linux/fs/hfs/super.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/hfs/super.c
   3 *
   4 * Copyright (C) 1995-1997  Paul H. Hargrove
   5 * (C) 2003 Ardis Technologies <roman@ardistech.com>
   6 * This file may be distributed under the terms of the GNU General Public License.
   7 *
   8 * This file contains hfs_read_super(), some of the super_ops and
   9 * init_module() and cleanup_module().  The remaining super_ops are in
  10 * inode.c since they deal with inodes.
  11 *
  12 * Based on the minix file system code, (C) 1991, 1992 by Linus Torvalds
  13 */
  14
  15#include <linux/module.h>
  16#include <linux/blkdev.h>
  17#include <linux/mount.h>
  18#include <linux/init.h>
  19#include <linux/nls.h>
  20#include <linux/parser.h>
  21#include <linux/seq_file.h>
  22#include <linux/vfs.h>
  23
  24#include "hfs_fs.h"
  25#include "btree.h"
  26
  27static struct kmem_cache *hfs_inode_cachep;
  28
  29MODULE_LICENSE("GPL");
  30
  31/*
  32 * hfs_write_super()
  33 *
  34 * Description:
  35 *   This function is called by the VFS only. When the filesystem
  36 *   is mounted r/w it updates the MDB on disk.
  37 * Input Variable(s):
  38 *   struct super_block *sb: Pointer to the hfs superblock
  39 * Output Variable(s):
  40 *   NONE
  41 * Returns:
  42 *   void
  43 * Preconditions:
  44 *   'sb' points to a "valid" (struct super_block).
  45 * Postconditions:
  46 *   The MDB is marked 'unsuccessfully unmounted' by clearing bit 8 of drAtrb
  47 *   (hfs_put_super() must set this flag!). Some MDB fields are updated
  48 *   and the MDB buffer is written to disk by calling hfs_mdb_commit().
  49 */
  50static void hfs_write_super(struct super_block *sb)
  51{
  52        sb->s_dirt = 0;
  53        if (sb->s_flags & MS_RDONLY)
  54                return;
  55        /* sync everything to the buffers */
  56        hfs_mdb_commit(sb);
  57}
  58
  59/*
  60 * hfs_put_super()
  61 *
  62 * This is the put_super() entry in the super_operations structure for
  63 * HFS filesystems.  The purpose is to release the resources
  64 * associated with the superblock sb.
  65 */
  66static void hfs_put_super(struct super_block *sb)
  67{
  68        hfs_mdb_close(sb);
  69        /* release the MDB's resources */
  70        hfs_mdb_put(sb);
  71}
  72
  73/*
  74 * hfs_statfs()
  75 *
  76 * This is the statfs() entry in the super_operations structure for
  77 * HFS filesystems.  The purpose is to return various data about the
  78 * filesystem.
  79 *
  80 * changed f_files/f_ffree to reflect the fs_ablock/free_ablocks.
  81 */
  82static int hfs_statfs(struct dentry *dentry, struct kstatfs *buf)
  83{
  84        struct super_block *sb = dentry->d_sb;
  85
  86        buf->f_type = HFS_SUPER_MAGIC;
  87        buf->f_bsize = sb->s_blocksize;
  88        buf->f_blocks = (u32)HFS_SB(sb)->fs_ablocks * HFS_SB(sb)->fs_div;
  89        buf->f_bfree = (u32)HFS_SB(sb)->free_ablocks * HFS_SB(sb)->fs_div;
  90        buf->f_bavail = buf->f_bfree;
  91        buf->f_files = HFS_SB(sb)->fs_ablocks;
  92        buf->f_ffree = HFS_SB(sb)->free_ablocks;
  93        buf->f_namelen = HFS_NAMELEN;
  94
  95        return 0;
  96}
  97
  98static int hfs_remount(struct super_block *sb, int *flags, char *data)
  99{
 100        *flags |= MS_NODIRATIME;
 101        if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
 102                return 0;
 103        if (!(*flags & MS_RDONLY)) {
 104                if (!(HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_UNMNT))) {
 105                        printk(KERN_WARNING "hfs: filesystem was not cleanly unmounted, "
 106                               "running fsck.hfs is recommended.  leaving read-only.\n");
 107                        sb->s_flags |= MS_RDONLY;
 108                        *flags |= MS_RDONLY;
 109                } else if (HFS_SB(sb)->mdb->drAtrb & cpu_to_be16(HFS_SB_ATTRIB_SLOCK)) {
 110                        printk(KERN_WARNING "hfs: filesystem is marked locked, leaving read-only.\n");
 111                        sb->s_flags |= MS_RDONLY;
 112                        *flags |= MS_RDONLY;
 113                }
 114        }
 115        return 0;
 116}
 117
 118static int hfs_show_options(struct seq_file *seq, struct vfsmount *mnt)
 119{
 120        struct hfs_sb_info *sbi = HFS_SB(mnt->mnt_sb);
 121
 122        if (sbi->s_creator != cpu_to_be32(0x3f3f3f3f))
 123                seq_printf(seq, ",creator=%.4s", (char *)&sbi->s_creator);
 124        if (sbi->s_type != cpu_to_be32(0x3f3f3f3f))
 125                seq_printf(seq, ",type=%.4s", (char *)&sbi->s_type);
 126        seq_printf(seq, ",uid=%u,gid=%u", sbi->s_uid, sbi->s_gid);
 127        if (sbi->s_file_umask != 0133)
 128                seq_printf(seq, ",file_umask=%o", sbi->s_file_umask);
 129        if (sbi->s_dir_umask != 0022)
 130                seq_printf(seq, ",dir_umask=%o", sbi->s_dir_umask);
 131        if (sbi->part >= 0)
 132                seq_printf(seq, ",part=%u", sbi->part);
 133        if (sbi->session >= 0)
 134                seq_printf(seq, ",session=%u", sbi->session);
 135        if (sbi->nls_disk)
 136                seq_printf(seq, ",codepage=%s", sbi->nls_disk->charset);
 137        if (sbi->nls_io)
 138                seq_printf(seq, ",iocharset=%s", sbi->nls_io->charset);
 139        if (sbi->s_quiet)
 140                seq_printf(seq, ",quiet");
 141        return 0;
 142}
 143
 144static struct inode *hfs_alloc_inode(struct super_block *sb)
 145{
 146        struct hfs_inode_info *i;
 147
 148        i = kmem_cache_alloc(hfs_inode_cachep, GFP_KERNEL);
 149        return i ? &i->vfs_inode : NULL;
 150}
 151
 152static void hfs_destroy_inode(struct inode *inode)
 153{
 154        kmem_cache_free(hfs_inode_cachep, HFS_I(inode));
 155}
 156
 157static const struct super_operations hfs_super_operations = {
 158        .alloc_inode    = hfs_alloc_inode,
 159        .destroy_inode  = hfs_destroy_inode,
 160        .write_inode    = hfs_write_inode,
 161        .clear_inode    = hfs_clear_inode,
 162        .put_super      = hfs_put_super,
 163        .write_super    = hfs_write_super,
 164        .statfs         = hfs_statfs,
 165        .remount_fs     = hfs_remount,
 166        .show_options   = hfs_show_options,
 167};
 168
 169enum {
 170        opt_uid, opt_gid, opt_umask, opt_file_umask, opt_dir_umask,
 171        opt_part, opt_session, opt_type, opt_creator, opt_quiet,
 172        opt_codepage, opt_iocharset,
 173        opt_err
 174};
 175
 176static match_table_t tokens = {
 177        { opt_uid, "uid=%u" },
 178        { opt_gid, "gid=%u" },
 179        { opt_umask, "umask=%o" },
 180        { opt_file_umask, "file_umask=%o" },
 181        { opt_dir_umask, "dir_umask=%o" },
 182        { opt_part, "part=%u" },
 183        { opt_session, "session=%u" },
 184        { opt_type, "type=%s" },
 185        { opt_creator, "creator=%s" },
 186        { opt_quiet, "quiet" },
 187        { opt_codepage, "codepage=%s" },
 188        { opt_iocharset, "iocharset=%s" },
 189        { opt_err, NULL }
 190};
 191
 192static inline int match_fourchar(substring_t *arg, u32 *result)
 193{
 194        if (arg->to - arg->from != 4)
 195                return -EINVAL;
 196        memcpy(result, arg->from, 4);
 197        return 0;
 198}
 199
 200/*
 201 * parse_options()
 202 *
 203 * adapted from linux/fs/msdos/inode.c written 1992,93 by Werner Almesberger
 204 * This function is called by hfs_read_super() to parse the mount options.
 205 */
 206static int parse_options(char *options, struct hfs_sb_info *hsb)
 207{
 208        char *p;
 209        substring_t args[MAX_OPT_ARGS];
 210        int tmp, token;
 211
 212        /* initialize the sb with defaults */
 213        hsb->s_uid = current->uid;
 214        hsb->s_gid = current->gid;
 215        hsb->s_file_umask = 0133;
 216        hsb->s_dir_umask = 0022;
 217        hsb->s_type = hsb->s_creator = cpu_to_be32(0x3f3f3f3f); /* == '????' */
 218        hsb->s_quiet = 0;
 219        hsb->part = -1;
 220        hsb->session = -1;
 221
 222        if (!options)
 223                return 1;
 224
 225        while ((p = strsep(&options, ",")) != NULL) {
 226                if (!*p)
 227                        continue;
 228
 229                token = match_token(p, tokens, args);
 230                switch (token) {
 231                case opt_uid:
 232                        if (match_int(&args[0], &tmp)) {
 233                                printk(KERN_ERR "hfs: uid requires an argument\n");
 234                                return 0;
 235                        }
 236                        hsb->s_uid = (uid_t)tmp;
 237                        break;
 238                case opt_gid:
 239                        if (match_int(&args[0], &tmp)) {
 240                                printk(KERN_ERR "hfs: gid requires an argument\n");
 241                                return 0;
 242                        }
 243                        hsb->s_gid = (gid_t)tmp;
 244                        break;
 245                case opt_umask:
 246                        if (match_octal(&args[0], &tmp)) {
 247                                printk(KERN_ERR "hfs: umask requires a value\n");
 248                                return 0;
 249                        }
 250                        hsb->s_file_umask = (umode_t)tmp;
 251                        hsb->s_dir_umask = (umode_t)tmp;
 252                        break;
 253                case opt_file_umask:
 254                        if (match_octal(&args[0], &tmp)) {
 255                                printk(KERN_ERR "hfs: file_umask requires a value\n");
 256                                return 0;
 257                        }
 258                        hsb->s_file_umask = (umode_t)tmp;
 259                        break;
 260                case opt_dir_umask:
 261                        if (match_octal(&args[0], &tmp)) {
 262                                printk(KERN_ERR "hfs: dir_umask requires a value\n");
 263                                return 0;
 264                        }
 265                        hsb->s_dir_umask = (umode_t)tmp;
 266                        break;
 267                case opt_part:
 268                        if (match_int(&args[0], &hsb->part)) {
 269                                printk(KERN_ERR "hfs: part requires an argument\n");
 270                                return 0;
 271                        }
 272                        break;
 273                case opt_session:
 274                        if (match_int(&args[0], &hsb->session)) {
 275                                printk(KERN_ERR "hfs: session requires an argument\n");
 276                                return 0;
 277                        }
 278                        break;
 279                case opt_type:
 280                        if (match_fourchar(&args[0], &hsb->s_type)) {
 281                                printk(KERN_ERR "hfs: type requires a 4 character value\n");
 282                                return 0;
 283                        }
 284                        break;
 285                case opt_creator:
 286                        if (match_fourchar(&args[0], &hsb->s_creator)) {
 287                                printk(KERN_ERR "hfs: creator requires a 4 character value\n");
 288                                return 0;
 289                        }
 290                        break;
 291                case opt_quiet:
 292                        hsb->s_quiet = 1;
 293                        break;
 294                case opt_codepage:
 295                        if (hsb->nls_disk) {
 296                                printk(KERN_ERR "hfs: unable to change codepage\n");
 297                                return 0;
 298                        }
 299                        p = match_strdup(&args[0]);
 300                        hsb->nls_disk = load_nls(p);
 301                        if (!hsb->nls_disk) {
 302                                printk(KERN_ERR "hfs: unable to load codepage \"%s\"\n", p);
 303                                kfree(p);
 304                                return 0;
 305                        }
 306                        kfree(p);
 307                        break;
 308                case opt_iocharset:
 309                        if (hsb->nls_io) {
 310                                printk(KERN_ERR "hfs: unable to change iocharset\n");
 311                                return 0;
 312                        }
 313                        p = match_strdup(&args[0]);
 314                        hsb->nls_io = load_nls(p);
 315                        if (!hsb->nls_io) {
 316                                printk(KERN_ERR "hfs: unable to load iocharset \"%s\"\n", p);
 317                                kfree(p);
 318                                return 0;
 319                        }
 320                        kfree(p);
 321                        break;
 322                default:
 323                        return 0;
 324                }
 325        }
 326
 327        if (hsb->nls_disk && !hsb->nls_io) {
 328                hsb->nls_io = load_nls_default();
 329                if (!hsb->nls_io) {
 330                        printk(KERN_ERR "hfs: unable to load default iocharset\n");
 331                        return 0;
 332                }
 333        }
 334        hsb->s_dir_umask &= 0777;
 335        hsb->s_file_umask &= 0577;
 336
 337        return 1;
 338}
 339
 340/*
 341 * hfs_read_super()
 342 *
 343 * This is the function that is responsible for mounting an HFS
 344 * filesystem.  It performs all the tasks necessary to get enough data
 345 * from the disk to read the root inode.  This includes parsing the
 346 * mount options, dealing with Macintosh partitions, reading the
 347 * superblock and the allocation bitmap blocks, calling
 348 * hfs_btree_init() to get the necessary data about the extents and
 349 * catalog B-trees and, finally, reading the root inode into memory.
 350 */
 351static int hfs_fill_super(struct super_block *sb, void *data, int silent)
 352{
 353        struct hfs_sb_info *sbi;
 354        struct hfs_find_data fd;
 355        hfs_cat_rec rec;
 356        struct inode *root_inode;
 357        int res;
 358
 359        sbi = kzalloc(sizeof(struct hfs_sb_info), GFP_KERNEL);
 360        if (!sbi)
 361                return -ENOMEM;
 362        sb->s_fs_info = sbi;
 363        INIT_HLIST_HEAD(&sbi->rsrc_inodes);
 364
 365        res = -EINVAL;
 366        if (!parse_options((char *)data, sbi)) {
 367                printk(KERN_ERR "hfs: unable to parse mount options.\n");
 368                goto bail;
 369        }
 370
 371        sb->s_op = &hfs_super_operations;
 372        sb->s_flags |= MS_NODIRATIME;
 373        init_MUTEX(&sbi->bitmap_lock);
 374
 375        res = hfs_mdb_get(sb);
 376        if (res) {
 377                if (!silent)
 378                        printk(KERN_WARNING "hfs: can't find a HFS filesystem on dev %s.\n",
 379                                hfs_mdb_name(sb));
 380                res = -EINVAL;
 381                goto bail;
 382        }
 383
 384        /* try to get the root inode */
 385        hfs_find_init(HFS_SB(sb)->cat_tree, &fd);
 386        res = hfs_cat_find_brec(sb, HFS_ROOT_CNID, &fd);
 387        if (!res)
 388                hfs_bnode_read(fd.bnode, &rec, fd.entryoffset, fd.entrylength);
 389        if (res) {
 390                hfs_find_exit(&fd);
 391                goto bail_no_root;
 392        }
 393        res = -EINVAL;
 394        root_inode = hfs_iget(sb, &fd.search_key->cat, &rec);
 395        hfs_find_exit(&fd);
 396        if (!root_inode)
 397                goto bail_no_root;
 398
 399        res = -ENOMEM;
 400        sb->s_root = d_alloc_root(root_inode);
 401        if (!sb->s_root)
 402                goto bail_iput;
 403
 404        sb->s_root->d_op = &hfs_dentry_operations;
 405
 406        /* everything's okay */
 407        return 0;
 408
 409bail_iput:
 410        iput(root_inode);
 411bail_no_root:
 412        printk(KERN_ERR "hfs: get root inode failed.\n");
 413bail:
 414        hfs_mdb_put(sb);
 415        return res;
 416}
 417
 418static int hfs_get_sb(struct file_system_type *fs_type,
 419                      int flags, const char *dev_name, void *data,
 420                      struct vfsmount *mnt)
 421{
 422        return get_sb_bdev(fs_type, flags, dev_name, data, hfs_fill_super, mnt);
 423}
 424
 425static struct file_system_type hfs_fs_type = {
 426        .owner          = THIS_MODULE,
 427        .name           = "hfs",
 428        .get_sb         = hfs_get_sb,
 429        .kill_sb        = kill_block_super,
 430        .fs_flags       = FS_REQUIRES_DEV,
 431};
 432
 433static void hfs_init_once(struct kmem_cache *cachep, void *p)
 434{
 435        struct hfs_inode_info *i = p;
 436
 437        inode_init_once(&i->vfs_inode);
 438}
 439
 440static int __init init_hfs_fs(void)
 441{
 442        int err;
 443
 444        hfs_inode_cachep = kmem_cache_create("hfs_inode_cache",
 445                sizeof(struct hfs_inode_info), 0, SLAB_HWCACHE_ALIGN,
 446                hfs_init_once);
 447        if (!hfs_inode_cachep)
 448                return -ENOMEM;
 449        err = register_filesystem(&hfs_fs_type);
 450        if (err)
 451                kmem_cache_destroy(hfs_inode_cachep);
 452        return err;
 453}
 454
 455static void __exit exit_hfs_fs(void)
 456{
 457        unregister_filesystem(&hfs_fs_type);
 458        kmem_cache_destroy(hfs_inode_cachep);
 459}
 460
 461module_init(init_hfs_fs)
 462module_exit(exit_hfs_fs)
 463