linux/fs/ext4/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@redhat.com), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/fs.h>
  27#include <linux/time.h>
  28#include <linux/ext4_jbd2.h>
  29#include <linux/jbd2.h>
  30#include <linux/highuid.h>
  31#include <linux/pagemap.h>
  32#include <linux/quotaops.h>
  33#include <linux/string.h>
  34#include <linux/buffer_head.h>
  35#include <linux/writeback.h>
  36#include <linux/mpage.h>
  37#include <linux/uio.h>
  38#include <linux/bio.h>
  39#include "xattr.h"
  40#include "acl.h"
  41
  42/*
  43 * Test whether an inode is a fast symlink.
  44 */
  45static int ext4_inode_is_fast_symlink(struct inode *inode)
  46{
  47        int ea_blocks = EXT4_I(inode)->i_file_acl ?
  48                (inode->i_sb->s_blocksize >> 9) : 0;
  49
  50        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  51}
  52
  53/*
  54 * The ext4 forget function must perform a revoke if we are freeing data
  55 * which has been journaled.  Metadata (eg. indirect blocks) must be
  56 * revoked in all cases.
  57 *
  58 * "bh" may be NULL: a metadata block may have been freed from memory
  59 * but there may still be a record of it in the journal, and that record
  60 * still needs to be revoked.
  61 */
  62int ext4_forget(handle_t *handle, int is_metadata, struct inode *inode,
  63                        struct buffer_head *bh, ext4_fsblk_t blocknr)
  64{
  65        int err;
  66
  67        might_sleep();
  68
  69        BUFFER_TRACE(bh, "enter");
  70
  71        jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  72                  "data mode %lx\n",
  73                  bh, is_metadata, inode->i_mode,
  74                  test_opt(inode->i_sb, DATA_FLAGS));
  75
  76        /* Never use the revoke function if we are doing full data
  77         * journaling: there is no need to, and a V1 superblock won't
  78         * support it.  Otherwise, only skip the revoke on un-journaled
  79         * data blocks. */
  80
  81        if (test_opt(inode->i_sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA ||
  82            (!is_metadata && !ext4_should_journal_data(inode))) {
  83                if (bh) {
  84                        BUFFER_TRACE(bh, "call jbd2_journal_forget");
  85                        return ext4_journal_forget(handle, bh);
  86                }
  87                return 0;
  88        }
  89
  90        /*
  91         * data!=journal && (is_metadata || should_journal_data(inode))
  92         */
  93        BUFFER_TRACE(bh, "call ext4_journal_revoke");
  94        err = ext4_journal_revoke(handle, blocknr, bh);
  95        if (err)
  96                ext4_abort(inode->i_sb, __FUNCTION__,
  97                           "error %d when attempting revoke", err);
  98        BUFFER_TRACE(bh, "exit");
  99        return err;
 100}
 101
 102/*
 103 * Work out how many blocks we need to proceed with the next chunk of a
 104 * truncate transaction.
 105 */
 106static unsigned long blocks_for_truncate(struct inode *inode)
 107{
 108        unsigned long needed;
 109
 110        needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
 111
 112        /* Give ourselves just enough room to cope with inodes in which
 113         * i_blocks is corrupt: we've seen disk corruptions in the past
 114         * which resulted in random data in an inode which looked enough
 115         * like a regular file for ext4 to try to delete it.  Things
 116         * will go a bit crazy if that happens, but at least we should
 117         * try not to panic the whole kernel. */
 118        if (needed < 2)
 119                needed = 2;
 120
 121        /* But we need to bound the transaction so we don't overflow the
 122         * journal. */
 123        if (needed > EXT4_MAX_TRANS_DATA)
 124                needed = EXT4_MAX_TRANS_DATA;
 125
 126        return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
 127}
 128
 129/*
 130 * Truncate transactions can be complex and absolutely huge.  So we need to
 131 * be able to restart the transaction at a conventient checkpoint to make
 132 * sure we don't overflow the journal.
 133 *
 134 * start_transaction gets us a new handle for a truncate transaction,
 135 * and extend_transaction tries to extend the existing one a bit.  If
 136 * extend fails, we need to propagate the failure up and restart the
 137 * transaction in the top-level truncate loop. --sct
 138 */
 139static handle_t *start_transaction(struct inode *inode)
 140{
 141        handle_t *result;
 142
 143        result = ext4_journal_start(inode, blocks_for_truncate(inode));
 144        if (!IS_ERR(result))
 145                return result;
 146
 147        ext4_std_error(inode->i_sb, PTR_ERR(result));
 148        return result;
 149}
 150
 151/*
 152 * Try to extend this transaction for the purposes of truncation.
 153 *
 154 * Returns 0 if we managed to create more room.  If we can't create more
 155 * room, and the transaction must be restarted we return 1.
 156 */
 157static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 158{
 159        if (handle->h_buffer_credits > EXT4_RESERVE_TRANS_BLOCKS)
 160                return 0;
 161        if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
 162                return 0;
 163        return 1;
 164}
 165
 166/*
 167 * Restart the transaction associated with *handle.  This does a commit,
 168 * so before we call here everything must be consistently dirtied against
 169 * this transaction.
 170 */
 171static int ext4_journal_test_restart(handle_t *handle, struct inode *inode)
 172{
 173        jbd_debug(2, "restarting handle %p\n", handle);
 174        return ext4_journal_restart(handle, blocks_for_truncate(inode));
 175}
 176
 177/*
 178 * Called at the last iput() if i_nlink is zero.
 179 */
 180void ext4_delete_inode (struct inode * inode)
 181{
 182        handle_t *handle;
 183
 184        truncate_inode_pages(&inode->i_data, 0);
 185
 186        if (is_bad_inode(inode))
 187                goto no_delete;
 188
 189        handle = start_transaction(inode);
 190        if (IS_ERR(handle)) {
 191                /*
 192                 * If we're going to skip the normal cleanup, we still need to
 193                 * make sure that the in-core orphan linked list is properly
 194                 * cleaned up.
 195                 */
 196                ext4_orphan_del(NULL, inode);
 197                goto no_delete;
 198        }
 199
 200        if (IS_SYNC(inode))
 201                handle->h_sync = 1;
 202        inode->i_size = 0;
 203        if (inode->i_blocks)
 204                ext4_truncate(inode);
 205        /*
 206         * Kill off the orphan record which ext4_truncate created.
 207         * AKPM: I think this can be inside the above `if'.
 208         * Note that ext4_orphan_del() has to be able to cope with the
 209         * deletion of a non-existent orphan - this is because we don't
 210         * know if ext4_truncate() actually created an orphan record.
 211         * (Well, we could do this if we need to, but heck - it works)
 212         */
 213        ext4_orphan_del(handle, inode);
 214        EXT4_I(inode)->i_dtime  = get_seconds();
 215
 216        /*
 217         * One subtle ordering requirement: if anything has gone wrong
 218         * (transaction abort, IO errors, whatever), then we can still
 219         * do these next steps (the fs will already have been marked as
 220         * having errors), but we can't free the inode if the mark_dirty
 221         * fails.
 222         */
 223        if (ext4_mark_inode_dirty(handle, inode))
 224                /* If that failed, just do the required in-core inode clear. */
 225                clear_inode(inode);
 226        else
 227                ext4_free_inode(handle, inode);
 228        ext4_journal_stop(handle);
 229        return;
 230no_delete:
 231        clear_inode(inode);     /* We must guarantee clearing of inode... */
 232}
 233
 234typedef struct {
 235        __le32  *p;
 236        __le32  key;
 237        struct buffer_head *bh;
 238} Indirect;
 239
 240static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 241{
 242        p->key = *(p->p = v);
 243        p->bh = bh;
 244}
 245
 246static int verify_chain(Indirect *from, Indirect *to)
 247{
 248        while (from <= to && from->key == *from->p)
 249                from++;
 250        return (from > to);
 251}
 252
 253/**
 254 *      ext4_block_to_path - parse the block number into array of offsets
 255 *      @inode: inode in question (we are only interested in its superblock)
 256 *      @i_block: block number to be parsed
 257 *      @offsets: array to store the offsets in
 258 *      @boundary: set this non-zero if the referred-to block is likely to be
 259 *             followed (on disk) by an indirect block.
 260 *
 261 *      To store the locations of file's data ext4 uses a data structure common
 262 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 263 *      data blocks at leaves and indirect blocks in intermediate nodes.
 264 *      This function translates the block number into path in that tree -
 265 *      return value is the path length and @offsets[n] is the offset of
 266 *      pointer to (n+1)th node in the nth one. If @block is out of range
 267 *      (negative or too large) warning is printed and zero returned.
 268 *
 269 *      Note: function doesn't find node addresses, so no IO is needed. All
 270 *      we need to know is the capacity of indirect blocks (taken from the
 271 *      inode->i_sb).
 272 */
 273
 274/*
 275 * Portability note: the last comparison (check that we fit into triple
 276 * indirect block) is spelled differently, because otherwise on an
 277 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 278 * if our filesystem had 8Kb blocks. We might use long long, but that would
 279 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 280 * i_block would have to be negative in the very beginning, so we would not
 281 * get there at all.
 282 */
 283
 284static int ext4_block_to_path(struct inode *inode,
 285                        long i_block, int offsets[4], int *boundary)
 286{
 287        int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
 288        int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
 289        const long direct_blocks = EXT4_NDIR_BLOCKS,
 290                indirect_blocks = ptrs,
 291                double_blocks = (1 << (ptrs_bits * 2));
 292        int n = 0;
 293        int final = 0;
 294
 295        if (i_block < 0) {
 296                ext4_warning (inode->i_sb, "ext4_block_to_path", "block < 0");
 297        } else if (i_block < direct_blocks) {
 298                offsets[n++] = i_block;
 299                final = direct_blocks;
 300        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 301                offsets[n++] = EXT4_IND_BLOCK;
 302                offsets[n++] = i_block;
 303                final = ptrs;
 304        } else if ((i_block -= indirect_blocks) < double_blocks) {
 305                offsets[n++] = EXT4_DIND_BLOCK;
 306                offsets[n++] = i_block >> ptrs_bits;
 307                offsets[n++] = i_block & (ptrs - 1);
 308                final = ptrs;
 309        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 310                offsets[n++] = EXT4_TIND_BLOCK;
 311                offsets[n++] = i_block >> (ptrs_bits * 2);
 312                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 313                offsets[n++] = i_block & (ptrs - 1);
 314                final = ptrs;
 315        } else {
 316                ext4_warning(inode->i_sb, "ext4_block_to_path", "block > big");
 317        }
 318        if (boundary)
 319                *boundary = final - 1 - (i_block & (ptrs - 1));
 320        return n;
 321}
 322
 323/**
 324 *      ext4_get_branch - read the chain of indirect blocks leading to data
 325 *      @inode: inode in question
 326 *      @depth: depth of the chain (1 - direct pointer, etc.)
 327 *      @offsets: offsets of pointers in inode/indirect blocks
 328 *      @chain: place to store the result
 329 *      @err: here we store the error value
 330 *
 331 *      Function fills the array of triples <key, p, bh> and returns %NULL
 332 *      if everything went OK or the pointer to the last filled triple
 333 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 334 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 335 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 336 *      number (it points into struct inode for i==0 and into the bh->b_data
 337 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 338 *      block for i>0 and NULL for i==0. In other words, it holds the block
 339 *      numbers of the chain, addresses they were taken from (and where we can
 340 *      verify that chain did not change) and buffer_heads hosting these
 341 *      numbers.
 342 *
 343 *      Function stops when it stumbles upon zero pointer (absent block)
 344 *              (pointer to last triple returned, *@err == 0)
 345 *      or when it gets an IO error reading an indirect block
 346 *              (ditto, *@err == -EIO)
 347 *      or when it notices that chain had been changed while it was reading
 348 *              (ditto, *@err == -EAGAIN)
 349 *      or when it reads all @depth-1 indirect blocks successfully and finds
 350 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 351 */
 352static Indirect *ext4_get_branch(struct inode *inode, int depth, int *offsets,
 353                                 Indirect chain[4], int *err)
 354{
 355        struct super_block *sb = inode->i_sb;
 356        Indirect *p = chain;
 357        struct buffer_head *bh;
 358
 359        *err = 0;
 360        /* i_data is not going away, no lock needed */
 361        add_chain (chain, NULL, EXT4_I(inode)->i_data + *offsets);
 362        if (!p->key)
 363                goto no_block;
 364        while (--depth) {
 365                bh = sb_bread(sb, le32_to_cpu(p->key));
 366                if (!bh)
 367                        goto failure;
 368                /* Reader: pointers */
 369                if (!verify_chain(chain, p))
 370                        goto changed;
 371                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 372                /* Reader: end */
 373                if (!p->key)
 374                        goto no_block;
 375        }
 376        return NULL;
 377
 378changed:
 379        brelse(bh);
 380        *err = -EAGAIN;
 381        goto no_block;
 382failure:
 383        *err = -EIO;
 384no_block:
 385        return p;
 386}
 387
 388/**
 389 *      ext4_find_near - find a place for allocation with sufficient locality
 390 *      @inode: owner
 391 *      @ind: descriptor of indirect block.
 392 *
 393 *      This function returns the prefered place for block allocation.
 394 *      It is used when heuristic for sequential allocation fails.
 395 *      Rules are:
 396 *        + if there is a block to the left of our position - allocate near it.
 397 *        + if pointer will live in indirect block - allocate near that block.
 398 *        + if pointer will live in inode - allocate in the same
 399 *          cylinder group.
 400 *
 401 * In the latter case we colour the starting block by the callers PID to
 402 * prevent it from clashing with concurrent allocations for a different inode
 403 * in the same block group.   The PID is used here so that functionally related
 404 * files will be close-by on-disk.
 405 *
 406 *      Caller must make sure that @ind is valid and will stay that way.
 407 */
 408static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
 409{
 410        struct ext4_inode_info *ei = EXT4_I(inode);
 411        __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
 412        __le32 *p;
 413        ext4_fsblk_t bg_start;
 414        ext4_grpblk_t colour;
 415
 416        /* Try to find previous block */
 417        for (p = ind->p - 1; p >= start; p--) {
 418                if (*p)
 419                        return le32_to_cpu(*p);
 420        }
 421
 422        /* No such thing, so let's try location of indirect block */
 423        if (ind->bh)
 424                return ind->bh->b_blocknr;
 425
 426        /*
 427         * It is going to be referred to from the inode itself? OK, just put it
 428         * into the same cylinder group then.
 429         */
 430        bg_start = ext4_group_first_block_no(inode->i_sb, ei->i_block_group);
 431        colour = (current->pid % 16) *
 432                        (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 433        return bg_start + colour;
 434}
 435
 436/**
 437 *      ext4_find_goal - find a prefered place for allocation.
 438 *      @inode: owner
 439 *      @block:  block we want
 440 *      @chain:  chain of indirect blocks
 441 *      @partial: pointer to the last triple within a chain
 442 *      @goal:  place to store the result.
 443 *
 444 *      Normally this function find the prefered place for block allocation,
 445 *      stores it in *@goal and returns zero.
 446 */
 447
 448static ext4_fsblk_t ext4_find_goal(struct inode *inode, long block,
 449                Indirect chain[4], Indirect *partial)
 450{
 451        struct ext4_block_alloc_info *block_i;
 452
 453        block_i =  EXT4_I(inode)->i_block_alloc_info;
 454
 455        /*
 456         * try the heuristic for sequential allocation,
 457         * failing that at least try to get decent locality.
 458         */
 459        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 460                && (block_i->last_alloc_physical_block != 0)) {
 461                return block_i->last_alloc_physical_block + 1;
 462        }
 463
 464        return ext4_find_near(inode, partial);
 465}
 466
 467/**
 468 *      ext4_blks_to_allocate: Look up the block map and count the number
 469 *      of direct blocks need to be allocated for the given branch.
 470 *
 471 *      @branch: chain of indirect blocks
 472 *      @k: number of blocks need for indirect blocks
 473 *      @blks: number of data blocks to be mapped.
 474 *      @blocks_to_boundary:  the offset in the indirect block
 475 *
 476 *      return the total number of blocks to be allocate, including the
 477 *      direct and indirect blocks.
 478 */
 479static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
 480                int blocks_to_boundary)
 481{
 482        unsigned long count = 0;
 483
 484        /*
 485         * Simple case, [t,d]Indirect block(s) has not allocated yet
 486         * then it's clear blocks on that path have not allocated
 487         */
 488        if (k > 0) {
 489                /* right now we don't handle cross boundary allocation */
 490                if (blks < blocks_to_boundary + 1)
 491                        count += blks;
 492                else
 493                        count += blocks_to_boundary + 1;
 494                return count;
 495        }
 496
 497        count++;
 498        while (count < blks && count <= blocks_to_boundary &&
 499                le32_to_cpu(*(branch[0].p + count)) == 0) {
 500                count++;
 501        }
 502        return count;
 503}
 504
 505/**
 506 *      ext4_alloc_blocks: multiple allocate blocks needed for a branch
 507 *      @indirect_blks: the number of blocks need to allocate for indirect
 508 *                      blocks
 509 *
 510 *      @new_blocks: on return it will store the new block numbers for
 511 *      the indirect blocks(if needed) and the first direct block,
 512 *      @blks:  on return it will store the total number of allocated
 513 *              direct blocks
 514 */
 515static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
 516                        ext4_fsblk_t goal, int indirect_blks, int blks,
 517                        ext4_fsblk_t new_blocks[4], int *err)
 518{
 519        int target, i;
 520        unsigned long count = 0;
 521        int index = 0;
 522        ext4_fsblk_t current_block = 0;
 523        int ret = 0;
 524
 525        /*
 526         * Here we try to allocate the requested multiple blocks at once,
 527         * on a best-effort basis.
 528         * To build a branch, we should allocate blocks for
 529         * the indirect blocks(if not allocated yet), and at least
 530         * the first direct block of this branch.  That's the
 531         * minimum number of blocks need to allocate(required)
 532         */
 533        target = blks + indirect_blks;
 534
 535        while (1) {
 536                count = target;
 537                /* allocating blocks for indirect blocks and direct blocks */
 538                current_block = ext4_new_blocks(handle,inode,goal,&count,err);
 539                if (*err)
 540                        goto failed_out;
 541
 542                target -= count;
 543                /* allocate blocks for indirect blocks */
 544                while (index < indirect_blks && count) {
 545                        new_blocks[index++] = current_block++;
 546                        count--;
 547                }
 548
 549                if (count > 0)
 550                        break;
 551        }
 552
 553        /* save the new block number for the first direct block */
 554        new_blocks[index] = current_block;
 555
 556        /* total number of blocks allocated for direct blocks */
 557        ret = count;
 558        *err = 0;
 559        return ret;
 560failed_out:
 561        for (i = 0; i <index; i++)
 562                ext4_free_blocks(handle, inode, new_blocks[i], 1);
 563        return ret;
 564}
 565
 566/**
 567 *      ext4_alloc_branch - allocate and set up a chain of blocks.
 568 *      @inode: owner
 569 *      @indirect_blks: number of allocated indirect blocks
 570 *      @blks: number of allocated direct blocks
 571 *      @offsets: offsets (in the blocks) to store the pointers to next.
 572 *      @branch: place to store the chain in.
 573 *
 574 *      This function allocates blocks, zeroes out all but the last one,
 575 *      links them into chain and (if we are synchronous) writes them to disk.
 576 *      In other words, it prepares a branch that can be spliced onto the
 577 *      inode. It stores the information about that chain in the branch[], in
 578 *      the same format as ext4_get_branch() would do. We are calling it after
 579 *      we had read the existing part of chain and partial points to the last
 580 *      triple of that (one with zero ->key). Upon the exit we have the same
 581 *      picture as after the successful ext4_get_block(), except that in one
 582 *      place chain is disconnected - *branch->p is still zero (we did not
 583 *      set the last link), but branch->key contains the number that should
 584 *      be placed into *branch->p to fill that gap.
 585 *
 586 *      If allocation fails we free all blocks we've allocated (and forget
 587 *      their buffer_heads) and return the error value the from failed
 588 *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 589 *      as described above and return 0.
 590 */
 591static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
 592                        int indirect_blks, int *blks, ext4_fsblk_t goal,
 593                        int *offsets, Indirect *branch)
 594{
 595        int blocksize = inode->i_sb->s_blocksize;
 596        int i, n = 0;
 597        int err = 0;
 598        struct buffer_head *bh;
 599        int num;
 600        ext4_fsblk_t new_blocks[4];
 601        ext4_fsblk_t current_block;
 602
 603        num = ext4_alloc_blocks(handle, inode, goal, indirect_blks,
 604                                *blks, new_blocks, &err);
 605        if (err)
 606                return err;
 607
 608        branch[0].key = cpu_to_le32(new_blocks[0]);
 609        /*
 610         * metadata blocks and data blocks are allocated.
 611         */
 612        for (n = 1; n <= indirect_blks;  n++) {
 613                /*
 614                 * Get buffer_head for parent block, zero it out
 615                 * and set the pointer to new one, then send
 616                 * parent to disk.
 617                 */
 618                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 619                branch[n].bh = bh;
 620                lock_buffer(bh);
 621                BUFFER_TRACE(bh, "call get_create_access");
 622                err = ext4_journal_get_create_access(handle, bh);
 623                if (err) {
 624                        unlock_buffer(bh);
 625                        brelse(bh);
 626                        goto failed;
 627                }
 628
 629                memset(bh->b_data, 0, blocksize);
 630                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 631                branch[n].key = cpu_to_le32(new_blocks[n]);
 632                *branch[n].p = branch[n].key;
 633                if ( n == indirect_blks) {
 634                        current_block = new_blocks[n];
 635                        /*
 636                         * End of chain, update the last new metablock of
 637                         * the chain to point to the new allocated
 638                         * data blocks numbers
 639                         */
 640                        for (i=1; i < num; i++)
 641                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 642                }
 643                BUFFER_TRACE(bh, "marking uptodate");
 644                set_buffer_uptodate(bh);
 645                unlock_buffer(bh);
 646
 647                BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
 648                err = ext4_journal_dirty_metadata(handle, bh);
 649                if (err)
 650                        goto failed;
 651        }
 652        *blks = num;
 653        return err;
 654failed:
 655        /* Allocation failed, free what we already allocated */
 656        for (i = 1; i <= n ; i++) {
 657                BUFFER_TRACE(branch[i].bh, "call jbd2_journal_forget");
 658                ext4_journal_forget(handle, branch[i].bh);
 659        }
 660        for (i = 0; i <indirect_blks; i++)
 661                ext4_free_blocks(handle, inode, new_blocks[i], 1);
 662
 663        ext4_free_blocks(handle, inode, new_blocks[i], num);
 664
 665        return err;
 666}
 667
 668/**
 669 * ext4_splice_branch - splice the allocated branch onto inode.
 670 * @inode: owner
 671 * @block: (logical) number of block we are adding
 672 * @chain: chain of indirect blocks (with a missing link - see
 673 *      ext4_alloc_branch)
 674 * @where: location of missing link
 675 * @num:   number of indirect blocks we are adding
 676 * @blks:  number of direct blocks we are adding
 677 *
 678 * This function fills the missing link and does all housekeeping needed in
 679 * inode (->i_blocks, etc.). In case of success we end up with the full
 680 * chain to new block and return 0.
 681 */
 682static int ext4_splice_branch(handle_t *handle, struct inode *inode,
 683                        long block, Indirect *where, int num, int blks)
 684{
 685        int i;
 686        int err = 0;
 687        struct ext4_block_alloc_info *block_i;
 688        ext4_fsblk_t current_block;
 689
 690        block_i = EXT4_I(inode)->i_block_alloc_info;
 691        /*
 692         * If we're splicing into a [td]indirect block (as opposed to the
 693         * inode) then we need to get write access to the [td]indirect block
 694         * before the splice.
 695         */
 696        if (where->bh) {
 697                BUFFER_TRACE(where->bh, "get_write_access");
 698                err = ext4_journal_get_write_access(handle, where->bh);
 699                if (err)
 700                        goto err_out;
 701        }
 702        /* That's it */
 703
 704        *where->p = where->key;
 705
 706        /*
 707         * Update the host buffer_head or inode to point to more just allocated
 708         * direct blocks blocks
 709         */
 710        if (num == 0 && blks > 1) {
 711                current_block = le32_to_cpu(where->key) + 1;
 712                for (i = 1; i < blks; i++)
 713                        *(where->p + i ) = cpu_to_le32(current_block++);
 714        }
 715
 716        /*
 717         * update the most recently allocated logical & physical block
 718         * in i_block_alloc_info, to assist find the proper goal block for next
 719         * allocation
 720         */
 721        if (block_i) {
 722                block_i->last_alloc_logical_block = block + blks - 1;
 723                block_i->last_alloc_physical_block =
 724                                le32_to_cpu(where[num].key) + blks - 1;
 725        }
 726
 727        /* We are done with atomic stuff, now do the rest of housekeeping */
 728
 729        inode->i_ctime = ext4_current_time(inode);
 730        ext4_mark_inode_dirty(handle, inode);
 731
 732        /* had we spliced it onto indirect block? */
 733        if (where->bh) {
 734                /*
 735                 * If we spliced it onto an indirect block, we haven't
 736                 * altered the inode.  Note however that if it is being spliced
 737                 * onto an indirect block at the very end of the file (the
 738                 * file is growing) then we *will* alter the inode to reflect
 739                 * the new i_size.  But that is not done here - it is done in
 740                 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
 741                 */
 742                jbd_debug(5, "splicing indirect only\n");
 743                BUFFER_TRACE(where->bh, "call ext4_journal_dirty_metadata");
 744                err = ext4_journal_dirty_metadata(handle, where->bh);
 745                if (err)
 746                        goto err_out;
 747        } else {
 748                /*
 749                 * OK, we spliced it into the inode itself on a direct block.
 750                 * Inode was dirtied above.
 751                 */
 752                jbd_debug(5, "splicing direct\n");
 753        }
 754        return err;
 755
 756err_out:
 757        for (i = 1; i <= num; i++) {
 758                BUFFER_TRACE(where[i].bh, "call jbd2_journal_forget");
 759                ext4_journal_forget(handle, where[i].bh);
 760                ext4_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
 761        }
 762        ext4_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
 763
 764        return err;
 765}
 766
 767/*
 768 * Allocation strategy is simple: if we have to allocate something, we will
 769 * have to go the whole way to leaf. So let's do it before attaching anything
 770 * to tree, set linkage between the newborn blocks, write them if sync is
 771 * required, recheck the path, free and repeat if check fails, otherwise
 772 * set the last missing link (that will protect us from any truncate-generated
 773 * removals - all blocks on the path are immune now) and possibly force the
 774 * write on the parent block.
 775 * That has a nice additional property: no special recovery from the failed
 776 * allocations is needed - we simply release blocks and do not touch anything
 777 * reachable from inode.
 778 *
 779 * `handle' can be NULL if create == 0.
 780 *
 781 * The BKL may not be held on entry here.  Be sure to take it early.
 782 * return > 0, # of blocks mapped or allocated.
 783 * return = 0, if plain lookup failed.
 784 * return < 0, error case.
 785 */
 786int ext4_get_blocks_handle(handle_t *handle, struct inode *inode,
 787                sector_t iblock, unsigned long maxblocks,
 788                struct buffer_head *bh_result,
 789                int create, int extend_disksize)
 790{
 791        int err = -EIO;
 792        int offsets[4];
 793        Indirect chain[4];
 794        Indirect *partial;
 795        ext4_fsblk_t goal;
 796        int indirect_blks;
 797        int blocks_to_boundary = 0;
 798        int depth;
 799        struct ext4_inode_info *ei = EXT4_I(inode);
 800        int count = 0;
 801        ext4_fsblk_t first_block = 0;
 802
 803
 804        J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
 805        J_ASSERT(handle != NULL || create == 0);
 806        depth = ext4_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 807
 808        if (depth == 0)
 809                goto out;
 810
 811        partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 812
 813        /* Simplest case - block found, no allocation needed */
 814        if (!partial) {
 815                first_block = le32_to_cpu(chain[depth - 1].key);
 816                clear_buffer_new(bh_result);
 817                count++;
 818                /*map more blocks*/
 819                while (count < maxblocks && count <= blocks_to_boundary) {
 820                        ext4_fsblk_t blk;
 821
 822                        if (!verify_chain(chain, partial)) {
 823                                /*
 824                                 * Indirect block might be removed by
 825                                 * truncate while we were reading it.
 826                                 * Handling of that case: forget what we've
 827                                 * got now. Flag the err as EAGAIN, so it
 828                                 * will reread.
 829                                 */
 830                                err = -EAGAIN;
 831                                count = 0;
 832                                break;
 833                        }
 834                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 835
 836                        if (blk == first_block + count)
 837                                count++;
 838                        else
 839                                break;
 840                }
 841                if (err != -EAGAIN)
 842                        goto got_it;
 843        }
 844
 845        /* Next simple case - plain lookup or failed read of indirect block */
 846        if (!create || err == -EIO)
 847                goto cleanup;
 848
 849        mutex_lock(&ei->truncate_mutex);
 850
 851        /*
 852         * If the indirect block is missing while we are reading
 853         * the chain(ext4_get_branch() returns -EAGAIN err), or
 854         * if the chain has been changed after we grab the semaphore,
 855         * (either because another process truncated this branch, or
 856         * another get_block allocated this branch) re-grab the chain to see if
 857         * the request block has been allocated or not.
 858         *
 859         * Since we already block the truncate/other get_block
 860         * at this point, we will have the current copy of the chain when we
 861         * splice the branch into the tree.
 862         */
 863        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 864                while (partial > chain) {
 865                        brelse(partial->bh);
 866                        partial--;
 867                }
 868                partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 869                if (!partial) {
 870                        count++;
 871                        mutex_unlock(&ei->truncate_mutex);
 872                        if (err)
 873                                goto cleanup;
 874                        clear_buffer_new(bh_result);
 875                        goto got_it;
 876                }
 877        }
 878
 879        /*
 880         * Okay, we need to do block allocation.  Lazily initialize the block
 881         * allocation info here if necessary
 882        */
 883        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 884                ext4_init_block_alloc_info(inode);
 885
 886        goal = ext4_find_goal(inode, iblock, chain, partial);
 887
 888        /* the number of blocks need to allocate for [d,t]indirect blocks */
 889        indirect_blks = (chain + depth) - partial - 1;
 890
 891        /*
 892         * Next look up the indirect map to count the totoal number of
 893         * direct blocks to allocate for this branch.
 894         */
 895        count = ext4_blks_to_allocate(partial, indirect_blks,
 896                                        maxblocks, blocks_to_boundary);
 897        /*
 898         * Block out ext4_truncate while we alter the tree
 899         */
 900        err = ext4_alloc_branch(handle, inode, indirect_blks, &count, goal,
 901                                offsets + (partial - chain), partial);
 902
 903        /*
 904         * The ext4_splice_branch call will free and forget any buffers
 905         * on the new chain if there is a failure, but that risks using
 906         * up transaction credits, especially for bitmaps where the
 907         * credits cannot be returned.  Can we handle this somehow?  We
 908         * may need to return -EAGAIN upwards in the worst case.  --sct
 909         */
 910        if (!err)
 911                err = ext4_splice_branch(handle, inode, iblock,
 912                                        partial, indirect_blks, count);
 913        /*
 914         * i_disksize growing is protected by truncate_mutex.  Don't forget to
 915         * protect it if you're about to implement concurrent
 916         * ext4_get_block() -bzzz
 917        */
 918        if (!err && extend_disksize && inode->i_size > ei->i_disksize)
 919                ei->i_disksize = inode->i_size;
 920        mutex_unlock(&ei->truncate_mutex);
 921        if (err)
 922                goto cleanup;
 923
 924        set_buffer_new(bh_result);
 925got_it:
 926        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 927        if (count > blocks_to_boundary)
 928                set_buffer_boundary(bh_result);
 929        err = count;
 930        /* Clean up and exit */
 931        partial = chain + depth - 1;    /* the whole chain */
 932cleanup:
 933        while (partial > chain) {
 934                BUFFER_TRACE(partial->bh, "call brelse");
 935                brelse(partial->bh);
 936                partial--;
 937        }
 938        BUFFER_TRACE(bh_result, "returned");
 939out:
 940        return err;
 941}
 942
 943#define DIO_CREDITS (EXT4_RESERVE_TRANS_BLOCKS + 32)
 944
 945static int ext4_get_block(struct inode *inode, sector_t iblock,
 946                        struct buffer_head *bh_result, int create)
 947{
 948        handle_t *handle = ext4_journal_current_handle();
 949        int ret = 0;
 950        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
 951
 952        if (!create)
 953                goto get_block;         /* A read */
 954
 955        if (max_blocks == 1)
 956                goto get_block;         /* A single block get */
 957
 958        if (handle->h_transaction->t_state == T_LOCKED) {
 959                /*
 960                 * Huge direct-io writes can hold off commits for long
 961                 * periods of time.  Let this commit run.
 962                 */
 963                ext4_journal_stop(handle);
 964                handle = ext4_journal_start(inode, DIO_CREDITS);
 965                if (IS_ERR(handle))
 966                        ret = PTR_ERR(handle);
 967                goto get_block;
 968        }
 969
 970        if (handle->h_buffer_credits <= EXT4_RESERVE_TRANS_BLOCKS) {
 971                /*
 972                 * Getting low on buffer credits...
 973                 */
 974                ret = ext4_journal_extend(handle, DIO_CREDITS);
 975                if (ret > 0) {
 976                        /*
 977                         * Couldn't extend the transaction.  Start a new one.
 978                         */
 979                        ret = ext4_journal_restart(handle, DIO_CREDITS);
 980                }
 981        }
 982
 983get_block:
 984        if (ret == 0) {
 985                ret = ext4_get_blocks_wrap(handle, inode, iblock,
 986                                        max_blocks, bh_result, create, 0);
 987                if (ret > 0) {
 988                        bh_result->b_size = (ret << inode->i_blkbits);
 989                        ret = 0;
 990                }
 991        }
 992        return ret;
 993}
 994
 995/*
 996 * `handle' can be NULL if create is zero
 997 */
 998struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 999                                long block, int create, int *errp)
1000{
1001        struct buffer_head dummy;
1002        int fatal = 0, err;
1003
1004        J_ASSERT(handle != NULL || create == 0);
1005
1006        dummy.b_state = 0;
1007        dummy.b_blocknr = -1000;
1008        buffer_trace_init(&dummy.b_history);
1009        err = ext4_get_blocks_wrap(handle, inode, block, 1,
1010                                        &dummy, create, 1);
1011        /*
1012         * ext4_get_blocks_handle() returns number of blocks
1013         * mapped. 0 in case of a HOLE.
1014         */
1015        if (err > 0) {
1016                if (err > 1)
1017                        WARN_ON(1);
1018                err = 0;
1019        }
1020        *errp = err;
1021        if (!err && buffer_mapped(&dummy)) {
1022                struct buffer_head *bh;
1023                bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1024                if (!bh) {
1025                        *errp = -EIO;
1026                        goto err;
1027                }
1028                if (buffer_new(&dummy)) {
1029                        J_ASSERT(create != 0);
1030                        J_ASSERT(handle != NULL);
1031
1032                        /*
1033                         * Now that we do not always journal data, we should
1034                         * keep in mind whether this should always journal the
1035                         * new buffer as metadata.  For now, regular file
1036                         * writes use ext4_get_block instead, so it's not a
1037                         * problem.
1038                         */
1039                        lock_buffer(bh);
1040                        BUFFER_TRACE(bh, "call get_create_access");
1041                        fatal = ext4_journal_get_create_access(handle, bh);
1042                        if (!fatal && !buffer_uptodate(bh)) {
1043                                memset(bh->b_data,0,inode->i_sb->s_blocksize);
1044                                set_buffer_uptodate(bh);
1045                        }
1046                        unlock_buffer(bh);
1047                        BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
1048                        err = ext4_journal_dirty_metadata(handle, bh);
1049                        if (!fatal)
1050                                fatal = err;
1051                } else {
1052                        BUFFER_TRACE(bh, "not a new buffer");
1053                }
1054                if (fatal) {
1055                        *errp = fatal;
1056                        brelse(bh);
1057                        bh = NULL;
1058                }
1059                return bh;
1060        }
1061err:
1062        return NULL;
1063}
1064
1065struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1066                               int block, int create, int *err)
1067{
1068        struct buffer_head * bh;
1069
1070        bh = ext4_getblk(handle, inode, block, create, err);
1071        if (!bh)
1072                return bh;
1073        if (buffer_uptodate(bh))
1074                return bh;
1075        ll_rw_block(READ_META, 1, &bh);
1076        wait_on_buffer(bh);
1077        if (buffer_uptodate(bh))
1078                return bh;
1079        put_bh(bh);
1080        *err = -EIO;
1081        return NULL;
1082}
1083
1084static int walk_page_buffers(   handle_t *handle,
1085                                struct buffer_head *head,
1086                                unsigned from,
1087                                unsigned to,
1088                                int *partial,
1089                                int (*fn)(      handle_t *handle,
1090                                                struct buffer_head *bh))
1091{
1092        struct buffer_head *bh;
1093        unsigned block_start, block_end;
1094        unsigned blocksize = head->b_size;
1095        int err, ret = 0;
1096        struct buffer_head *next;
1097
1098        for (   bh = head, block_start = 0;
1099                ret == 0 && (bh != head || !block_start);
1100                block_start = block_end, bh = next)
1101        {
1102                next = bh->b_this_page;
1103                block_end = block_start + blocksize;
1104                if (block_end <= from || block_start >= to) {
1105                        if (partial && !buffer_uptodate(bh))
1106                                *partial = 1;
1107                        continue;
1108                }
1109                err = (*fn)(handle, bh);
1110                if (!ret)
1111                        ret = err;
1112        }
1113        return ret;
1114}
1115
1116/*
1117 * To preserve ordering, it is essential that the hole instantiation and
1118 * the data write be encapsulated in a single transaction.  We cannot
1119 * close off a transaction and start a new one between the ext4_get_block()
1120 * and the commit_write().  So doing the jbd2_journal_start at the start of
1121 * prepare_write() is the right place.
1122 *
1123 * Also, this function can nest inside ext4_writepage() ->
1124 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1125 * has generated enough buffer credits to do the whole page.  So we won't
1126 * block on the journal in that case, which is good, because the caller may
1127 * be PF_MEMALLOC.
1128 *
1129 * By accident, ext4 can be reentered when a transaction is open via
1130 * quota file writes.  If we were to commit the transaction while thus
1131 * reentered, there can be a deadlock - we would be holding a quota
1132 * lock, and the commit would never complete if another thread had a
1133 * transaction open and was blocking on the quota lock - a ranking
1134 * violation.
1135 *
1136 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1137 * will _not_ run commit under these circumstances because handle->h_ref
1138 * is elevated.  We'll still have enough credits for the tiny quotafile
1139 * write.
1140 */
1141static int do_journal_get_write_access(handle_t *handle,
1142                                        struct buffer_head *bh)
1143{
1144        if (!buffer_mapped(bh) || buffer_freed(bh))
1145                return 0;
1146        return ext4_journal_get_write_access(handle, bh);
1147}
1148
1149static int ext4_write_begin(struct file *file, struct address_space *mapping,
1150                                loff_t pos, unsigned len, unsigned flags,
1151                                struct page **pagep, void **fsdata)
1152{
1153        struct inode *inode = mapping->host;
1154        int ret, needed_blocks = ext4_writepage_trans_blocks(inode);
1155        handle_t *handle;
1156        int retries = 0;
1157        struct page *page;
1158        pgoff_t index;
1159        unsigned from, to;
1160
1161        index = pos >> PAGE_CACHE_SHIFT;
1162        from = pos & (PAGE_CACHE_SIZE - 1);
1163        to = from + len;
1164
1165retry:
1166        page = __grab_cache_page(mapping, index);
1167        if (!page)
1168                return -ENOMEM;
1169        *pagep = page;
1170
1171        handle = ext4_journal_start(inode, needed_blocks);
1172        if (IS_ERR(handle)) {
1173                unlock_page(page);
1174                page_cache_release(page);
1175                ret = PTR_ERR(handle);
1176                goto out;
1177        }
1178
1179        ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1180                                                        ext4_get_block);
1181
1182        if (!ret && ext4_should_journal_data(inode)) {
1183                ret = walk_page_buffers(handle, page_buffers(page),
1184                                from, to, NULL, do_journal_get_write_access);
1185        }
1186
1187        if (ret) {
1188                ext4_journal_stop(handle);
1189                unlock_page(page);
1190                page_cache_release(page);
1191        }
1192
1193        if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1194                goto retry;
1195out:
1196        return ret;
1197}
1198
1199int ext4_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1200{
1201        int err = jbd2_journal_dirty_data(handle, bh);
1202        if (err)
1203                ext4_journal_abort_handle(__FUNCTION__, __FUNCTION__,
1204                                                bh, handle, err);
1205        return err;
1206}
1207
1208/* For write_end() in data=journal mode */
1209static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1210{
1211        if (!buffer_mapped(bh) || buffer_freed(bh))
1212                return 0;
1213        set_buffer_uptodate(bh);
1214        return ext4_journal_dirty_metadata(handle, bh);
1215}
1216
1217/*
1218 * Generic write_end handler for ordered and writeback ext4 journal modes.
1219 * We can't use generic_write_end, because that unlocks the page and we need to
1220 * unlock the page after ext4_journal_stop, but ext4_journal_stop must run
1221 * after block_write_end.
1222 */
1223static int ext4_generic_write_end(struct file *file,
1224                                struct address_space *mapping,
1225                                loff_t pos, unsigned len, unsigned copied,
1226                                struct page *page, void *fsdata)
1227{
1228        struct inode *inode = file->f_mapping->host;
1229
1230        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1231
1232        if (pos+copied > inode->i_size) {
1233                i_size_write(inode, pos+copied);
1234                mark_inode_dirty(inode);
1235        }
1236
1237        return copied;
1238}
1239
1240/*
1241 * We need to pick up the new inode size which generic_commit_write gave us
1242 * `file' can be NULL - eg, when called from page_symlink().
1243 *
1244 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1245 * buffers are managed internally.
1246 */
1247static int ext4_ordered_write_end(struct file *file,
1248                                struct address_space *mapping,
1249                                loff_t pos, unsigned len, unsigned copied,
1250                                struct page *page, void *fsdata)
1251{
1252        handle_t *handle = ext4_journal_current_handle();
1253        struct inode *inode = file->f_mapping->host;
1254        unsigned from, to;
1255        int ret = 0, ret2;
1256
1257        from = pos & (PAGE_CACHE_SIZE - 1);
1258        to = from + len;
1259
1260        ret = walk_page_buffers(handle, page_buffers(page),
1261                from, to, NULL, ext4_journal_dirty_data);
1262
1263        if (ret == 0) {
1264                /*
1265                 * generic_write_end() will run mark_inode_dirty() if i_size
1266                 * changes.  So let's piggyback the i_disksize mark_inode_dirty
1267                 * into that.
1268                 */
1269                loff_t new_i_size;
1270
1271                new_i_size = pos + copied;
1272                if (new_i_size > EXT4_I(inode)->i_disksize)
1273                        EXT4_I(inode)->i_disksize = new_i_size;
1274                copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1275                                                        page, fsdata);
1276                if (copied < 0)
1277                        ret = copied;
1278        }
1279        ret2 = ext4_journal_stop(handle);
1280        if (!ret)
1281                ret = ret2;
1282        unlock_page(page);
1283        page_cache_release(page);
1284
1285        return ret ? ret : copied;
1286}
1287
1288static int ext4_writeback_write_end(struct file *file,
1289                                struct address_space *mapping,
1290                                loff_t pos, unsigned len, unsigned copied,
1291                                struct page *page, void *fsdata)
1292{
1293        handle_t *handle = ext4_journal_current_handle();
1294        struct inode *inode = file->f_mapping->host;
1295        int ret = 0, ret2;
1296        loff_t new_i_size;
1297
1298        new_i_size = pos + copied;
1299        if (new_i_size > EXT4_I(inode)->i_disksize)
1300                EXT4_I(inode)->i_disksize = new_i_size;
1301
1302        copied = ext4_generic_write_end(file, mapping, pos, len, copied,
1303                                                        page, fsdata);
1304        if (copied < 0)
1305                ret = copied;
1306
1307        ret2 = ext4_journal_stop(handle);
1308        if (!ret)
1309                ret = ret2;
1310        unlock_page(page);
1311        page_cache_release(page);
1312
1313        return ret ? ret : copied;
1314}
1315
1316static int ext4_journalled_write_end(struct file *file,
1317                                struct address_space *mapping,
1318                                loff_t pos, unsigned len, unsigned copied,
1319                                struct page *page, void *fsdata)
1320{
1321        handle_t *handle = ext4_journal_current_handle();
1322        struct inode *inode = mapping->host;
1323        int ret = 0, ret2;
1324        int partial = 0;
1325        unsigned from, to;
1326
1327        from = pos & (PAGE_CACHE_SIZE - 1);
1328        to = from + len;
1329
1330        if (copied < len) {
1331                if (!PageUptodate(page))
1332                        copied = 0;
1333                page_zero_new_buffers(page, from+copied, to);
1334        }
1335
1336        ret = walk_page_buffers(handle, page_buffers(page), from,
1337                                to, &partial, write_end_fn);
1338        if (!partial)
1339                SetPageUptodate(page);
1340        if (pos+copied > inode->i_size)
1341                i_size_write(inode, pos+copied);
1342        EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1343        if (inode->i_size > EXT4_I(inode)->i_disksize) {
1344                EXT4_I(inode)->i_disksize = inode->i_size;
1345                ret2 = ext4_mark_inode_dirty(handle, inode);
1346                if (!ret)
1347                        ret = ret2;
1348        }
1349
1350        ret2 = ext4_journal_stop(handle);
1351        if (!ret)
1352                ret = ret2;
1353        unlock_page(page);
1354        page_cache_release(page);
1355
1356        return ret ? ret : copied;
1357}
1358
1359/*
1360 * bmap() is special.  It gets used by applications such as lilo and by
1361 * the swapper to find the on-disk block of a specific piece of data.
1362 *
1363 * Naturally, this is dangerous if the block concerned is still in the
1364 * journal.  If somebody makes a swapfile on an ext4 data-journaling
1365 * filesystem and enables swap, then they may get a nasty shock when the
1366 * data getting swapped to that swapfile suddenly gets overwritten by
1367 * the original zero's written out previously to the journal and
1368 * awaiting writeback in the kernel's buffer cache.
1369 *
1370 * So, if we see any bmap calls here on a modified, data-journaled file,
1371 * take extra steps to flush any blocks which might be in the cache.
1372 */
1373static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
1374{
1375        struct inode *inode = mapping->host;
1376        journal_t *journal;
1377        int err;
1378
1379        if (EXT4_I(inode)->i_state & EXT4_STATE_JDATA) {
1380                /*
1381                 * This is a REALLY heavyweight approach, but the use of
1382                 * bmap on dirty files is expected to be extremely rare:
1383                 * only if we run lilo or swapon on a freshly made file
1384                 * do we expect this to happen.
1385                 *
1386                 * (bmap requires CAP_SYS_RAWIO so this does not
1387                 * represent an unprivileged user DOS attack --- we'd be
1388                 * in trouble if mortal users could trigger this path at
1389                 * will.)
1390                 *
1391                 * NB. EXT4_STATE_JDATA is not set on files other than
1392                 * regular files.  If somebody wants to bmap a directory
1393                 * or symlink and gets confused because the buffer
1394                 * hasn't yet been flushed to disk, they deserve
1395                 * everything they get.
1396                 */
1397
1398                EXT4_I(inode)->i_state &= ~EXT4_STATE_JDATA;
1399                journal = EXT4_JOURNAL(inode);
1400                jbd2_journal_lock_updates(journal);
1401                err = jbd2_journal_flush(journal);
1402                jbd2_journal_unlock_updates(journal);
1403
1404                if (err)
1405                        return 0;
1406        }
1407
1408        return generic_block_bmap(mapping,block,ext4_get_block);
1409}
1410
1411static int bget_one(handle_t *handle, struct buffer_head *bh)
1412{
1413        get_bh(bh);
1414        return 0;
1415}
1416
1417static int bput_one(handle_t *handle, struct buffer_head *bh)
1418{
1419        put_bh(bh);
1420        return 0;
1421}
1422
1423static int jbd2_journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1424{
1425        if (buffer_mapped(bh))
1426                return ext4_journal_dirty_data(handle, bh);
1427        return 0;
1428}
1429
1430/*
1431 * Note that we always start a transaction even if we're not journalling
1432 * data.  This is to preserve ordering: any hole instantiation within
1433 * __block_write_full_page -> ext4_get_block() should be journalled
1434 * along with the data so we don't crash and then get metadata which
1435 * refers to old data.
1436 *
1437 * In all journalling modes block_write_full_page() will start the I/O.
1438 *
1439 * Problem:
1440 *
1441 *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1442 *              ext4_writepage()
1443 *
1444 * Similar for:
1445 *
1446 *      ext4_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1447 *
1448 * Same applies to ext4_get_block().  We will deadlock on various things like
1449 * lock_journal and i_truncate_mutex.
1450 *
1451 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1452 * allocations fail.
1453 *
1454 * 16May01: If we're reentered then journal_current_handle() will be
1455 *          non-zero. We simply *return*.
1456 *
1457 * 1 July 2001: @@@ FIXME:
1458 *   In journalled data mode, a data buffer may be metadata against the
1459 *   current transaction.  But the same file is part of a shared mapping
1460 *   and someone does a writepage() on it.
1461 *
1462 *   We will move the buffer onto the async_data list, but *after* it has
1463 *   been dirtied. So there's a small window where we have dirty data on
1464 *   BJ_Metadata.
1465 *
1466 *   Note that this only applies to the last partial page in the file.  The
1467 *   bit which block_write_full_page() uses prepare/commit for.  (That's
1468 *   broken code anyway: it's wrong for msync()).
1469 *
1470 *   It's a rare case: affects the final partial page, for journalled data
1471 *   where the file is subject to bith write() and writepage() in the same
1472 *   transction.  To fix it we'll need a custom block_write_full_page().
1473 *   We'll probably need that anyway for journalling writepage() output.
1474 *
1475 * We don't honour synchronous mounts for writepage().  That would be
1476 * disastrous.  Any write() or metadata operation will sync the fs for
1477 * us.
1478 *
1479 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1480 * we don't need to open a transaction here.
1481 */
1482static int ext4_ordered_writepage(struct page *page,
1483                                struct writeback_control *wbc)
1484{
1485        struct inode *inode = page->mapping->host;
1486        struct buffer_head *page_bufs;
1487        handle_t *handle = NULL;
1488        int ret = 0;
1489        int err;
1490
1491        J_ASSERT(PageLocked(page));
1492
1493        /*
1494         * We give up here if we're reentered, because it might be for a
1495         * different filesystem.
1496         */
1497        if (ext4_journal_current_handle())
1498                goto out_fail;
1499
1500        handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1501
1502        if (IS_ERR(handle)) {
1503                ret = PTR_ERR(handle);
1504                goto out_fail;
1505        }
1506
1507        if (!page_has_buffers(page)) {
1508                create_empty_buffers(page, inode->i_sb->s_blocksize,
1509                                (1 << BH_Dirty)|(1 << BH_Uptodate));
1510        }
1511        page_bufs = page_buffers(page);
1512        walk_page_buffers(handle, page_bufs, 0,
1513                        PAGE_CACHE_SIZE, NULL, bget_one);
1514
1515        ret = block_write_full_page(page, ext4_get_block, wbc);
1516
1517        /*
1518         * The page can become unlocked at any point now, and
1519         * truncate can then come in and change things.  So we
1520         * can't touch *page from now on.  But *page_bufs is
1521         * safe due to elevated refcount.
1522         */
1523
1524        /*
1525         * And attach them to the current transaction.  But only if
1526         * block_write_full_page() succeeded.  Otherwise they are unmapped,
1527         * and generally junk.
1528         */
1529        if (ret == 0) {
1530                err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1531                                        NULL, jbd2_journal_dirty_data_fn);
1532                if (!ret)
1533                        ret = err;
1534        }
1535        walk_page_buffers(handle, page_bufs, 0,
1536                        PAGE_CACHE_SIZE, NULL, bput_one);
1537        err = ext4_journal_stop(handle);
1538        if (!ret)
1539                ret = err;
1540        return ret;
1541
1542out_fail:
1543        redirty_page_for_writepage(wbc, page);
1544        unlock_page(page);
1545        return ret;
1546}
1547
1548static int ext4_writeback_writepage(struct page *page,
1549                                struct writeback_control *wbc)
1550{
1551        struct inode *inode = page->mapping->host;
1552        handle_t *handle = NULL;
1553        int ret = 0;
1554        int err;
1555
1556        if (ext4_journal_current_handle())
1557                goto out_fail;
1558
1559        handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1560        if (IS_ERR(handle)) {
1561                ret = PTR_ERR(handle);
1562                goto out_fail;
1563        }
1564
1565        if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
1566                ret = nobh_writepage(page, ext4_get_block, wbc);
1567        else
1568                ret = block_write_full_page(page, ext4_get_block, wbc);
1569
1570        err = ext4_journal_stop(handle);
1571        if (!ret)
1572                ret = err;
1573        return ret;
1574
1575out_fail:
1576        redirty_page_for_writepage(wbc, page);
1577        unlock_page(page);
1578        return ret;
1579}
1580
1581static int ext4_journalled_writepage(struct page *page,
1582                                struct writeback_control *wbc)
1583{
1584        struct inode *inode = page->mapping->host;
1585        handle_t *handle = NULL;
1586        int ret = 0;
1587        int err;
1588
1589        if (ext4_journal_current_handle())
1590                goto no_write;
1591
1592        handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1593        if (IS_ERR(handle)) {
1594                ret = PTR_ERR(handle);
1595                goto no_write;
1596        }
1597
1598        if (!page_has_buffers(page) || PageChecked(page)) {
1599                /*
1600                 * It's mmapped pagecache.  Add buffers and journal it.  There
1601                 * doesn't seem much point in redirtying the page here.
1602                 */
1603                ClearPageChecked(page);
1604                ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1605                                        ext4_get_block);
1606                if (ret != 0) {
1607                        ext4_journal_stop(handle);
1608                        goto out_unlock;
1609                }
1610                ret = walk_page_buffers(handle, page_buffers(page), 0,
1611                        PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1612
1613                err = walk_page_buffers(handle, page_buffers(page), 0,
1614                                PAGE_CACHE_SIZE, NULL, write_end_fn);
1615                if (ret == 0)
1616                        ret = err;
1617                EXT4_I(inode)->i_state |= EXT4_STATE_JDATA;
1618                unlock_page(page);
1619        } else {
1620                /*
1621                 * It may be a page full of checkpoint-mode buffers.  We don't
1622                 * really know unless we go poke around in the buffer_heads.
1623                 * But block_write_full_page will do the right thing.
1624                 */
1625                ret = block_write_full_page(page, ext4_get_block, wbc);
1626        }
1627        err = ext4_journal_stop(handle);
1628        if (!ret)
1629                ret = err;
1630out:
1631        return ret;
1632
1633no_write:
1634        redirty_page_for_writepage(wbc, page);
1635out_unlock:
1636        unlock_page(page);
1637        goto out;
1638}
1639
1640static int ext4_readpage(struct file *file, struct page *page)
1641{
1642        return mpage_readpage(page, ext4_get_block);
1643}
1644
1645static int
1646ext4_readpages(struct file *file, struct address_space *mapping,
1647                struct list_head *pages, unsigned nr_pages)
1648{
1649        return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
1650}
1651
1652static void ext4_invalidatepage(struct page *page, unsigned long offset)
1653{
1654        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1655
1656        /*
1657         * If it's a full truncate we just forget about the pending dirtying
1658         */
1659        if (offset == 0)
1660                ClearPageChecked(page);
1661
1662        jbd2_journal_invalidatepage(journal, page, offset);
1663}
1664
1665static int ext4_releasepage(struct page *page, gfp_t wait)
1666{
1667        journal_t *journal = EXT4_JOURNAL(page->mapping->host);
1668
1669        WARN_ON(PageChecked(page));
1670        if (!page_has_buffers(page))
1671                return 0;
1672        return jbd2_journal_try_to_free_buffers(journal, page, wait);
1673}
1674
1675/*
1676 * If the O_DIRECT write will extend the file then add this inode to the
1677 * orphan list.  So recovery will truncate it back to the original size
1678 * if the machine crashes during the write.
1679 *
1680 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1681 * crashes then stale disk data _may_ be exposed inside the file.
1682 */
1683static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
1684                        const struct iovec *iov, loff_t offset,
1685                        unsigned long nr_segs)
1686{
1687        struct file *file = iocb->ki_filp;
1688        struct inode *inode = file->f_mapping->host;
1689        struct ext4_inode_info *ei = EXT4_I(inode);
1690        handle_t *handle = NULL;
1691        ssize_t ret;
1692        int orphan = 0;
1693        size_t count = iov_length(iov, nr_segs);
1694
1695        if (rw == WRITE) {
1696                loff_t final_size = offset + count;
1697
1698                handle = ext4_journal_start(inode, DIO_CREDITS);
1699                if (IS_ERR(handle)) {
1700                        ret = PTR_ERR(handle);
1701                        goto out;
1702                }
1703                if (final_size > inode->i_size) {
1704                        ret = ext4_orphan_add(handle, inode);
1705                        if (ret)
1706                                goto out_stop;
1707                        orphan = 1;
1708                        ei->i_disksize = inode->i_size;
1709                }
1710        }
1711
1712        ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1713                                 offset, nr_segs,
1714                                 ext4_get_block, NULL);
1715
1716        /*
1717         * Reacquire the handle: ext4_get_block() can restart the transaction
1718         */
1719        handle = ext4_journal_current_handle();
1720
1721out_stop:
1722        if (handle) {
1723                int err;
1724
1725                if (orphan && inode->i_nlink)
1726                        ext4_orphan_del(handle, inode);
1727                if (orphan && ret > 0) {
1728                        loff_t end = offset + ret;
1729                        if (end > inode->i_size) {
1730                                ei->i_disksize = end;
1731                                i_size_write(inode, end);
1732                                /*
1733                                 * We're going to return a positive `ret'
1734                                 * here due to non-zero-length I/O, so there's
1735                                 * no way of reporting error returns from
1736                                 * ext4_mark_inode_dirty() to userspace.  So
1737                                 * ignore it.
1738                                 */
1739                                ext4_mark_inode_dirty(handle, inode);
1740                        }
1741                }
1742                err = ext4_journal_stop(handle);
1743                if (ret == 0)
1744                        ret = err;
1745        }
1746out:
1747        return ret;
1748}
1749
1750/*
1751 * Pages can be marked dirty completely asynchronously from ext4's journalling
1752 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1753 * much here because ->set_page_dirty is called under VFS locks.  The page is
1754 * not necessarily locked.
1755 *
1756 * We cannot just dirty the page and leave attached buffers clean, because the
1757 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1758 * or jbddirty because all the journalling code will explode.
1759 *
1760 * So what we do is to mark the page "pending dirty" and next time writepage
1761 * is called, propagate that into the buffers appropriately.
1762 */
1763static int ext4_journalled_set_page_dirty(struct page *page)
1764{
1765        SetPageChecked(page);
1766        return __set_page_dirty_nobuffers(page);
1767}
1768
1769static const struct address_space_operations ext4_ordered_aops = {
1770        .readpage       = ext4_readpage,
1771        .readpages      = ext4_readpages,
1772        .writepage      = ext4_ordered_writepage,
1773        .sync_page      = block_sync_page,
1774        .write_begin    = ext4_write_begin,
1775        .write_end      = ext4_ordered_write_end,
1776        .bmap           = ext4_bmap,
1777        .invalidatepage = ext4_invalidatepage,
1778        .releasepage    = ext4_releasepage,
1779        .direct_IO      = ext4_direct_IO,
1780        .migratepage    = buffer_migrate_page,
1781};
1782
1783static const struct address_space_operations ext4_writeback_aops = {
1784        .readpage       = ext4_readpage,
1785        .readpages      = ext4_readpages,
1786        .writepage      = ext4_writeback_writepage,
1787        .sync_page      = block_sync_page,
1788        .write_begin    = ext4_write_begin,
1789        .write_end      = ext4_writeback_write_end,
1790        .bmap           = ext4_bmap,
1791        .invalidatepage = ext4_invalidatepage,
1792        .releasepage    = ext4_releasepage,
1793        .direct_IO      = ext4_direct_IO,
1794        .migratepage    = buffer_migrate_page,
1795};
1796
1797static const struct address_space_operations ext4_journalled_aops = {
1798        .readpage       = ext4_readpage,
1799        .readpages      = ext4_readpages,
1800        .writepage      = ext4_journalled_writepage,
1801        .sync_page      = block_sync_page,
1802        .write_begin    = ext4_write_begin,
1803        .write_end      = ext4_journalled_write_end,
1804        .set_page_dirty = ext4_journalled_set_page_dirty,
1805        .bmap           = ext4_bmap,
1806        .invalidatepage = ext4_invalidatepage,
1807        .releasepage    = ext4_releasepage,
1808};
1809
1810void ext4_set_aops(struct inode *inode)
1811{
1812        if (ext4_should_order_data(inode))
1813                inode->i_mapping->a_ops = &ext4_ordered_aops;
1814        else if (ext4_should_writeback_data(inode))
1815                inode->i_mapping->a_ops = &ext4_writeback_aops;
1816        else
1817                inode->i_mapping->a_ops = &ext4_journalled_aops;
1818}
1819
1820/*
1821 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
1822 * up to the end of the block which corresponds to `from'.
1823 * This required during truncate. We need to physically zero the tail end
1824 * of that block so it doesn't yield old data if the file is later grown.
1825 */
1826int ext4_block_truncate_page(handle_t *handle, struct page *page,
1827                struct address_space *mapping, loff_t from)
1828{
1829        ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1830        unsigned offset = from & (PAGE_CACHE_SIZE-1);
1831        unsigned blocksize, iblock, length, pos;
1832        struct inode *inode = mapping->host;
1833        struct buffer_head *bh;
1834        int err = 0;
1835
1836        blocksize = inode->i_sb->s_blocksize;
1837        length = blocksize - (offset & (blocksize - 1));
1838        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1839
1840        /*
1841         * For "nobh" option,  we can only work if we don't need to
1842         * read-in the page - otherwise we create buffers to do the IO.
1843         */
1844        if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
1845             ext4_should_writeback_data(inode) && PageUptodate(page)) {
1846                zero_user_page(page, offset, length, KM_USER0);
1847                set_page_dirty(page);
1848                goto unlock;
1849        }
1850
1851        if (!page_has_buffers(page))
1852                create_empty_buffers(page, blocksize, 0);
1853
1854        /* Find the buffer that contains "offset" */
1855        bh = page_buffers(page);
1856        pos = blocksize;
1857        while (offset >= pos) {
1858                bh = bh->b_this_page;
1859                iblock++;
1860                pos += blocksize;
1861        }
1862
1863        err = 0;
1864        if (buffer_freed(bh)) {
1865                BUFFER_TRACE(bh, "freed: skip");
1866                goto unlock;
1867        }
1868
1869        if (!buffer_mapped(bh)) {
1870                BUFFER_TRACE(bh, "unmapped");
1871                ext4_get_block(inode, iblock, bh, 0);
1872                /* unmapped? It's a hole - nothing to do */
1873                if (!buffer_mapped(bh)) {
1874                        BUFFER_TRACE(bh, "still unmapped");
1875                        goto unlock;
1876                }
1877        }
1878
1879        /* Ok, it's mapped. Make sure it's up-to-date */
1880        if (PageUptodate(page))
1881                set_buffer_uptodate(bh);
1882
1883        if (!buffer_uptodate(bh)) {
1884                err = -EIO;
1885                ll_rw_block(READ, 1, &bh);
1886                wait_on_buffer(bh);
1887                /* Uhhuh. Read error. Complain and punt. */
1888                if (!buffer_uptodate(bh))
1889                        goto unlock;
1890        }
1891
1892        if (ext4_should_journal_data(inode)) {
1893                BUFFER_TRACE(bh, "get write access");
1894                err = ext4_journal_get_write_access(handle, bh);
1895                if (err)
1896                        goto unlock;
1897        }
1898
1899        zero_user_page(page, offset, length, KM_USER0);
1900
1901        BUFFER_TRACE(bh, "zeroed end of block");
1902
1903        err = 0;
1904        if (ext4_should_journal_data(inode)) {
1905                err = ext4_journal_dirty_metadata(handle, bh);
1906        } else {
1907                if (ext4_should_order_data(inode))
1908                        err = ext4_journal_dirty_data(handle, bh);
1909                mark_buffer_dirty(bh);
1910        }
1911
1912unlock:
1913        unlock_page(page);
1914        page_cache_release(page);
1915        return err;
1916}
1917
1918/*
1919 * Probably it should be a library function... search for first non-zero word
1920 * or memcmp with zero_page, whatever is better for particular architecture.
1921 * Linus?
1922 */
1923static inline int all_zeroes(__le32 *p, __le32 *q)
1924{
1925        while (p < q)
1926                if (*p++)
1927                        return 0;
1928        return 1;
1929}
1930
1931/**
1932 *      ext4_find_shared - find the indirect blocks for partial truncation.
1933 *      @inode:   inode in question
1934 *      @depth:   depth of the affected branch
1935 *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
1936 *      @chain:   place to store the pointers to partial indirect blocks
1937 *      @top:     place to the (detached) top of branch
1938 *
1939 *      This is a helper function used by ext4_truncate().
1940 *
1941 *      When we do truncate() we may have to clean the ends of several
1942 *      indirect blocks but leave the blocks themselves alive. Block is
1943 *      partially truncated if some data below the new i_size is refered
1944 *      from it (and it is on the path to the first completely truncated
1945 *      data block, indeed).  We have to free the top of that path along
1946 *      with everything to the right of the path. Since no allocation
1947 *      past the truncation point is possible until ext4_truncate()
1948 *      finishes, we may safely do the latter, but top of branch may
1949 *      require special attention - pageout below the truncation point
1950 *      might try to populate it.
1951 *
1952 *      We atomically detach the top of branch from the tree, store the
1953 *      block number of its root in *@top, pointers to buffer_heads of
1954 *      partially truncated blocks - in @chain[].bh and pointers to
1955 *      their last elements that should not be removed - in
1956 *      @chain[].p. Return value is the pointer to last filled element
1957 *      of @chain.
1958 *
1959 *      The work left to caller to do the actual freeing of subtrees:
1960 *              a) free the subtree starting from *@top
1961 *              b) free the subtrees whose roots are stored in
1962 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
1963 *              c) free the subtrees growing from the inode past the @chain[0].
1964 *                      (no partially truncated stuff there).  */
1965
1966static Indirect *ext4_find_shared(struct inode *inode, int depth,
1967                        int offsets[4], Indirect chain[4], __le32 *top)
1968{
1969        Indirect *partial, *p;
1970        int k, err;
1971
1972        *top = 0;
1973        /* Make k index the deepest non-null offest + 1 */
1974        for (k = depth; k > 1 && !offsets[k-1]; k--)
1975                ;
1976        partial = ext4_get_branch(inode, k, offsets, chain, &err);
1977        /* Writer: pointers */
1978        if (!partial)
1979                partial = chain + k-1;
1980        /*
1981         * If the branch acquired continuation since we've looked at it -
1982         * fine, it should all survive and (new) top doesn't belong to us.
1983         */
1984        if (!partial->key && *partial->p)
1985                /* Writer: end */
1986                goto no_top;
1987        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
1988                ;
1989        /*
1990         * OK, we've found the last block that must survive. The rest of our
1991         * branch should be detached before unlocking. However, if that rest
1992         * of branch is all ours and does not grow immediately from the inode
1993         * it's easier to cheat and just decrement partial->p.
1994         */
1995        if (p == chain + k - 1 && p > chain) {
1996                p->p--;
1997        } else {
1998                *top = *p->p;
1999                /* Nope, don't do this in ext4.  Must leave the tree intact */
2000#if 0
2001                *p->p = 0;
2002#endif
2003        }
2004        /* Writer: end */
2005
2006        while(partial > p) {
2007                brelse(partial->bh);
2008                partial--;
2009        }
2010no_top:
2011        return partial;
2012}
2013
2014/*
2015 * Zero a number of block pointers in either an inode or an indirect block.
2016 * If we restart the transaction we must again get write access to the
2017 * indirect block for further modification.
2018 *
2019 * We release `count' blocks on disk, but (last - first) may be greater
2020 * than `count' because there can be holes in there.
2021 */
2022static void ext4_clear_blocks(handle_t *handle, struct inode *inode,
2023                struct buffer_head *bh, ext4_fsblk_t block_to_free,
2024                unsigned long count, __le32 *first, __le32 *last)
2025{
2026        __le32 *p;
2027        if (try_to_extend_transaction(handle, inode)) {
2028                if (bh) {
2029                        BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2030                        ext4_journal_dirty_metadata(handle, bh);
2031                }
2032                ext4_mark_inode_dirty(handle, inode);
2033                ext4_journal_test_restart(handle, inode);
2034                if (bh) {
2035                        BUFFER_TRACE(bh, "retaking write access");
2036                        ext4_journal_get_write_access(handle, bh);
2037                }
2038        }
2039
2040        /*
2041         * Any buffers which are on the journal will be in memory. We find
2042         * them on the hash table so jbd2_journal_revoke() will run jbd2_journal_forget()
2043         * on them.  We've already detached each block from the file, so
2044         * bforget() in jbd2_journal_forget() should be safe.
2045         *
2046         * AKPM: turn on bforget in jbd2_journal_forget()!!!
2047         */
2048        for (p = first; p < last; p++) {
2049                u32 nr = le32_to_cpu(*p);
2050                if (nr) {
2051                        struct buffer_head *bh;
2052
2053                        *p = 0;
2054                        bh = sb_find_get_block(inode->i_sb, nr);
2055                        ext4_forget(handle, 0, inode, bh, nr);
2056                }
2057        }
2058
2059        ext4_free_blocks(handle, inode, block_to_free, count);
2060}
2061
2062/**
2063 * ext4_free_data - free a list of data blocks
2064 * @handle:     handle for this transaction
2065 * @inode:      inode we are dealing with
2066 * @this_bh:    indirect buffer_head which contains *@first and *@last
2067 * @first:      array of block numbers
2068 * @last:       points immediately past the end of array
2069 *
2070 * We are freeing all blocks refered from that array (numbers are stored as
2071 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2072 *
2073 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2074 * blocks are contiguous then releasing them at one time will only affect one
2075 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2076 * actually use a lot of journal space.
2077 *
2078 * @this_bh will be %NULL if @first and @last point into the inode's direct
2079 * block pointers.
2080 */
2081static void ext4_free_data(handle_t *handle, struct inode *inode,
2082                           struct buffer_head *this_bh,
2083                           __le32 *first, __le32 *last)
2084{
2085        ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2086        unsigned long count = 0;            /* Number of blocks in the run */
2087        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2088                                               corresponding to
2089                                               block_to_free */
2090        ext4_fsblk_t nr;                    /* Current block # */
2091        __le32 *p;                          /* Pointer into inode/ind
2092                                               for current block */
2093        int err;
2094
2095        if (this_bh) {                          /* For indirect block */
2096                BUFFER_TRACE(this_bh, "get_write_access");
2097                err = ext4_journal_get_write_access(handle, this_bh);
2098                /* Important: if we can't update the indirect pointers
2099                 * to the blocks, we can't free them. */
2100                if (err)
2101                        return;
2102        }
2103
2104        for (p = first; p < last; p++) {
2105                nr = le32_to_cpu(*p);
2106                if (nr) {
2107                        /* accumulate blocks to free if they're contiguous */
2108                        if (count == 0) {
2109                                block_to_free = nr;
2110                                block_to_free_p = p;
2111                                count = 1;
2112                        } else if (nr == block_to_free + count) {
2113                                count++;
2114                        } else {
2115                                ext4_clear_blocks(handle, inode, this_bh,
2116                                                  block_to_free,
2117                                                  count, block_to_free_p, p);
2118                                block_to_free = nr;
2119                                block_to_free_p = p;
2120                                count = 1;
2121                        }
2122                }
2123        }
2124
2125        if (count > 0)
2126                ext4_clear_blocks(handle, inode, this_bh, block_to_free,
2127                                  count, block_to_free_p, p);
2128
2129        if (this_bh) {
2130                BUFFER_TRACE(this_bh, "call ext4_journal_dirty_metadata");
2131                ext4_journal_dirty_metadata(handle, this_bh);
2132        }
2133}
2134
2135/**
2136 *      ext4_free_branches - free an array of branches
2137 *      @handle: JBD handle for this transaction
2138 *      @inode: inode we are dealing with
2139 *      @parent_bh: the buffer_head which contains *@first and *@last
2140 *      @first: array of block numbers
2141 *      @last:  pointer immediately past the end of array
2142 *      @depth: depth of the branches to free
2143 *
2144 *      We are freeing all blocks refered from these branches (numbers are
2145 *      stored as little-endian 32-bit) and updating @inode->i_blocks
2146 *      appropriately.
2147 */
2148static void ext4_free_branches(handle_t *handle, struct inode *inode,
2149                               struct buffer_head *parent_bh,
2150                               __le32 *first, __le32 *last, int depth)
2151{
2152        ext4_fsblk_t nr;
2153        __le32 *p;
2154
2155        if (is_handle_aborted(handle))
2156                return;
2157
2158        if (depth--) {
2159                struct buffer_head *bh;
2160                int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2161                p = last;
2162                while (--p >= first) {
2163                        nr = le32_to_cpu(*p);
2164                        if (!nr)
2165                                continue;               /* A hole */
2166
2167                        /* Go read the buffer for the next level down */
2168                        bh = sb_bread(inode->i_sb, nr);
2169
2170                        /*
2171                         * A read failure? Report error and clear slot
2172                         * (should be rare).
2173                         */
2174                        if (!bh) {
2175                                ext4_error(inode->i_sb, "ext4_free_branches",
2176                                           "Read failure, inode=%lu, block=%llu",
2177                                           inode->i_ino, nr);
2178                                continue;
2179                        }
2180
2181                        /* This zaps the entire block.  Bottom up. */
2182                        BUFFER_TRACE(bh, "free child branches");
2183                        ext4_free_branches(handle, inode, bh,
2184                                           (__le32*)bh->b_data,
2185                                           (__le32*)bh->b_data + addr_per_block,
2186                                           depth);
2187
2188                        /*
2189                         * We've probably journalled the indirect block several
2190                         * times during the truncate.  But it's no longer
2191                         * needed and we now drop it from the transaction via
2192                         * jbd2_journal_revoke().
2193                         *
2194                         * That's easy if it's exclusively part of this
2195                         * transaction.  But if it's part of the committing
2196                         * transaction then jbd2_journal_forget() will simply
2197                         * brelse() it.  That means that if the underlying
2198                         * block is reallocated in ext4_get_block(),
2199                         * unmap_underlying_metadata() will find this block
2200                         * and will try to get rid of it.  damn, damn.
2201                         *
2202                         * If this block has already been committed to the
2203                         * journal, a revoke record will be written.  And
2204                         * revoke records must be emitted *before* clearing
2205                         * this block's bit in the bitmaps.
2206                         */
2207                        ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
2208
2209                        /*
2210                         * Everything below this this pointer has been
2211                         * released.  Now let this top-of-subtree go.
2212                         *
2213                         * We want the freeing of this indirect block to be
2214                         * atomic in the journal with the updating of the
2215                         * bitmap block which owns it.  So make some room in
2216                         * the journal.
2217                         *
2218                         * We zero the parent pointer *after* freeing its
2219                         * pointee in the bitmaps, so if extend_transaction()
2220                         * for some reason fails to put the bitmap changes and
2221                         * the release into the same transaction, recovery
2222                         * will merely complain about releasing a free block,
2223                         * rather than leaking blocks.
2224                         */
2225                        if (is_handle_aborted(handle))
2226                                return;
2227                        if (try_to_extend_transaction(handle, inode)) {
2228                                ext4_mark_inode_dirty(handle, inode);
2229                                ext4_journal_test_restart(handle, inode);
2230                        }
2231
2232                        ext4_free_blocks(handle, inode, nr, 1);
2233
2234                        if (parent_bh) {
2235                                /*
2236                                 * The block which we have just freed is
2237                                 * pointed to by an indirect block: journal it
2238                                 */
2239                                BUFFER_TRACE(parent_bh, "get_write_access");
2240                                if (!ext4_journal_get_write_access(handle,
2241                                                                   parent_bh)){
2242                                        *p = 0;
2243                                        BUFFER_TRACE(parent_bh,
2244                                        "call ext4_journal_dirty_metadata");
2245                                        ext4_journal_dirty_metadata(handle,
2246                                                                    parent_bh);
2247                                }
2248                        }
2249                }
2250        } else {
2251                /* We have reached the bottom of the tree. */
2252                BUFFER_TRACE(parent_bh, "free data blocks");
2253                ext4_free_data(handle, inode, parent_bh, first, last);
2254        }
2255}
2256
2257/*
2258 * ext4_truncate()
2259 *
2260 * We block out ext4_get_block() block instantiations across the entire
2261 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
2262 * simultaneously on behalf of the same inode.
2263 *
2264 * As we work through the truncate and commmit bits of it to the journal there
2265 * is one core, guiding principle: the file's tree must always be consistent on
2266 * disk.  We must be able to restart the truncate after a crash.
2267 *
2268 * The file's tree may be transiently inconsistent in memory (although it
2269 * probably isn't), but whenever we close off and commit a journal transaction,
2270 * the contents of (the filesystem + the journal) must be consistent and
2271 * restartable.  It's pretty simple, really: bottom up, right to left (although
2272 * left-to-right works OK too).
2273 *
2274 * Note that at recovery time, journal replay occurs *before* the restart of
2275 * truncate against the orphan inode list.
2276 *
2277 * The committed inode has the new, desired i_size (which is the same as
2278 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
2279 * that this inode's truncate did not complete and it will again call
2280 * ext4_truncate() to have another go.  So there will be instantiated blocks
2281 * to the right of the truncation point in a crashed ext4 filesystem.  But
2282 * that's fine - as long as they are linked from the inode, the post-crash
2283 * ext4_truncate() run will find them and release them.
2284 */
2285void ext4_truncate(struct inode *inode)
2286{
2287        handle_t *handle;
2288        struct ext4_inode_info *ei = EXT4_I(inode);
2289        __le32 *i_data = ei->i_data;
2290        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
2291        struct address_space *mapping = inode->i_mapping;
2292        int offsets[4];
2293        Indirect chain[4];
2294        Indirect *partial;
2295        __le32 nr = 0;
2296        int n;
2297        long last_block;
2298        unsigned blocksize = inode->i_sb->s_blocksize;
2299        struct page *page;
2300
2301        if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
2302            S_ISLNK(inode->i_mode)))
2303                return;
2304        if (ext4_inode_is_fast_symlink(inode))
2305                return;
2306        if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2307                return;
2308
2309        /*
2310         * We have to lock the EOF page here, because lock_page() nests
2311         * outside jbd2_journal_start().
2312         */
2313        if ((inode->i_size & (blocksize - 1)) == 0) {
2314                /* Block boundary? Nothing to do */
2315                page = NULL;
2316        } else {
2317                page = grab_cache_page(mapping,
2318                                inode->i_size >> PAGE_CACHE_SHIFT);
2319                if (!page)
2320                        return;
2321        }
2322
2323        if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
2324                return ext4_ext_truncate(inode, page);
2325
2326        handle = start_transaction(inode);
2327        if (IS_ERR(handle)) {
2328                if (page) {
2329                        clear_highpage(page);
2330                        flush_dcache_page(page);
2331                        unlock_page(page);
2332                        page_cache_release(page);
2333                }
2334                return;         /* AKPM: return what? */
2335        }
2336
2337        last_block = (inode->i_size + blocksize-1)
2338                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
2339
2340        if (page)
2341                ext4_block_truncate_page(handle, page, mapping, inode->i_size);
2342
2343        n = ext4_block_to_path(inode, last_block, offsets, NULL);
2344        if (n == 0)
2345                goto out_stop;  /* error */
2346
2347        /*
2348         * OK.  This truncate is going to happen.  We add the inode to the
2349         * orphan list, so that if this truncate spans multiple transactions,
2350         * and we crash, we will resume the truncate when the filesystem
2351         * recovers.  It also marks the inode dirty, to catch the new size.
2352         *
2353         * Implication: the file must always be in a sane, consistent
2354         * truncatable state while each transaction commits.
2355         */
2356        if (ext4_orphan_add(handle, inode))
2357                goto out_stop;
2358
2359        /*
2360         * The orphan list entry will now protect us from any crash which
2361         * occurs before the truncate completes, so it is now safe to propagate
2362         * the new, shorter inode size (held for now in i_size) into the
2363         * on-disk inode. We do this via i_disksize, which is the value which
2364         * ext4 *really* writes onto the disk inode.
2365         */
2366        ei->i_disksize = inode->i_size;
2367
2368        /*
2369         * From here we block out all ext4_get_block() callers who want to
2370         * modify the block allocation tree.
2371         */
2372        mutex_lock(&ei->truncate_mutex);
2373
2374        if (n == 1) {           /* direct blocks */
2375                ext4_free_data(handle, inode, NULL, i_data+offsets[0],
2376                               i_data + EXT4_NDIR_BLOCKS);
2377                goto do_indirects;
2378        }
2379
2380        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
2381        /* Kill the top of shared branch (not detached) */
2382        if (nr) {
2383                if (partial == chain) {
2384                        /* Shared branch grows from the inode */
2385                        ext4_free_branches(handle, inode, NULL,
2386                                           &nr, &nr+1, (chain+n-1) - partial);
2387                        *partial->p = 0;
2388                        /*
2389                         * We mark the inode dirty prior to restart,
2390                         * and prior to stop.  No need for it here.
2391                         */
2392                } else {
2393                        /* Shared branch grows from an indirect block */
2394                        BUFFER_TRACE(partial->bh, "get_write_access");
2395                        ext4_free_branches(handle, inode, partial->bh,
2396                                        partial->p,
2397                                        partial->p+1, (chain+n-1) - partial);
2398                }
2399        }
2400        /* Clear the ends of indirect blocks on the shared branch */
2401        while (partial > chain) {
2402                ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
2403                                   (__le32*)partial->bh->b_data+addr_per_block,
2404                                   (chain+n-1) - partial);
2405                BUFFER_TRACE(partial->bh, "call brelse");
2406                brelse (partial->bh);
2407                partial--;
2408        }
2409do_indirects:
2410        /* Kill the remaining (whole) subtrees */
2411        switch (offsets[0]) {
2412        default:
2413                nr = i_data[EXT4_IND_BLOCK];
2414                if (nr) {
2415                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2416                        i_data[EXT4_IND_BLOCK] = 0;
2417                }
2418        case EXT4_IND_BLOCK:
2419                nr = i_data[EXT4_DIND_BLOCK];
2420                if (nr) {
2421                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2422                        i_data[EXT4_DIND_BLOCK] = 0;
2423                }
2424        case EXT4_DIND_BLOCK:
2425                nr = i_data[EXT4_TIND_BLOCK];
2426                if (nr) {
2427                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2428                        i_data[EXT4_TIND_BLOCK] = 0;
2429                }
2430        case EXT4_TIND_BLOCK:
2431                ;
2432        }
2433
2434        ext4_discard_reservation(inode);
2435
2436        mutex_unlock(&ei->truncate_mutex);
2437        inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
2438        ext4_mark_inode_dirty(handle, inode);
2439
2440        /*
2441         * In a multi-transaction truncate, we only make the final transaction
2442         * synchronous
2443         */
2444        if (IS_SYNC(inode))
2445                handle->h_sync = 1;
2446out_stop:
2447        /*
2448         * If this was a simple ftruncate(), and the file will remain alive
2449         * then we need to clear up the orphan record which we created above.
2450         * However, if this was a real unlink then we were called by
2451         * ext4_delete_inode(), and we allow that function to clean up the
2452         * orphan info for us.
2453         */
2454        if (inode->i_nlink)
2455                ext4_orphan_del(handle, inode);
2456
2457        ext4_journal_stop(handle);
2458}
2459
2460static ext4_fsblk_t ext4_get_inode_block(struct super_block *sb,
2461                unsigned long ino, struct ext4_iloc *iloc)
2462{
2463        unsigned long desc, group_desc, block_group;
2464        unsigned long offset;
2465        ext4_fsblk_t block;
2466        struct buffer_head *bh;
2467        struct ext4_group_desc * gdp;
2468
2469        if (!ext4_valid_inum(sb, ino)) {
2470                /*
2471                 * This error is already checked for in namei.c unless we are
2472                 * looking at an NFS filehandle, in which case no error
2473                 * report is needed
2474                 */
2475                return 0;
2476        }
2477
2478        block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
2479        if (block_group >= EXT4_SB(sb)->s_groups_count) {
2480                ext4_error(sb,"ext4_get_inode_block","group >= groups count");
2481                return 0;
2482        }
2483        smp_rmb();
2484        group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
2485        desc = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
2486        bh = EXT4_SB(sb)->s_group_desc[group_desc];
2487        if (!bh) {
2488                ext4_error (sb, "ext4_get_inode_block",
2489                            "Descriptor not loaded");
2490                return 0;
2491        }
2492
2493        gdp = (struct ext4_group_desc *)((__u8 *)bh->b_data +
2494                desc * EXT4_DESC_SIZE(sb));
2495        /*
2496         * Figure out the offset within the block group inode table
2497         */
2498        offset = ((ino - 1) % EXT4_INODES_PER_GROUP(sb)) *
2499                EXT4_INODE_SIZE(sb);
2500        block = ext4_inode_table(sb, gdp) +
2501                (offset >> EXT4_BLOCK_SIZE_BITS(sb));
2502
2503        iloc->block_group = block_group;
2504        iloc->offset = offset & (EXT4_BLOCK_SIZE(sb) - 1);
2505        return block;
2506}
2507
2508/*
2509 * ext4_get_inode_loc returns with an extra refcount against the inode's
2510 * underlying buffer_head on success. If 'in_mem' is true, we have all
2511 * data in memory that is needed to recreate the on-disk version of this
2512 * inode.
2513 */
2514static int __ext4_get_inode_loc(struct inode *inode,
2515                                struct ext4_iloc *iloc, int in_mem)
2516{
2517        ext4_fsblk_t block;
2518        struct buffer_head *bh;
2519
2520        block = ext4_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2521        if (!block)
2522                return -EIO;
2523
2524        bh = sb_getblk(inode->i_sb, block);
2525        if (!bh) {
2526                ext4_error (inode->i_sb, "ext4_get_inode_loc",
2527                                "unable to read inode block - "
2528                                "inode=%lu, block=%llu",
2529                                 inode->i_ino, block);
2530                return -EIO;
2531        }
2532        if (!buffer_uptodate(bh)) {
2533                lock_buffer(bh);
2534                if (buffer_uptodate(bh)) {
2535                        /* someone brought it uptodate while we waited */
2536                        unlock_buffer(bh);
2537                        goto has_buffer;
2538                }
2539
2540                /*
2541                 * If we have all information of the inode in memory and this
2542                 * is the only valid inode in the block, we need not read the
2543                 * block.
2544                 */
2545                if (in_mem) {
2546                        struct buffer_head *bitmap_bh;
2547                        struct ext4_group_desc *desc;
2548                        int inodes_per_buffer;
2549                        int inode_offset, i;
2550                        int block_group;
2551                        int start;
2552
2553                        block_group = (inode->i_ino - 1) /
2554                                        EXT4_INODES_PER_GROUP(inode->i_sb);
2555                        inodes_per_buffer = bh->b_size /
2556                                EXT4_INODE_SIZE(inode->i_sb);
2557                        inode_offset = ((inode->i_ino - 1) %
2558                                        EXT4_INODES_PER_GROUP(inode->i_sb));
2559                        start = inode_offset & ~(inodes_per_buffer - 1);
2560
2561                        /* Is the inode bitmap in cache? */
2562                        desc = ext4_get_group_desc(inode->i_sb,
2563                                                block_group, NULL);
2564                        if (!desc)
2565                                goto make_io;
2566
2567                        bitmap_bh = sb_getblk(inode->i_sb,
2568                                ext4_inode_bitmap(inode->i_sb, desc));
2569                        if (!bitmap_bh)
2570                                goto make_io;
2571
2572                        /*
2573                         * If the inode bitmap isn't in cache then the
2574                         * optimisation may end up performing two reads instead
2575                         * of one, so skip it.
2576                         */
2577                        if (!buffer_uptodate(bitmap_bh)) {
2578                                brelse(bitmap_bh);
2579                                goto make_io;
2580                        }
2581                        for (i = start; i < start + inodes_per_buffer; i++) {
2582                                if (i == inode_offset)
2583                                        continue;
2584                                if (ext4_test_bit(i, bitmap_bh->b_data))
2585                                        break;
2586                        }
2587                        brelse(bitmap_bh);
2588                        if (i == start + inodes_per_buffer) {
2589                                /* all other inodes are free, so skip I/O */
2590                                memset(bh->b_data, 0, bh->b_size);
2591                                set_buffer_uptodate(bh);
2592                                unlock_buffer(bh);
2593                                goto has_buffer;
2594                        }
2595                }
2596
2597make_io:
2598                /*
2599                 * There are other valid inodes in the buffer, this inode
2600                 * has in-inode xattrs, or we don't have this inode in memory.
2601                 * Read the block from disk.
2602                 */
2603                get_bh(bh);
2604                bh->b_end_io = end_buffer_read_sync;
2605                submit_bh(READ_META, bh);
2606                wait_on_buffer(bh);
2607                if (!buffer_uptodate(bh)) {
2608                        ext4_error(inode->i_sb, "ext4_get_inode_loc",
2609                                        "unable to read inode block - "
2610                                        "inode=%lu, block=%llu",
2611                                        inode->i_ino, block);
2612                        brelse(bh);
2613                        return -EIO;
2614                }
2615        }
2616has_buffer:
2617        iloc->bh = bh;
2618        return 0;
2619}
2620
2621int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
2622{
2623        /* We have all inode data except xattrs in memory here. */
2624        return __ext4_get_inode_loc(inode, iloc,
2625                !(EXT4_I(inode)->i_state & EXT4_STATE_XATTR));
2626}
2627
2628void ext4_set_inode_flags(struct inode *inode)
2629{
2630        unsigned int flags = EXT4_I(inode)->i_flags;
2631
2632        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2633        if (flags & EXT4_SYNC_FL)
2634                inode->i_flags |= S_SYNC;
2635        if (flags & EXT4_APPEND_FL)
2636                inode->i_flags |= S_APPEND;
2637        if (flags & EXT4_IMMUTABLE_FL)
2638                inode->i_flags |= S_IMMUTABLE;
2639        if (flags & EXT4_NOATIME_FL)
2640                inode->i_flags |= S_NOATIME;
2641        if (flags & EXT4_DIRSYNC_FL)
2642                inode->i_flags |= S_DIRSYNC;
2643}
2644
2645/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
2646void ext4_get_inode_flags(struct ext4_inode_info *ei)
2647{
2648        unsigned int flags = ei->vfs_inode.i_flags;
2649
2650        ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
2651                        EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
2652        if (flags & S_SYNC)
2653                ei->i_flags |= EXT4_SYNC_FL;
2654        if (flags & S_APPEND)
2655                ei->i_flags |= EXT4_APPEND_FL;
2656        if (flags & S_IMMUTABLE)
2657                ei->i_flags |= EXT4_IMMUTABLE_FL;
2658        if (flags & S_NOATIME)
2659                ei->i_flags |= EXT4_NOATIME_FL;
2660        if (flags & S_DIRSYNC)
2661                ei->i_flags |= EXT4_DIRSYNC_FL;
2662}
2663
2664void ext4_read_inode(struct inode * inode)
2665{
2666        struct ext4_iloc iloc;
2667        struct ext4_inode *raw_inode;
2668        struct ext4_inode_info *ei = EXT4_I(inode);
2669        struct buffer_head *bh;
2670        int block;
2671
2672#ifdef CONFIG_EXT4DEV_FS_POSIX_ACL
2673        ei->i_acl = EXT4_ACL_NOT_CACHED;
2674        ei->i_default_acl = EXT4_ACL_NOT_CACHED;
2675#endif
2676        ei->i_block_alloc_info = NULL;
2677
2678        if (__ext4_get_inode_loc(inode, &iloc, 0))
2679                goto bad_inode;
2680        bh = iloc.bh;
2681        raw_inode = ext4_raw_inode(&iloc);
2682        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2683        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2684        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2685        if(!(test_opt (inode->i_sb, NO_UID32))) {
2686                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2687                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2688        }
2689        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2690        inode->i_size = le32_to_cpu(raw_inode->i_size);
2691
2692        ei->i_state = 0;
2693        ei->i_dir_start_lookup = 0;
2694        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2695        /* We now have enough fields to check if the inode was active or not.
2696         * This is needed because nfsd might try to access dead inodes
2697         * the test is that same one that e2fsck uses
2698         * NeilBrown 1999oct15
2699         */
2700        if (inode->i_nlink == 0) {
2701                if (inode->i_mode == 0 ||
2702                    !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
2703                        /* this inode is deleted */
2704                        brelse (bh);
2705                        goto bad_inode;
2706                }
2707                /* The only unlinked inodes we let through here have
2708                 * valid i_mode and are being read by the orphan
2709                 * recovery code: that's fine, we're about to complete
2710                 * the process of deleting those. */
2711        }
2712        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2713        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2714        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2715        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2716            cpu_to_le32(EXT4_OS_HURD))
2717                ei->i_file_acl |=
2718                        ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
2719        if (!S_ISREG(inode->i_mode)) {
2720                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2721        } else {
2722                inode->i_size |=
2723                        ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2724        }
2725        ei->i_disksize = inode->i_size;
2726        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2727        ei->i_block_group = iloc.block_group;
2728        /*
2729         * NOTE! The in-memory inode i_data array is in little-endian order
2730         * even on big-endian machines: we do NOT byteswap the block numbers!
2731         */
2732        for (block = 0; block < EXT4_N_BLOCKS; block++)
2733                ei->i_data[block] = raw_inode->i_block[block];
2734        INIT_LIST_HEAD(&ei->i_orphan);
2735
2736        if (inode->i_ino >= EXT4_FIRST_INO(inode->i_sb) + 1 &&
2737            EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
2738                /*
2739                 * When mke2fs creates big inodes it does not zero out
2740                 * the unused bytes above EXT4_GOOD_OLD_INODE_SIZE,
2741                 * so ignore those first few inodes.
2742                 */
2743                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2744                if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2745                    EXT4_INODE_SIZE(inode->i_sb)) {
2746                        brelse (bh);
2747                        goto bad_inode;
2748                }
2749                if (ei->i_extra_isize == 0) {
2750                        /* The extra space is currently unused. Use it. */
2751                        ei->i_extra_isize = sizeof(struct ext4_inode) -
2752                                            EXT4_GOOD_OLD_INODE_SIZE;
2753                } else {
2754                        __le32 *magic = (void *)raw_inode +
2755                                        EXT4_GOOD_OLD_INODE_SIZE +
2756                                        ei->i_extra_isize;
2757                        if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
2758                                 ei->i_state |= EXT4_STATE_XATTR;
2759                }
2760        } else
2761                ei->i_extra_isize = 0;
2762
2763        EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
2764        EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
2765        EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
2766        EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
2767
2768        if (S_ISREG(inode->i_mode)) {
2769                inode->i_op = &ext4_file_inode_operations;
2770                inode->i_fop = &ext4_file_operations;
2771                ext4_set_aops(inode);
2772        } else if (S_ISDIR(inode->i_mode)) {
2773                inode->i_op = &ext4_dir_inode_operations;
2774                inode->i_fop = &ext4_dir_operations;
2775        } else if (S_ISLNK(inode->i_mode)) {
2776                if (ext4_inode_is_fast_symlink(inode))
2777                        inode->i_op = &ext4_fast_symlink_inode_operations;
2778                else {
2779                        inode->i_op = &ext4_symlink_inode_operations;
2780                        ext4_set_aops(inode);
2781                }
2782        } else {
2783                inode->i_op = &ext4_special_inode_operations;
2784                if (raw_inode->i_block[0])
2785                        init_special_inode(inode, inode->i_mode,
2786                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2787                else
2788                        init_special_inode(inode, inode->i_mode,
2789                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2790        }
2791        brelse (iloc.bh);
2792        ext4_set_inode_flags(inode);
2793        return;
2794
2795bad_inode:
2796        make_bad_inode(inode);
2797        return;
2798}
2799
2800/*
2801 * Post the struct inode info into an on-disk inode location in the
2802 * buffer-cache.  This gobbles the caller's reference to the
2803 * buffer_head in the inode location struct.
2804 *
2805 * The caller must have write access to iloc->bh.
2806 */
2807static int ext4_do_update_inode(handle_t *handle,
2808                                struct inode *inode,
2809                                struct ext4_iloc *iloc)
2810{
2811        struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
2812        struct ext4_inode_info *ei = EXT4_I(inode);
2813        struct buffer_head *bh = iloc->bh;
2814        int err = 0, rc, block;
2815
2816        /* For fields not not tracking in the in-memory inode,
2817         * initialise them to zero for new inodes. */
2818        if (ei->i_state & EXT4_STATE_NEW)
2819                memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
2820
2821        ext4_get_inode_flags(ei);
2822        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
2823        if(!(test_opt(inode->i_sb, NO_UID32))) {
2824                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
2825                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
2826/*
2827 * Fix up interoperability with old kernels. Otherwise, old inodes get
2828 * re-used with the upper 16 bits of the uid/gid intact
2829 */
2830                if(!ei->i_dtime) {
2831                        raw_inode->i_uid_high =
2832                                cpu_to_le16(high_16_bits(inode->i_uid));
2833                        raw_inode->i_gid_high =
2834                                cpu_to_le16(high_16_bits(inode->i_gid));
2835                } else {
2836                        raw_inode->i_uid_high = 0;
2837                        raw_inode->i_gid_high = 0;
2838                }
2839        } else {
2840                raw_inode->i_uid_low =
2841                        cpu_to_le16(fs_high2lowuid(inode->i_uid));
2842                raw_inode->i_gid_low =
2843                        cpu_to_le16(fs_high2lowgid(inode->i_gid));
2844                raw_inode->i_uid_high = 0;
2845                raw_inode->i_gid_high = 0;
2846        }
2847        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
2848        raw_inode->i_size = cpu_to_le32(ei->i_disksize);
2849
2850        EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
2851        EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
2852        EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
2853        EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
2854
2855        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
2856        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
2857        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
2858        if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
2859            cpu_to_le32(EXT4_OS_HURD))
2860                raw_inode->i_file_acl_high =
2861                        cpu_to_le16(ei->i_file_acl >> 32);
2862        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
2863        if (!S_ISREG(inode->i_mode)) {
2864                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
2865        } else {
2866                raw_inode->i_size_high =
2867                        cpu_to_le32(ei->i_disksize >> 32);
2868                if (ei->i_disksize > 0x7fffffffULL) {
2869                        struct super_block *sb = inode->i_sb;
2870                        if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
2871                                        EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
2872                            EXT4_SB(sb)->s_es->s_rev_level ==
2873                                        cpu_to_le32(EXT4_GOOD_OLD_REV)) {
2874                               /* If this is the first large file
2875                                * created, add a flag to the superblock.
2876                                */
2877                                err = ext4_journal_get_write_access(handle,
2878                                                EXT4_SB(sb)->s_sbh);
2879                                if (err)
2880                                        goto out_brelse;
2881                                ext4_update_dynamic_rev(sb);
2882                                EXT4_SET_RO_COMPAT_FEATURE(sb,
2883                                        EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
2884                                sb->s_dirt = 1;
2885                                handle->h_sync = 1;
2886                                err = ext4_journal_dirty_metadata(handle,
2887                                                EXT4_SB(sb)->s_sbh);
2888                        }
2889                }
2890        }
2891        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
2892        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
2893                if (old_valid_dev(inode->i_rdev)) {
2894                        raw_inode->i_block[0] =
2895                                cpu_to_le32(old_encode_dev(inode->i_rdev));
2896                        raw_inode->i_block[1] = 0;
2897                } else {
2898                        raw_inode->i_block[0] = 0;
2899                        raw_inode->i_block[1] =
2900                                cpu_to_le32(new_encode_dev(inode->i_rdev));
2901                        raw_inode->i_block[2] = 0;
2902                }
2903        } else for (block = 0; block < EXT4_N_BLOCKS; block++)
2904                raw_inode->i_block[block] = ei->i_data[block];
2905
2906        if (ei->i_extra_isize)
2907                raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
2908
2909        BUFFER_TRACE(bh, "call ext4_journal_dirty_metadata");
2910        rc = ext4_journal_dirty_metadata(handle, bh);
2911        if (!err)
2912                err = rc;
2913        ei->i_state &= ~EXT4_STATE_NEW;
2914
2915out_brelse:
2916        brelse (bh);
2917        ext4_std_error(inode->i_sb, err);
2918        return err;
2919}
2920
2921/*
2922 * ext4_write_inode()
2923 *
2924 * We are called from a few places:
2925 *
2926 * - Within generic_file_write() for O_SYNC files.
2927 *   Here, there will be no transaction running. We wait for any running
2928 *   trasnaction to commit.
2929 *
2930 * - Within sys_sync(), kupdate and such.
2931 *   We wait on commit, if tol to.
2932 *
2933 * - Within prune_icache() (PF_MEMALLOC == true)
2934 *   Here we simply return.  We can't afford to block kswapd on the
2935 *   journal commit.
2936 *
2937 * In all cases it is actually safe for us to return without doing anything,
2938 * because the inode has been copied into a raw inode buffer in
2939 * ext4_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
2940 * knfsd.
2941 *
2942 * Note that we are absolutely dependent upon all inode dirtiers doing the
2943 * right thing: they *must* call mark_inode_dirty() after dirtying info in
2944 * which we are interested.
2945 *
2946 * It would be a bug for them to not do this.  The code:
2947 *
2948 *      mark_inode_dirty(inode)
2949 *      stuff();
2950 *      inode->i_size = expr;
2951 *
2952 * is in error because a kswapd-driven write_inode() could occur while
2953 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
2954 * will no longer be on the superblock's dirty inode list.
2955 */
2956int ext4_write_inode(struct inode *inode, int wait)
2957{
2958        if (current->flags & PF_MEMALLOC)
2959                return 0;
2960
2961        if (ext4_journal_current_handle()) {
2962                jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
2963                dump_stack();
2964                return -EIO;
2965        }
2966
2967        if (!wait)
2968                return 0;
2969
2970        return ext4_force_commit(inode->i_sb);
2971}
2972
2973/*
2974 * ext4_setattr()
2975 *
2976 * Called from notify_change.
2977 *
2978 * We want to trap VFS attempts to truncate the file as soon as
2979 * possible.  In particular, we want to make sure that when the VFS
2980 * shrinks i_size, we put the inode on the orphan list and modify
2981 * i_disksize immediately, so that during the subsequent flushing of
2982 * dirty pages and freeing of disk blocks, we can guarantee that any
2983 * commit will leave the blocks being flushed in an unused state on
2984 * disk.  (On recovery, the inode will get truncated and the blocks will
2985 * be freed, so we have a strong guarantee that no future commit will
2986 * leave these blocks visible to the user.)
2987 *
2988 * Called with inode->sem down.
2989 */
2990int ext4_setattr(struct dentry *dentry, struct iattr *attr)
2991{
2992        struct inode *inode = dentry->d_inode;
2993        int error, rc = 0;
2994        const unsigned int ia_valid = attr->ia_valid;
2995
2996        error = inode_change_ok(inode, attr);
2997        if (error)
2998                return error;
2999
3000        if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3001                (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3002                handle_t *handle;
3003
3004                /* (user+group)*(old+new) structure, inode write (sb,
3005                 * inode block, ? - but truncate inode update has it) */
3006                handle = ext4_journal_start(inode, 2*(EXT4_QUOTA_INIT_BLOCKS(inode->i_sb)+
3007                                        EXT4_QUOTA_DEL_BLOCKS(inode->i_sb))+3);
3008                if (IS_ERR(handle)) {
3009                        error = PTR_ERR(handle);
3010                        goto err_out;
3011                }
3012                error = DQUOT_TRANSFER(inode, attr) ? -EDQUOT : 0;
3013                if (error) {
3014                        ext4_journal_stop(handle);
3015                        return error;
3016                }
3017                /* Update corresponding info in inode so that everything is in
3018                 * one transaction */
3019                if (attr->ia_valid & ATTR_UID)
3020                        inode->i_uid = attr->ia_uid;
3021                if (attr->ia_valid & ATTR_GID)
3022                        inode->i_gid = attr->ia_gid;
3023                error = ext4_mark_inode_dirty(handle, inode);
3024                ext4_journal_stop(handle);
3025        }
3026
3027        if (S_ISREG(inode->i_mode) &&
3028            attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3029                handle_t *handle;
3030
3031                handle = ext4_journal_start(inode, 3);
3032                if (IS_ERR(handle)) {
3033                        error = PTR_ERR(handle);
3034                        goto err_out;
3035                }
3036
3037                error = ext4_orphan_add(handle, inode);
3038                EXT4_I(inode)->i_disksize = attr->ia_size;
3039                rc = ext4_mark_inode_dirty(handle, inode);
3040                if (!error)
3041                        error = rc;
3042                ext4_journal_stop(handle);
3043        }
3044
3045        rc = inode_setattr(inode, attr);
3046
3047        /* If inode_setattr's call to ext4_truncate failed to get a
3048         * transaction handle at all, we need to clean up the in-core
3049         * orphan list manually. */
3050        if (inode->i_nlink)
3051                ext4_orphan_del(NULL, inode);
3052
3053        if (!rc && (ia_valid & ATTR_MODE))
3054                rc = ext4_acl_chmod(inode);
3055
3056err_out:
3057        ext4_std_error(inode->i_sb, error);
3058        if (!error)
3059                error = rc;
3060        return error;
3061}
3062
3063
3064/*
3065 * How many blocks doth make a writepage()?
3066 *
3067 * With N blocks per page, it may be:
3068 * N data blocks
3069 * 2 indirect block
3070 * 2 dindirect
3071 * 1 tindirect
3072 * N+5 bitmap blocks (from the above)
3073 * N+5 group descriptor summary blocks
3074 * 1 inode block
3075 * 1 superblock.
3076 * 2 * EXT4_SINGLEDATA_TRANS_BLOCKS for the quote files
3077 *
3078 * 3 * (N + 5) + 2 + 2 * EXT4_SINGLEDATA_TRANS_BLOCKS
3079 *
3080 * With ordered or writeback data it's the same, less the N data blocks.
3081 *
3082 * If the inode's direct blocks can hold an integral number of pages then a
3083 * page cannot straddle two indirect blocks, and we can only touch one indirect
3084 * and dindirect block, and the "5" above becomes "3".
3085 *
3086 * This still overestimates under most circumstances.  If we were to pass the
3087 * start and end offsets in here as well we could do block_to_path() on each
3088 * block and work out the exact number of indirects which are touched.  Pah.
3089 */
3090
3091int ext4_writepage_trans_blocks(struct inode *inode)
3092{
3093        int bpp = ext4_journal_blocks_per_page(inode);
3094        int indirects = (EXT4_NDIR_BLOCKS % bpp) ? 5 : 3;
3095        int ret;
3096
3097        if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3098                return ext4_ext_writepage_trans_blocks(inode, bpp);
3099
3100        if (ext4_should_journal_data(inode))
3101                ret = 3 * (bpp + indirects) + 2;
3102        else
3103                ret = 2 * (bpp + indirects) + 2;
3104
3105#ifdef CONFIG_QUOTA
3106        /* We know that structure was already allocated during DQUOT_INIT so
3107         * we will be updating only the data blocks + inodes */
3108        ret += 2*EXT4_QUOTA_TRANS_BLOCKS(inode->i_sb);
3109#endif
3110
3111        return ret;
3112}
3113
3114/*
3115 * The caller must have previously called ext4_reserve_inode_write().
3116 * Give this, we know that the caller already has write access to iloc->bh.
3117 */
3118int ext4_mark_iloc_dirty(handle_t *handle,
3119                struct inode *inode, struct ext4_iloc *iloc)
3120{
3121        int err = 0;
3122
3123        /* the do_update_inode consumes one bh->b_count */
3124        get_bh(iloc->bh);
3125
3126        /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
3127        err = ext4_do_update_inode(handle, inode, iloc);
3128        put_bh(iloc->bh);
3129        return err;
3130}
3131
3132/*
3133 * On success, We end up with an outstanding reference count against
3134 * iloc->bh.  This _must_ be cleaned up later.
3135 */
3136
3137int
3138ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
3139                         struct ext4_iloc *iloc)
3140{
3141        int err = 0;
3142        if (handle) {
3143                err = ext4_get_inode_loc(inode, iloc);
3144                if (!err) {
3145                        BUFFER_TRACE(iloc->bh, "get_write_access");
3146                        err = ext4_journal_get_write_access(handle, iloc->bh);
3147                        if (err) {
3148                                brelse(iloc->bh);
3149                                iloc->bh = NULL;
3150                        }
3151                }
3152        }
3153        ext4_std_error(inode->i_sb, err);
3154        return err;
3155}
3156
3157/*
3158 * Expand an inode by new_extra_isize bytes.
3159 * Returns 0 on success or negative error number on failure.
3160 */
3161int ext4_expand_extra_isize(struct inode *inode, unsigned int new_extra_isize,
3162                        struct ext4_iloc iloc, handle_t *handle)
3163{
3164        struct ext4_inode *raw_inode;
3165        struct ext4_xattr_ibody_header *header;
3166        struct ext4_xattr_entry *entry;
3167
3168        if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
3169                return 0;
3170
3171        raw_inode = ext4_raw_inode(&iloc);
3172
3173        header = IHDR(inode, raw_inode);
3174        entry = IFIRST(header);
3175
3176        /* No extended attributes present */
3177        if (!(EXT4_I(inode)->i_state & EXT4_STATE_XATTR) ||
3178                header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
3179                memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
3180                        new_extra_isize);
3181                EXT4_I(inode)->i_extra_isize = new_extra_isize;
3182                return 0;
3183        }
3184
3185        /* try to expand with EAs present */
3186        return ext4_expand_extra_isize_ea(inode, new_extra_isize,
3187                                          raw_inode, handle);
3188}
3189
3190/*
3191 * What we do here is to mark the in-core inode as clean with respect to inode
3192 * dirtiness (it may still be data-dirty).
3193 * This means that the in-core inode may be reaped by prune_icache
3194 * without having to perform any I/O.  This is a very good thing,
3195 * because *any* task may call prune_icache - even ones which
3196 * have a transaction open against a different journal.
3197 *
3198 * Is this cheating?  Not really.  Sure, we haven't written the
3199 * inode out, but prune_icache isn't a user-visible syncing function.
3200 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3201 * we start and wait on commits.
3202 *
3203 * Is this efficient/effective?  Well, we're being nice to the system
3204 * by cleaning up our inodes proactively so they can be reaped
3205 * without I/O.  But we are potentially leaving up to five seconds'
3206 * worth of inodes floating about which prune_icache wants us to
3207 * write out.  One way to fix that would be to get prune_icache()
3208 * to do a write_super() to free up some memory.  It has the desired
3209 * effect.
3210 */
3211int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
3212{
3213        struct ext4_iloc iloc;
3214        struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3215        static unsigned int mnt_count;
3216        int err, ret;
3217
3218        might_sleep();
3219        err = ext4_reserve_inode_write(handle, inode, &iloc);
3220        if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
3221            !(EXT4_I(inode)->i_state & EXT4_STATE_NO_EXPAND)) {
3222                /*
3223                 * We need extra buffer credits since we may write into EA block
3224                 * with this same handle. If journal_extend fails, then it will
3225                 * only result in a minor loss of functionality for that inode.
3226                 * If this is felt to be critical, then e2fsck should be run to
3227                 * force a large enough s_min_extra_isize.
3228                 */
3229                if ((jbd2_journal_extend(handle,
3230                             EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
3231                        ret = ext4_expand_extra_isize(inode,
3232                                                      sbi->s_want_extra_isize,
3233                                                      iloc, handle);
3234                        if (ret) {
3235                                EXT4_I(inode)->i_state |= EXT4_STATE_NO_EXPAND;
3236                                if (mnt_count !=
3237                                        le16_to_cpu(sbi->s_es->s_mnt_count)) {
3238                                        ext4_warning(inode->i_sb, __FUNCTION__,
3239                                        "Unable to expand inode %lu. Delete"
3240                                        " some EAs or run e2fsck.",
3241                                        inode->i_ino);
3242                                        mnt_count =
3243                                          le16_to_cpu(sbi->s_es->s_mnt_count);
3244                                }
3245                        }
3246                }
3247        }
3248        if (!err)
3249                err = ext4_mark_iloc_dirty(handle, inode, &iloc);
3250        return err;
3251}
3252
3253/*
3254 * ext4_dirty_inode() is called from __mark_inode_dirty()
3255 *
3256 * We're really interested in the case where a file is being extended.
3257 * i_size has been changed by generic_commit_write() and we thus need
3258 * to include the updated inode in the current transaction.
3259 *
3260 * Also, DQUOT_ALLOC_SPACE() will always dirty the inode when blocks
3261 * are allocated to the file.
3262 *
3263 * If the inode is marked synchronous, we don't honour that here - doing
3264 * so would cause a commit on atime updates, which we don't bother doing.
3265 * We handle synchronous inodes at the highest possible level.
3266 */
3267void ext4_dirty_inode(struct inode *inode)
3268{
3269        handle_t *current_handle = ext4_journal_current_handle();
3270        handle_t *handle;
3271
3272        handle = ext4_journal_start(inode, 2);
3273        if (IS_ERR(handle))
3274                goto out;
3275        if (current_handle &&
3276                current_handle->h_transaction != handle->h_transaction) {
3277                /* This task has a transaction open against a different fs */
3278                printk(KERN_EMERG "%s: transactions do not match!\n",
3279                       __FUNCTION__);
3280        } else {
3281                jbd_debug(5, "marking dirty.  outer handle=%p\n",
3282                                current_handle);
3283                ext4_mark_inode_dirty(handle, inode);
3284        }
3285        ext4_journal_stop(handle);
3286out:
3287        return;
3288}
3289
3290#if 0
3291/*
3292 * Bind an inode's backing buffer_head into this transaction, to prevent
3293 * it from being flushed to disk early.  Unlike
3294 * ext4_reserve_inode_write, this leaves behind no bh reference and
3295 * returns no iloc structure, so the caller needs to repeat the iloc
3296 * lookup to mark the inode dirty later.
3297 */
3298static int ext4_pin_inode(handle_t *handle, struct inode *inode)
3299{
3300        struct ext4_iloc iloc;
3301
3302        int err = 0;
3303        if (handle) {
3304                err = ext4_get_inode_loc(inode, &iloc);
3305                if (!err) {
3306                        BUFFER_TRACE(iloc.bh, "get_write_access");
3307                        err = jbd2_journal_get_write_access(handle, iloc.bh);
3308                        if (!err)
3309                                err = ext4_journal_dirty_metadata(handle,
3310                                                                  iloc.bh);
3311                        brelse(iloc.bh);
3312                }
3313        }
3314        ext4_std_error(inode->i_sb, err);
3315        return err;
3316}
3317#endif
3318
3319int ext4_change_inode_journal_flag(struct inode *inode, int val)
3320{
3321        journal_t *journal;
3322        handle_t *handle;
3323        int err;
3324
3325        /*
3326         * We have to be very careful here: changing a data block's
3327         * journaling status dynamically is dangerous.  If we write a
3328         * data block to the journal, change the status and then delete
3329         * that block, we risk forgetting to revoke the old log record
3330         * from the journal and so a subsequent replay can corrupt data.
3331         * So, first we make sure that the journal is empty and that
3332         * nobody is changing anything.
3333         */
3334
3335        journal = EXT4_JOURNAL(inode);
3336        if (is_journal_aborted(journal))
3337                return -EROFS;
3338
3339        jbd2_journal_lock_updates(journal);
3340        jbd2_journal_flush(journal);
3341
3342        /*
3343         * OK, there are no updates running now, and all cached data is
3344         * synced to disk.  We are now in a completely consistent state
3345         * which doesn't have anything in the journal, and we know that
3346         * no filesystem updates are running, so it is safe to modify
3347         * the inode's in-core data-journaling state flag now.
3348         */
3349
3350        if (val)
3351                EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
3352        else
3353                EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
3354        ext4_set_aops(inode);
3355
3356        jbd2_journal_unlock_updates(journal);
3357
3358        /* Finally we can mark the inode as dirty. */
3359
3360        handle = ext4_journal_start(inode, 1);
3361        if (IS_ERR(handle))
3362                return PTR_ERR(handle);
3363
3364        err = ext4_mark_inode_dirty(handle, inode);
3365        handle->h_sync = 1;
3366        ext4_journal_stop(handle);
3367        ext4_std_error(inode->i_sb, err);
3368
3369        return err;
3370}
3371