linux/fs/inode.c
<<
>>
Prefs
   1/*
   2 * linux/fs/inode.c
   3 *
   4 * (C) 1997 Linus Torvalds
   5 */
   6
   7#include <linux/fs.h>
   8#include <linux/mm.h>
   9#include <linux/dcache.h>
  10#include <linux/init.h>
  11#include <linux/quotaops.h>
  12#include <linux/slab.h>
  13#include <linux/writeback.h>
  14#include <linux/module.h>
  15#include <linux/backing-dev.h>
  16#include <linux/wait.h>
  17#include <linux/hash.h>
  18#include <linux/swap.h>
  19#include <linux/security.h>
  20#include <linux/pagemap.h>
  21#include <linux/cdev.h>
  22#include <linux/bootmem.h>
  23#include <linux/inotify.h>
  24#include <linux/mount.h>
  25
  26/*
  27 * This is needed for the following functions:
  28 *  - inode_has_buffers
  29 *  - invalidate_inode_buffers
  30 *  - invalidate_bdev
  31 *
  32 * FIXME: remove all knowledge of the buffer layer from this file
  33 */
  34#include <linux/buffer_head.h>
  35
  36/*
  37 * New inode.c implementation.
  38 *
  39 * This implementation has the basic premise of trying
  40 * to be extremely low-overhead and SMP-safe, yet be
  41 * simple enough to be "obviously correct".
  42 *
  43 * Famous last words.
  44 */
  45
  46/* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
  47
  48/* #define INODE_PARANOIA 1 */
  49/* #define INODE_DEBUG 1 */
  50
  51/*
  52 * Inode lookup is no longer as critical as it used to be:
  53 * most of the lookups are going to be through the dcache.
  54 */
  55#define I_HASHBITS      i_hash_shift
  56#define I_HASHMASK      i_hash_mask
  57
  58static unsigned int i_hash_mask __read_mostly;
  59static unsigned int i_hash_shift __read_mostly;
  60
  61/*
  62 * Each inode can be on two separate lists. One is
  63 * the hash list of the inode, used for lookups. The
  64 * other linked list is the "type" list:
  65 *  "in_use" - valid inode, i_count > 0, i_nlink > 0
  66 *  "dirty"  - as "in_use" but also dirty
  67 *  "unused" - valid inode, i_count = 0
  68 *
  69 * A "dirty" list is maintained for each super block,
  70 * allowing for low-overhead inode sync() operations.
  71 */
  72
  73LIST_HEAD(inode_in_use);
  74LIST_HEAD(inode_unused);
  75static struct hlist_head *inode_hashtable __read_mostly;
  76
  77/*
  78 * A simple spinlock to protect the list manipulations.
  79 *
  80 * NOTE! You also have to own the lock if you change
  81 * the i_state of an inode while it is in use..
  82 */
  83DEFINE_SPINLOCK(inode_lock);
  84
  85/*
  86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
  87 * icache shrinking path, and the umount path.  Without this exclusion,
  88 * by the time prune_icache calls iput for the inode whose pages it has
  89 * been invalidating, or by the time it calls clear_inode & destroy_inode
  90 * from its final dispose_list, the struct super_block they refer to
  91 * (for inode->i_sb->s_op) may already have been freed and reused.
  92 */
  93static DEFINE_MUTEX(iprune_mutex);
  94
  95/*
  96 * Statistics gathering..
  97 */
  98struct inodes_stat_t inodes_stat;
  99
 100static struct kmem_cache * inode_cachep __read_mostly;
 101
 102static void wake_up_inode(struct inode *inode)
 103{
 104        /*
 105         * Prevent speculative execution through spin_unlock(&inode_lock);
 106         */
 107        smp_mb();
 108        wake_up_bit(&inode->i_state, __I_LOCK);
 109}
 110
 111static struct inode *alloc_inode(struct super_block *sb)
 112{
 113        static const struct address_space_operations empty_aops;
 114        static struct inode_operations empty_iops;
 115        static const struct file_operations empty_fops;
 116        struct inode *inode;
 117
 118        if (sb->s_op->alloc_inode)
 119                inode = sb->s_op->alloc_inode(sb);
 120        else
 121                inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
 122
 123        if (inode) {
 124                struct address_space * const mapping = &inode->i_data;
 125
 126                inode->i_sb = sb;
 127                inode->i_blkbits = sb->s_blocksize_bits;
 128                inode->i_flags = 0;
 129                atomic_set(&inode->i_count, 1);
 130                inode->i_op = &empty_iops;
 131                inode->i_fop = &empty_fops;
 132                inode->i_nlink = 1;
 133                atomic_set(&inode->i_writecount, 0);
 134                inode->i_size = 0;
 135                inode->i_blocks = 0;
 136                inode->i_bytes = 0;
 137                inode->i_generation = 0;
 138#ifdef CONFIG_QUOTA
 139                memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
 140#endif
 141                inode->i_pipe = NULL;
 142                inode->i_bdev = NULL;
 143                inode->i_cdev = NULL;
 144                inode->i_rdev = 0;
 145                inode->dirtied_when = 0;
 146                if (security_inode_alloc(inode)) {
 147                        if (inode->i_sb->s_op->destroy_inode)
 148                                inode->i_sb->s_op->destroy_inode(inode);
 149                        else
 150                                kmem_cache_free(inode_cachep, (inode));
 151                        return NULL;
 152                }
 153
 154                spin_lock_init(&inode->i_lock);
 155                lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
 156
 157                mutex_init(&inode->i_mutex);
 158                lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
 159
 160                init_rwsem(&inode->i_alloc_sem);
 161                lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
 162
 163                mapping->a_ops = &empty_aops;
 164                mapping->host = inode;
 165                mapping->flags = 0;
 166                mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE);
 167                mapping->assoc_mapping = NULL;
 168                mapping->backing_dev_info = &default_backing_dev_info;
 169
 170                /*
 171                 * If the block_device provides a backing_dev_info for client
 172                 * inodes then use that.  Otherwise the inode share the bdev's
 173                 * backing_dev_info.
 174                 */
 175                if (sb->s_bdev) {
 176                        struct backing_dev_info *bdi;
 177
 178                        bdi = sb->s_bdev->bd_inode_backing_dev_info;
 179                        if (!bdi)
 180                                bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
 181                        mapping->backing_dev_info = bdi;
 182                }
 183                inode->i_private = NULL;
 184                inode->i_mapping = mapping;
 185        }
 186        return inode;
 187}
 188
 189void destroy_inode(struct inode *inode) 
 190{
 191        BUG_ON(inode_has_buffers(inode));
 192        security_inode_free(inode);
 193        if (inode->i_sb->s_op->destroy_inode)
 194                inode->i_sb->s_op->destroy_inode(inode);
 195        else
 196                kmem_cache_free(inode_cachep, (inode));
 197}
 198
 199
 200/*
 201 * These are initializations that only need to be done
 202 * once, because the fields are idempotent across use
 203 * of the inode, so let the slab aware of that.
 204 */
 205void inode_init_once(struct inode *inode)
 206{
 207        memset(inode, 0, sizeof(*inode));
 208        INIT_HLIST_NODE(&inode->i_hash);
 209        INIT_LIST_HEAD(&inode->i_dentry);
 210        INIT_LIST_HEAD(&inode->i_devices);
 211        INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
 212        rwlock_init(&inode->i_data.tree_lock);
 213        spin_lock_init(&inode->i_data.i_mmap_lock);
 214        INIT_LIST_HEAD(&inode->i_data.private_list);
 215        spin_lock_init(&inode->i_data.private_lock);
 216        INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
 217        INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
 218        i_size_ordered_init(inode);
 219#ifdef CONFIG_INOTIFY
 220        INIT_LIST_HEAD(&inode->inotify_watches);
 221        mutex_init(&inode->inotify_mutex);
 222#endif
 223}
 224
 225EXPORT_SYMBOL(inode_init_once);
 226
 227static void init_once(struct kmem_cache * cachep, void *foo)
 228{
 229        struct inode * inode = (struct inode *) foo;
 230
 231        inode_init_once(inode);
 232}
 233
 234/*
 235 * inode_lock must be held
 236 */
 237void __iget(struct inode * inode)
 238{
 239        if (atomic_read(&inode->i_count)) {
 240                atomic_inc(&inode->i_count);
 241                return;
 242        }
 243        atomic_inc(&inode->i_count);
 244        if (!(inode->i_state & (I_DIRTY|I_SYNC)))
 245                list_move(&inode->i_list, &inode_in_use);
 246        inodes_stat.nr_unused--;
 247}
 248
 249/**
 250 * clear_inode - clear an inode
 251 * @inode: inode to clear
 252 *
 253 * This is called by the filesystem to tell us
 254 * that the inode is no longer useful. We just
 255 * terminate it with extreme prejudice.
 256 */
 257void clear_inode(struct inode *inode)
 258{
 259        might_sleep();
 260        invalidate_inode_buffers(inode);
 261       
 262        BUG_ON(inode->i_data.nrpages);
 263        BUG_ON(!(inode->i_state & I_FREEING));
 264        BUG_ON(inode->i_state & I_CLEAR);
 265        inode_sync_wait(inode);
 266        DQUOT_DROP(inode);
 267        if (inode->i_sb->s_op->clear_inode)
 268                inode->i_sb->s_op->clear_inode(inode);
 269        if (S_ISBLK(inode->i_mode) && inode->i_bdev)
 270                bd_forget(inode);
 271        if (S_ISCHR(inode->i_mode) && inode->i_cdev)
 272                cd_forget(inode);
 273        inode->i_state = I_CLEAR;
 274}
 275
 276EXPORT_SYMBOL(clear_inode);
 277
 278/*
 279 * dispose_list - dispose of the contents of a local list
 280 * @head: the head of the list to free
 281 *
 282 * Dispose-list gets a local list with local inodes in it, so it doesn't
 283 * need to worry about list corruption and SMP locks.
 284 */
 285static void dispose_list(struct list_head *head)
 286{
 287        int nr_disposed = 0;
 288
 289        while (!list_empty(head)) {
 290                struct inode *inode;
 291
 292                inode = list_first_entry(head, struct inode, i_list);
 293                list_del(&inode->i_list);
 294
 295                if (inode->i_data.nrpages)
 296                        truncate_inode_pages(&inode->i_data, 0);
 297                clear_inode(inode);
 298
 299                spin_lock(&inode_lock);
 300                hlist_del_init(&inode->i_hash);
 301                list_del_init(&inode->i_sb_list);
 302                spin_unlock(&inode_lock);
 303
 304                wake_up_inode(inode);
 305                destroy_inode(inode);
 306                nr_disposed++;
 307        }
 308        spin_lock(&inode_lock);
 309        inodes_stat.nr_inodes -= nr_disposed;
 310        spin_unlock(&inode_lock);
 311}
 312
 313/*
 314 * Invalidate all inodes for a device.
 315 */
 316static int invalidate_list(struct list_head *head, struct list_head *dispose)
 317{
 318        struct list_head *next;
 319        int busy = 0, count = 0;
 320
 321        next = head->next;
 322        for (;;) {
 323                struct list_head * tmp = next;
 324                struct inode * inode;
 325
 326                /*
 327                 * We can reschedule here without worrying about the list's
 328                 * consistency because the per-sb list of inodes must not
 329                 * change during umount anymore, and because iprune_mutex keeps
 330                 * shrink_icache_memory() away.
 331                 */
 332                cond_resched_lock(&inode_lock);
 333
 334                next = next->next;
 335                if (tmp == head)
 336                        break;
 337                inode = list_entry(tmp, struct inode, i_sb_list);
 338                invalidate_inode_buffers(inode);
 339                if (!atomic_read(&inode->i_count)) {
 340                        list_move(&inode->i_list, dispose);
 341                        inode->i_state |= I_FREEING;
 342                        count++;
 343                        continue;
 344                }
 345                busy = 1;
 346        }
 347        /* only unused inodes may be cached with i_count zero */
 348        inodes_stat.nr_unused -= count;
 349        return busy;
 350}
 351
 352/**
 353 *      invalidate_inodes       - discard the inodes on a device
 354 *      @sb: superblock
 355 *
 356 *      Discard all of the inodes for a given superblock. If the discard
 357 *      fails because there are busy inodes then a non zero value is returned.
 358 *      If the discard is successful all the inodes have been discarded.
 359 */
 360int invalidate_inodes(struct super_block * sb)
 361{
 362        int busy;
 363        LIST_HEAD(throw_away);
 364
 365        mutex_lock(&iprune_mutex);
 366        spin_lock(&inode_lock);
 367        inotify_unmount_inodes(&sb->s_inodes);
 368        busy = invalidate_list(&sb->s_inodes, &throw_away);
 369        spin_unlock(&inode_lock);
 370
 371        dispose_list(&throw_away);
 372        mutex_unlock(&iprune_mutex);
 373
 374        return busy;
 375}
 376
 377EXPORT_SYMBOL(invalidate_inodes);
 378
 379static int can_unuse(struct inode *inode)
 380{
 381        if (inode->i_state)
 382                return 0;
 383        if (inode_has_buffers(inode))
 384                return 0;
 385        if (atomic_read(&inode->i_count))
 386                return 0;
 387        if (inode->i_data.nrpages)
 388                return 0;
 389        return 1;
 390}
 391
 392/*
 393 * Scan `goal' inodes on the unused list for freeable ones. They are moved to
 394 * a temporary list and then are freed outside inode_lock by dispose_list().
 395 *
 396 * Any inodes which are pinned purely because of attached pagecache have their
 397 * pagecache removed.  We expect the final iput() on that inode to add it to
 398 * the front of the inode_unused list.  So look for it there and if the
 399 * inode is still freeable, proceed.  The right inode is found 99.9% of the
 400 * time in testing on a 4-way.
 401 *
 402 * If the inode has metadata buffers attached to mapping->private_list then
 403 * try to remove them.
 404 */
 405static void prune_icache(int nr_to_scan)
 406{
 407        LIST_HEAD(freeable);
 408        int nr_pruned = 0;
 409        int nr_scanned;
 410        unsigned long reap = 0;
 411
 412        mutex_lock(&iprune_mutex);
 413        spin_lock(&inode_lock);
 414        for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
 415                struct inode *inode;
 416
 417                if (list_empty(&inode_unused))
 418                        break;
 419
 420                inode = list_entry(inode_unused.prev, struct inode, i_list);
 421
 422                if (inode->i_state || atomic_read(&inode->i_count)) {
 423                        list_move(&inode->i_list, &inode_unused);
 424                        continue;
 425                }
 426                if (inode_has_buffers(inode) || inode->i_data.nrpages) {
 427                        __iget(inode);
 428                        spin_unlock(&inode_lock);
 429                        if (remove_inode_buffers(inode))
 430                                reap += invalidate_mapping_pages(&inode->i_data,
 431                                                                0, -1);
 432                        iput(inode);
 433                        spin_lock(&inode_lock);
 434
 435                        if (inode != list_entry(inode_unused.next,
 436                                                struct inode, i_list))
 437                                continue;       /* wrong inode or list_empty */
 438                        if (!can_unuse(inode))
 439                                continue;
 440                }
 441                list_move(&inode->i_list, &freeable);
 442                inode->i_state |= I_FREEING;
 443                nr_pruned++;
 444        }
 445        inodes_stat.nr_unused -= nr_pruned;
 446        if (current_is_kswapd())
 447                __count_vm_events(KSWAPD_INODESTEAL, reap);
 448        else
 449                __count_vm_events(PGINODESTEAL, reap);
 450        spin_unlock(&inode_lock);
 451
 452        dispose_list(&freeable);
 453        mutex_unlock(&iprune_mutex);
 454}
 455
 456/*
 457 * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
 458 * "unused" means that no dentries are referring to the inodes: the files are
 459 * not open and the dcache references to those inodes have already been
 460 * reclaimed.
 461 *
 462 * This function is passed the number of inodes to scan, and it returns the
 463 * total number of remaining possibly-reclaimable inodes.
 464 */
 465static int shrink_icache_memory(int nr, gfp_t gfp_mask)
 466{
 467        if (nr) {
 468                /*
 469                 * Nasty deadlock avoidance.  We may hold various FS locks,
 470                 * and we don't want to recurse into the FS that called us
 471                 * in clear_inode() and friends..
 472                 */
 473                if (!(gfp_mask & __GFP_FS))
 474                        return -1;
 475                prune_icache(nr);
 476        }
 477        return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
 478}
 479
 480static struct shrinker icache_shrinker = {
 481        .shrink = shrink_icache_memory,
 482        .seeks = DEFAULT_SEEKS,
 483};
 484
 485static void __wait_on_freeing_inode(struct inode *inode);
 486/*
 487 * Called with the inode lock held.
 488 * NOTE: we are not increasing the inode-refcount, you must call __iget()
 489 * by hand after calling find_inode now! This simplifies iunique and won't
 490 * add any additional branch in the common code.
 491 */
 492static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
 493{
 494        struct hlist_node *node;
 495        struct inode * inode = NULL;
 496
 497repeat:
 498        hlist_for_each (node, head) { 
 499                inode = hlist_entry(node, struct inode, i_hash);
 500                if (inode->i_sb != sb)
 501                        continue;
 502                if (!test(inode, data))
 503                        continue;
 504                if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
 505                        __wait_on_freeing_inode(inode);
 506                        goto repeat;
 507                }
 508                break;
 509        }
 510        return node ? inode : NULL;
 511}
 512
 513/*
 514 * find_inode_fast is the fast path version of find_inode, see the comment at
 515 * iget_locked for details.
 516 */
 517static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
 518{
 519        struct hlist_node *node;
 520        struct inode * inode = NULL;
 521
 522repeat:
 523        hlist_for_each (node, head) {
 524                inode = hlist_entry(node, struct inode, i_hash);
 525                if (inode->i_ino != ino)
 526                        continue;
 527                if (inode->i_sb != sb)
 528                        continue;
 529                if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
 530                        __wait_on_freeing_inode(inode);
 531                        goto repeat;
 532                }
 533                break;
 534        }
 535        return node ? inode : NULL;
 536}
 537
 538/**
 539 *      new_inode       - obtain an inode
 540 *      @sb: superblock
 541 *
 542 *      Allocates a new inode for given superblock. The default gfp_mask
 543 *      for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE.
 544 *      If HIGHMEM pages are unsuitable or it is known that pages allocated
 545 *      for the page cache are not reclaimable or migratable,
 546 *      mapping_set_gfp_mask() must be called with suitable flags on the
 547 *      newly created inode's mapping
 548 *
 549 */
 550struct inode *new_inode(struct super_block *sb)
 551{
 552        /*
 553         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 554         * error if st_ino won't fit in target struct field. Use 32bit counter
 555         * here to attempt to avoid that.
 556         */
 557        static unsigned int last_ino;
 558        struct inode * inode;
 559
 560        spin_lock_prefetch(&inode_lock);
 561        
 562        inode = alloc_inode(sb);
 563        if (inode) {
 564                spin_lock(&inode_lock);
 565                inodes_stat.nr_inodes++;
 566                list_add(&inode->i_list, &inode_in_use);
 567                list_add(&inode->i_sb_list, &sb->s_inodes);
 568                inode->i_ino = ++last_ino;
 569                inode->i_state = 0;
 570                spin_unlock(&inode_lock);
 571        }
 572        return inode;
 573}
 574
 575EXPORT_SYMBOL(new_inode);
 576
 577void unlock_new_inode(struct inode *inode)
 578{
 579#ifdef CONFIG_DEBUG_LOCK_ALLOC
 580        if (inode->i_mode & S_IFDIR) {
 581                struct file_system_type *type = inode->i_sb->s_type;
 582
 583                /*
 584                 * ensure nobody is actually holding i_mutex
 585                 */
 586                mutex_destroy(&inode->i_mutex);
 587                mutex_init(&inode->i_mutex);
 588                lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
 589        }
 590#endif
 591        /*
 592         * This is special!  We do not need the spinlock
 593         * when clearing I_LOCK, because we're guaranteed
 594         * that nobody else tries to do anything about the
 595         * state of the inode when it is locked, as we
 596         * just created it (so there can be no old holders
 597         * that haven't tested I_LOCK).
 598         */
 599        inode->i_state &= ~(I_LOCK|I_NEW);
 600        wake_up_inode(inode);
 601}
 602
 603EXPORT_SYMBOL(unlock_new_inode);
 604
 605/*
 606 * This is called without the inode lock held.. Be careful.
 607 *
 608 * We no longer cache the sb_flags in i_flags - see fs.h
 609 *      -- rmk@arm.uk.linux.org
 610 */
 611static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
 612{
 613        struct inode * inode;
 614
 615        inode = alloc_inode(sb);
 616        if (inode) {
 617                struct inode * old;
 618
 619                spin_lock(&inode_lock);
 620                /* We released the lock, so.. */
 621                old = find_inode(sb, head, test, data);
 622                if (!old) {
 623                        if (set(inode, data))
 624                                goto set_failed;
 625
 626                        inodes_stat.nr_inodes++;
 627                        list_add(&inode->i_list, &inode_in_use);
 628                        list_add(&inode->i_sb_list, &sb->s_inodes);
 629                        hlist_add_head(&inode->i_hash, head);
 630                        inode->i_state = I_LOCK|I_NEW;
 631                        spin_unlock(&inode_lock);
 632
 633                        /* Return the locked inode with I_NEW set, the
 634                         * caller is responsible for filling in the contents
 635                         */
 636                        return inode;
 637                }
 638
 639                /*
 640                 * Uhhuh, somebody else created the same inode under
 641                 * us. Use the old inode instead of the one we just
 642                 * allocated.
 643                 */
 644                __iget(old);
 645                spin_unlock(&inode_lock);
 646                destroy_inode(inode);
 647                inode = old;
 648                wait_on_inode(inode);
 649        }
 650        return inode;
 651
 652set_failed:
 653        spin_unlock(&inode_lock);
 654        destroy_inode(inode);
 655        return NULL;
 656}
 657
 658/*
 659 * get_new_inode_fast is the fast path version of get_new_inode, see the
 660 * comment at iget_locked for details.
 661 */
 662static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
 663{
 664        struct inode * inode;
 665
 666        inode = alloc_inode(sb);
 667        if (inode) {
 668                struct inode * old;
 669
 670                spin_lock(&inode_lock);
 671                /* We released the lock, so.. */
 672                old = find_inode_fast(sb, head, ino);
 673                if (!old) {
 674                        inode->i_ino = ino;
 675                        inodes_stat.nr_inodes++;
 676                        list_add(&inode->i_list, &inode_in_use);
 677                        list_add(&inode->i_sb_list, &sb->s_inodes);
 678                        hlist_add_head(&inode->i_hash, head);
 679                        inode->i_state = I_LOCK|I_NEW;
 680                        spin_unlock(&inode_lock);
 681
 682                        /* Return the locked inode with I_NEW set, the
 683                         * caller is responsible for filling in the contents
 684                         */
 685                        return inode;
 686                }
 687
 688                /*
 689                 * Uhhuh, somebody else created the same inode under
 690                 * us. Use the old inode instead of the one we just
 691                 * allocated.
 692                 */
 693                __iget(old);
 694                spin_unlock(&inode_lock);
 695                destroy_inode(inode);
 696                inode = old;
 697                wait_on_inode(inode);
 698        }
 699        return inode;
 700}
 701
 702static unsigned long hash(struct super_block *sb, unsigned long hashval)
 703{
 704        unsigned long tmp;
 705
 706        tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
 707                        L1_CACHE_BYTES;
 708        tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
 709        return tmp & I_HASHMASK;
 710}
 711
 712/**
 713 *      iunique - get a unique inode number
 714 *      @sb: superblock
 715 *      @max_reserved: highest reserved inode number
 716 *
 717 *      Obtain an inode number that is unique on the system for a given
 718 *      superblock. This is used by file systems that have no natural
 719 *      permanent inode numbering system. An inode number is returned that
 720 *      is higher than the reserved limit but unique.
 721 *
 722 *      BUGS:
 723 *      With a large number of inodes live on the file system this function
 724 *      currently becomes quite slow.
 725 */
 726ino_t iunique(struct super_block *sb, ino_t max_reserved)
 727{
 728        /*
 729         * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
 730         * error if st_ino won't fit in target struct field. Use 32bit counter
 731         * here to attempt to avoid that.
 732         */
 733        static unsigned int counter;
 734        struct inode *inode;
 735        struct hlist_head *head;
 736        ino_t res;
 737
 738        spin_lock(&inode_lock);
 739        do {
 740                if (counter <= max_reserved)
 741                        counter = max_reserved + 1;
 742                res = counter++;
 743                head = inode_hashtable + hash(sb, res);
 744                inode = find_inode_fast(sb, head, res);
 745        } while (inode != NULL);
 746        spin_unlock(&inode_lock);
 747
 748        return res;
 749}
 750EXPORT_SYMBOL(iunique);
 751
 752struct inode *igrab(struct inode *inode)
 753{
 754        spin_lock(&inode_lock);
 755        if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
 756                __iget(inode);
 757        else
 758                /*
 759                 * Handle the case where s_op->clear_inode is not been
 760                 * called yet, and somebody is calling igrab
 761                 * while the inode is getting freed.
 762                 */
 763                inode = NULL;
 764        spin_unlock(&inode_lock);
 765        return inode;
 766}
 767
 768EXPORT_SYMBOL(igrab);
 769
 770/**
 771 * ifind - internal function, you want ilookup5() or iget5().
 772 * @sb:         super block of file system to search
 773 * @head:       the head of the list to search
 774 * @test:       callback used for comparisons between inodes
 775 * @data:       opaque data pointer to pass to @test
 776 * @wait:       if true wait for the inode to be unlocked, if false do not
 777 *
 778 * ifind() searches for the inode specified by @data in the inode
 779 * cache. This is a generalized version of ifind_fast() for file systems where
 780 * the inode number is not sufficient for unique identification of an inode.
 781 *
 782 * If the inode is in the cache, the inode is returned with an incremented
 783 * reference count.
 784 *
 785 * Otherwise NULL is returned.
 786 *
 787 * Note, @test is called with the inode_lock held, so can't sleep.
 788 */
 789static struct inode *ifind(struct super_block *sb,
 790                struct hlist_head *head, int (*test)(struct inode *, void *),
 791                void *data, const int wait)
 792{
 793        struct inode *inode;
 794
 795        spin_lock(&inode_lock);
 796        inode = find_inode(sb, head, test, data);
 797        if (inode) {
 798                __iget(inode);
 799                spin_unlock(&inode_lock);
 800                if (likely(wait))
 801                        wait_on_inode(inode);
 802                return inode;
 803        }
 804        spin_unlock(&inode_lock);
 805        return NULL;
 806}
 807
 808/**
 809 * ifind_fast - internal function, you want ilookup() or iget().
 810 * @sb:         super block of file system to search
 811 * @head:       head of the list to search
 812 * @ino:        inode number to search for
 813 *
 814 * ifind_fast() searches for the inode @ino in the inode cache. This is for
 815 * file systems where the inode number is sufficient for unique identification
 816 * of an inode.
 817 *
 818 * If the inode is in the cache, the inode is returned with an incremented
 819 * reference count.
 820 *
 821 * Otherwise NULL is returned.
 822 */
 823static struct inode *ifind_fast(struct super_block *sb,
 824                struct hlist_head *head, unsigned long ino)
 825{
 826        struct inode *inode;
 827
 828        spin_lock(&inode_lock);
 829        inode = find_inode_fast(sb, head, ino);
 830        if (inode) {
 831                __iget(inode);
 832                spin_unlock(&inode_lock);
 833                wait_on_inode(inode);
 834                return inode;
 835        }
 836        spin_unlock(&inode_lock);
 837        return NULL;
 838}
 839
 840/**
 841 * ilookup5_nowait - search for an inode in the inode cache
 842 * @sb:         super block of file system to search
 843 * @hashval:    hash value (usually inode number) to search for
 844 * @test:       callback used for comparisons between inodes
 845 * @data:       opaque data pointer to pass to @test
 846 *
 847 * ilookup5() uses ifind() to search for the inode specified by @hashval and
 848 * @data in the inode cache. This is a generalized version of ilookup() for
 849 * file systems where the inode number is not sufficient for unique
 850 * identification of an inode.
 851 *
 852 * If the inode is in the cache, the inode is returned with an incremented
 853 * reference count.  Note, the inode lock is not waited upon so you have to be
 854 * very careful what you do with the returned inode.  You probably should be
 855 * using ilookup5() instead.
 856 *
 857 * Otherwise NULL is returned.
 858 *
 859 * Note, @test is called with the inode_lock held, so can't sleep.
 860 */
 861struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
 862                int (*test)(struct inode *, void *), void *data)
 863{
 864        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
 865
 866        return ifind(sb, head, test, data, 0);
 867}
 868
 869EXPORT_SYMBOL(ilookup5_nowait);
 870
 871/**
 872 * ilookup5 - search for an inode in the inode cache
 873 * @sb:         super block of file system to search
 874 * @hashval:    hash value (usually inode number) to search for
 875 * @test:       callback used for comparisons between inodes
 876 * @data:       opaque data pointer to pass to @test
 877 *
 878 * ilookup5() uses ifind() to search for the inode specified by @hashval and
 879 * @data in the inode cache. This is a generalized version of ilookup() for
 880 * file systems where the inode number is not sufficient for unique
 881 * identification of an inode.
 882 *
 883 * If the inode is in the cache, the inode lock is waited upon and the inode is
 884 * returned with an incremented reference count.
 885 *
 886 * Otherwise NULL is returned.
 887 *
 888 * Note, @test is called with the inode_lock held, so can't sleep.
 889 */
 890struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
 891                int (*test)(struct inode *, void *), void *data)
 892{
 893        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
 894
 895        return ifind(sb, head, test, data, 1);
 896}
 897
 898EXPORT_SYMBOL(ilookup5);
 899
 900/**
 901 * ilookup - search for an inode in the inode cache
 902 * @sb:         super block of file system to search
 903 * @ino:        inode number to search for
 904 *
 905 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
 906 * This is for file systems where the inode number is sufficient for unique
 907 * identification of an inode.
 908 *
 909 * If the inode is in the cache, the inode is returned with an incremented
 910 * reference count.
 911 *
 912 * Otherwise NULL is returned.
 913 */
 914struct inode *ilookup(struct super_block *sb, unsigned long ino)
 915{
 916        struct hlist_head *head = inode_hashtable + hash(sb, ino);
 917
 918        return ifind_fast(sb, head, ino);
 919}
 920
 921EXPORT_SYMBOL(ilookup);
 922
 923/**
 924 * iget5_locked - obtain an inode from a mounted file system
 925 * @sb:         super block of file system
 926 * @hashval:    hash value (usually inode number) to get
 927 * @test:       callback used for comparisons between inodes
 928 * @set:        callback used to initialize a new struct inode
 929 * @data:       opaque data pointer to pass to @test and @set
 930 *
 931 * This is iget() without the read_inode() portion of get_new_inode().
 932 *
 933 * iget5_locked() uses ifind() to search for the inode specified by @hashval
 934 * and @data in the inode cache and if present it is returned with an increased
 935 * reference count. This is a generalized version of iget_locked() for file
 936 * systems where the inode number is not sufficient for unique identification
 937 * of an inode.
 938 *
 939 * If the inode is not in cache, get_new_inode() is called to allocate a new
 940 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
 941 * file system gets to fill it in before unlocking it via unlock_new_inode().
 942 *
 943 * Note both @test and @set are called with the inode_lock held, so can't sleep.
 944 */
 945struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
 946                int (*test)(struct inode *, void *),
 947                int (*set)(struct inode *, void *), void *data)
 948{
 949        struct hlist_head *head = inode_hashtable + hash(sb, hashval);
 950        struct inode *inode;
 951
 952        inode = ifind(sb, head, test, data, 1);
 953        if (inode)
 954                return inode;
 955        /*
 956         * get_new_inode() will do the right thing, re-trying the search
 957         * in case it had to block at any point.
 958         */
 959        return get_new_inode(sb, head, test, set, data);
 960}
 961
 962EXPORT_SYMBOL(iget5_locked);
 963
 964/**
 965 * iget_locked - obtain an inode from a mounted file system
 966 * @sb:         super block of file system
 967 * @ino:        inode number to get
 968 *
 969 * This is iget() without the read_inode() portion of get_new_inode_fast().
 970 *
 971 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
 972 * the inode cache and if present it is returned with an increased reference
 973 * count. This is for file systems where the inode number is sufficient for
 974 * unique identification of an inode.
 975 *
 976 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
 977 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
 978 * The file system gets to fill it in before unlocking it via
 979 * unlock_new_inode().
 980 */
 981struct inode *iget_locked(struct super_block *sb, unsigned long ino)
 982{
 983        struct hlist_head *head = inode_hashtable + hash(sb, ino);
 984        struct inode *inode;
 985
 986        inode = ifind_fast(sb, head, ino);
 987        if (inode)
 988                return inode;
 989        /*
 990         * get_new_inode_fast() will do the right thing, re-trying the search
 991         * in case it had to block at any point.
 992         */
 993        return get_new_inode_fast(sb, head, ino);
 994}
 995
 996EXPORT_SYMBOL(iget_locked);
 997
 998/**
 999 *      __insert_inode_hash - hash an inode
1000 *      @inode: unhashed inode
1001 *      @hashval: unsigned long value used to locate this object in the
1002 *              inode_hashtable.
1003 *
1004 *      Add an inode to the inode hash for this superblock.
1005 */
1006void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1007{
1008        struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1009        spin_lock(&inode_lock);
1010        hlist_add_head(&inode->i_hash, head);
1011        spin_unlock(&inode_lock);
1012}
1013
1014EXPORT_SYMBOL(__insert_inode_hash);
1015
1016/**
1017 *      remove_inode_hash - remove an inode from the hash
1018 *      @inode: inode to unhash
1019 *
1020 *      Remove an inode from the superblock.
1021 */
1022void remove_inode_hash(struct inode *inode)
1023{
1024        spin_lock(&inode_lock);
1025        hlist_del_init(&inode->i_hash);
1026        spin_unlock(&inode_lock);
1027}
1028
1029EXPORT_SYMBOL(remove_inode_hash);
1030
1031/*
1032 * Tell the filesystem that this inode is no longer of any interest and should
1033 * be completely destroyed.
1034 *
1035 * We leave the inode in the inode hash table until *after* the filesystem's
1036 * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1037 * instigate) will always find up-to-date information either in the hash or on
1038 * disk.
1039 *
1040 * I_FREEING is set so that no-one will take a new reference to the inode while
1041 * it is being deleted.
1042 */
1043void generic_delete_inode(struct inode *inode)
1044{
1045        const struct super_operations *op = inode->i_sb->s_op;
1046
1047        list_del_init(&inode->i_list);
1048        list_del_init(&inode->i_sb_list);
1049        inode->i_state |= I_FREEING;
1050        inodes_stat.nr_inodes--;
1051        spin_unlock(&inode_lock);
1052
1053        security_inode_delete(inode);
1054
1055        if (op->delete_inode) {
1056                void (*delete)(struct inode *) = op->delete_inode;
1057                if (!is_bad_inode(inode))
1058                        DQUOT_INIT(inode);
1059                /* Filesystems implementing their own
1060                 * s_op->delete_inode are required to call
1061                 * truncate_inode_pages and clear_inode()
1062                 * internally */
1063                delete(inode);
1064        } else {
1065                truncate_inode_pages(&inode->i_data, 0);
1066                clear_inode(inode);
1067        }
1068        spin_lock(&inode_lock);
1069        hlist_del_init(&inode->i_hash);
1070        spin_unlock(&inode_lock);
1071        wake_up_inode(inode);
1072        BUG_ON(inode->i_state != I_CLEAR);
1073        destroy_inode(inode);
1074}
1075
1076EXPORT_SYMBOL(generic_delete_inode);
1077
1078static void generic_forget_inode(struct inode *inode)
1079{
1080        struct super_block *sb = inode->i_sb;
1081
1082        if (!hlist_unhashed(&inode->i_hash)) {
1083                if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1084                        list_move(&inode->i_list, &inode_unused);
1085                inodes_stat.nr_unused++;
1086                if (sb->s_flags & MS_ACTIVE) {
1087                        spin_unlock(&inode_lock);
1088                        return;
1089                }
1090                inode->i_state |= I_WILL_FREE;
1091                spin_unlock(&inode_lock);
1092                write_inode_now(inode, 1);
1093                spin_lock(&inode_lock);
1094                inode->i_state &= ~I_WILL_FREE;
1095                inodes_stat.nr_unused--;
1096                hlist_del_init(&inode->i_hash);
1097        }
1098        list_del_init(&inode->i_list);
1099        list_del_init(&inode->i_sb_list);
1100        inode->i_state |= I_FREEING;
1101        inodes_stat.nr_inodes--;
1102        spin_unlock(&inode_lock);
1103        if (inode->i_data.nrpages)
1104                truncate_inode_pages(&inode->i_data, 0);
1105        clear_inode(inode);
1106        wake_up_inode(inode);
1107        destroy_inode(inode);
1108}
1109
1110/*
1111 * Normal UNIX filesystem behaviour: delete the
1112 * inode when the usage count drops to zero, and
1113 * i_nlink is zero.
1114 */
1115void generic_drop_inode(struct inode *inode)
1116{
1117        if (!inode->i_nlink)
1118                generic_delete_inode(inode);
1119        else
1120                generic_forget_inode(inode);
1121}
1122
1123EXPORT_SYMBOL_GPL(generic_drop_inode);
1124
1125/*
1126 * Called when we're dropping the last reference
1127 * to an inode. 
1128 *
1129 * Call the FS "drop()" function, defaulting to
1130 * the legacy UNIX filesystem behaviour..
1131 *
1132 * NOTE! NOTE! NOTE! We're called with the inode lock
1133 * held, and the drop function is supposed to release
1134 * the lock!
1135 */
1136static inline void iput_final(struct inode *inode)
1137{
1138        const struct super_operations *op = inode->i_sb->s_op;
1139        void (*drop)(struct inode *) = generic_drop_inode;
1140
1141        if (op && op->drop_inode)
1142                drop = op->drop_inode;
1143        drop(inode);
1144}
1145
1146/**
1147 *      iput    - put an inode 
1148 *      @inode: inode to put
1149 *
1150 *      Puts an inode, dropping its usage count. If the inode use count hits
1151 *      zero, the inode is then freed and may also be destroyed.
1152 *
1153 *      Consequently, iput() can sleep.
1154 */
1155void iput(struct inode *inode)
1156{
1157        if (inode) {
1158                const struct super_operations *op = inode->i_sb->s_op;
1159
1160                BUG_ON(inode->i_state == I_CLEAR);
1161
1162                if (op && op->put_inode)
1163                        op->put_inode(inode);
1164
1165                if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1166                        iput_final(inode);
1167        }
1168}
1169
1170EXPORT_SYMBOL(iput);
1171
1172/**
1173 *      bmap    - find a block number in a file
1174 *      @inode: inode of file
1175 *      @block: block to find
1176 *
1177 *      Returns the block number on the device holding the inode that
1178 *      is the disk block number for the block of the file requested.
1179 *      That is, asked for block 4 of inode 1 the function will return the
1180 *      disk block relative to the disk start that holds that block of the 
1181 *      file.
1182 */
1183sector_t bmap(struct inode * inode, sector_t block)
1184{
1185        sector_t res = 0;
1186        if (inode->i_mapping->a_ops->bmap)
1187                res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1188        return res;
1189}
1190EXPORT_SYMBOL(bmap);
1191
1192/**
1193 *      touch_atime     -       update the access time
1194 *      @mnt: mount the inode is accessed on
1195 *      @dentry: dentry accessed
1196 *
1197 *      Update the accessed time on an inode and mark it for writeback.
1198 *      This function automatically handles read only file systems and media,
1199 *      as well as the "noatime" flag and inode specific "noatime" markers.
1200 */
1201void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1202{
1203        struct inode *inode = dentry->d_inode;
1204        struct timespec now;
1205
1206        if (inode->i_flags & S_NOATIME)
1207                return;
1208        if (IS_NOATIME(inode))
1209                return;
1210        if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1211                return;
1212
1213        /*
1214         * We may have a NULL vfsmount when coming from NFSD
1215         */
1216        if (mnt) {
1217                if (mnt->mnt_flags & MNT_NOATIME)
1218                        return;
1219                if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1220                        return;
1221
1222                if (mnt->mnt_flags & MNT_RELATIME) {
1223                        /*
1224                         * With relative atime, only update atime if the
1225                         * previous atime is earlier than either the ctime or
1226                         * mtime.
1227                         */
1228                        if (timespec_compare(&inode->i_mtime,
1229                                                &inode->i_atime) < 0 &&
1230                            timespec_compare(&inode->i_ctime,
1231                                                &inode->i_atime) < 0)
1232                                return;
1233                }
1234        }
1235
1236        now = current_fs_time(inode->i_sb);
1237        if (timespec_equal(&inode->i_atime, &now))
1238                return;
1239
1240        inode->i_atime = now;
1241        mark_inode_dirty_sync(inode);
1242}
1243EXPORT_SYMBOL(touch_atime);
1244
1245/**
1246 *      file_update_time        -       update mtime and ctime time
1247 *      @file: file accessed
1248 *
1249 *      Update the mtime and ctime members of an inode and mark the inode
1250 *      for writeback.  Note that this function is meant exclusively for
1251 *      usage in the file write path of filesystems, and filesystems may
1252 *      choose to explicitly ignore update via this function with the
1253 *      S_NOCTIME inode flag, e.g. for network filesystem where these
1254 *      timestamps are handled by the server.
1255 */
1256
1257void file_update_time(struct file *file)
1258{
1259        struct inode *inode = file->f_path.dentry->d_inode;
1260        struct timespec now;
1261        int sync_it = 0;
1262
1263        if (IS_NOCMTIME(inode))
1264                return;
1265        if (IS_RDONLY(inode))
1266                return;
1267
1268        now = current_fs_time(inode->i_sb);
1269        if (!timespec_equal(&inode->i_mtime, &now)) {
1270                inode->i_mtime = now;
1271                sync_it = 1;
1272        }
1273
1274        if (!timespec_equal(&inode->i_ctime, &now)) {
1275                inode->i_ctime = now;
1276                sync_it = 1;
1277        }
1278
1279        if (sync_it)
1280                mark_inode_dirty_sync(inode);
1281}
1282
1283EXPORT_SYMBOL(file_update_time);
1284
1285int inode_needs_sync(struct inode *inode)
1286{
1287        if (IS_SYNC(inode))
1288                return 1;
1289        if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1290                return 1;
1291        return 0;
1292}
1293
1294EXPORT_SYMBOL(inode_needs_sync);
1295
1296int inode_wait(void *word)
1297{
1298        schedule();
1299        return 0;
1300}
1301
1302/*
1303 * If we try to find an inode in the inode hash while it is being
1304 * deleted, we have to wait until the filesystem completes its
1305 * deletion before reporting that it isn't found.  This function waits
1306 * until the deletion _might_ have completed.  Callers are responsible
1307 * to recheck inode state.
1308 *
1309 * It doesn't matter if I_LOCK is not set initially, a call to
1310 * wake_up_inode() after removing from the hash list will DTRT.
1311 *
1312 * This is called with inode_lock held.
1313 */
1314static void __wait_on_freeing_inode(struct inode *inode)
1315{
1316        wait_queue_head_t *wq;
1317        DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1318        wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1319        prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1320        spin_unlock(&inode_lock);
1321        schedule();
1322        finish_wait(wq, &wait.wait);
1323        spin_lock(&inode_lock);
1324}
1325
1326/*
1327 * We rarely want to lock two inodes that do not have a parent/child
1328 * relationship (such as directory, child inode) simultaneously. The
1329 * vast majority of file systems should be able to get along fine
1330 * without this. Do not use these functions except as a last resort.
1331 */
1332void inode_double_lock(struct inode *inode1, struct inode *inode2)
1333{
1334        if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1335                if (inode1)
1336                        mutex_lock(&inode1->i_mutex);
1337                else if (inode2)
1338                        mutex_lock(&inode2->i_mutex);
1339                return;
1340        }
1341
1342        if (inode1 < inode2) {
1343                mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1344                mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1345        } else {
1346                mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1347                mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1348        }
1349}
1350EXPORT_SYMBOL(inode_double_lock);
1351
1352void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1353{
1354        if (inode1)
1355                mutex_unlock(&inode1->i_mutex);
1356
1357        if (inode2 && inode2 != inode1)
1358                mutex_unlock(&inode2->i_mutex);
1359}
1360EXPORT_SYMBOL(inode_double_unlock);
1361
1362static __initdata unsigned long ihash_entries;
1363static int __init set_ihash_entries(char *str)
1364{
1365        if (!str)
1366                return 0;
1367        ihash_entries = simple_strtoul(str, &str, 0);
1368        return 1;
1369}
1370__setup("ihash_entries=", set_ihash_entries);
1371
1372/*
1373 * Initialize the waitqueues and inode hash table.
1374 */
1375void __init inode_init_early(void)
1376{
1377        int loop;
1378
1379        /* If hashes are distributed across NUMA nodes, defer
1380         * hash allocation until vmalloc space is available.
1381         */
1382        if (hashdist)
1383                return;
1384
1385        inode_hashtable =
1386                alloc_large_system_hash("Inode-cache",
1387                                        sizeof(struct hlist_head),
1388                                        ihash_entries,
1389                                        14,
1390                                        HASH_EARLY,
1391                                        &i_hash_shift,
1392                                        &i_hash_mask,
1393                                        0);
1394
1395        for (loop = 0; loop < (1 << i_hash_shift); loop++)
1396                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1397}
1398
1399void __init inode_init(void)
1400{
1401        int loop;
1402
1403        /* inode slab cache */
1404        inode_cachep = kmem_cache_create("inode_cache",
1405                                         sizeof(struct inode),
1406                                         0,
1407                                         (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1408                                         SLAB_MEM_SPREAD),
1409                                         init_once);
1410        register_shrinker(&icache_shrinker);
1411
1412        /* Hash may have been set up in inode_init_early */
1413        if (!hashdist)
1414                return;
1415
1416        inode_hashtable =
1417                alloc_large_system_hash("Inode-cache",
1418                                        sizeof(struct hlist_head),
1419                                        ihash_entries,
1420                                        14,
1421                                        0,
1422                                        &i_hash_shift,
1423                                        &i_hash_mask,
1424                                        0);
1425
1426        for (loop = 0; loop < (1 << i_hash_shift); loop++)
1427                INIT_HLIST_HEAD(&inode_hashtable[loop]);
1428}
1429
1430void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1431{
1432        inode->i_mode = mode;
1433        if (S_ISCHR(mode)) {
1434                inode->i_fop = &def_chr_fops;
1435                inode->i_rdev = rdev;
1436        } else if (S_ISBLK(mode)) {
1437                inode->i_fop = &def_blk_fops;
1438                inode->i_rdev = rdev;
1439        } else if (S_ISFIFO(mode))
1440                inode->i_fop = &def_fifo_fops;
1441        else if (S_ISSOCK(mode))
1442                inode->i_fop = &bad_sock_fops;
1443        else
1444                printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1445                       mode);
1446}
1447EXPORT_SYMBOL(init_special_inode);
1448