads.
1625                 * But block_write_full_page will do the right thing.
1626                 */
1627                ret = block_write_full_page(page, ext3_get_block, wbc);
1628        }
1629        err = ext3_journal_stop(handle);
1630        if (!ret)
1631                ret = err;
1632out:
1633        return ret;
1634
1635no_write:
1636        redirty_page_for_writepage(wbc, page);
1637out_unlock:
1638        unlock_page(page);
1639        goto out;
1640}
1641
1642static int ext3_readpage(struct file *file, struct page *page)
1643{
1644        return mpage_readpage(page, ext3_get_block);
1645}
1646
1647static int
1648ext3_readpages(struct file *file, struct address_space *mapping,
1649                struct list_head *pages, unsigned nr_pages)
1650{
1651        return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1652}
1653
1654static void ext3_invalidatepage(struct page *page, unsigned long offset)
1655{
1656        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1657
1658        /*
1659         * If it's a full truncate we just forget about the pending dirtying
1660         */
1661        if (offset == 0)
1662                ClearPageChecked(page);
1663
1664        journal_invalidatepage(journal, page, offset);
1665}
1666
1667static int ext3_releasepage(struct page *page, gfp_t wait)
1668{
1669        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1670
1671        WARN_ON(PageChecked(page));
1672        if (!page_has_buffers(page))
1673                return 0;
1674        return journal_try_to_free_buffers(journal, page, wait);
1675}
1676
1677/*
1678 * If the O_DIRECT write will extend the file then add this inode to the
1679 * orphan list.  So recovery will truncate it back to the original size
1680 * if the machine crashes during the write.
1681 *
1682 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1683 * crashes then stale disk data _may_ be exposed inside the file.
1684 */
1685static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1686                        const struct iovec *iov, loff_t offset,
1687                        unsigned long nr_segs)
1688{
1689        struct file *file = iocb->ki_filp;
1690        struct inode *inode = file->f_mapping->host;
1691        struct ext3_inode_info *ei = EXT3_I(inode);
1692        handle_t *handle = NULL;
1693        ssize_t ret;
1694        int orphan = 0;
1695        size_t count = iov_length(iov, nr_segs);
1696
1697        if (rw == WRITE) {
1698                loff_t final_size = offset + count;
1699
1700                handle = ext3_journal_start(inode, DIO_CREDITS);
1701                if (IS_ERR(handle)) {
1702                        ret = PTR_ERR(handle);
1703                        goto out;
1704                }
1705                if (final_size > inode->i_size) {
1706                        ret = ext3_orphan_add(handle, inode);
1707                        if (ret)
1708                                goto out_stop;
1709                        orphan = 1;
1710                        ei->i_disksize = inode->i_size;
1711                }
1712        }
1713
1714        ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1715                                 offset, nr_segs,
1716                                 ext3_get_block, NULL);
1717
1718        /*
1719         * Reacquire the handle: ext3_get_block() can restart the transaction
1720         */
1721        handle = ext3_journal_current_handle();
1722
1723out_stop:
1724        if (handle) {
1725                int err;
1726
1727                if (orphan && inode->i_nlink)
1728                        ext3_orphan_del(handle, inode);
1729                if (orphan && ret > 0) {
1730                        loff_t end = offset + ret;
1731                        if (end > inode->i_size) {
1732                                ei->i_disksize = end;
1733                                i_size_write(inode, end);
1734                                /*
1735                                 * We're going to return a positive `ret'
1736                                 * here due to non-zero-length I/O, so there's
1737                                 * no way of reporting error returns from
1738                                 * ext3_mark_inode_dirty() to userspace.  So
1739                                 * ignore it.
1740                                 */
1741                                ext3_mark_inode_dirty(handle, inode);
1742                        }
1743                }
1744                err = ext3_journal_stop(handle);
1745                if (ret == 0)
1746                        ret = err;
1747        }
1748out:
1749        return ret;
1750}
1751
1752/*
1753 * Pages can be marked dirty completely asynchronously from ext3's journalling
1754 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1755 * much here because ->set_page_dirty is called under VFS locks.  The page is
1756 * not necessarily locked.
1757 *
1758 * We cannot just dirty the page and leave attached buffers clean, because the
1759 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1760 * or jbddirty because all the journalling code will explode.
1761 *
1762 * So what we do is to mark the page "pending dirty" and next time writepage
1763 * is called, propagate that into the buffers appropriately.
1764 */
1765static int ext3_journalled_set_page_dirty(struct page *page)
1766{
1767        SetPageChecked(page);
1768        return __set_page_dirty_nobuffers(page);
1769}
1770
1771static const struct address_space_operations ext3_ordered_aops = {
1772        .readpage       = ext3_readpage,
1773        .readpages      = ext3_readpages,
1774        .writepage      = ext3_ordered_writepage,
1775        .sync_page      = block_sync_page,
1776        .write_begin    = ext3_write_begin,
1777        .write_end      = ext3_ordered_write_end,
1778        .bmap           = ext3_bmap,
1779        .invalidatepage = ext3_invalidatepage,
1780        .releasepage    = ext3_releasepage,
1781        .direct_IO      = ext3_direct_IO,
1782        .migratepage    = buffer_migrate_page,
1783};
1784
1785static const struct address_space_operations ext3_writeback_aops = {
1786        .readpage       = ext3_readpage,
1787        .readpages      = ext3_readpages,
1788        .writepage      = ext3_writeback_writepage,
1789        .sync_page      = block_sync_page,
1790        .write_begin    = ext3_write_begin,
1791        .write_end      = ext3_writeback_write_end,
1792        .bmap           = ext3_bmap,
1793        .invalidatepage = ext3_invalidatepage,
1794        .releasepage    = ext3_releasepage,
1795        .direct_IO      = ext3_direct_IO,
1796        .migratepage    = buffer_migrate_page,
1797};
1798
1799static const struct address_space_operations ext3_journalled_aops = {
1800        .readpage       = ext3_readpage,
1801        .readpages      = ext3_readpages,
1802        .writepage      = ext3_journalled_writepage,
1803        .sync_page      = block_sync_page,
1804        .write_begin    = ext3_write_begin,
1805        .write_end      = ext3_journalled_write_end,
1806        .set_page_dirty = ext3_journalled_set_page_dirty,
1807        .bmap           = ext3_bmap,
1808        .invalidatepage = ext3_invalidatepage,
1809        .releasepage    = ext3_releasepage,
1810};
1811
1812void ext3_set_aops(struct inode *inode)
1813{
1814        if (ext3_should_order_data(inode))
1815                inode->i_mapping->a_ops = &ext3_ordered_aops;
1816        else if (ext3_should_writeback_data(inode))
1817                inode->i_mapping->a_ops = &ext3_writeback_aops;
1818        else
1819                inode->i_mapping->a_ops = &ext3_journalled_aops;
1820}
1821
1822/*
1823 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1824 * up to the end of the block which corresponds to `from'.
1825 * This required during truncate. We need to physically zero the tail end
1826 * of that block so it doesn't yield old data if the file is later grown.
1827 */
1828static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1829                struct address_space *mapping, loff_t from)
1830{
1831        ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1832        unsigned offset = from & (PAGE_CACHE_SIZE-1);
1833        unsigned blocksize, iblock, length, pos;
1834        struct inode *inode = mapping->host;
1835        struct buffer_head *bh;
1836        int err = 0;
1837
1838        blocksize = inode->i_sb->s_blocksize;
1839        length = blocksize - (offset & (blocksize - 1));
1840        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1841
1842        /*
1843         * For "nobh" option,  we can only work if we don't need to
1844         * read-in the page - otherwise we create buffers to do the IO.
1845         */
1846        if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1847             ext3_should_writeback_data(inode) && PageUptodate(page)) {
1848                zero_user_page(page, offset, length, KM_USER0);
1849                set_page_dirty(page);
1850                goto unlock;
1851        }
1852
1853        if (!page_has_buffers(page))
1854                create_empty_buffers(page, blocksize, 0);
1855
1856        /* Find the buffer that contains "offset" */
1857        bh = page_buffers(page);
1858        pos = blocksize;
1859        while (offset >= pos) {
1860                bh = bh->b_this_page;
1861                iblock++;
1862                pos += blocksize;
1863        }
1864
1865        err = 0;
1866        if (buffer_freed(bh)) {
1867                BUFFER_TRACE(bh, "freed: skip");
1868                goto unlock;
1869        }
1870
1871        if (!buffer_mapped(bh)) {
1872                BUFFER_TRACE(bh, "unmapped");
1873                ext3_get_block(inode, iblock, bh, 0);
1874                /* unmapped? It's a hole - nothing to do */
1875                if (!buffer_mapped(bh)) {
1876                        BUFFER_TRACE(bh, "still unmapped");
1877                        goto unlock;
1878                }
1879        }
1880
1881        /* Ok, it's mapped. Make sure it's up-to-date */
1882        if (PageUptodate(page))
1883                set_buffer_uptodate(bh);
1884
1885        if (!buffer_uptodate(bh)) {
1886                err = -EIO;
1887                ll_rw_block(READ, 1, &bh);
1888                wait_on_buffer(bh);
1889                /* Uhhuh. Read error. Complain and punt. */
1890                if (!buffer_uptodate(bh))
1891                        goto unlock;
1892        }
1893
1894        if (ext3_should_journal_data(inode)) {
1895                BUFFER_TRACE(bh, "get write access");
1896                err = ext3_journal_get_write_access(handle, bh);
1897                if (err)
1898                        goto unlock;
1899        }
1900
1901        zero_user_page(page, offset, length, KM_USER0);
1902        BUFFER_TRACE(bh, "zeroed end of block");
1903
1904        err = 0;
1905        if (ext3_should_journal_data(inode)) {
1906                err = ext3_journal_dirty_metadata(handle, bh);
1907        } else {
1908                if (ext3_should_order_data(inode))
1909                        err = ext3_journal_dirty_data(handle, bh);
1910                mark_buffer_dirty(bh);
1911        }
1912
1913unlock:
1914        unlock_page(page);
1915        page_cache_release(page);
1916        return err;
1917}
1918
1919/*
1920 * Probably it should be a library function... search for first non-zero word
1921 * or memcmp with zero_page, whatever is better for particular architecture.
1922 * Linus?
1923 */
1924static inline int all_zeroes(__le32 *p, __le32 *q)
1925{
1926        while (p < q)
1927                if (*p++)
1928                        return 0;
1929        return 1;
1930}
1931
1932/**
1933 *      ext3_find_shared - find the indirect blocks for partial truncation.
1934 *      @inode:   inode in question
1935 *      @depth:   depth of the affected branch
1936 *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
1937 *      @chain:   place to store the pointers to partial indirect blocks
1938 *      @top:     place to the (detached) top of branch
1939 *
1940 *      This is a helper function used by ext3_truncate().
1941 *
1942 *      When we do truncate() we may have to clean the ends of several
1943 *      indirect blocks but leave the blocks themselves alive. Block is
1944 *      partially truncated if some data below the new i_size is refered
1945 *      from it (and it is on the path to the first completely truncated
1946 *      data block, indeed).  We have to free the top of that path along
1947 *      with everything to the right of the path. Since no allocation
1948 *      past the truncation point is possible until ext3_truncate()
1949 *      finishes, we may safely do the latter, but top of branch may
1950 *      require special attention - pageout below the truncation point
1951 *      might try to populate it.
1952 *
1953 *      We atomically detach the top of branch from the tree, store the
1954 *      block number of its root in *@top, pointers to buffer_heads of
1955 *      partially truncated blocks - in @chain[].bh and pointers to
1956 *      their last elements that should not be removed - in
1957 *      @chain[].p. Return value is the pointer to last filled element
1958 *      of @chain.
1959 *
1960 *      The work left to caller to do the actual freeing of subtrees:
1961 *              a) free the subtree starting from *@top
1962 *              b) free the subtrees whose roots are stored in
1963 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1964 *              c) free the subtrees growing from the inode past the @chain[0].
1965 *                      (no partially truncated stuff there).  */
1966
1967static Indirect *ext3_find_shared(struct inode *inode, int depth,
1968                        int offsets[4], Indirect chain[4], __le32 *top)
1969{
1970        Indirect *partial, *p;
1971        int k, err;
1972
1973        *top = 0;
1974        /* Make k index the deepest non-null offest + 1 */
1975        for (k = depth; k > 1 && !offsets[k-1]; k--)
1976                ;
1977        partial = ext3_get_branch(inode, k, offsets, chain, &err);
1978        /* Writer: pointers */
1979        if (!partial)
1980                partial = chain + k-1;
1981        /*
1982         * If the branch acquired continuation since we've looked at it -
1983         * fine, it should all survive and (new) top doesn't belong to us.
1984         */
1985        if (!partial->key && *partial->p)
1986                /* Writer: end */
1987                goto no_top;
1988        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1989                ;
1990        /*
1991         * OK, we've found the last block that must survive. The rest of our
1992         * branch should be detached before unlocking. However, if that rest
1993         * of branch is all ours and does not grow immediately from the inode
1994         * it's easier to cheat and just decrement partial->p.
1995         */
1996        if (p == chain + k - 1 && p > chain) {
1997                p->p--;
1998        } else {
1999                *top = *p->p;
2000                /* Nope, don't do this in ext3.  Must leave the tree intact */
2001#if 0
2002                *p->p = 0;
2003#endif
2004        }
2005        /* Writer: end */
2006
2007        while(partial > p) {
2008                brelse(partial->bh);
2009                partial--;
2010        }
2011no_top:
2012        return partial;
2013}
2014
2015/*
2016 * Zero a number of block pointers in either an inode or an indirect block.
2017 * If we restart the transaction we must again get write access to the
2018 * indirect block for further modification.
2019 *
2020 * We release `count' blocks on disk, but (last - first) may be greater
2021 * than `count' because there can be holes in there.
2022 */
2023static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2024                struct buffer_head *bh, ext3_fsblk_t block_to_free,
2025                unsigned long count, __le32 *first, __le32 *last)
2026{
2027        __le32 *p;
2028        if (try_to_extend_transaction(handle, inode)) {
2029                if (bh) {
2030                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2031                        ext3_journal_dirty_metadata(handle, bh);
2032                }
2033                ext3_mark_inode_dirty(handle, inode);
2034                ext3_journal_test_restart(handle, inode);
2035                if (bh) {
2036                        BUFFER_TRACE(bh, "retaking write access");
2037                        ext3_journal_get_write_access(handle, bh);
2038                }
2039        }
2040
2041        /*
2042         * Any buffers which are on the journal will be in memory. We find
2043         * them on the hash table so journal_revoke() will run journal_forget()
2044         * on them.  We've already detached each block from the file, so
2045         * bforget() in journal_forget() should be safe.
2046         *
2047         * AKPM: turn on bforget in journal_forget()!!!
2048         */
2049        for (p = first; p < last; p++) {
2050                u32 nr = le32_to_cpu(*p);
2051                if (nr) {
2052                        struct buffer_head *bh;
2053
2054                        *p = 0;
2055                        bh = sb_find_get_block(inode->i_sb, nr);
2056                        ext3_forget(handle, 0, inode, bh, nr);
2057                }
2058        }
2059
2060        ext3_free_blocks(handle, inode, block_to_free, count);
2061}
2062
2063/**
2064 * ext3_free_data - free a list of data blocks
2065 * @handle:     handle for this transaction
2066 * @inode:      inode we are dealing with
2067 * @this_bh:    indirect buffer_head which contains *@first and *@last
2068 * @first:      array of block numbers
2069 * @last:       points immediately past the end of array
2070 *
2071 * We are freeing all blocks refered from that array (numbers are stored as
2072 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2073 *
2074 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2075 * blocks are contiguous then releasing them at one time will only affect one
2076 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2077 * actually use a lot of journal space.
2078 *
2079 * @this_bh will be %NULL if @first and @last point into the inode's direct
2080 * block pointers.
2081 */
2082static void ext3_free_data(handle_t *handle, struct inode *inode,
2083                           struct buffer_head *this_bh,
2084                           __le32 *first, __le32 *last)
2085{
2086        ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2087        unsigned long count = 0;            /* Number of blocks in the run */
2088        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2089                                               corresponding to
2090                                               block_to_free */
2091        ext3_fsblk_t nr;                    /* Current block # */
2092        __le32 *p;                          /* Pointer into inode/ind
2093                                               for current block */
2094        int err;
2095
2096        if (this_bh) {                          /* For indirect block */
2097                BUFFER_TRACE(this_bh, "get_write_access");
2098                err = ext3_journal_get_write_access(handle, this_bh);
2099                /* Important: if we can't update the indirect pointers
2100                 * to the blocks, we can't free them. */
2101                if (err)
2102                        return;
2103        }
2104
2105        for (p = first; p < last; p++) {
2106                nr = le32_to_cpu(*p);
2107                if (nr) {
2108                        /* accumulate blocks to free if they're contiguous */
2109                        if (count == 0) {
2110                                block_to_free = nr;
2111                                block_to_free_p = p;
2112                                count = 1;
2113                        } else if (nr == block_to_free + count) {
2114                                count++;
2115                        } else {
2116                                ext3_clear_blocks(handle, inode, this_bh,
2117                                                  block_to_free,
2118                                                  count, block_to_free_p, p);
2119                                block_to_free = nr;
2120                                block_to_free_p = p;
2121                                count = 1;
2122                        }
2123                }
2124        }
2125
2126        if (count > 0)
2127                ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2128                                  count, block_to_free_p, p);
2129
2130        if (this_bh) {
2131                BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2132                ext3_journal_dirty_metadata(handle, this_bh);
2133        }
2134}
2135
2136/**
2137 *      ext3_free_branches - free an array of branches
2138 *      @handle: JBD handle for this transaction
2139 *      @inode: inode we are dealing with
2140 *      @parent_bh: the buffer_head which contains *@first and *@last
2141 *      @first: array of block numbers
2142 *      @last:  pointer immediately past the end of array
2143 *      @depth: depth of the branches to free
2144 *
2145 *      We are freeing all blocks refered from these branches (numbers are
2146 *      stored as little-endian 32-bit) and updating @inode->i_blocks
2147 *      appropriately.
2148 */
2149static void ext3_free_branches(handle_t *handle, struct inode *inode,
2150                               struct buffer_head *parent_bh,
2151                               __le32 *first, __le32 *last, int depth)
2152{
2153        ext3_fsblk_t nr;
2154        __le32 *p;
2155
2156        if (is_handle_aborted(handle))
2157                return;
2158
2159        if (depth--) {
2160                struct buffer_head *bh;
2161                int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2162                p = last;
2163                while (--p >= first) {
2164                        nr = le32_to_cpu(*p);
2165                        if (!nr)
2166                                continue;               /* A hole */
2167
2168                        /* Go read the buffer for the next level down */
2169                        bh = sb_bread(inode->i_sb, nr);
2170
2171                        /*
2172                         * A read failure? Report error and clear slot
2173                         * (should be rare).
2174                         */
2175                        if (!bh) {
2176                                ext3_error(inode->i_sb, "ext3_free_branches",
2177                                           "Read failure, inode=%lu, block="E3FSBLK,
2178                                           inode->i_ino, nr);
2179                                continue;
2180                        }
2181
2182                        /* This zaps the entire block.  Bottom up. */
2183                        BUFFER_TRACE(bh, "free child branches");
2184                        ext3_free_branches(handle, inode, bh,
2185                                           (__le32*)bh->b_data,
2186                                           (__le32*)bh->b_data + addr_per_block,
2187                                           depth);
2188
2189                        /*
2190                         * We've probably journalled the indirect block several
2191                         * times during the truncate.  But it's no longer
2192                         * needed and we now drop it from the transaction via
2193                         * journal_revoke().
2194                         *
2195                         * That's easy if it's exclusively part of this
2196                         * transaction.  But if it's part of the committing
2197                         * transaction then journal_forget() will simply
2198                         * brelse() it.  That means that if the underlying
2199                         * block is reallocated in ext3_get_block(),
2200                         * unmap_underlying_metadata() will find this block
2201                         * and will try to get rid of it.  damn, damn.
2202                         *
2203                         * If this block has already been committed to the
2204                         * journal, a revoke record will be written.  And
2205                         * revoke records must be emitted *before* clearing
2206                         * this block's bit in the bitmaps.
2207                         */
2208                        ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2209
2210                        /*
2211                         * Everything below this this pointer has been
2212                         * released.  Now let this top-of-subtree go.
2213                         *
2214                         * We want the freeing of this indirect block to be
2215                         * atomic in the journal with the updating of the
2216                         * bitmap block which owns it.  So make some room in
2217                         * the journal.
2218                         *
2219                         * We zero the parent pointer *after* freeing its
2220                         * pointee in the bitmaps, so if extend_transaction()
2221                         * for some reason fails to put the bitmap changes and
2222                         * the release into the same transaction, recovery
2223                         * will merely complain about releasing a free block,
2224                         * rather than leaking blocks.
2225                         */
2226                        if (is_handle_aborted(handle))
2227                                return;
2228                        if (try_to_extend_transaction(handle, inode)) {
2229                                ext3_mark_inode_dirty(handle, inode);
2230                                ext3_journal_test_restart(handle, inode);
2231                        }
2232
2233                        ext3_free_blocks(handle, inode, nr, 1);
2234
2235                        if (parent_bh) {
2236                                /*
2237                                 * The block which we have just freed is
2238                                 * pointed to by an indirect block: journal it
2239                                 */
2240                                BUFFER_TRACE(parent_bh, "get_write_access");
2241                                if (!ext3_journal_get_write_access(handle,
2242                                                                   parent_bh)){
2243                                        *p = 0;
2244                                        BUFFER_TRACE(parent_bh,
2245                                        "call ext3_journal_dirty_metadata");
2246                                        ext3_journal_dirty_metadata(handle,
2247                                                                    parent_bh);
2248                                }
2249                        }
2250                }
2251        } else {
2252                /* We have reached the bottom of the tree. */
2253                BUFFER_TRACE(parent_bh, "free data blocks");
2254                ext3_free_data(handle, inode, parent_bh, first, last);
2255        }
2256}
2257
2258/*
2259 * ext3_truncate()
2260 *
2261 * We block out ext3_get_block() block instantiations across the entire
2262 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2263 * simultaneously on behalf of the same inode.
2264 *
2265 * As we work through the truncate and commmit bits of it to the journal there
2266 * is one core, guiding principle: the file's tree must always be consistent on
2267 * disk.  We must be able to restart the truncate after a crash.
2268 *
2269 * The file's tree may be transiently inconsistent in memory (although it
2270 * probably isn't), but whenever we close off and commit a journal transaction,
2271 * the contents of (the filesystem + the journal) must be consistent and
2272 * restartable.  It's pretty simple, really: bottom up, right to left (although
2273 * left-to-right works OK too).
2274 *
2275 * Note that at recovery time, journal replay occurs *before* the restart of
2276 * truncate against the orphan inode list.
2277 *
2278 * The committed inode has the new, desired i_size (which is the same as
2279 * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2280 * that this inode's truncate did not complete and it will again call
2281 * ext3_truncate() to have another go.  So there will be instantiated blocks
2282 * to the right of the truncation point in a crashed ext3 filesystem.  But
2283 * that's fine - as long as they are linked from the inode, the post-crash
2284 * ext3_truncate() run will find them and release them.
2285 */
2286void ext3_truncate(struct inode *inode)
2287{
2288        handle_t *handle;
2289        struct ext3_inode_info *ei = EXT3_I(inode);
2290        __le32 *i_data = ei->i_data;
2291        int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2292        struct address_space *mapping = inode->i_mapping;
2293        int offsets[4];
2294        Indirect chain[4];
2295        Indirect *partial;
2296        __le32 nr = 0;
2297        int n;
2298        long last_block;
2299        unsigned blocksize = inode->i_sb->s_blocksize;
2300        struct page *page;
2301
2302        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2303            S_ISLNK(inode->i_mode)))
2304                return;
2305        if (ext3_inode_is_fast_symlink(inode))
2306                return;
2307        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2308                return;
2309
2310        /*
2311         * We have to lock the EOF page here, because lock_page() nests
2312         * outside journal_start().
2313         */
2314        if ((inode->i_size & (blocksize - 1)) == 0) {
2315                /* Block boundary? Nothing to do */
2316                page = NULL;
2317        } else {
2318                page = grab_cache_page(mapping,
2319                                inode->i_size >> PAGE_CACHE_SHIFT);
2320                if (!page)
2321                        return;
2322        }
2323
2324        handle = start_transaction(inode);
2325        if (IS_ERR(handle)) {
2326                if (page) {
2327                        clear_highpage(page);
2328                        flush_dcache_page(page);
2329                        unlock_page(page);
2330                        page_cache_release(page);
2331                }
2332                return;         /* AKPM: return what? */
2333        }
2334
2335        last_block = (inode->i_size + blocksize-1)
2336                                        >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2337
2338        if (page)
2339                ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2340
2341        n = ext3_block_to_path(inode, last_block, offsets, NULL);
2342        if (n == 0)
2343                goto out_stop;  /* error */
2344
2345        /*
2346         * OK.  This truncate is going to happen.  We add the inode to the
2347         * orphan list, so that if this truncate spans multiple transactions,
2348         * and we crash, we will resume the truncate when the filesystem
2349         * recovers.  It also marks the inode dirty, to catch the new size.
2350         *
2351         * Implication: the file must always be in a sane, consistent
2352         * truncatable state while each transaction commits.
2353         */
2354        if (ext3_orphan_add(handle, inode))
2355                goto out_stop;
2356
2357        /*
2358         * The orphan list entry will now protect us from any crash which
2359         * occurs before the truncate completes, so it is now safe to propagate
2360         * the new, shorter inode size (held for now in i_size) into the
2361         * on-disk inode. We do this via i_disksize, which is the value which
2362         * ext3 *really* writes onto the disk inode.
2363         */
2364        ei->i_disksize = inode->i_size;
2365
2366        /*
2367         * From here we block out all ext3_get_block() callers who want to
2368         * modify the block allocation tree.
2369         */
2370        mutex_lock(&ei->truncate_mutex);
2371
2372        if (n == 1) {           /* direct blocks */
2373                ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2374                               i_data + EXT3_NDIR_BLOCKS);
2375                goto do_indirects;
2376        }
2377
2378        partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2379        /* Kill the top of shared branch (not detached) */
2380        if (nr) {
2381                if (partial == chain) {
2382                        /* Shared branch grows from the inode */
2383                        ext3_free_branches(handle, inode, NULL,
2384                                           &nr, &nr+1, (chain+n-1) - partial);
2385                        *partial->p = 0;
2386                        /*
2387                         * We mark the inode dirty prior to restart,
2388                         * and prior to stop.  No need for it here.
2389                         */
2390                } else {
2391                        /* Shared branch grows from an indirect block */
2392                        BUFFER_TRACE(partial->bh, "get_write_access");
2393                        ext3_free_branches(handle, inode, partial->bh,
2394                                        partial->p,
2395                                        partial->p+1, (chain+n-1) - partial);
2396                }
2397        }
2398        /* Clear the ends of indirect blocks on the shared branch */
2399        while (partial > chain) {
2400                ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2401                                   (__le32*)partial->bh->b_data+addr_per_block,
2402                                   (chain+n-1) - partial);
2403                BUFFER_TRACE(partial->bh, "call brelse");
2404                brelse (partial->bh);
2405                partial--;
2406        }
2407do_indirects:
2408        /* Kill the remaining (whole) subtrees */
2409        switch (offsets[0]) {
2410        default:
2411                nr = i_data[EXT3_IND_BLOCK];
2412                if (nr) {
2413                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2414                        i_data[EXT3_IND_BLOCK] = 0;
2415                }
2416        case EXT3_IND_BLOCK:
2417                nr = i_data[EXT3_DIND_BLOCK];
2418                if (nr) {
2419                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2420                        i_data[EXT3_DIND_BLOCK] = 0;
2421                }
2422        case EXT3_DIND_BLOCK:
2423                nr = i_data[EXT3_TIND_BLOCK];
2424                if (nr) {
2425                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2426                        i_data[EXT3_TIND_BLOCK] = 0;
2427                }
2428        case EXT3_TIND_BLOCK:
2429                ;
2430        }
2431
2432        ext3_discard_reservation(inode);
2433
2434        mutex_unlock(&ei->truncate_mutex);
2435        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2436        ext3_mark_inode_dirty(handle, inode);
2437
2438        /*
2439         * In a multi-transaction truncate, we only make the final transaction
2440         * synchronous
2441         */
2442        if (IS_SYNC(inode))
2443                handle->h_sync = 1;
2444out_stop:
2445        /*
2446         * If this was a simple ftruncate(), and the file will remain alive
2447         * then we need to clear up the orphan record which we created above.
2448         * However, if this was a real unlink then we were called by
2449         * ext3_delete_inode(), and we allow that function to clean up the
2450         * orphan info for us.
2451         */
2452        if (inode->i_nlink)
2453                ext3_orphan_del(handle, inode);
2454
2455        ext3_journal_stop(handle);
2456}
2457
2458static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2459                unsigned long ino, struct ext3_iloc *iloc)
2460{
2461        unsigned long desc, group_desc, block_group;
2462        unsigned long offset;
2463        ext3_fsblk_t block;
2464        struct buffer_head *bh;
2465        struct ext3_group_desc * gdp;
2466
2467        if (!ext3_valid_inum(sb, ino)) {
2468                /*
2469                 * This error is already checked for in namei.c unless we are
2470                 * looking at an NFS filehandle, in which case no error
2471                 * report is needed
2472                 */
2473                return 0;
2474        }
2475
2476        block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2477        if (block_group >= EXT3_SB(sb)->s_groups_count) {
2478                ext3_error(sb,"ext3_get_inode_block","group >= groups count");
2479                return 0;
2480        }
2481        smp_rmb();
2482        group_desc = block_group >> EXT3_DESC_PER_BLOCK_BITS(sb);
2483        desc = block_group & (EXT3_DESC_PER_BLOCK(sb) - 1);
2484        bh = EXT3_SB(sb)->s_group_desc[group_desc];
2485        if (!bh) {
2486                ext3_error (sb, "ext3_get_inode_block",
2487                            "Descriptor not loaded");
2488                return 0;
2489        }
2490
2491        gdp = (struct ext3_group_desc *)bh->b_data;
2492        /*
2493         * Figure out the offset within the block group inode table
2494         */
2495        offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2496                EXT3_INODE_SIZE(sb);
2497        block = le32_to_cpu(gdp[desc].bg_inode_table) +
2498                (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2499
2500        iloc->block_group = block_group;
2501        iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2502        return block;
2503}
2504
2505/*
2506 * ext3_get_inode_loc returns with an extra refcount against the inode's
2507 * underlying buffer_head on success. If 'in_mem' is true, we have all
2508 * data in memory that is needed to recreate the on-disk version of this
2509 * inode.
2510 */
2511static int __ext3_get_inode_loc(struct inode *inode,
2512                                struct ext3_iloc *iloc, int in_mem)
2513{
2514        ext3_fsblk_t block;
2515        struct buffer_head *bh;
2516
2517        block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2518        if (!block)
2519                return -EIO;
2520
2521        bh = sb_getblk(inode->i_sb, block);
2522        if (!bh) {
2523                ext3_error (inode->i_sb, "ext3_get_inode_loc",
2524                                "unable to read inode block - "
2525                                "inode=%lu, block="E3FSBLK,
2526                                 inode->i_ino, block);
2527                return -EIO;
2528        }
2529        if (!buffer_uptodate(bh)) {
2530                lock_buffer(bh);
2531                if (buffer_uptodate(bh)) {
2532                        /* someone brought it uptodate while we waited */
2533                        unlock_buffer(bh);
2534                        goto has_buffer;
2535                }
2536
2537                /*
2538                 * If we have all information of the inode in memory and this
2539                 * is the only valid inode in the block, we need not read the
2540                 * block.
2541                 */
2542                if (in_mem) {
2543                        struct buffer_head *bitmap_bh;
2544                        struct ext3_group_desc *desc;
2545                        int inodes_per_buffer;
2546                        int inode_offset, i;
2547                        int block_group;
2548                        int start;
2549
2550                        block_group = (inode->i_ino - 1) /
2551                                        EXT3_INODES_PER_GROUP(inode->i_sb);
2552                        inodes_per_buffer = bh->b_size /
2553                                EXT3_INODE_SIZE(inode->i_sb);
2554                        inode_offset = ((inode->i_ino - 1) %
2555                                        EXT3_INODES_PER_GROUP(inode->i_sb));
2556                        start = inode_offset & ~(inodes_per_buffer - 1);
2557
2558                        /* Is the inode bitmap in cache? */
2559                        desc = ext3_get_group_desc(inode->i_sb,
2560                                                block_group, NULL);
2561                        if (!desc)
2562                                goto make_io;
2563
2564                        bitmap_bh = sb_getblk(inode->i_sb,
2565                                        le32_to_cpu(desc->bg_inode_bitmap));
2566                        if (!bitmap_bh)
2567                                goto make_io;
2568
2569                        /*
2570                         * If the inode bitmap isn't in cache then the
2571                         * optimisation may end up performing two reads instead
2572                         * of one, so skip it.
2573                         */
2574                        if (!buffer_uptodate(bitmap_bh)) {
2575                                brelse(bitmap_bh);
2576                                goto make_io;
2577                        }
2578                        for (i = start; i < start + inodes_per_buffer; i++) {
2579                                if (i == inode_offset)
2580                                        continue;
2581                                if (ext3_test_bit(i, bitmap_bh->b_data))
2582                                        break;
2583                        }
2584                        brelse(bitmap_bh);
2585                        if (i == start + inodes_per_buffer) {
2586                                /* all other inodes are free, so skip I/O */
2587                                memset(bh->b_data, 0, bh->b_size);
2588                                set_buffer_uptodate(bh);
2589                                unlock_buffer(bh);
2590                                goto has_buffer;
2591                        }
2592                }
2593
2594make_io:
2595                /*
2596                 * There are other valid inodes in the buffer, this inode
2597                 * has in-inode xattrs, or we don't have this inode in memory.
2598                 * Read the block from disk.
2599                 */
2600                get_bh(bh);
2601                bh->b_end_io = end_buffer_read_sync;
2602                submit_bh(READ_META, bh);
2603                wait_on_buffer(bh);
2604                if (!buffer_uptodate(bh)) {
2605                        ext3_error(inode->i_sb, "ext3_get_inode_loc",
2606                                        "unable to read inode block - "
2607                                        "inode=%lu, block="E3FSBLK,
2608                                        inode->i_ino, block);
2609                        brelse(bh);
2610                        return -EIO;
2611                }
2612        }
2613has_buffer:
2614        iloc->bh = bh;
2615        return 0;
2616}
2617
2618int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2619{
2620        /* We have all inode data except xattrs in memory here. */
2621        return __ext3_get_inode_loc(inode, iloc,
2622                !(EXT3_I(inode)->i_state & EXT3_STATE_XATTR));
2623}
2624
2625void ext3_set_inode_flags(struct inode *inode)
2626{
2627        unsigned int flags = EXT3_I(inode)->i_flags;
2628
2629        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2630        if (flags & EXT3_SYNC_FL)
2631                inode->i_flags |= S_SYNC;
2632        if (flags & EXT3_APPEND_FL)
2633                inode->i_flags |= S_APPEND;
2634        if (flags & EXT3_IMMUTABLE_FL)
2635                inode->i_flags |= S_IMMUTABLE;
2636        if (flags & EXT3_NOATIME_FL)
2637                inode->i_flags |= S_NOATIME;
2638        if (flags & EXT3_DIRSYNC_FL)
2639                inode->i_flags |= S_DIRSYNC;
2640}
2641
2642/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2643void ext3_get_inode_flags(struct ext3_inode_info *ei)
2644{
2645        unsigned int flags = ei->vfs_inode.i_flags;
2646
2647        ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2648                        EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2649        if (flags & S_SYNC)
2650                ei->i_flags |= EXT3_SYNC_FL;
2651        if (flags & S_APPEND)
2652                ei->i_flags |= EXT3_APPEND_FL;
2653        if (flags & S_IMMUTABLE)
2654                ei->i_flags |= EXT3_IMMUTABLE_FL;
2655        if (flags & S_NOATIME)
2656                ei->i_flags |= EXT3_NOATIME_FL;
2657        if (flags & S_DIRSYNC)
2658                ei->i_flags |= EXT3_DIRSYNC_FL;
2659}
2660
2661void ext3_read_inode(struct inode * inode)
2662{
2663        struct ext3_iloc iloc;
2664        struct ext3_inode *raw_inode;
2665        struct ext3_inode_info *ei = EXT3_I(inode);
2666        struct buffer_head *bh;
2667        int block;
2668
2669#ifdef CONFIG_EXT3_FS_POSIX_ACL
2670        ei->i_acl = EXT3_ACL_NOT_CACHED;
2671        ei->i_default_acl = EXT3_ACL_NOT_CACHED;
2672#endif
2673        ei->i_block_alloc_info = NULL;
2674
2675        if (__ext3_get_inode_loc(inode, &iloc, 0))
2676                goto bad_inode;
2677        bh = iloc.bh;
2678        raw_inode = ext3_raw_inode(&iloc);
2679        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2680        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2681        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2682        if(!(test_opt (inode->i_sb, NO_UID32))) {
2683                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2684                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2685        }
2686        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2687        inode->i_size = le32_to_cpu(raw_inode->i_size);
2688        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2689        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2690        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2691        inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2692
2693        ei->i_state = 0;
2694        ei->i_dir_start_lookup = 0;
2695        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2696        /* We now have enough fields to check if the inode was active or not.
2697         * This is needed because nfsd might try to access dead inodes
2698         * the test is that same one that e2fsck uses
2699         * NeilBrown 1999oct15
2700         */
2701        if (inode->i_nlink == 0) {
2702                if (inode->i_mode == 0 ||
2703                    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2704                        /* this inode is deleted */
2705                        brelse (bh);
2706                        goto bad_inode;
2707                }
2708                /* The only unlinked inodes we let through here have
2709                 * valid i_mode and are being read by the orphan
2710                 * recovery code: that's fine, we're about to complete
2711                 * the process of deleting those. */
2712        }
2713        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2714        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2715#ifdef EXT3_FRAGMENTS
2716        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2717        ei->i_frag_no = raw_inode->i_frag;
2718        ei->i_frag_size = raw_inode->i_fsize;
2719#endif
2720        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2721        if (!S_ISREG(inode->i_mode)) {
2722                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2723        } else {
2724                inode->i_size |=
2725                        ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2726        }
2727        ei->i_disksize = inode->i_size;
2728        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2729        ei->i_block_group = iloc.block_group;
2730        /*
2731         * NOTE! The in-memory inode i_data array is in little-endian order
2732         * even on big-endian machines: we do NOT byteswap the block numbers!
2733         */
2734        for (block = 0; block < EXT3_N_BLOCKS; block++)
2735                ei->i_data[block] = raw_inode->i_block[block];
2736        INIT_LIST_HEAD(&ei->i_orphan);
2737
2738        if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2739            EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2740                /*
2741                 * When mke2fs creates big inodes it does not zero out
2742                 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2743                 * so ignore those first few inodes.
2744                 */
2745                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2746                if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2747                    EXT3_INODE_SIZE(inode->i_sb)) {
2748                        brelse (bh);
2749                        goto bad_inode;
2750                }
2751                if (ei->i_extra_isize == 0) {
2752                        /* The extra space is currently unused. Use it. */
2753                        ei->i_extra_isize = sizeof(struct ext3_inode) -
2754                                            EXT3_GOOD_OLD_INODE_SIZE;
2755                } else {
2756                        __le32 *magic = (void *)raw_inode +
2757                                        EXT3_GOOD_OLD_INODE_SIZE +
2758                                        ei->i_extra_isize;
2759                        if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2760                                 ei->i_state |= EXT3_STATE_XATTR;
2761                }
2762        } else
2763                ei->i_extra_isize = 0;
2764
2765        if (S_ISREG(inode->i_mode)) {
2766                inode->i_op = &ext3_file_inode_operations;
2767                inode->i_fop = &ext3_file_operations;
2768                ext3_set_aops(inode);
2769        } else if (S_ISDIR(inode->i_mode)) {
2770                inode->i_op = &ext3_dir_inode_operations;
2771                inode->i_fop = &ext3_dir_operations;
2772        } else if (S_ISLNK(inode->i_mode)) {
2773                if (ext3_inode_is_fast_symlink(inode))
2774                        inode->i_op = &ext3_fast_symlink_inode_operations;
2775                else {
2776                        inode->i_op = &ext3_symlink_inode_operations;
2777                        ext3_set_aops(inode);
2778                }
2779        } else {
2780                inode->i_op = &ext3_special_inode_operations;
2781                if (raw_inode->i_block[0])
2782                        init_special_inode(inode, inode->i_mode,
2783                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2784                else
2785                        init_special_inode(inode, inode->i_mode,
2786                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2787        }
2788        brelse (iloc.bh);
2789        ext3_set_inode_flags(inode);
2790        return;
2791
2792bad_inode:
2793        make_bad_inode(inode);
2794        return;
2795}
2796
2797/*
2798 * Post the struct inode info into an on-disk inode location in the
2799 * buffer-cache.  This gobbles the caller's reference to the
2800 * buffer_head in the inode location struct.
2801 *
2802 * The caller must have write access to iloc->bh.
2803 */
2804static int ext3_do_update_inode(handle_t *handle,
2805                                struct inode *inode,
2806                                struct ext3_iloc *iloc)
2807{
2808        struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2809        struct ext3_inode_info *ei = EXT3_I(inode);
2810        struct buffer_head *bh = iloc->bh;
2811        int err = 0, rc, block;
2812
2813        /* For fields not not tracking in the in-memory inode,
2814         * initialise them to zero for new inodes. */
2815        if (ei->i_state & EXT3_STATE_NEW)
2816                memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
2817
2818        ext3_get_inode_flags(ei);
2819        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2820        if(!(test_opt(inode->i_sb, NO_UID32))) {
2821                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2822                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2823/*
2824 * Fix up interoperability with old kernels. Otherwise, old inodes get
2825 * re-used with the upper 16 bits of the uid/gid intact
2826 */
2827                if(!ei->i_dtime) {
2828                        raw_inode->i_uid_high =
2829                                cpu_to_le16(high_16_bits(inode->i_uid));
2830                        raw_inode->i_gid_high =
2831                                cpu_to_le16(high_16_bits(inode->i_gid));
2832                } else {
2833                        raw_inode->i_uid_high = 0;
2834                        raw_inode->i_gid_high = 0;
2835                }
2836        } else {
2837                raw_inode->i_uid_low =
2838                        cpu_to_le16(fs_high2lowuid(inode->i_uid));
2839                raw_inode->i_gid_low =
2840                        cpu_to_le16(fs_high2lowgid(inode->i_gid));
2841                raw_inode->i_uid_high = 0;
2842                raw_inode->i_gid_high = 0;
2843        }
2844        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2845        raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2846        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
2847        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
2848        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
2849        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2850        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2851        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2852#ifdef EXT3_FRAGMENTS
2853        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
2854        raw_inode->i_frag = ei->i_frag_no;
2855        raw_inode->i_fsize = ei->i_frag_size;
2856#endif
2857        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2858        if (!S_ISREG(inode->i_mode)) {
2859                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2860        } else {
2861                raw_inode->i_size_high =
2862                        cpu_to_le32(ei->i_disksize >> 32);
2863                if (ei->i_disksize > 0x7fffffffULL) {
2864                        struct super_block *sb = inode->i_sb;
2865                        if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
2866                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
2867                            EXT3_SB(sb)->s_es->s_rev_level ==
2868                                        cpu_to_le32(EXT3_GOOD_OLD_REV)) {
2869                               /* If this is the first large file
2870                                * created, add a flag to the superblock.
2871                                */
2872                                err = ext3_journal_get_write_access(handle,
2873                                                EXT3_SB(sb)->s_sbh);
2874                                if (err)
2875                                        goto out_brelse;
2876                                ext3_update_dynamic_rev(sb);
2877                                EXT3_SET_RO_COMPAT_FEATURE(sb,
2878                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
2879                                sb->s_dirt = 1;
2880                                handle->h_sync = 1;
2881                                err = ext3_journal_dirty_metadata(handle,
2882                                                EXT3_SB(sb)->s_sbh);
2883                        }
2884                }
2885        }
2886        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2887        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2888                if (old_valid_dev(inode->i_rdev)) {
2889                        raw_inode->i_block[0] =
2890                                cpu_to_le32(old_encode_dev(inode->i_rdev));
2891                        raw_inode->i_block[1] = 0;
2892                } else {
2893                        raw_inode->i_block[0] = 0;
2894                        raw_inode->i_block[1] =
2895                                cpu_to_le32(new_encode_dev(inode->i_rdev));
2896                        raw_inode->i_block[2] = 0;
2897                }
2898        } else for (block = 0; block < EXT3_N_BLOCKS; block++)
2899                raw_inode->i_block[block] = ei->i_data[block];
2900
2901        if (ei->i_extra_isize)
2902                raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2903
2904        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2905        rc = ext3_journal_dirty_metadata(handle, bh);
2906        if (!err)
2907                err = rc;
2908        ei->i_state &= ~EXT3_STATE_NEW;
2909
2910out_brelse:
2911        brelse (bh);
2912        ext3_std_error(inode->i_sb, err);
2913        return err;
2914}
2915
2916/*
2917 * ext3_write_inode()
2918 *
2919 * We are called from a few places:
2920 *
2921 * - Within generic_file_write() for O_SYNC files.
2922 *   Here, there will be no transaction running. We wait for any running
2923 *   trasnaction to commit.
2924 *
2925 * - Within sys_sync(), kupdate and such.
2926 *   We wait on commit, if tol to.
2927 *
2928 * - Within prune_icache() (PF_MEMALLOC == true)
2929 *   Here we simply return.  We can't afford to block kswapd on the
2930 *   journal commit.
2931 *
2932 * In all cases it is actually safe for us to return without doing anything,
2933 * because the inode has been copied into a raw inode buffer in
2934 * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2935 * knfsd.
2936 *
2937 * Note that we are absolutely dependent upon all inode dirtiers doing the
2938 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2939 * which we are interested.
2940 *
2941 * It would be a bug for them to not do this.  The code:
2942 *
2943 *      mark_inode_dirty(inode)
2944 *      stuff();
2945 *      inode->i_size = expr;
2946 *
2947 * is in error because a kswapd-driven write_inode() could occur while
2948 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2949 * will no longer be on the superblock's dirty inode list.
2950 */
2951int ext3_write_inode(struct inode *inode, int wait)
2952{
2953        if (current->flags & PF_MEMALLOC)
2954                return 0;
2955
2956        if (ext3_journal_current_handle()) {
2957                jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2958                dump_stack();
2959                return -EIO;
2960        }
2961
2962        if (!wait)
2963                return 0;
2964
2965        return ext3_force_commit(inode->i_sb);
2966}
2967
2968/*
2969 * ext3_setattr()
2970 *
2971 * Called from notify_change.
2972 *
2973 * We want to trap VFS attempts to truncate the file as soon as
2974 * possible.  In particular, we want to make sure that when the VFS
2975 * shrinks i_size, we put the inode on the orphan list and modify
2976 * i_disksize immediately, so that during the subsequent flushing of
2977 * dirty pages and freeing of disk blocks, we can guarantee that any
2978 * commit will leave the blocks being flushed in an unused state on
2979 * disk.  (On recovery, the inode will get truncated and the blocks will
2980 * be freed, so we have a strong guarantee that no future commit will
2981 * leave these blocks visible to the user.)
2982 *
2983 * Called with inode->sem down.
2984 */
2985int ext3_setattr(struct dentry *dentry, struct iattr *attr)
2986{
2987        struct inode *inode = dentry->d_inode;
2988        int error, rc = 0;
2989        const unsigned int ia_valid = attr->ia_valid;
2990
2991        error = inode_change_ok(inode, attr);
2992        if (error)
2993                return error;
2994
2995        if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
2996                (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
2997                handle_t *handle;
2998
2999                /* (user+group)*(old+new) structure, inode write (sb,
3000                 * inode block, ? - but truncate inode update has it) */
3001                handle = ext3_journal_start(inode, 2*(EXT3_QUOTA_INIT_BLOCKS(inode->i_sb)+
3002                                        EXT3_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3003                if (IS_ERR(handle)) {
3004                        error = PTR_ERR(handle);
3005                        goto err_out;
3006                }
3007                error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3008                if (error) {
3009                        ext3_journal_stop(handle);
3010                        return error;
3011                }
3012                /* Update corresponding info in inode so that everything is in
3013                 * one transaction */
3014                if (attr->ia_valid & ATTR_UID)
3015                        inode->i_uid = attr->ia_uid;
3016                if (attr->ia_valid & ATTR_GID)
3017                        inode->i_gid = attr->ia_gid;
3018                error = ext3_mark_inode_dirty(handle, inode);
3019                ext3_journal_stop(handle);
3020        }
3021
3022        if (S_ISREG(inode->i_mode) &&
3023            attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3024                handle_t *handle;
3025
3026                handle = ext3_journal_start(inode, 3);
3027                if (IS_ERR(handle)) {
3028                        error = PTR_ERR(handle);
3029                        goto err_out;
3030                }
3031
3032                error = ext3_orphan_add(handle, inode);
3033                EXT3_I(inode)->i_disksize = attr->ia_size;
3034                rc = ext3_mark_inode_dirty(handle, inode);
3035                if (!error)
3036                        error = rc;
3037                ext3_journal_stop(handle);
3038        }
3039
3040        rc = inode_setattr(inode, attr);
3041
3042        /* If inode_setattr's call to ext3_truncate failed to get a
3043         * transaction handle at all, we need to clean up the in-core
3044         * orphan list manually. */
3045        if (inode->i_nlink)
3046                ext3_orphan_del(NULL, inode);
3047
3048        if (!rc && (ia_valid & ATTR_MODE))
3049                rc = ext3_acl_chmod(inode);
3050
3051err_out:
3052        ext3_std_error(inode->i_sb, error);
3053        if (!error)
3054                error = rc;
3055        return error;
3056}
3057
3058
3059/*
3060 * How many blocks doth make a writepage()?
3061 *
3062 * With N blocks per page, it may be:
3063 * N data blocks
3064 * 2 indirect block
3065 * 2 dindirect
3066 * 1 tindirect
3067 * N+5 bitmap blocks (from the above)
3068 * N+5 group descriptor summary blocks
3069 * 1 inode block
3070 * 1 superblock.
3071 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3072 *
3073 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3074 *
3075 * With ordered or writeback data it's the same, less the N data blocks.
3076 *
3077 * If the inode's direct blocks can hold an integral number of pages then a
3078 * page cannot straddle two indirect blocks, and we can only touch one indirect
3079 * and dindirect block, and the "5" above becomes "3".
3080 *
3081 * This still overestimates under most circumstances.  If we were to pass the
3082 * start and end offsets in here as well we could do block_to_path() on each
3083 * block and work out the exact number of indirects which are touched.  Pah.
3084 */
3085
3086static int ext3_writepage_trans_blocks(struct inode *inode)
3087{
3088        int bpp = ext3_journal_blocks_per_page(inode);
3089        int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3090        int ret;
3091
3092        if (ext3_should_journal_data(inode))
3093                ret = 3 * (bpp + indirects) + 2;
3094        else
3095                ret = 2 * (bpp + indirects) + 2;
3096
3097#ifdef CONFIG_QUOTA
3098        /* We know that structure was already allocated during DQUOT_INIT so
3099         * we will be updating only the data blocks + inodes */
3100        ret += 2*EXT3_QUOTA_TRANS_BLOCKS(inode->i_sb);
3101#endif
3102
3103        return ret;
3104}
3105
3106/*
3107 * The caller must have previously called ext3_reserve_inode_write().
3108 * Give this, we know that the caller already has write access to iloc->bh.
3109 */
3110int ext3_mark_iloc_dirty(handle_t *handle,
3111                struct inode *inode, struct ext3_iloc *iloc)
3112{
3113        int err = 0;
3114
3115        /* the do_update_inode consumes one bh->b_count */
3116        get_bh(iloc->bh);
3117
3118        /* ext3_do_update_inode() does journal_dirty_metadata */
3119        err = ext3_do_update_inode(handle, inode, iloc);
3120        put_bh(iloc->bh);
3121        return err;
3122}
3123
3124/*
3125 * On success, We end up with an outstanding reference count against
3126 * iloc->bh.  This _must_ be cleaned up later.
3127 */
3128
3129int
3130ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3131                         struct ext3_iloc *iloc)
3132{
3133        int err = 0;
3134        if (handle) {
3135                err = ext3_get_inode_loc(inode, iloc);
3136                if (!err) {
3137                        BUFFER_TRACE(iloc->bh, "get_write_access");
3138                        err = ext3_journal_get_write_access(handle, iloc->bh);
3139                        if (err) {
3140                                brelse(iloc->bh);
3141                                iloc->bh = NULL;
3142                        }
3143                }
3144        }
3145        ext3_std_error(inode->i_sb, err);
3146        return err;
3147}
3148
3149/*
3150 * What we do here is to mark the in-core inode as clean with respect to inode
3151 * dirtiness (it may still be data-dirty).
3152 * This means that the in-core inode may be reaped by prune_icache
3153 * without having to perform any I/O.  This is a very good thing,
3154 * because *any* task may call prune_icache - even ones which
3155 * have a transaction open against a different journal.
3156 *
3157 * Is this cheating?  Not really.  Sure, we haven't written the
3158 * inode out, but prune_icache isn't a user-visible syncing function.
3159 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3160 * we start and wait on commits.
3161 *
3162 * Is this efficient/effective?  Well, we're being nice to the system
3163 * by cleaning up our inodes proactively so they can be reaped
3164 * without I/O.  But we are potentially leaving up to five seconds'
3165 * worth of inodes floating about which prune_icache wants us to
3166 * write out.  One way to fix that would be to get prune_icache()
3167 * to do a write_super() to free up some memory.  It has the desired
3168 * effect.
3169 */
3170int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3171{
3172        struct ext3_iloc iloc;
3173        int err;
3174
3175        might_sleep();
3176        err = ext3_reserve_inode_write(handle, inode, &iloc);
3177        if (!err)
3178                err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3179        return err;
3180}
3181
3182/*
3183 * ext3_dirty_inode() is called from __mark_inode_dirty()
3184 *
3185 * We're really interested in the case where a file is being extended.
3186 * i_size has been changed by generic_commit_write() and we thus need
3187 * to include the updated inode in the current transaction.
3188 *
3189 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3190 * are allocated to the file.
3191 *
3192 * If the inode is marked synchronous, we don't honour that here - doing
3193 * so would cause a commit on atime updates, which we don't bother doing.
3194 * We handle synchronous inodes at the highest possible level.
3195 */
3196void ext3_dirty_inode(struct inode *inode)
3197{
3198        handle_t *current_handle = ext3_journal_current_handle();
3199        handle_t *handle;
3200
3201        handle = ext3_journal_start(inode, 2);
3202        if (IS_ERR(handle))
3203                goto out;
3204        if (current_handle &&
3205                current_handle->h_transaction != handle->h_transaction) {
3206                /* This task has a transaction open against a different fs */
3207                printk(KERN_EMERG "%s: transactions do not match!\n",
3208                       __FUNCTION__);
3209        } else {
3210                jbd_debug(5, "marking dirty.  outer handle=%p\n",
3211                                current_handle);
3212                ext3_mark_inode_dirty(handle, inode);
3213        }
3214        ext3_journal_stop(handle);
3215out:
3216        return;
3217}
3218
3219#if 0
3220/*
3221 * Bind an inode's backing buffer_head into this transaction, to prevent
3222 * it from being flushed to disk early.  Unlike
3223 * ext3_reserve_inode_write, this leaves behind no bh reference and
3224 * returns no iloc structure, so the caller needs to repeat the iloc
3225 * lookup to mark the inode dirty later.
3226 */
3227static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3228{
3229        struct ext3_iloc iloc;
3230
3231        int err = 0;
3232        if (handle) {
3233                err = ext3_get_inode_loc(inode, &iloc);
3234                if (!err) {
3235                        BUFFER_TRACE(iloc.bh, "get_write_access");
3236                        err = journal_get_write_access(handle, iloc.bh);
3237                        if (!err)
3238                                err = ext3_journal_dirty_metadata(handle,
3239                                                                  iloc.bh);
3240                        brelse(iloc.bh);
3241                }
3242        }
3243        ext3_std_error(inode->i_sb, err);
3244        return err;
3245}
3246#endif
3247
3248int ext3_change_inode_journal_flag(struct inode *inode, int val)
3249{
3250        journal_t *journal;
3251        handle_t *handle;
3252        int err;
3253
3254        /*
3255         * We have to be very careful here: changing a data block's
3256         * journaling status dynamically is dangerous.  If we write a
3257         * data block to the journal, change the status and then delete
3258         * that block, we risk forgetting to revoke the old log record
3259         * from the journal and so a subsequent replay can corrupt data.
3260         * So, first we make sure that the journal is empty and that
3261         * nobody is changing anything.
3262         */
3263
3264        journal = EXT3_JOURNAL(inode);
3265        if (is_journal_aborted(journal))
3266                return -EROFS;
3267
3268        journal_lock_updates(journal);
3269        journal_flush(journal);
3270
3271        /*
3272         * OK, there are no updates running now, and all cached data is
3273         * synced to disk.  We are now in a completely consistent state
3274         * which doesn't have anything in the journal, and we know that
3275         * no filesystem updates are running, so it is safe to modify
3276         * the inode's in-core data-journaling state flag now.
3277         */
3278
3279        if (val)
3280                EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3281        else
3282                EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3283        ext3_set_aops(inode);
3284
3285        journal_unlock_updates(journal);
3286
3287        /* Finally we can mark the inode as dirty. */
3288
3289        handle = ext3_journal_start(inode, 1);
3290        if (IS_ERR(handle))
3291                return PTR_ERR(handle);
3292
3293        err = ext3_mark_inode_dirty(handle, inode);
3294        handle->h_sync = 1;
3295        ext3_journal_stop(handle);
3296        ext3_std_error(inode->i_sb, err);
3297
3298        return err;
3299}
3300