1/* 2 * Copyright (C) International Business Machines Corp., 2000-2004 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19#include <linux/fs.h> 20#include "jfs_incore.h" 21#include "jfs_superblock.h" 22#include "jfs_dmap.h" 23#include "jfs_imap.h" 24#include "jfs_lock.h" 25#include "jfs_metapage.h" 26#include "jfs_debug.h" 27 28/* 29 * SERIALIZATION of the Block Allocation Map. 30 * 31 * the working state of the block allocation map is accessed in 32 * two directions: 33 * 34 * 1) allocation and free requests that start at the dmap 35 * level and move up through the dmap control pages (i.e. 36 * the vast majority of requests). 37 * 38 * 2) allocation requests that start at dmap control page 39 * level and work down towards the dmaps. 40 * 41 * the serialization scheme used here is as follows. 42 * 43 * requests which start at the bottom are serialized against each 44 * other through buffers and each requests holds onto its buffers 45 * as it works it way up from a single dmap to the required level 46 * of dmap control page. 47 * requests that start at the top are serialized against each other 48 * and request that start from the bottom by the multiple read/single 49 * write inode lock of the bmap inode. requests starting at the top 50 * take this lock in write mode while request starting at the bottom 51 * take the lock in read mode. a single top-down request may proceed 52 * exclusively while multiple bottoms-up requests may proceed 53 * simultaneously (under the protection of busy buffers). 54 * 55 * in addition to information found in dmaps and dmap control pages, 56 * the working state of the block allocation map also includes read/ 57 * write information maintained in the bmap descriptor (i.e. total 58 * free block count, allocation group level free block counts). 59 * a single exclusive lock (BMAP_LOCK) is used to guard this information 60 * in the face of multiple-bottoms up requests. 61 * (lock ordering: IREAD_LOCK, BMAP_LOCK); 62 * 63 * accesses to the persistent state of the block allocation map (limited 64 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers. 65 */ 66 67#define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock) 68#define BMAP_LOCK(bmp) mutex_lock(&bmp->db_bmaplock) 69#define BMAP_UNLOCK(bmp) mutex_unlock(&bmp->db_bmaplock) 70 71/* 72 * forward references 73 */ 74static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno, 75 int nblocks); 76static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval); 77static int dbBackSplit(dmtree_t * tp, int leafno); 78static int dbJoin(dmtree_t * tp, int leafno, int newval); 79static void dbAdjTree(dmtree_t * tp, int leafno, int newval); 80static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, 81 int level); 82static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results); 83static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno, 84 int nblocks); 85static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno, 86 int nblocks, 87 int l2nb, s64 * results); 88static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno, 89 int nblocks); 90static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks, 91 int l2nb, 92 s64 * results); 93static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, 94 s64 * results); 95static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, 96 s64 * results); 97static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks); 98static int dbFindBits(u32 word, int l2nb); 99static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno); 100static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx); 101static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno, 102 int nblocks); 103static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno, 104 int nblocks); 105static int dbMaxBud(u8 * cp); 106s64 dbMapFileSizeToMapSize(struct inode *ipbmap); 107static int blkstol2(s64 nb); 108 109static int cntlz(u32 value); 110static int cnttz(u32 word); 111 112static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno, 113 int nblocks); 114static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks); 115static int dbInitDmapTree(struct dmap * dp); 116static int dbInitTree(struct dmaptree * dtp); 117static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i); 118static int dbGetL2AGSize(s64 nblocks); 119 120/* 121 * buddy table 122 * 123 * table used for determining buddy sizes within characters of 124 * dmap bitmap words. the characters themselves serve as indexes 125 * into the table, with the table elements yielding the maximum 126 * binary buddy of free bits within the character. 127 */ 128static const s8 budtab[256] = { 129 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 130 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 131 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 132 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 133 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 134 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 135 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 136 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 137 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 138 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 139 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 140 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 141 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 142 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 143 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 144 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1 145}; 146 147 148/* 149 * NAME: dbMount() 150 * 151 * FUNCTION: initializate the block allocation map. 152 * 153 * memory is allocated for the in-core bmap descriptor and 154 * the in-core descriptor is initialized from disk. 155 * 156 * PARAMETERS: 157 * ipbmap - pointer to in-core inode for the block map. 158 * 159 * RETURN VALUES: 160 * 0 - success 161 * -ENOMEM - insufficient memory 162 * -EIO - i/o error 163 */ 164int dbMount(struct inode *ipbmap) 165{ 166 struct bmap *bmp; 167 struct dbmap_disk *dbmp_le; 168 struct metapage *mp; 169 int i; 170 171 /* 172 * allocate/initialize the in-memory bmap descriptor 173 */ 174 /* allocate memory for the in-memory bmap descriptor */ 175 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL); 176 if (bmp == NULL) 177 return -ENOMEM; 178 179 /* read the on-disk bmap descriptor. */ 180 mp = read_metapage(ipbmap, 181 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage, 182 PSIZE, 0); 183 if (mp == NULL) { 184 kfree(bmp); 185 return -EIO; 186 } 187 188 /* copy the on-disk bmap descriptor to its in-memory version. */ 189 dbmp_le = (struct dbmap_disk *) mp->data; 190 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize); 191 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree); 192 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage); 193 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag); 194 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel); 195 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag); 196 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref); 197 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel); 198 bmp->db_agheigth = le32_to_cpu(dbmp_le->dn_agheigth); 199 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth); 200 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart); 201 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size); 202 for (i = 0; i < MAXAG; i++) 203 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]); 204 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize); 205 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud; 206 207 /* release the buffer. */ 208 release_metapage(mp); 209 210 /* bind the bmap inode and the bmap descriptor to each other. */ 211 bmp->db_ipbmap = ipbmap; 212 JFS_SBI(ipbmap->i_sb)->bmap = bmp; 213 214 memset(bmp->db_active, 0, sizeof(bmp->db_active)); 215 216 /* 217 * allocate/initialize the bmap lock 218 */ 219 BMAP_LOCK_INIT(bmp); 220 221 return (0); 222} 223 224 225/* 226 * NAME: dbUnmount() 227 * 228 * FUNCTION: terminate the block allocation map in preparation for 229 * file system unmount. 230 * 231 * the in-core bmap descriptor is written to disk and 232 * the memory for this descriptor is freed. 233 * 234 * PARAMETERS: 235 * ipbmap - pointer to in-core inode for the block map. 236 * 237 * RETURN VALUES: 238 * 0 - success 239 * -EIO - i/o error 240 */ 241int dbUnmount(struct inode *ipbmap, int mounterror) 242{ 243 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap; 244 245 if (!(mounterror || isReadOnly(ipbmap))) 246 dbSync(ipbmap); 247 248 /* 249 * Invalidate the page cache buffers 250 */ 251 truncate_inode_pages(ipbmap->i_mapping, 0); 252 253 /* free the memory for the in-memory bmap. */ 254 kfree(bmp); 255 256 return (0); 257} 258 259/* 260 * dbSync() 261 */ 262int dbSync(struct inode *ipbmap) 263{ 264 struct dbmap_disk *dbmp_le; 265 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap; 266 struct metapage *mp; 267 int i; 268 269 /* 270 * write bmap global control page 271 */ 272 /* get the buffer for the on-disk bmap descriptor. */ 273 mp = read_metapage(ipbmap, 274 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage, 275 PSIZE, 0); 276 if (mp == NULL) { 277 jfs_err("dbSync: read_metapage failed!"); 278 return -EIO; 279 } 280 /* copy the in-memory version of the bmap to the on-disk version */ 281 dbmp_le = (struct dbmap_disk *) mp->data; 282 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize); 283 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree); 284 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage); 285 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag); 286 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel); 287 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag); 288 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref); 289 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel); 290 dbmp_le->dn_agheigth = cpu_to_le32(bmp->db_agheigth); 291 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth); 292 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart); 293 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size); 294 for (i = 0; i < MAXAG; i++) 295 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]); 296 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize); 297 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud; 298 299 /* write the buffer */ 300 write_metapage(mp); 301 302 /* 303 * write out dirty pages of bmap 304 */ 305 filemap_write_and_wait(ipbmap->i_mapping); 306 307 diWriteSpecial(ipbmap, 0); 308 309 return (0); 310} 311 312 313/* 314 * NAME: dbFree() 315 * 316 * FUNCTION: free the specified block range from the working block 317 * allocation map. 318 * 319 * the blocks will be free from the working map one dmap 320 * at a time. 321 * 322 * PARAMETERS: 323 * ip - pointer to in-core inode; 324 * blkno - starting block number to be freed. 325 * nblocks - number of blocks to be freed. 326 * 327 * RETURN VALUES: 328 * 0 - success 329 * -EIO - i/o error 330 */ 331int dbFree(struct inode *ip, s64 blkno, s64 nblocks) 332{ 333 struct metapage *mp; 334 struct dmap *dp; 335 int nb, rc; 336 s64 lblkno, rem; 337 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap; 338 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap; 339 340 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP); 341 342 /* block to be freed better be within the mapsize. */ 343 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) { 344 IREAD_UNLOCK(ipbmap); 345 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n", 346 (unsigned long long) blkno, 347 (unsigned long long) nblocks); 348 jfs_error(ip->i_sb, 349 "dbFree: block to be freed is outside the map"); 350 return -EIO; 351 } 352 353 /* 354 * free the blocks a dmap at a time. 355 */ 356 mp = NULL; 357 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) { 358 /* release previous dmap if any */ 359 if (mp) { 360 write_metapage(mp); 361 } 362 363 /* get the buffer for the current dmap. */ 364 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage); 365 mp = read_metapage(ipbmap, lblkno, PSIZE, 0); 366 if (mp == NULL) { 367 IREAD_UNLOCK(ipbmap); 368 return -EIO; 369 } 370 dp = (struct dmap *) mp->data; 371 372 /* determine the number of blocks to be freed from 373 * this dmap. 374 */ 375 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1))); 376 377 /* free the blocks. */ 378 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) { 379 jfs_error(ip->i_sb, "dbFree: error in block map\n"); 380 release_metapage(mp); 381 IREAD_UNLOCK(ipbmap); 382 return (rc); 383 } 384 } 385 386 /* write the last buffer. */ 387 write_metapage(mp); 388 389 IREAD_UNLOCK(ipbmap); 390 391 return (0); 392} 393 394 395/* 396 * NAME: dbUpdatePMap() 397 * 398 * FUNCTION: update the allocation state (free or allocate) of the 399 * specified block range in the persistent block allocation map. 400 * 401 * the blocks will be updated in the persistent map one 402 * dmap at a time. 403 * 404 * PARAMETERS: 405 * ipbmap - pointer to in-core inode for the block map. 406 * free - 'true' if block range is to be freed from the persistent 407 * map; 'false' if it is to be allocated. 408 * blkno - starting block number of the range. 409 * nblocks - number of contiguous blocks in the range. 410 * tblk - transaction block; 411 * 412 * RETURN VALUES: 413 * 0 - success 414 * -EIO - i/o error 415 */ 416int 417dbUpdatePMap(struct inode *ipbmap, 418 int free, s64 blkno, s64 nblocks, struct tblock * tblk) 419{ 420 int nblks, dbitno, wbitno, rbits; 421 int word, nbits, nwords; 422 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap; 423 s64 lblkno, rem, lastlblkno; 424 u32 mask; 425 struct dmap *dp; 426 struct metapage *mp; 427 struct jfs_log *log; 428 int lsn, difft, diffp; 429 unsigned long flags; 430 431 /* the blocks better be within the mapsize. */ 432 if (blkno + nblocks > bmp->db_mapsize) { 433 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n", 434 (unsigned long long) blkno, 435 (unsigned long long) nblocks); 436 jfs_error(ipbmap->i_sb, 437 "dbUpdatePMap: blocks are outside the map"); 438 return -EIO; 439 } 440 441 /* compute delta of transaction lsn from log syncpt */ 442 lsn = tblk->lsn; 443 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log; 444 logdiff(difft, lsn, log); 445 446 /* 447 * update the block state a dmap at a time. 448 */ 449 mp = NULL; 450 lastlblkno = 0; 451 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) { 452 /* get the buffer for the current dmap. */ 453 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage); 454 if (lblkno != lastlblkno) { 455 if (mp) { 456 write_metapage(mp); 457 } 458 459 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 460 0); 461 if (mp == NULL) 462 return -EIO; 463 metapage_wait_for_io(mp); 464 } 465 dp = (struct dmap *) mp->data; 466 467 /* determine the bit number and word within the dmap of 468 * the starting block. also determine how many blocks 469 * are to be updated within this dmap. 470 */ 471 dbitno = blkno & (BPERDMAP - 1); 472 word = dbitno >> L2DBWORD; 473 nblks = min(rem, (s64)BPERDMAP - dbitno); 474 475 /* update the bits of the dmap words. the first and last 476 * words may only have a subset of their bits updated. if 477 * this is the case, we'll work against that word (i.e. 478 * partial first and/or last) only in a single pass. a 479 * single pass will also be used to update all words that 480 * are to have all their bits updated. 481 */ 482 for (rbits = nblks; rbits > 0; 483 rbits -= nbits, dbitno += nbits) { 484 /* determine the bit number within the word and 485 * the number of bits within the word. 486 */ 487 wbitno = dbitno & (DBWORD - 1); 488 nbits = min(rbits, DBWORD - wbitno); 489 490 /* check if only part of the word is to be updated. */ 491 if (nbits < DBWORD) { 492 /* update (free or allocate) the bits 493 * in this word. 494 */ 495 mask = 496 (ONES << (DBWORD - nbits) >> wbitno); 497 if (free) 498 dp->pmap[word] &= 499 cpu_to_le32(~mask); 500 else 501 dp->pmap[word] |= 502 cpu_to_le32(mask); 503 504 word += 1; 505 } else { 506 /* one or more words are to have all 507 * their bits updated. determine how 508 * many words and how many bits. 509 */ 510 nwords = rbits >> L2DBWORD; 511 nbits = nwords << L2DBWORD; 512 513 /* update (free or allocate) the bits 514 * in these words. 515 */ 516 if (free) 517 memset(&dp->pmap[word], 0, 518 nwords * 4); 519 else 520 memset(&dp->pmap[word], (int) ONES, 521 nwords * 4); 522 523 word += nwords; 524 } 525 } 526 527 /* 528 * update dmap lsn 529 */ 530 if (lblkno == lastlblkno) 531 continue; 532 533 lastlblkno = lblkno; 534 535 LOGSYNC_LOCK(log, flags); 536 if (mp->lsn != 0) { 537 /* inherit older/smaller lsn */ 538 logdiff(diffp, mp->lsn, log); 539 if (difft < diffp) { 540 mp->lsn = lsn; 541 542 /* move bp after tblock in logsync list */ 543 list_move(&mp->synclist, &tblk->synclist); 544 } 545 546 /* inherit younger/larger clsn */ 547 logdiff(difft, tblk->clsn, log); 548 logdiff(diffp, mp->clsn, log); 549 if (difft > diffp) 550 mp->clsn = tblk->clsn; 551 } else { 552 mp->log = log; 553 mp->lsn = lsn; 554 555 /* insert bp after tblock in logsync list */ 556 log->count++; 557 list_add(&mp->synclist, &tblk->synclist); 558 559 mp->clsn = tblk->clsn; 560 } 561 LOGSYNC_UNLOCK(log, flags); 562 } 563 564 /* write the last buffer. */ 565 if (mp) { 566 write_metapage(mp); 567 } 568 569 return (0); 570} 571 572 573/* 574 * NAME: dbNextAG() 575 * 576 * FUNCTION: find the preferred allocation group for new allocations. 577 * 578 * Within the allocation groups, we maintain a preferred 579 * allocation group which consists of a group with at least 580 * average free space. It is the preferred group that we target 581 * new inode allocation towards. The tie-in between inode 582 * allocation and block allocation occurs as we allocate the 583 * first (data) block of an inode and specify the inode (block) 584 * as the allocation hint for this block. 585 * 586 * We try to avoid having more than one open file growing in 587 * an allocation group, as this will lead to fragmentation. 588 * This differs from the old OS/2 method of trying to keep 589 * empty ags around for large allocations. 590 * 591 * PARAMETERS: 592 * ipbmap - pointer to in-core inode for the block map. 593 * 594 * RETURN VALUES: 595 * the preferred allocation group number. 596 */ 597int dbNextAG(struct inode *ipbmap) 598{ 599 s64 avgfree; 600 int agpref; 601 s64 hwm = 0; 602 int i; 603 int next_best = -1; 604 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap; 605 606 BMAP_LOCK(bmp); 607 608 /* determine the average number of free blocks within the ags. */ 609 avgfree = (u32)bmp->db_nfree / bmp->db_numag; 610 611 /* 612 * if the current preferred ag does not have an active allocator 613 * and has at least average freespace, return it 614 */ 615 agpref = bmp->db_agpref; 616 if ((atomic_read(&bmp->db_active[agpref]) == 0) && 617 (bmp->db_agfree[agpref] >= avgfree)) 618 goto unlock; 619 620 /* From the last preferred ag, find the next one with at least 621 * average free space. 622 */ 623 for (i = 0 ; i < bmp->db_numag; i++, agpref++) { 624 if (agpref == bmp->db_numag) 625 agpref = 0; 626 627 if (atomic_read(&bmp->db_active[agpref])) 628 /* open file is currently growing in this ag */ 629 continue; 630 if (bmp->db_agfree[agpref] >= avgfree) { 631 /* Return this one */ 632 bmp->db_agpref = agpref; 633 goto unlock; 634 } else if (bmp->db_agfree[agpref] > hwm) { 635 /* Less than avg. freespace, but best so far */ 636 hwm = bmp->db_agfree[agpref]; 637 next_best = agpref; 638 } 639 } 640 641 /* 642 * If no inactive ag was found with average freespace, use the 643 * next best 644 */ 645 if (next_best != -1) 646 bmp->db_agpref = next_best; 647 /* else leave db_agpref unchanged */ 648unlock: 649 BMAP_UNLOCK(bmp); 650 651 /* return the preferred group. 652 */ 653 return (bmp->db_agpref); 654} 655 656/* 657 * NAME: dbAlloc() 658 * 659 * FUNCTION: attempt to allocate a specified number of contiguous free 660 * blocks from the working allocation block map. 661 * 662 * the block allocation policy uses hints and a multi-step 663 * approach. 664 * 665 * for allocation requests smaller than the number of blocks 666 * per dmap, we first try to allocate the new blocks 667 * immediately following the hint. if these blocks are not 668 * available, we try to allocate blocks near the hint. if 669 * no blocks near the hint are available, we next try to 670 * allocate within the same dmap as contains the hint. 671 * 672 * if no blocks are available in the dmap or the allocation 673 * request is larger than the dmap size, we try to allocate 674 * within the same allocation group as contains the hint. if 675 * this does not succeed, we finally try to allocate anywhere 676 * within the aggregate. 677 * 678 * we also try to allocate anywhere within the aggregate for 679 * for allocation requests larger than the allocation group 680 * size or requests that specify no hint value. 681 * 682 * PARAMETERS: 683 * ip - pointer to in-core inode; 684 * hint - allocation hint. 685 * nblocks - number of contiguous blocks in the range. 686 * results - on successful return, set to the starting block number 687 * of the newly allocated contiguous range. 688 * 689 * RETURN VALUES: 690 * 0 - success 691 * -ENOSPC - insufficient disk resources 692 * -EIO - i/o error 693 */ 694int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results) 695{ 696 int rc, agno; 697 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap; 698 struct bmap *bmp; 699 struct metapage *mp; 700 s64 lblkno, blkno; 701 struct dmap *dp; 702 int l2nb; 703 s64 mapSize; 704 int writers; 705 706 /* assert that nblocks is valid */ 707 assert(nblocks > 0); 708 709 /* get the log2 number of blocks to be allocated. 710 * if the number of blocks is not a log2 multiple, 711 * it will be rounded up to the next log2 multiple. 712 */ 713 l2nb = BLKSTOL2(nblocks); 714 715 bmp = JFS_SBI(ip->i_sb)->bmap; 716 717 mapSize = bmp->db_mapsize; 718 719 /* the hint should be within the map */ 720 if (hint >= mapSize) { 721 jfs_error(ip->i_sb, "dbAlloc: the hint is outside the map"); 722 return -EIO; 723 } 724 725 /* if the number of blocks to be allocated is greater than the 726 * allocation group size, try to allocate anywhere. 727 */ 728 if (l2nb > bmp->db_agl2size) { 729 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP); 730 731 rc = dbAllocAny(bmp, nblocks, l2nb, results); 732 733 goto write_unlock; 734 } 735 736 /* 737 * If no hint, let dbNextAG recommend an allocation group 738 */ 739 if (hint == 0) 740 goto pref_ag; 741 742 /* we would like to allocate close to the hint. adjust the 743 * hint to the block following the hint since the allocators 744 * will start looking for free space starting at this point. 745 */ 746 blkno = hint + 1; 747 748 if (blkno >= bmp->db_mapsize) 749 goto pref_ag; 750 751 agno = blkno >> bmp->db_agl2size; 752 753 /* check if blkno crosses over into a new allocation group. 754 * if so, check if we should allow allocations within this 755 * allocation group. 756 */ 757 if ((blkno & (bmp->db_agsize - 1)) == 0) 758 /* check if the AG is currenly being written to. 759 * if so, call dbNextAG() to find a non-busy 760 * AG with sufficient free space. 761 */ 762 if (atomic_read(&bmp->db_active[agno])) 763 goto pref_ag; 764 765 /* check if the allocation request size can be satisfied from a 766 * single dmap. if so, try to allocate from the dmap containing 767 * the hint using a tiered strategy. 768 */ 769 if (nblocks <= BPERDMAP) { 770 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP); 771 772 /* get the buffer for the dmap containing the hint. 773 */ 774 rc = -EIO; 775 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage); 776 mp = read_metapage(ipbmap, lblkno, PSIZE, 0); 777 if (mp == NULL) 778 goto read_unlock; 779 780 dp = (struct dmap *) mp->data; 781 782 /* first, try to satisfy the allocation request with the 783 * blocks beginning at the hint. 784 */ 785 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks)) 786 != -ENOSPC) { 787 if (rc == 0) { 788 *results = blkno; 789 mark_metapage_dirty(mp); 790 } 791 792 release_metapage(mp); 793 goto read_unlock; 794 } 795 796 writers = atomic_read(&bmp->db_active[agno]); 797 if ((writers > 1) || 798 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) { 799 /* 800 * Someone else is writing in this allocation 801 * group. To avoid fragmenting, try another ag 802 */ 803 release_metapage(mp); 804 IREAD_UNLOCK(ipbmap); 805 goto pref_ag; 806 } 807 808 /* next, try to satisfy the allocation request with blocks 809 * near the hint. 810 */ 811 if ((rc = 812 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results)) 813 != -ENOSPC) { 814 if (rc == 0) 815 mark_metapage_dirty(mp); 816 817 release_metapage(mp); 818 goto read_unlock; 819 } 820 821 /* try to satisfy the allocation request with blocks within 822 * the same dmap as the hint. 823 */ 824 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results)) 825 != -ENOSPC) { 826 if (rc == 0) 827 mark_metapage_dirty(mp); 828 829 release_metapage(mp); 830 goto read_unlock; 831 } 832 833 release_metapage(mp); 834 IREAD_UNLOCK(ipbmap); 835 } 836 837 /* try to satisfy the allocation request with blocks within 838 * the same allocation group as the hint. 839 */ 840 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP); 841 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC) 842 goto write_unlock; 843 844 IWRITE_UNLOCK(ipbmap); 845 846 847 pref_ag: 848 /* 849 * Let dbNextAG recommend a preferred allocation group 850 */ 851 agno = dbNextAG(ipbmap); 852 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP); 853 854 /* Try to allocate within this allocation group. if that fails, try to 855 * allocate anywhere in the map. 856 */ 857 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC) 858 rc = dbAllocAny(bmp, nblocks, l2nb, results); 859 860 write_unlock: 861 IWRITE_UNLOCK(ipbmap); 862 863 return (rc); 864 865 read_unlock: 866 IREAD_UNLOCK(ipbmap); 867 868 return (rc); 869} 870 871#ifdef _NOTYET 872/* 873 * NAME: dbAllocExact() 874 * 875 * FUNCTION: try to allocate the requested extent; 876 * 877 * PARAMETERS: 878 * ip - pointer to in-core inode; 879 * blkno - extent address; 880 * nblocks - extent length; 881 * 882 * RETURN VALUES: 883 * 0 - success 884 * -ENOSPC - insufficient disk resources 885 * -EIO - i/o error 886 */ 887int dbAllocExact(struct inode *ip, s64 blkno, int nblocks) 888{ 889 int rc; 890 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap; 891 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap; 892 struct dmap *dp; 893 s64 lblkno; 894 struct metapage *mp; 895 896 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP); 897 898 /* 899 * validate extent request: 900 * 901 * note: defragfs policy: 902 * max 64 blocks will be moved. 903 * allocation request size must be satisfied from a single dmap. 904 */ 905 if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) { 906 IREAD_UNLOCK(ipbmap); 907 return -EINVAL; 908 } 909 910 if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) { 911 /* the free space is no longer available */ 912 IREAD_UNLOCK(ipbmap); 913 return -ENOSPC; 914 } 915 916 /* read in the dmap covering the extent */ 917 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage); 918 mp = read_metapage(ipbmap, lblkno, PSIZE, 0); 919 if (mp == NULL) { 920 IREAD_UNLOCK(ipbmap); 921 return -EIO; 922 } 923 dp = (struct dmap *) mp->data; 924 925 /* try to allocate the requested extent */ 926 rc = dbAllocNext(bmp, dp, blkno, nblocks); 927 928 IREAD_UNLOCK(ipbmap); 929 930 if (rc == 0) 931 mark_metapage_dirty(mp); 932 933 release_metapage(mp); 934 935 return (rc); 936} 937#endif /* _NOTYET */ 938 939/* 940 * NAME: dbReAlloc() 941 * 942 * FUNCTION: attempt to extend a current allocation by a specified 943 * number of blocks. 944 * 945 * this routine attempts to satisfy the allocation request 946 * by first trying to extend the existing allocation in 947 * place by allocating the additional blocks as the blocks 948 * immediately following the current allocation. if these 949 * blocks are not available, this routine will attempt to 950 * allocate a new set of contiguous blocks large enough 951 * to cover the existing allocation plus the additional 952 * number of blocks required. 953 * 954 * PARAMETERS: 955 * ip - pointer to in-core inode requiring allocation. 956 * blkno - starting block of the current allocation. 957 * nblocks - number of contiguous blocks within the current 958 * allocation. 959 * addnblocks - number of blocks to add to the allocation. 960 * results - on successful return, set to the starting block number 961 * of the existing allocation if the existing allocation 962 * was extended in place or to a newly allocated contiguous 963 * range if the existing allocation could not be extended 964 * in place. 965 * 966 * RETURN VALUES: 967 * 0 - success 968 * -ENOSPC - insufficient disk resources 969 * -EIO - i/o error 970 */ 971int 972dbReAlloc(struct inode *ip, 973 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results) 974{ 975 int rc; 976 977 /* try to extend the allocation in place. 978 */ 979 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) { 980 *results = blkno; 981 return (0); 982 } else { 983 if (rc != -ENOSPC) 984 return (rc); 985 } 986 987 /* could not extend the allocation in place, so allocate a 988 * new set of blocks for the entire request (i.e. try to get 989 * a range of contiguous blocks large enough to cover the 990 * existing allocation plus the additional blocks.) 991 */ 992 return (dbAlloc 993 (ip, blkno + nblocks - 1, addnblocks + nblocks, results)); 994} 995 996 997/* 998 * NAME: dbExtend() 999 * 1000 * FUNCTION: attempt to extend a current allocation by a specified
1001 * number of blocks. 1002 * 1003 * this routine attempts to satisfy the allocation request 1004 * by first trying to extend the existing allocation in 1005 * place by allocating the additional blocks as the blocks 1006 * immediately following the current allocation. 1007 * 1008 * PARAMETERS: 1009 * ip - pointer to in-core inode requiring allocation. 1010 * blkno - starting block of the current allocation. 1011 * nblocks - number of contiguous blocks within the current 1012 * allocation. 1013 * addnblocks - number of blocks to add to the allocation. 1014 * 1015 * RETURN VALUES: 1016 * 0 - success 1017 * -ENOSPC - insufficient disk resources 1018 * -EIO - i/o error 1019 */ 1020static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks) 1021{ 1022 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb); 1023 s64 lblkno, lastblkno, extblkno; 1024 uint rel_block; 1025 struct metapage *mp; 1026 struct dmap *dp; 1027 int rc; 1028 struct inode *ipbmap = sbi->ipbmap; 1029 struct bmap *bmp; 1030 1031 /* 1032 * We don't want a non-aligned extent to cross a page boundary 1033 */ 1034 if (((rel_block = blkno & (sbi->nbperpage - 1))) && 1035 (rel_block + nblocks + addnblocks > sbi->nbperpage)) 1036 return -ENOSPC; 1037 1038 /* get the last block of the current allocation */ 1039 lastblkno = blkno + nblocks - 1; 1040 1041 /* determine the block number of the block following 1042 * the existing allocation. 1043 */ 1044 extblkno = lastblkno + 1; 1045 1046 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP); 1047 1048 /* better be within the file system */ 1049 bmp = sbi->bmap; 1050 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) { 1051 IREAD_UNLOCK(ipbmap); 1052 jfs_error(ip->i_sb, 1053 "dbExtend: the block is outside the filesystem"); 1054 return -EIO; 1055 } 1056 1057 /* we'll attempt to extend the current allocation in place by 1058 * allocating the additional blocks as the blocks immediately 1059 * following the current allocation. we only try to extend the 1060 * current allocation in place if the number of additional blocks 1061 * can fit into a dmap, the last block of the current allocation 1062 * is not the last block of the file system, and the start of the 1063 * inplace extension is not on an allocation group boundary. 1064 */ 1065 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize || 1066 (extblkno & (bmp->db_agsize - 1)) == 0) { 1067 IREAD_UNLOCK(ipbmap); 1068 return -ENOSPC; 1069 } 1070 1071 /* get the buffer for the dmap containing the first block 1072 * of the extension. 1073 */ 1074 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage); 1075 mp = read_metapage(ipbmap, lblkno, PSIZE, 0); 1076 if (mp == NULL) { 1077 IREAD_UNLOCK(ipbmap); 1078 return -EIO; 1079 } 1080 1081 dp = (struct dmap *) mp->data; 1082 1083 /* try to allocate the blocks immediately following the 1084 * current allocation. 1085 */ 1086 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks); 1087 1088 IREAD_UNLOCK(ipbmap); 1089 1090 /* were we successful ? */ 1091 if (rc == 0) 1092 write_metapage(mp); 1093 else 1094 /* we were not successful */ 1095 release_metapage(mp); 1096 1097 1098 return (rc); 1099} 1100 1101 1102/* 1103 * NAME: dbAllocNext() 1104 * 1105 * FUNCTION: attempt to allocate the blocks of the specified block 1106 * range within a dmap. 1107 * 1108 * PARAMETERS: 1109 * bmp - pointer to bmap descriptor 1110 * dp - pointer to dmap. 1111 * blkno - starting block number of the range. 1112 * nblocks - number of contiguous free blocks of the range. 1113 * 1114 * RETURN VALUES: 1115 * 0 - success 1116 * -ENOSPC - insufficient disk resources 1117 * -EIO - i/o error 1118 * 1119 * serialization: IREAD_LOCK(ipbmap) held on entry/exit; 1120 */ 1121static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno, 1122 int nblocks) 1123{ 1124 int dbitno, word, rembits, nb, nwords, wbitno, nw; 1125 int l2size; 1126 s8 *leaf; 1127 u32 mask; 1128 1129 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) { 1130 jfs_error(bmp->db_ipbmap->i_sb, 1131 "dbAllocNext: Corrupt dmap page"); 1132 return -EIO; 1133 } 1134 1135 /* pick up a pointer to the leaves of the dmap tree. 1136 */ 1137 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx); 1138 1139 /* determine the bit number and word within the dmap of the 1140 * starting block. 1141 */ 1142 dbitno = blkno & (BPERDMAP - 1); 1143 word = dbitno >> L2DBWORD; 1144 1145 /* check if the specified block range is contained within 1146 * this dmap. 1147 */ 1148 if (dbitno + nblocks > BPERDMAP) 1149 return -ENOSPC; 1150 1151 /* check if the starting leaf indicates that anything 1152 * is free. 1153 */ 1154 if (leaf[word] == NOFREE) 1155 return -ENOSPC; 1156 1157 /* check the dmaps words corresponding to block range to see 1158 * if the block range is free. not all bits of the first and 1159 * last words may be contained within the block range. if this 1160 * is the case, we'll work against those words (i.e. partial first 1161 * and/or last) on an individual basis (a single pass) and examine 1162 * the actual bits to determine if they are free. a single pass 1163 * will be used for all dmap words fully contained within the 1164 * specified range. within this pass, the leaves of the dmap 1165 * tree will be examined to determine if the blocks are free. a 1166 * single leaf may describe the free space of multiple dmap 1167 * words, so we may visit only a subset of the actual leaves 1168 * corresponding to the dmap words of the block range. 1169 */ 1170 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) { 1171 /* determine the bit number within the word and 1172 * the number of bits within the word. 1173 */ 1174 wbitno = dbitno & (DBWORD - 1); 1175 nb = min(rembits, DBWORD - wbitno); 1176 1177 /* check if only part of the word is to be examined. 1178 */ 1179 if (nb < DBWORD) { 1180 /* check if the bits are free. 1181 */ 1182 mask = (ONES << (DBWORD - nb) >> wbitno); 1183 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask) 1184 return -ENOSPC; 1185 1186 word += 1; 1187 } else { 1188 /* one or more dmap words are fully contained 1189 * within the block range. determine how many 1190 * words and how many bits. 1191 */ 1192 nwords = rembits >> L2DBWORD; 1193 nb = nwords << L2DBWORD; 1194 1195 /* now examine the appropriate leaves to determine 1196 * if the blocks are free. 1197 */ 1198 while (nwords > 0) { 1199 /* does the leaf describe any free space ? 1200 */ 1201 if (leaf[word] < BUDMIN) 1202 return -ENOSPC; 1203 1204 /* determine the l2 number of bits provided 1205 * by this leaf. 1206 */ 1207 l2size = 1208 min((int)leaf[word], NLSTOL2BSZ(nwords)); 1209 1210 /* determine how many words were handled. 1211 */ 1212 nw = BUDSIZE(l2size, BUDMIN); 1213 1214 nwords -= nw; 1215 word += nw; 1216 } 1217 } 1218 } 1219 1220 /* allocate the blocks. 1221 */ 1222 return (dbAllocDmap(bmp, dp, blkno, nblocks)); 1223} 1224 1225 1226/* 1227 * NAME: dbAllocNear() 1228 * 1229 * FUNCTION: attempt to allocate a number of contiguous free blocks near 1230 * a specified block (hint) within a dmap. 1231 * 1232 * starting with the dmap leaf that covers the hint, we'll 1233 * check the next four contiguous leaves for sufficient free 1234 * space. if sufficient free space is found, we'll allocate 1235 * the desired free space. 1236 * 1237 * PARAMETERS: 1238 * bmp - pointer to bmap descriptor 1239 * dp - pointer to dmap. 1240 * blkno - block number to allocate near. 1241 * nblocks - actual number of contiguous free blocks desired. 1242 * l2nb - log2 number of contiguous free blocks desired. 1243 * results - on successful return, set to the starting block number 1244 * of the newly allocated range. 1245 * 1246 * RETURN VALUES: 1247 * 0 - success 1248 * -ENOSPC - insufficient disk resources 1249 * -EIO - i/o error 1250 * 1251 * serialization: IREAD_LOCK(ipbmap) held on entry/exit; 1252 */ 1253static int 1254dbAllocNear(struct bmap * bmp, 1255 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results) 1256{ 1257 int word, lword, rc; 1258 s8 *leaf; 1259 1260 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) { 1261 jfs_error(bmp->db_ipbmap->i_sb, 1262 "dbAllocNear: Corrupt dmap page"); 1263 return -EIO; 1264 } 1265 1266 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx); 1267 1268 /* determine the word within the dmap that holds the hint 1269 * (i.e. blkno). also, determine the last word in the dmap 1270 * that we'll include in our examination. 1271 */ 1272 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD; 1273 lword = min(word + 4, LPERDMAP); 1274 1275 /* examine the leaves for sufficient free space. 1276 */ 1277 for (; word < lword; word++) { 1278 /* does the leaf describe sufficient free space ? 1279 */ 1280 if (leaf[word] < l2nb) 1281 continue; 1282 1283 /* determine the block number within the file system 1284 * of the first block described by this dmap word. 1285 */ 1286 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD); 1287 1288 /* if not all bits of the dmap word are free, get the 1289 * starting bit number within the dmap word of the required 1290 * string of free bits and adjust the block number with the 1291 * value. 1292 */ 1293 if (leaf[word] < BUDMIN) 1294 blkno += 1295 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb); 1296 1297 /* allocate the blocks. 1298 */ 1299 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0) 1300 *results = blkno; 1301 1302 return (rc); 1303 } 1304 1305 return -ENOSPC; 1306} 1307 1308 1309/* 1310 * NAME: dbAllocAG() 1311 * 1312 * FUNCTION: attempt to allocate the specified number of contiguous 1313 * free blocks within the specified allocation group. 1314 * 1315 * unless the allocation group size is equal to the number 1316 * of blocks per dmap, the dmap control pages will be used to 1317 * find the required free space, if available. we start the 1318 * search at the highest dmap control page level which 1319 * distinctly describes the allocation group's free space 1320 * (i.e. the highest level at which the allocation group's 1321 * free space is not mixed in with that of any other group). 1322 * in addition, we start the search within this level at a 1323 * height of the dmapctl dmtree at which the nodes distinctly 1324 * describe the allocation group's free space. at this height, 1325 * the allocation group's free space may be represented by 1 1326 * or two sub-trees, depending on the allocation group size. 1327 * we search the top nodes of these subtrees left to right for 1328 * sufficient free space. if sufficient free space is found, 1329 * the subtree is searched to find the leftmost leaf that 1330 * has free space. once we have made it to the leaf, we 1331 * move the search to the next lower level dmap control page 1332 * corresponding to this leaf. we continue down the dmap control 1333 * pages until we find the dmap that contains or starts the 1334 * sufficient free space and we allocate at this dmap. 1335 * 1336 * if the allocation group size is equal to the dmap size, 1337 * we'll start at the dmap corresponding to the allocation 1338 * group and attempt the allocation at this level. 1339 * 1340 * the dmap control page search is also not performed if the 1341 * allocation group is completely free and we go to the first 1342 * dmap of the allocation group to do the allocation. this is 1343 * done because the allocation group may be part (not the first 1344 * part) of a larger binary buddy system, causing the dmap 1345 * control pages to indicate no free space (NOFREE) within 1346 * the allocation group. 1347 * 1348 * PARAMETERS: 1349 * bmp - pointer to bmap descriptor 1350 * agno - allocation group number. 1351 * nblocks - actual number of contiguous free blocks desired. 1352 * l2nb - log2 number of contiguous free blocks desired. 1353 * results - on successful return, set to the starting block number 1354 * of the newly allocated range. 1355 * 1356 * RETURN VALUES: 1357 * 0 - success 1358 * -ENOSPC - insufficient disk resources 1359 * -EIO - i/o error 1360 * 1361 * note: IWRITE_LOCK(ipmap) held on entry/exit; 1362 */ 1363static int 1364dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results) 1365{ 1366 struct metapage *mp; 1367 struct dmapctl *dcp; 1368 int rc, ti, i, k, m, n, agperlev; 1369 s64 blkno, lblkno; 1370 int budmin; 1371 1372 /* allocation request should not be for more than the 1373 * allocation group size. 1374 */ 1375 if (l2nb > bmp->db_agl2size) { 1376 jfs_error(bmp->db_ipbmap->i_sb, 1377 "dbAllocAG: allocation request is larger than the " 1378 "allocation group size"); 1379 return -EIO; 1380 } 1381 1382 /* determine the starting block number of the allocation 1383 * group. 1384 */ 1385 blkno = (s64) agno << bmp->db_agl2size; 1386 1387 /* check if the allocation group size is the minimum allocation 1388 * group size or if the allocation group is completely free. if 1389 * the allocation group size is the minimum size of BPERDMAP (i.e. 1390 * 1 dmap), there is no need to search the dmap control page (below) 1391 * that fully describes the allocation group since the allocation 1392 * group is already fully described by a dmap. in this case, we 1393 * just call dbAllocCtl() to search the dmap tree and allocate the 1394 * required space if available. 1395 * 1396 * if the allocation group is completely free, dbAllocCtl() is 1397 * also called to allocate the required space. this is done for 1398 * two reasons. first, it makes no sense searching the dmap control 1399 * pages for free space when we know that free space exists. second, 1400 * the dmap control pages may indicate that the allocation group 1401 * has no free space if the allocation group is part (not the first 1402 * part) of a larger binary buddy system. 1403 */ 1404 if (bmp->db_agsize == BPERDMAP 1405 || bmp->db_agfree[agno] == bmp->db_agsize) { 1406 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results); 1407 if ((rc == -ENOSPC) && 1408 (bmp->db_agfree[agno] == bmp->db_agsize)) { 1409 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n", 1410 (unsigned long long) blkno, 1411 (unsigned long long) nblocks); 1412 jfs_error(bmp->db_ipbmap->i_sb, 1413 "dbAllocAG: dbAllocCtl failed in free AG"); 1414 } 1415 return (rc); 1416 } 1417 1418 /* the buffer for the dmap control page that fully describes the 1419 * allocation group. 1420 */ 1421 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel); 1422 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0); 1423 if (mp == NULL) 1424 return -EIO; 1425 dcp = (struct dmapctl *) mp->data; 1426 budmin = dcp->budmin; 1427 1428 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) { 1429 jfs_error(bmp->db_ipbmap->i_sb, 1430 "dbAllocAG: Corrupt dmapctl page"); 1431 release_metapage(mp); 1432 return -EIO; 1433 } 1434 1435 /* search the subtree(s) of the dmap control page that describes 1436 * the allocation group, looking for sufficient free space. to begin, 1437 * determine how many allocation groups are represented in a dmap 1438 * control page at the control page level (i.e. L0, L1, L2) that 1439 * fully describes an allocation group. next, determine the starting 1440 * tree index of this allocation group within the control page. 1441 */ 1442 agperlev = 1443 (1 << (L2LPERCTL - (bmp->db_agheigth << 1))) / bmp->db_agwidth; 1444 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1)); 1445 1446 /* dmap control page trees fan-out by 4 and a single allocation 1447 * group may be described by 1 or 2 subtrees within the ag level 1448 * dmap control page, depending upon the ag size. examine the ag's 1449 * subtrees for sufficient free space, starting with the leftmost 1450 * subtree. 1451 */ 1452 for (i = 0; i < bmp->db_agwidth; i++, ti++) { 1453 /* is there sufficient free space ? 1454 */ 1455 if (l2nb > dcp->stree[ti]) 1456 continue; 1457 1458 /* sufficient free space found in a subtree. now search down 1459 * the subtree to find the leftmost leaf that describes this 1460 * free space. 1461 */ 1462 for (k = bmp->db_agheigth; k > 0; k--) { 1463 for (n = 0, m = (ti << 2) + 1; n < 4; n++) { 1464 if (l2nb <= dcp->stree[m + n]) { 1465 ti = m + n; 1466 break; 1467 } 1468 } 1469 if (n == 4) { 1470 jfs_error(bmp->db_ipbmap->i_sb, 1471 "dbAllocAG: failed descending stree"); 1472 release_metapage(mp); 1473 return -EIO; 1474 } 1475 } 1476 1477 /* determine the block number within the file system 1478 * that corresponds to this leaf. 1479 */ 1480 if (bmp->db_aglevel == 2) 1481 blkno = 0; 1482 else if (bmp->db_aglevel == 1) 1483 blkno &= ~(MAXL1SIZE - 1); 1484 else /* bmp->db_aglevel == 0 */ 1485 blkno &= ~(MAXL0SIZE - 1); 1486 1487 blkno += 1488 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin; 1489 1490 /* release the buffer in preparation for going down 1491 * the next level of dmap control pages. 1492 */ 1493 release_metapage(mp); 1494 1495 /* check if we need to continue to search down the lower 1496 * level dmap control pages. we need to if the number of 1497 * blocks required is less than maximum number of blocks 1498 * described at the next lower level. 1499 */ 1500 if (l2nb < budmin) { 1501 1502 /* search the lower level dmap control pages to get 1503 * the starting block number of the dmap that 1504 * contains or starts off the free space. 1505 */ 1506 if ((rc = 1507 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1, 1508 &blkno))) { 1509 if (rc == -ENOSPC) { 1510 jfs_error(bmp->db_ipbmap->i_sb, 1511 "dbAllocAG: control page " 1512 "inconsistent"); 1513 return -EIO; 1514 } 1515 return (rc); 1516 } 1517 } 1518 1519 /* allocate the blocks. 1520 */ 1521 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results); 1522 if (rc == -ENOSPC) { 1523 jfs_error(bmp->db_ipbmap->i_sb, 1524 "dbAllocAG: unable to allocate blocks"); 1525 rc = -EIO; 1526 } 1527 return (rc); 1528 } 1529 1530 /* no space in the allocation group. release the buffer and 1531 * return -ENOSPC. 1532 */ 1533 release_metapage(mp); 1534 1535 return -ENOSPC; 1536} 1537 1538 1539/* 1540 * NAME: dbAllocAny() 1541 * 1542 * FUNCTION: attempt to allocate the specified number of contiguous 1543 * free blocks anywhere in the file system. 1544 * 1545 * dbAllocAny() attempts to find the sufficient free space by 1546 * searching down the dmap control pages, starting with the 1547 * highest level (i.e. L0, L1, L2) control page. if free space 1548 * large enough to satisfy the desired free space is found, the 1549 * desired free space is allocated. 1550 * 1551 * PARAMETERS: 1552 * bmp - pointer to bmap descriptor 1553 * nblocks - actual number of contiguous free blocks desired. 1554 * l2nb - log2 number of contiguous free blocks desired. 1555 * results - on successful return, set to the starting block number 1556 * of the newly allocated range. 1557 * 1558 * RETURN VALUES: 1559 * 0 - success 1560 * -ENOSPC - insufficient disk resources 1561 * -EIO - i/o error 1562 * 1563 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit; 1564 */ 1565static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results) 1566{ 1567 int rc; 1568 s64 blkno = 0; 1569 1570 /* starting with the top level dmap control page, search 1571 * down the dmap control levels for sufficient free space. 1572 * if free space is found, dbFindCtl() returns the starting 1573 * block number of the dmap that contains or starts off the 1574 * range of free space. 1575 */ 1576 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno))) 1577 return (rc); 1578 1579 /* allocate the blocks. 1580 */ 1581 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results); 1582 if (rc == -ENOSPC) { 1583 jfs_error(bmp->db_ipbmap->i_sb, 1584 "dbAllocAny: unable to allocate blocks"); 1585 return -EIO; 1586 } 1587 return (rc); 1588} 1589 1590 1591/* 1592 * NAME: dbFindCtl() 1593 * 1594 * FUNCTION: starting at a specified dmap control page level and block 1595 * number, search down the dmap control levels for a range of 1596 * contiguous free blocks large enough to satisfy an allocation 1597 * request for the specified number of free blocks. 1598 * 1599 * if sufficient contiguous free blocks are found, this routine 1600 * returns the starting block number within a dmap page that 1601 * contains or starts a range of contiqious free blocks that 1602 * is sufficient in size. 1603 * 1604 * PARAMETERS: 1605 * bmp - pointer to bmap descriptor 1606 * level - starting dmap control page level. 1607 * l2nb - log2 number of contiguous free blocks desired. 1608 * *blkno - on entry, starting block number for conducting the search. 1609 * on successful return, the first block within a dmap page 1610 * that contains or starts a range of contiguous free blocks. 1611 * 1612 * RETURN VALUES: 1613 * 0 - success 1614 * -ENOSPC - insufficient disk resources 1615 * -EIO - i/o error 1616 * 1617 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit; 1618 */ 1619static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno) 1620{ 1621 int rc, leafidx, lev; 1622 s64 b, lblkno; 1623 struct dmapctl *dcp; 1624 int budmin; 1625 struct metapage *mp; 1626 1627 /* starting at the specified dmap control page level and block 1628 * number, search down the dmap control levels for the starting 1629 * block number of a dmap page that contains or starts off 1630 * sufficient free blocks. 1631 */ 1632 for (lev = level, b = *blkno; lev >= 0; lev--) { 1633 /* get the buffer of the dmap control page for the block 1634 * number and level (i.e. L0, L1, L2). 1635 */ 1636 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev); 1637 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0); 1638 if (mp == NULL) 1639 return -EIO; 1640 dcp = (struct dmapctl *) mp->data; 1641 budmin = dcp->budmin; 1642 1643 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) { 1644 jfs_error(bmp->db_ipbmap->i_sb, 1645 "dbFindCtl: Corrupt dmapctl page"); 1646 release_metapage(mp); 1647 return -EIO; 1648 } 1649 1650 /* search the tree within the dmap control page for 1651 * sufficent free space. if sufficient free space is found, 1652 * dbFindLeaf() returns the index of the leaf at which 1653 * free space was found. 1654 */ 1655 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx); 1656 1657 /* release the buffer. 1658 */ 1659 release_metapage(mp); 1660 1661 /* space found ? 1662 */ 1663 if (rc) { 1664 if (lev != level) { 1665 jfs_error(bmp->db_ipbmap->i_sb, 1666 "dbFindCtl: dmap inconsistent"); 1667 return -EIO; 1668 } 1669 return -ENOSPC; 1670 } 1671 1672 /* adjust the block number to reflect the location within 1673 * the dmap control page (i.e. the leaf) at which free 1674 * space was found. 1675 */ 1676 b += (((s64) leafidx) << budmin); 1677 1678 /* we stop the search at this dmap control page level if 1679 * the number of blocks required is greater than or equal 1680 * to the maximum number of blocks described at the next 1681 * (lower) level. 1682 */ 1683 if (l2nb >= budmin) 1684 break; 1685 } 1686 1687 *blkno = b; 1688 return (0); 1689} 1690 1691 1692/* 1693 * NAME: dbAllocCtl() 1694 * 1695 * FUNCTION: attempt to allocate a specified number of contiguous 1696 * blocks starting within a specific dmap. 1697 * 1698 * this routine is called by higher level routines that search 1699 * the dmap control pages above the actual dmaps for contiguous 1700 * free space. the result of successful searches by these 1701 * routines are the starting block numbers within dmaps, with 1702 * the dmaps themselves containing the desired contiguous free 1703 * space or starting a contiguous free space of desired size 1704 * that is made up of the blocks of one or more dmaps. these 1705 * calls should not fail due to insufficent resources. 1706 * 1707 * this routine is called in some cases where it is not known 1708 * whether it will fail due to insufficient resources. more 1709 * specifically, this occurs when allocating from an allocation 1710 * group whose size is equal to the number of blocks per dmap. 1711 * in this case, the dmap control pages are not examined prior 1712 * to calling this routine (to save pathlength) and the call 1713 * might fail. 1714 * 1715 * for a request size that fits within a dmap, this routine relies 1716 * upon the dmap's dmtree to find the requested contiguous free 1717 * space. for request sizes that are larger than a dmap, the 1718 * requested free space will start at the first block of the 1719 * first dmap (i.e. blkno). 1720 * 1721 * PARAMETERS: 1722 * bmp - pointer to bmap descriptor 1723 * nblocks - actual number of contiguous free blocks to allocate. 1724 * l2nb - log2 number of contiguous free blocks to allocate. 1725 * blkno - starting block number of the dmap to start the allocation 1726 * from. 1727 * results - on successful return, set to the starting block number 1728 * of the newly allocated range. 1729 * 1730 * RETURN VALUES: 1731 * 0 - success 1732 * -ENOSPC - insufficient disk resources 1733 * -EIO - i/o error 1734 * 1735 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit; 1736 */ 1737static int 1738dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results) 1739{ 1740 int rc, nb; 1741 s64 b, lblkno, n; 1742 struct metapage *mp; 1743 struct dmap *dp; 1744 1745 /* check if the allocation request is confined to a single dmap. 1746 */ 1747 if (l2nb <= L2BPERDMAP) { 1748 /* get the buffer for the dmap. 1749 */ 1750 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage); 1751 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0); 1752 if (mp == NULL) 1753 return -EIO; 1754 dp = (struct dmap *) mp->data; 1755 1756 /* try to allocate the blocks. 1757 */ 1758 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results); 1759 if (rc == 0) 1760 mark_metapage_dirty(mp); 1761 1762 release_metapage(mp); 1763 1764 return (rc); 1765 } 1766 1767 /* allocation request involving multiple dmaps. it must start on 1768 * a dmap boundary. 1769 */ 1770 assert((blkno & (BPERDMAP - 1)) == 0); 1771 1772 /* allocate the blocks dmap by dmap. 1773 */ 1774 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) { 1775 /* get the buffer for the dmap. 1776 */ 1777 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage); 1778 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0); 1779 if (mp == NULL) { 1780 rc = -EIO; 1781 goto backout; 1782 } 1783 dp = (struct dmap *) mp->data; 1784 1785 /* the dmap better be all free. 1786 */ 1787 if (dp->tree.stree[ROOT] != L2BPERDMAP) { 1788 release_metapage(mp); 1789 jfs_error(bmp->db_ipbmap->i_sb, 1790 "dbAllocCtl: the dmap is not all free"); 1791 rc = -EIO; 1792 goto backout; 1793 } 1794 1795 /* determine how many blocks to allocate from this dmap. 1796 */ 1797 nb = min(n, (s64)BPERDMAP); 1798 1799 /* allocate the blocks from the dmap. 1800 */ 1801 if ((rc = dbAllocDmap(bmp, dp, b, nb))) { 1802 release_metapage(mp); 1803 goto backout; 1804 } 1805 1806 /* write the buffer. 1807 */ 1808 write_metapage(mp); 1809 } 1810 1811 /* set the results (starting block number) and return. 1812 */ 1813 *results = blkno; 1814 return (0); 1815 1816 /* something failed in handling an allocation request involving 1817 * multiple dmaps. we'll try to clean up by backing out any 1818 * allocation that has already happened for this request. if 1819 * we fail in backing out the allocation, we'll mark the file 1820 * system to indicate that blocks have been leaked. 1821 */ 1822 backout: 1823 1824 /* try to backout the allocations dmap by dmap. 1825 */ 1826 for (n = nblocks - n, b = blkno; n > 0; 1827 n -= BPERDMAP, b += BPERDMAP) { 1828 /* get the buffer for this dmap. 1829 */ 1830 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage); 1831 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0); 1832 if (mp == NULL) { 1833 /* could not back out. mark the file system 1834 * to indicate that we have leaked blocks. 1835 */ 1836 jfs_error(bmp->db_ipbmap->i_sb, 1837 "dbAllocCtl: I/O Error: Block Leakage."); 1838 continue; 1839 } 1840 dp = (struct dmap *) mp->data; 1841 1842 /* free the blocks is this dmap. 1843 */ 1844 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) { 1845 /* could not back out. mark the file system 1846 * to indicate that we have leaked blocks. 1847 */ 1848 release_metapage(mp); 1849 jfs_error(bmp->db_ipbmap->i_sb, 1850 "dbAllocCtl: Block Leakage."); 1851 continue; 1852 } 1853 1854 /* write the buffer. 1855 */ 1856 write_metapage(mp); 1857 } 1858 1859 return (rc); 1860} 1861 1862 1863/* 1864 * NAME: dbAllocDmapLev() 1865 * 1866 * FUNCTION: attempt to allocate a specified number of contiguous blocks 1867 * from a specified dmap. 1868 * 1869 * this routine checks if the contiguous blocks are available. 1870 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is 1871 * returned. 1872 * 1873 * PARAMETERS: 1874 * mp - pointer to bmap descriptor 1875 * dp - pointer to dmap to attempt to allocate blocks from. 1876 * l2nb - log2 number of contiguous block desired. 1877 * nblocks - actual number of contiguous block desired. 1878 * results - on successful return, set to the starting block number 1879 * of the newly allocated range. 1880 * 1881 * RETURN VALUES: 1882 * 0 - success 1883 * -ENOSPC - insufficient disk resources 1884 * -EIO - i/o error 1885 * 1886 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or 1887 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit; 1888 */ 1889static int 1890dbAllocDmapLev(struct bmap * bmp, 1891 struct dmap * dp, int nblocks, int l2nb, s64 * results) 1892{ 1893 s64 blkno; 1894 int leafidx, rc; 1895 1896 /* can't be more than a dmaps worth of blocks */ 1897 assert(l2nb <= L2BPERDMAP); 1898 1899 /* search the tree within the dmap page for sufficient 1900 * free space. if sufficient free space is found, dbFindLeaf() 1901 * returns the index of the leaf at which free space was found. 1902 */ 1903 if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx)) 1904 return -ENOSPC; 1905 1906 /* determine the block number within the file system corresponding 1907 * to the leaf at which free space was found. 1908 */ 1909 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD); 1910 1911 /* if not all bits of the dmap word are free, get the starting 1912 * bit number within the dmap word of the required string of free 1913 * bits and adjust the block number with this value. 1914 */ 1915 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN) 1916 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb); 1917 1918 /* allocate the blocks */ 1919 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0) 1920 *results = blkno; 1921 1922 return (rc); 1923} 1924 1925 1926/* 1927 * NAME: dbAllocDmap() 1928 * 1929 * FUNCTION: adjust the disk allocation map to reflect the allocation 1930 * of a specified block range within a dmap. 1931 * 1932 * this routine allocates the specified blocks from the dmap 1933 * through a call to dbAllocBits(). if the allocation of the 1934 * block range causes the maximum string of free blocks within 1935 * the dmap to change (i.e. the value of the root of the dmap's 1936 * dmtree), this routine will cause this change to be reflected 1937 * up through the appropriate levels of the dmap control pages 1938 * by a call to dbAdjCtl() for the L0 dmap control page that 1939 * covers this dmap. 1940 * 1941 * PARAMETERS: 1942 * bmp - pointer to bmap descriptor 1943 * dp - pointer to dmap to allocate the block range from. 1944 * blkno - starting block number of the block to be allocated. 1945 * nblocks - number of blocks to be allocated. 1946 * 1947 * RETURN VALUES: 1948 * 0 - success 1949 * -EIO - i/o error 1950 * 1951 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit; 1952 */ 1953static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno, 1954 int nblocks) 1955{ 1956 s8 oldroot; 1957 int rc; 1958 1959 /* save the current value of the root (i.e. maximum free string) 1960 * of the dmap tree. 1961 */ 1962 oldroot = dp->tree.stree[ROOT]; 1963 1964 /* allocate the specified (blocks) bits */ 1965 dbAllocBits(bmp, dp, blkno, nblocks); 1966 1967 /* if the root has not changed, done. */ 1968 if (dp->tree.stree[ROOT] == oldroot) 1969 return (0); 1970 1971 /* root changed. bubble the change up to the dmap control pages. 1972 * if the adjustment of the upper level control pages fails, 1973 * backout the bit allocation (thus making everything consistent). 1974 */ 1975 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0))) 1976 dbFreeBits(bmp, dp, blkno, nblocks); 1977 1978 return (rc); 1979} 1980 1981 1982/* 1983 * NAME: dbFreeDmap() 1984 * 1985 * FUNCTION: adjust the disk allocation map to reflect the allocation 1986 * of a specified block range within a dmap. 1987 * 1988 * this routine frees the specified blocks from the dmap through 1989 * a call to dbFreeBits(). if the deallocation of the block range 1990 * causes the maximum string of free blocks within the dmap to 1991 * change (i.e. the value of the root of the dmap's dmtree), this 1992 * routine will cause this change to be reflected up through the 1993 * appropriate levels of the dmap control pages by a call to 1994 * dbAdjCtl() for the L0 dmap control page that covers this dmap. 1995 * 1996 * PARAMETERS: 1997 * bmp - pointer to bmap descriptor 1998 * dp - pointer to dmap to free the block range from. 1999 * blkno - starting block number of the block to be freed. 2000 * nblocks - number of blocks to be freed.
2001 * 2002 * RETURN VALUES: 2003 * 0 - success 2004 * -EIO - i/o error 2005 * 2006 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit; 2007 */ 2008static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno, 2009 int nblocks) 2010{ 2011 s8 oldroot; 2012 int rc = 0, word; 2013 2014 /* save the current value of the root (i.e. maximum free string) 2015 * of the dmap tree. 2016 */ 2017 oldroot = dp->tree.stree[ROOT]; 2018 2019 /* free the specified (blocks) bits */ 2020 rc = dbFreeBits(bmp, dp, blkno, nblocks); 2021 2022 /* if error or the root has not changed, done. */ 2023 if (rc || (dp->tree.stree[ROOT] == oldroot)) 2024 return (rc); 2025 2026 /* root changed. bubble the change up to the dmap control pages. 2027 * if the adjustment of the upper level control pages fails, 2028 * backout the deallocation. 2029 */ 2030 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) { 2031 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD; 2032 2033 /* as part of backing out the deallocation, we will have 2034 * to back split the dmap tree if the deallocation caused 2035 * the freed blocks to become part of a larger binary buddy 2036 * system. 2037 */ 2038 if (dp->tree.stree[word] == NOFREE) 2039 dbBackSplit((dmtree_t *) & dp->tree, word); 2040 2041 dbAllocBits(bmp, dp, blkno, nblocks); 2042 } 2043 2044 return (rc); 2045} 2046 2047 2048/* 2049 * NAME: dbAllocBits() 2050 * 2051 * FUNCTION: allocate a specified block range from a dmap. 2052 * 2053 * this routine updates the dmap to reflect the working 2054 * state allocation of the specified block range. it directly 2055 * updates the bits of the working map and causes the adjustment 2056 * of the binary buddy system described by the dmap's dmtree 2057 * leaves to reflect the bits allocated. it also causes the 2058 * dmap's dmtree, as a whole, to reflect the allocated range. 2059 * 2060 * PARAMETERS: 2061 * bmp - pointer to bmap descriptor 2062 * dp - pointer to dmap to allocate bits from. 2063 * blkno - starting block number of the bits to be allocated. 2064 * nblocks - number of bits to be allocated. 2065 * 2066 * RETURN VALUES: none 2067 * 2068 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit; 2069 */ 2070static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno, 2071 int nblocks) 2072{ 2073 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno; 2074 dmtree_t *tp = (dmtree_t *) & dp->tree; 2075 int size; 2076 s8 *leaf; 2077 2078 /* pick up a pointer to the leaves of the dmap tree */ 2079 leaf = dp->tree.stree + LEAFIND; 2080 2081 /* determine the bit number and word within the dmap of the 2082 * starting block. 2083 */ 2084 dbitno = blkno & (BPERDMAP - 1); 2085 word = dbitno >> L2DBWORD; 2086 2087 /* block range better be within the dmap */ 2088 assert(dbitno + nblocks <= BPERDMAP); 2089 2090 /* allocate the bits of the dmap's words corresponding to the block 2091 * range. not all bits of the first and last words may be contained 2092 * within the block range. if this is the case, we'll work against 2093 * those words (i.e. partial first and/or last) on an individual basis 2094 * (a single pass), allocating the bits of interest by hand and 2095 * updating the leaf corresponding to the dmap word. a single pass 2096 * will be used for all dmap words fully contained within the 2097 * specified range. within this pass, the bits of all fully contained 2098 * dmap words will be marked as free in a single shot and the leaves 2099 * will be updated. a single leaf may describe the free space of 2100 * multiple dmap words, so we may update only a subset of the actual 2101 * leaves corresponding to the dmap words of the block range. 2102 */ 2103 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) { 2104 /* determine the bit number within the word and 2105 * the number of bits within the word. 2106 */ 2107 wbitno = dbitno & (DBWORD - 1); 2108 nb = min(rembits, DBWORD - wbitno); 2109 2110 /* check if only part of a word is to be allocated. 2111 */ 2112 if (nb < DBWORD) { 2113 /* allocate (set to 1) the appropriate bits within 2114 * this dmap word. 2115 */ 2116 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb) 2117 >> wbitno); 2118 2119 /* update the leaf for this dmap word. in addition 2120 * to setting the leaf value to the binary buddy max 2121 * of the updated dmap word, dbSplit() will split 2122 * the binary system of the leaves if need be. 2123 */ 2124 dbSplit(tp, word, BUDMIN, 2125 dbMaxBud((u8 *) & dp->wmap[word])); 2126 2127 word += 1; 2128 } else { 2129 /* one or more dmap words are fully contained 2130 * within the block range. determine how many 2131 * words and allocate (set to 1) the bits of these 2132 * words. 2133 */ 2134 nwords = rembits >> L2DBWORD; 2135 memset(&dp->wmap[word], (int) ONES, nwords * 4); 2136 2137 /* determine how many bits. 2138 */ 2139 nb = nwords << L2DBWORD; 2140 2141 /* now update the appropriate leaves to reflect 2142 * the allocated words. 2143 */ 2144 for (; nwords > 0; nwords -= nw) { 2145 if (leaf[word] < BUDMIN) { 2146 jfs_error(bmp->db_ipbmap->i_sb, 2147 "dbAllocBits: leaf page " 2148 "corrupt"); 2149 break; 2150 } 2151 2152 /* determine what the leaf value should be 2153 * updated to as the minimum of the l2 number 2154 * of bits being allocated and the l2 number 2155 * of bits currently described by this leaf. 2156 */ 2157 size = min((int)leaf[word], NLSTOL2BSZ(nwords)); 2158 2159 /* update the leaf to reflect the allocation. 2160 * in addition to setting the leaf value to 2161 * NOFREE, dbSplit() will split the binary 2162 * system of the leaves to reflect the current 2163 * allocation (size). 2164 */ 2165 dbSplit(tp, word, size, NOFREE); 2166 2167 /* get the number of dmap words handled */ 2168 nw = BUDSIZE(size, BUDMIN); 2169 word += nw; 2170 } 2171 } 2172 } 2173 2174 /* update the free count for this dmap */ 2175 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks); 2176 2177 BMAP_LOCK(bmp); 2178 2179 /* if this allocation group is completely free, 2180 * update the maximum allocation group number if this allocation 2181 * group is the new max. 2182 */ 2183 agno = blkno >> bmp->db_agl2size; 2184 if (agno > bmp->db_maxag) 2185 bmp->db_maxag = agno; 2186 2187 /* update the free count for the allocation group and map */ 2188 bmp->db_agfree[agno] -= nblocks; 2189 bmp->db_nfree -= nblocks; 2190 2191 BMAP_UNLOCK(bmp); 2192} 2193 2194 2195/* 2196 * NAME: dbFreeBits() 2197 * 2198 * FUNCTION: free a specified block range from a dmap. 2199 * 2200 * this routine updates the dmap to reflect the working 2201 * state allocation of the specified block range. it directly 2202 * updates the bits of the working map and causes the adjustment 2203 * of the binary buddy system described by the dmap's dmtree 2204 * leaves to reflect the bits freed. it also causes the dmap's 2205 * dmtree, as a whole, to reflect the deallocated range. 2206 * 2207 * PARAMETERS: 2208 * bmp - pointer to bmap descriptor 2209 * dp - pointer to dmap to free bits from. 2210 * blkno - starting block number of the bits to be freed. 2211 * nblocks - number of bits to be freed. 2212 * 2213 * RETURN VALUES: 0 for success 2214 * 2215 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit; 2216 */ 2217static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno, 2218 int nblocks) 2219{ 2220 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno; 2221 dmtree_t *tp = (dmtree_t *) & dp->tree; 2222 int rc = 0; 2223 int size; 2224 2225 /* determine the bit number and word within the dmap of the 2226 * starting block. 2227 */ 2228 dbitno = blkno & (BPERDMAP - 1); 2229 word = dbitno >> L2DBWORD; 2230 2231 /* block range better be within the dmap. 2232 */ 2233 assert(dbitno + nblocks <= BPERDMAP); 2234 2235 /* free the bits of the dmaps words corresponding to the block range. 2236 * not all bits of the first and last words may be contained within 2237 * the block range. if this is the case, we'll work against those 2238 * words (i.e. partial first and/or last) on an individual basis 2239 * (a single pass), freeing the bits of interest by hand and updating 2240 * the leaf corresponding to the dmap word. a single pass will be used 2241 * for all dmap words fully contained within the specified range. 2242 * within this pass, the bits of all fully contained dmap words will 2243 * be marked as free in a single shot and the leaves will be updated. a 2244 * single leaf may describe the free space of multiple dmap words, 2245 * so we may update only a subset of the actual leaves corresponding 2246 * to the dmap words of the block range. 2247 * 2248 * dbJoin() is used to update leaf values and will join the binary 2249 * buddy system of the leaves if the new leaf values indicate this 2250 * should be done. 2251 */ 2252 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) { 2253 /* determine the bit number within the word and 2254 * the number of bits within the word. 2255 */ 2256 wbitno = dbitno & (DBWORD - 1); 2257 nb = min(rembits, DBWORD - wbitno); 2258 2259 /* check if only part of a word is to be freed. 2260 */ 2261 if (nb < DBWORD) { 2262 /* free (zero) the appropriate bits within this 2263 * dmap word. 2264 */ 2265 dp->wmap[word] &= 2266 cpu_to_le32(~(ONES << (DBWORD - nb) 2267 >> wbitno)); 2268 2269 /* update the leaf for this dmap word. 2270 */ 2271 rc = dbJoin(tp, word, 2272 dbMaxBud((u8 *) & dp->wmap[word])); 2273 if (rc) 2274 return rc; 2275 2276 word += 1; 2277 } else { 2278 /* one or more dmap words are fully contained 2279 * within the block range. determine how many 2280 * words and free (zero) the bits of these words. 2281 */ 2282 nwords = rembits >> L2DBWORD; 2283 memset(&dp->wmap[word], 0, nwords * 4); 2284 2285 /* determine how many bits. 2286 */ 2287 nb = nwords << L2DBWORD; 2288 2289 /* now update the appropriate leaves to reflect 2290 * the freed words. 2291 */ 2292 for (; nwords > 0; nwords -= nw) { 2293 /* determine what the leaf value should be 2294 * updated to as the minimum of the l2 number 2295 * of bits being freed and the l2 (max) number 2296 * of bits that can be described by this leaf. 2297 */ 2298 size = 2299 min(LITOL2BSZ 2300 (word, L2LPERDMAP, BUDMIN), 2301 NLSTOL2BSZ(nwords)); 2302 2303 /* update the leaf. 2304 */ 2305 rc = dbJoin(tp, word, size); 2306 if (rc) 2307 return rc; 2308 2309 /* get the number of dmap words handled. 2310 */ 2311 nw = BUDSIZE(size, BUDMIN); 2312 word += nw; 2313 } 2314 } 2315 } 2316 2317 /* update the free count for this dmap. 2318 */ 2319 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks); 2320 2321 BMAP_LOCK(bmp); 2322 2323 /* update the free count for the allocation group and 2324 * map. 2325 */ 2326 agno = blkno >> bmp->db_agl2size; 2327 bmp->db_nfree += nblocks; 2328 bmp->db_agfree[agno] += nblocks; 2329 2330 /* check if this allocation group is not completely free and 2331 * if it is currently the maximum (rightmost) allocation group. 2332 * if so, establish the new maximum allocation group number by 2333 * searching left for the first allocation group with allocation. 2334 */ 2335 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) || 2336 (agno == bmp->db_numag - 1 && 2337 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) { 2338 while (bmp->db_maxag > 0) { 2339 bmp->db_maxag -= 1; 2340 if (bmp->db_agfree[bmp->db_maxag] != 2341 bmp->db_agsize) 2342 break; 2343 } 2344 2345 /* re-establish the allocation group preference if the 2346 * current preference is right of the maximum allocation 2347 * group. 2348 */ 2349 if (bmp->db_agpref > bmp->db_maxag) 2350 bmp->db_agpref = bmp->db_maxag; 2351 } 2352 2353 BMAP_UNLOCK(bmp); 2354 2355 return 0; 2356} 2357 2358 2359/* 2360 * NAME: dbAdjCtl() 2361 * 2362 * FUNCTION: adjust a dmap control page at a specified level to reflect 2363 * the change in a lower level dmap or dmap control page's 2364 * maximum string of free blocks (i.e. a change in the root 2365 * of the lower level object's dmtree) due to the allocation 2366 * or deallocation of a range of blocks with a single dmap. 2367 * 2368 * on entry, this routine is provided with the new value of 2369 * the lower level dmap or dmap control page root and the 2370 * starting block number of the block range whose allocation 2371 * or deallocation resulted in the root change. this range 2372 * is respresented by a single leaf of the current dmapctl 2373 * and the leaf will be updated with this value, possibly 2374 * causing a binary buddy system within the leaves to be 2375 * split or joined. the update may also cause the dmapctl's 2376 * dmtree to be updated. 2377 * 2378 * if the adjustment of the dmap control page, itself, causes its 2379 * root to change, this change will be bubbled up to the next dmap 2380 * control level by a recursive call to this routine, specifying 2381 * the new root value and the next dmap control page level to 2382 * be adjusted. 2383 * PARAMETERS: 2384 * bmp - pointer to bmap descriptor 2385 * blkno - the first block of a block range within a dmap. it is 2386 * the allocation or deallocation of this block range that 2387 * requires the dmap control page to be adjusted. 2388 * newval - the new value of the lower level dmap or dmap control 2389 * page root. 2390 * alloc - 'true' if adjustment is due to an allocation. 2391 * level - current level of dmap control page (i.e. L0, L1, L2) to 2392 * be adjusted. 2393 * 2394 * RETURN VALUES: 2395 * 0 - success 2396 * -EIO - i/o error 2397 * 2398 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit; 2399 */ 2400static int 2401dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level) 2402{ 2403 struct metapage *mp; 2404 s8 oldroot; 2405 int oldval; 2406 s64 lblkno; 2407 struct dmapctl *dcp; 2408 int rc, leafno, ti; 2409 2410 /* get the buffer for the dmap control page for the specified 2411 * block number and control page level. 2412 */ 2413 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level); 2414 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0); 2415 if (mp == NULL) 2416 return -EIO; 2417 dcp = (struct dmapctl *) mp->data; 2418 2419 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) { 2420 jfs_error(bmp->db_ipbmap->i_sb, 2421 "dbAdjCtl: Corrupt dmapctl page"); 2422 release_metapage(mp); 2423 return -EIO; 2424 } 2425 2426 /* determine the leaf number corresponding to the block and 2427 * the index within the dmap control tree. 2428 */ 2429 leafno = BLKTOCTLLEAF(blkno, dcp->budmin); 2430 ti = leafno + le32_to_cpu(dcp->leafidx); 2431 2432 /* save the current leaf value and the current root level (i.e. 2433 * maximum l2 free string described by this dmapctl). 2434 */ 2435 oldval = dcp->stree[ti]; 2436 oldroot = dcp->stree[ROOT]; 2437 2438 /* check if this is a control page update for an allocation. 2439 * if so, update the leaf to reflect the new leaf value using 2440 * dbSplit(); otherwise (deallocation), use dbJoin() to udpate 2441 * the leaf with the new value. in addition to updating the 2442 * leaf, dbSplit() will also split the binary buddy system of 2443 * the leaves, if required, and bubble new values within the 2444 * dmapctl tree, if required. similarly, dbJoin() will join 2445 * the binary buddy system of leaves and bubble new values up 2446 * the dmapctl tree as required by the new leaf value. 2447 */ 2448 if (alloc) { 2449 /* check if we are in the middle of a binary buddy 2450 * system. this happens when we are performing the 2451 * first allocation out of an allocation group that 2452 * is part (not the first part) of a larger binary 2453 * buddy system. if we are in the middle, back split 2454 * the system prior to calling dbSplit() which assumes 2455 * that it is at the front of a binary buddy system. 2456 */ 2457 if (oldval == NOFREE) { 2458 rc = dbBackSplit((dmtree_t *) dcp, leafno); 2459 if (rc) 2460 return rc; 2461 oldval = dcp->stree[ti]; 2462 } 2463 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval); 2464 } else { 2465 rc = dbJoin((dmtree_t *) dcp, leafno, newval); 2466 if (rc) 2467 return rc; 2468 } 2469 2470 /* check if the root of the current dmap control page changed due 2471 * to the update and if the current dmap control page is not at 2472 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e. 2473 * root changed and this is not the top level), call this routine 2474 * again (recursion) for the next higher level of the mapping to 2475 * reflect the change in root for the current dmap control page. 2476 */ 2477 if (dcp->stree[ROOT] != oldroot) { 2478 /* are we below the top level of the map. if so, 2479 * bubble the root up to the next higher level. 2480 */ 2481 if (level < bmp->db_maxlevel) { 2482 /* bubble up the new root of this dmap control page to 2483 * the next level. 2484 */ 2485 if ((rc = 2486 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc, 2487 level + 1))) { 2488 /* something went wrong in bubbling up the new 2489 * root value, so backout the changes to the 2490 * current dmap control page. 2491 */ 2492 if (alloc) { 2493 dbJoin((dmtree_t *) dcp, leafno, 2494 oldval); 2495 } else { 2496 /* the dbJoin() above might have 2497 * caused a larger binary buddy system 2498 * to form and we may now be in the 2499 * middle of it. if this is the case, 2500 * back split the buddies. 2501 */ 2502 if (dcp->stree[ti] == NOFREE) 2503 dbBackSplit((dmtree_t *) 2504 dcp, leafno); 2505 dbSplit((dmtree_t *) dcp, leafno, 2506 dcp->budmin, oldval); 2507 } 2508 2509 /* release the buffer and return the error. 2510 */ 2511 release_metapage(mp); 2512 return (rc); 2513 } 2514 } else { 2515 /* we're at the top level of the map. update 2516 * the bmap control page to reflect the size 2517 * of the maximum free buddy system. 2518 */ 2519 assert(level == bmp->db_maxlevel); 2520 if (bmp->db_maxfreebud != oldroot) { 2521 jfs_error(bmp->db_ipbmap->i_sb, 2522 "dbAdjCtl: the maximum free buddy is " 2523 "not the old root"); 2524 } 2525 bmp->db_maxfreebud = dcp->stree[ROOT]; 2526 } 2527 } 2528 2529 /* write the buffer. 2530 */ 2531 write_metapage(mp); 2532 2533 return (0); 2534} 2535 2536 2537/* 2538 * NAME: dbSplit() 2539 * 2540 * FUNCTION: update the leaf of a dmtree with a new value, splitting 2541 * the leaf from the binary buddy system of the dmtree's 2542 * leaves, as required. 2543 * 2544 * PARAMETERS: 2545 * tp - pointer to the tree containing the leaf. 2546 * leafno - the number of the leaf to be updated. 2547 * splitsz - the size the binary buddy system starting at the leaf 2548 * must be split to, specified as the log2 number of blocks. 2549 * newval - the new value for the leaf. 2550 * 2551 * RETURN VALUES: none 2552 * 2553 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit; 2554 */ 2555static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval) 2556{ 2557 int budsz; 2558 int cursz; 2559 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx); 2560 2561 /* check if the leaf needs to be split. 2562 */ 2563 if (leaf[leafno] > tp->dmt_budmin) { 2564 /* the split occurs by cutting the buddy system in half 2565 * at the specified leaf until we reach the specified 2566 * size. pick up the starting split size (current size 2567 * - 1 in l2) and the corresponding buddy size. 2568 */ 2569 cursz = leaf[leafno] - 1; 2570 budsz = BUDSIZE(cursz, tp->dmt_budmin); 2571 2572 /* split until we reach the specified size. 2573 */ 2574 while (cursz >= splitsz) { 2575 /* update the buddy's leaf with its new value. 2576 */ 2577 dbAdjTree(tp, leafno ^ budsz, cursz); 2578 2579 /* on to the next size and buddy. 2580 */ 2581 cursz -= 1; 2582 budsz >>= 1; 2583 } 2584 } 2585 2586 /* adjust the dmap tree to reflect the specified leaf's new 2587 * value. 2588 */ 2589 dbAdjTree(tp, leafno, newval); 2590} 2591 2592 2593/* 2594 * NAME: dbBackSplit() 2595 * 2596 * FUNCTION: back split the binary buddy system of dmtree leaves 2597 * that hold a specified leaf until the specified leaf 2598 * starts its own binary buddy system. 2599 * 2600 * the allocators typically perform allocations at the start 2601 * of binary buddy systems and dbSplit() is used to accomplish 2602 * any required splits. in some cases, however, allocation 2603 * may occur in the middle of a binary system and requires a 2604 * back split, with the split proceeding out from the middle of 2605 * the system (less efficient) rather than the start of the 2606 * system (more efficient). the cases in which a back split 2607 * is required are rare and are limited to the first allocation 2608 * within an allocation group which is a part (not first part) 2609 * of a larger binary buddy system and a few exception cases 2610 * in which a previous join operation must be backed out. 2611 * 2612 * PARAMETERS: 2613 * tp - pointer to the tree containing the leaf. 2614 * leafno - the number of the leaf to be updated. 2615 * 2616 * RETURN VALUES: none 2617 * 2618 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit; 2619 */ 2620static int dbBackSplit(dmtree_t * tp, int leafno) 2621{ 2622 int budsz, bud, w, bsz, size; 2623 int cursz; 2624 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx); 2625 2626 /* leaf should be part (not first part) of a binary 2627 * buddy system. 2628 */ 2629 assert(leaf[leafno] == NOFREE); 2630 2631 /* the back split is accomplished by iteratively finding the leaf 2632 * that starts the buddy system that contains the specified leaf and 2633 * splitting that system in two. this iteration continues until 2634 * the specified leaf becomes the start of a buddy system. 2635 * 2636 * determine maximum possible l2 size for the specified leaf. 2637 */ 2638 size = 2639 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs), 2640 tp->dmt_budmin); 2641 2642 /* determine the number of leaves covered by this size. this 2643 * is the buddy size that we will start with as we search for 2644 * the buddy system that contains the specified leaf. 2645 */ 2646 budsz = BUDSIZE(size, tp->dmt_budmin); 2647 2648 /* back split. 2649 */ 2650 while (leaf[leafno] == NOFREE) { 2651 /* find the leftmost buddy leaf. 2652 */ 2653 for (w = leafno, bsz = budsz;; bsz <<= 1, 2654 w = (w < bud) ? w : bud) { 2655 if (bsz >= le32_to_cpu(tp->dmt_nleafs)) { 2656 jfs_err("JFS: block map error in dbBackSplit"); 2657 return -EIO; 2658 } 2659 2660 /* determine the buddy. 2661 */ 2662 bud = w ^ bsz; 2663 2664 /* check if this buddy is the start of the system. 2665 */ 2666 if (leaf[bud] != NOFREE) { 2667 /* split the leaf at the start of the 2668 * system in two. 2669 */ 2670 cursz = leaf[bud] - 1; 2671 dbSplit(tp, bud, cursz, cursz); 2672 break; 2673 } 2674 } 2675 } 2676 2677 if (leaf[leafno] != size) { 2678 jfs_err("JFS: wrong leaf value in dbBackSplit"); 2679 return -EIO; 2680 } 2681 return 0; 2682} 2683 2684 2685/* 2686 * NAME: dbJoin() 2687 * 2688 * FUNCTION: update the leaf of a dmtree with a new value, joining 2689 * the leaf with other leaves of the dmtree into a multi-leaf 2690 * binary buddy system, as required. 2691 * 2692 * PARAMETERS: 2693 * tp - pointer to the tree containing the leaf. 2694 * leafno - the number of the leaf to be updated. 2695 * newval - the new value for the leaf. 2696 * 2697 * RETURN VALUES: none 2698 */ 2699static int dbJoin(dmtree_t * tp, int leafno, int newval) 2700{ 2701 int budsz, buddy; 2702 s8 *leaf; 2703 2704 /* can the new leaf value require a join with other leaves ? 2705 */ 2706 if (newval >= tp->dmt_budmin) { 2707 /* pickup a pointer to the leaves of the tree. 2708 */ 2709 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx); 2710 2711 /* try to join the specified leaf into a large binary 2712 * buddy system. the join proceeds by attempting to join 2713 * the specified leafno with its buddy (leaf) at new value. 2714 * if the join occurs, we attempt to join the left leaf 2715 * of the joined buddies with its buddy at new value + 1. 2716 * we continue to join until we find a buddy that cannot be 2717 * joined (does not have a value equal to the size of the 2718 * last join) or until all leaves have been joined into a 2719 * single system. 2720 * 2721 * get the buddy size (number of words covered) of 2722 * the new value. 2723 */ 2724 budsz = BUDSIZE(newval, tp->dmt_budmin); 2725 2726 /* try to join. 2727 */ 2728 while (budsz < le32_to_cpu(tp->dmt_nleafs)) { 2729 /* get the buddy leaf. 2730 */ 2731 buddy = leafno ^ budsz; 2732 2733 /* if the leaf's new value is greater than its 2734 * buddy's value, we join no more. 2735 */ 2736 if (newval > leaf[buddy]) 2737 break; 2738 2739 /* It shouldn't be less */ 2740 if (newval < leaf[buddy]) 2741 return -EIO; 2742 2743 /* check which (leafno or buddy) is the left buddy. 2744 * the left buddy gets to claim the blocks resulting 2745 * from the join while the right gets to claim none. 2746 * the left buddy is also eligable to participate in 2747 * a join at the next higher level while the right 2748 * is not. 2749 * 2750 */ 2751 if (leafno < buddy) { 2752 /* leafno is the left buddy. 2753 */ 2754 dbAdjTree(tp, buddy, NOFREE); 2755 } else { 2756 /* buddy is the left buddy and becomes 2757 * leafno. 2758 */ 2759 dbAdjTree(tp, leafno, NOFREE); 2760 leafno = buddy; 2761 } 2762 2763 /* on to try the next join. 2764 */ 2765 newval += 1; 2766 budsz <<= 1; 2767 } 2768 } 2769 2770 /* update the leaf value. 2771 */ 2772 dbAdjTree(tp, leafno, newval); 2773 2774 return 0; 2775} 2776 2777 2778/* 2779 * NAME: dbAdjTree() 2780 * 2781 * FUNCTION: update a leaf of a dmtree with a new value, adjusting 2782 * the dmtree, as required, to reflect the new leaf value. 2783 * the combination of any buddies must already be done before 2784 * this is called. 2785 * 2786 * PARAMETERS: 2787 * tp - pointer to the tree to be adjusted. 2788 * leafno - the number of the leaf to be updated. 2789 * newval - the new value for the leaf. 2790 * 2791 * RETURN VALUES: none 2792 */ 2793static void dbAdjTree(dmtree_t * tp, int leafno, int newval) 2794{ 2795 int lp, pp, k; 2796 int max; 2797 2798 /* pick up the index of the leaf for this leafno. 2799 */ 2800 lp = leafno + le32_to_cpu(tp->dmt_leafidx); 2801 2802 /* is the current value the same as the old value ? if so, 2803 * there is nothing to do. 2804 */ 2805 if (tp->dmt_stree[lp] == newval) 2806 return; 2807 2808 /* set the new value. 2809 */ 2810 tp->dmt_stree[lp] = newval; 2811 2812 /* bubble the new value up the tree as required. 2813 */ 2814 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) { 2815 /* get the index of the first leaf of the 4 leaf 2816 * group containing the specified leaf (leafno). 2817 */ 2818 lp = ((lp - 1) & ~0x03) + 1; 2819 2820 /* get the index of the parent of this 4 leaf group. 2821 */ 2822 pp = (lp - 1) >> 2; 2823 2824 /* determine the maximum of the 4 leaves. 2825 */ 2826 max = TREEMAX(&tp->dmt_stree[lp]); 2827 2828 /* if the maximum of the 4 is the same as the 2829 * parent's value, we're done. 2830 */ 2831 if (tp->dmt_stree[pp] == max) 2832 break; 2833 2834 /* parent gets new value. 2835 */ 2836 tp->dmt_stree[pp] = max; 2837 2838 /* parent becomes leaf for next go-round. 2839 */ 2840 lp = pp; 2841 } 2842} 2843 2844 2845/* 2846 * NAME: dbFindLeaf() 2847 * 2848 * FUNCTION: search a dmtree_t for sufficient free blocks, returning 2849 * the index of a leaf describing the free blocks if 2850 * sufficient free blocks are found. 2851 * 2852 * the search starts at the top of the dmtree_t tree and 2853 * proceeds down the tree to the leftmost leaf with sufficient 2854 * free space. 2855 * 2856 * PARAMETERS: 2857 * tp - pointer to the tree to be searched. 2858 * l2nb - log2 number of free blocks to search for. 2859 * leafidx - return pointer to be set to the index of the leaf 2860 * describing at least l2nb free blocks if sufficient 2861 * free blocks are found. 2862 * 2863 * RETURN VALUES: 2864 * 0 - success 2865 * -ENOSPC - insufficient free blocks. 2866 */ 2867static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx) 2868{ 2869 int ti, n = 0, k, x = 0; 2870 2871 /* first check the root of the tree to see if there is 2872 * sufficient free space. 2873 */ 2874 if (l2nb > tp->dmt_stree[ROOT]) 2875 return -ENOSPC; 2876 2877 /* sufficient free space available. now search down the tree 2878 * starting at the next level for the leftmost leaf that 2879 * describes sufficient free space. 2880 */ 2881 for (k = le32_to_cpu(tp->dmt_height), ti = 1; 2882 k > 0; k--, ti = ((ti + n) << 2) + 1) { 2883 /* search the four nodes at this level, starting from 2884 * the left. 2885 */ 2886 for (x = ti, n = 0; n < 4; n++) { 2887 /* sufficient free space found. move to the next 2888 * level (or quit if this is the last level). 2889 */ 2890 if (l2nb <= tp->dmt_stree[x + n]) 2891 break; 2892 } 2893 2894 /* better have found something since the higher 2895 * levels of the tree said it was here. 2896 */ 2897 assert(n < 4); 2898 } 2899 2900 /* set the return to the leftmost leaf describing sufficient 2901 * free space. 2902 */ 2903 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx); 2904 2905 return (0); 2906} 2907 2908 2909/* 2910 * NAME: dbFindBits() 2911 * 2912 * FUNCTION: find a specified number of binary buddy free bits within a 2913 * dmap bitmap word value. 2914 * 2915 * this routine searches the bitmap value for (1 << l2nb) free 2916 * bits at (1 << l2nb) alignments within the value. 2917 * 2918 * PARAMETERS: 2919 * word - dmap bitmap word value. 2920 * l2nb - number of free bits specified as a log2 number. 2921 * 2922 * RETURN VALUES: 2923 * starting bit number of free bits. 2924 */ 2925static int dbFindBits(u32 word, int l2nb) 2926{ 2927 int bitno, nb; 2928 u32 mask; 2929 2930 /* get the number of bits. 2931 */ 2932 nb = 1 << l2nb; 2933 assert(nb <= DBWORD); 2934 2935 /* complement the word so we can use a mask (i.e. 0s represent 2936 * free bits) and compute the mask. 2937 */ 2938 word = ~word; 2939 mask = ONES << (DBWORD - nb); 2940 2941 /* scan the word for nb free bits at nb alignments. 2942 */ 2943 for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) { 2944 if ((mask & word) == mask) 2945 break; 2946 } 2947 2948 ASSERT(bitno < 32); 2949 2950 /* return the bit number. 2951 */ 2952 return (bitno); 2953} 2954 2955 2956/* 2957 * NAME: dbMaxBud(u8 *cp) 2958 * 2959 * FUNCTION: determine the largest binary buddy string of free 2960 * bits within 32-bits of the map. 2961 * 2962 * PARAMETERS: 2963 * cp - pointer to the 32-bit value. 2964 * 2965 * RETURN VALUES: 2966 * largest binary buddy of free bits within a dmap word. 2967 */ 2968static int dbMaxBud(u8 * cp) 2969{ 2970 signed char tmp1, tmp2; 2971 2972 /* check if the wmap word is all free. if so, the 2973 * free buddy size is BUDMIN. 2974 */ 2975 if (*((uint *) cp) == 0) 2976 return (BUDMIN); 2977 2978 /* check if the wmap word is half free. if so, the 2979 * free buddy size is BUDMIN-1. 2980 */ 2981 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0) 2982 return (BUDMIN - 1); 2983 2984 /* not all free or half free. determine the free buddy 2985 * size thru table lookup using quarters of the wmap word. 2986 */ 2987 tmp1 = max(budtab[cp[2]], budtab[cp[3]]); 2988 tmp2 = max(budtab[cp[0]], budtab[cp[1]]); 2989 return (max(tmp1, tmp2)); 2990} 2991 2992 2993/* 2994 * NAME: cnttz(uint word) 2995 * 2996 * FUNCTION: determine the number of trailing zeros within a 32-bit 2997 * value. 2998 * 2999 * PARAMETERS: 3000 * value - 32-bit value to be examined.
3001 * 3002 * RETURN VALUES: 3003 * count of trailing zeros 3004 */ 3005static int cnttz(u32 word) 3006{ 3007 int n; 3008 3009 for (n = 0; n < 32; n++, word >>= 1) { 3010 if (word & 0x01) 3011 break; 3012 } 3013 3014 return (n); 3015} 3016 3017 3018/* 3019 * NAME: cntlz(u32 value) 3020 * 3021 * FUNCTION: determine the number of leading zeros within a 32-bit 3022 * value. 3023 * 3024 * PARAMETERS: 3025 * value - 32-bit value to be examined. 3026 * 3027 * RETURN VALUES: 3028 * count of leading zeros 3029 */ 3030static int cntlz(u32 value) 3031{ 3032 int n; 3033 3034 for (n = 0; n < 32; n++, value <<= 1) { 3035 if (value & HIGHORDER) 3036 break; 3037 } 3038 return (n); 3039} 3040 3041 3042/* 3043 * NAME: blkstol2(s64 nb) 3044 * 3045 * FUNCTION: convert a block count to its log2 value. if the block 3046 * count is not a l2 multiple, it is rounded up to the next 3047 * larger l2 multiple. 3048 * 3049 * PARAMETERS: 3050 * nb - number of blocks 3051 * 3052 * RETURN VALUES: 3053 * log2 number of blocks 3054 */ 3055static int blkstol2(s64 nb) 3056{ 3057 int l2nb; 3058 s64 mask; /* meant to be signed */ 3059 3060 mask = (s64) 1 << (64 - 1); 3061 3062 /* count the leading bits. 3063 */ 3064 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) { 3065 /* leading bit found. 3066 */ 3067 if (nb & mask) { 3068 /* determine the l2 value. 3069 */ 3070 l2nb = (64 - 1) - l2nb; 3071 3072 /* check if we need to round up. 3073 */ 3074 if (~mask & nb) 3075 l2nb++; 3076 3077 return (l2nb); 3078 } 3079 } 3080 assert(0); 3081 return 0; /* fix compiler warning */ 3082} 3083 3084 3085/* 3086 * NAME: dbAllocBottomUp() 3087 * 3088 * FUNCTION: alloc the specified block range from the working block 3089 * allocation map. 3090 * 3091 * the blocks will be alloc from the working map one dmap 3092 * at a time. 3093 * 3094 * PARAMETERS: 3095 * ip - pointer to in-core inode; 3096 * blkno - starting block number to be freed. 3097 * nblocks - number of blocks to be freed. 3098 * 3099 * RETURN VALUES: 3100 * 0 - success 3101 * -EIO - i/o error 3102 */ 3103int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks) 3104{ 3105 struct metapage *mp; 3106 struct dmap *dp; 3107 int nb, rc; 3108 s64 lblkno, rem; 3109 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap; 3110 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap; 3111 3112 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP); 3113 3114 /* block to be allocated better be within the mapsize. */ 3115 ASSERT(nblocks <= bmp->db_mapsize - blkno); 3116 3117 /* 3118 * allocate the blocks a dmap at a time. 3119 */ 3120 mp = NULL; 3121 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) { 3122 /* release previous dmap if any */ 3123 if (mp) { 3124 write_metapage(mp); 3125 } 3126 3127 /* get the buffer for the current dmap. */ 3128 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage); 3129 mp = read_metapage(ipbmap, lblkno, PSIZE, 0); 3130 if (mp == NULL) { 3131 IREAD_UNLOCK(ipbmap); 3132 return -EIO; 3133 } 3134 dp = (struct dmap *) mp->data; 3135 3136 /* determine the number of blocks to be allocated from 3137 * this dmap. 3138 */ 3139 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1))); 3140 3141 /* allocate the blocks. */ 3142 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) { 3143 release_metapage(mp); 3144 IREAD_UNLOCK(ipbmap); 3145 return (rc); 3146 } 3147 } 3148 3149 /* write the last buffer. */ 3150 write_metapage(mp); 3151 3152 IREAD_UNLOCK(ipbmap); 3153 3154 return (0); 3155} 3156 3157 3158static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno, 3159 int nblocks) 3160{ 3161 int rc; 3162 int dbitno, word, rembits, nb, nwords, wbitno, agno; 3163 s8 oldroot, *leaf; 3164 struct dmaptree *tp = (struct dmaptree *) & dp->tree; 3165 3166 /* save the current value of the root (i.e. maximum free string) 3167 * of the dmap tree. 3168 */ 3169 oldroot = tp->stree[ROOT]; 3170 3171 /* pick up a pointer to the leaves of the dmap tree */ 3172 leaf = tp->stree + LEAFIND; 3173 3174 /* determine the bit number and word within the dmap of the 3175 * starting block. 3176 */ 3177 dbitno = blkno & (BPERDMAP - 1); 3178 word = dbitno >> L2DBWORD; 3179 3180 /* block range better be within the dmap */ 3181 assert(dbitno + nblocks <= BPERDMAP); 3182 3183 /* allocate the bits of the dmap's words corresponding to the block 3184 * range. not all bits of the first and last words may be contained 3185 * within the block range. if this is the case, we'll work against 3186 * those words (i.e. partial first and/or last) on an individual basis 3187 * (a single pass), allocating the bits of interest by hand and 3188 * updating the leaf corresponding to the dmap word. a single pass 3189 * will be used for all dmap words fully contained within the 3190 * specified range. within this pass, the bits of all fully contained 3191 * dmap words will be marked as free in a single shot and the leaves 3192 * will be updated. a single leaf may describe the free space of 3193 * multiple dmap words, so we may update only a subset of the actual 3194 * leaves corresponding to the dmap words of the block range. 3195 */ 3196 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) { 3197 /* determine the bit number within the word and 3198 * the number of bits within the word. 3199 */ 3200 wbitno = dbitno & (DBWORD - 1); 3201 nb = min(rembits, DBWORD - wbitno); 3202 3203 /* check if only part of a word is to be allocated. 3204 */ 3205 if (nb < DBWORD) { 3206 /* allocate (set to 1) the appropriate bits within 3207 * this dmap word. 3208 */ 3209 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb) 3210 >> wbitno); 3211 3212 word++; 3213 } else { 3214 /* one or more dmap words are fully contained 3215 * within the block range. determine how many 3216 * words and allocate (set to 1) the bits of these 3217 * words. 3218 */ 3219 nwords = rembits >> L2DBWORD; 3220 memset(&dp->wmap[word], (int) ONES, nwords * 4); 3221 3222 /* determine how many bits */ 3223 nb = nwords << L2DBWORD; 3224 word += nwords; 3225 } 3226 } 3227 3228 /* update the free count for this dmap */ 3229 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks); 3230 3231 /* reconstruct summary tree */ 3232 dbInitDmapTree(dp); 3233 3234 BMAP_LOCK(bmp); 3235 3236 /* if this allocation group is completely free, 3237 * update the highest active allocation group number 3238 * if this allocation group is the new max. 3239 */ 3240 agno = blkno >> bmp->db_agl2size; 3241 if (agno > bmp->db_maxag) 3242 bmp->db_maxag = agno; 3243 3244 /* update the free count for the allocation group and map */ 3245 bmp->db_agfree[agno] -= nblocks; 3246 bmp->db_nfree -= nblocks; 3247 3248 BMAP_UNLOCK(bmp); 3249 3250 /* if the root has not changed, done. */ 3251 if (tp->stree[ROOT] == oldroot) 3252 return (0); 3253 3254 /* root changed. bubble the change up to the dmap control pages. 3255 * if the adjustment of the upper level control pages fails, 3256 * backout the bit allocation (thus making everything consistent). 3257 */ 3258 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0))) 3259 dbFreeBits(bmp, dp, blkno, nblocks); 3260 3261 return (rc); 3262} 3263 3264 3265/* 3266 * NAME: dbExtendFS() 3267 * 3268 * FUNCTION: extend bmap from blkno for nblocks; 3269 * dbExtendFS() updates bmap ready for dbAllocBottomUp(); 3270 * 3271 * L2 3272 * | 3273 * L1---------------------------------L1 3274 * | | 3275 * L0---------L0---------L0 L0---------L0---------L0 3276 * | | | | | | 3277 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm; 3278 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm 3279 * 3280 * <---old---><----------------------------extend-----------------------> 3281 */ 3282int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks) 3283{ 3284 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb); 3285 int nbperpage = sbi->nbperpage; 3286 int i, i0 = true, j, j0 = true, k, n; 3287 s64 newsize; 3288 s64 p; 3289 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL; 3290 struct dmapctl *l2dcp, *l1dcp, *l0dcp; 3291 struct dmap *dp; 3292 s8 *l0leaf, *l1leaf, *l2leaf; 3293 struct bmap *bmp = sbi->bmap; 3294 int agno, l2agsize, oldl2agsize; 3295 s64 ag_rem; 3296 3297 newsize = blkno + nblocks; 3298 3299 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld", 3300 (long long) blkno, (long long) nblocks, (long long) newsize); 3301 3302 /* 3303 * initialize bmap control page. 3304 * 3305 * all the data in bmap control page should exclude 3306 * the mkfs hidden dmap page. 3307 */ 3308 3309 /* update mapsize */ 3310 bmp->db_mapsize = newsize; 3311 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize); 3312 3313 /* compute new AG size */ 3314 l2agsize = dbGetL2AGSize(newsize); 3315 oldl2agsize = bmp->db_agl2size; 3316 3317 bmp->db_agl2size = l2agsize; 3318 bmp->db_agsize = 1 << l2agsize; 3319 3320 /* compute new number of AG */ 3321 agno = bmp->db_numag; 3322 bmp->db_numag = newsize >> l2agsize; 3323 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0; 3324 3325 /* 3326 * reconfigure db_agfree[] 3327 * from old AG configuration to new AG configuration; 3328 * 3329 * coalesce contiguous k (newAGSize/oldAGSize) AGs; 3330 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn; 3331 * note: new AG size = old AG size * (2**x). 3332 */ 3333 if (l2agsize == oldl2agsize) 3334 goto extend; 3335 k = 1 << (l2agsize - oldl2agsize); 3336 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */ 3337 for (i = 0, n = 0; i < agno; n++) { 3338 bmp->db_agfree[n] = 0; /* init collection point */ 3339 3340 /* coalesce cotiguous k AGs; */ 3341 for (j = 0; j < k && i < agno; j++, i++) { 3342 /* merge AGi to AGn */ 3343 bmp->db_agfree[n] += bmp->db_agfree[i]; 3344 } 3345 } 3346 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */ 3347 3348 for (; n < MAXAG; n++) 3349 bmp->db_agfree[n] = 0; 3350 3351 /* 3352 * update highest active ag number 3353 */ 3354 3355 bmp->db_maxag = bmp->db_maxag / k; 3356 3357 /* 3358 * extend bmap 3359 * 3360 * update bit maps and corresponding level control pages; 3361 * global control page db_nfree, db_agfree[agno], db_maxfreebud; 3362 */ 3363 extend: 3364 /* get L2 page */ 3365 p = BMAPBLKNO + nbperpage; /* L2 page */ 3366 l2mp = read_metapage(ipbmap, p, PSIZE, 0); 3367 if (!l2mp) { 3368 jfs_error(ipbmap->i_sb, "dbExtendFS: L2 page could not be read"); 3369 return -EIO; 3370 } 3371 l2dcp = (struct dmapctl *) l2mp->data; 3372 3373 /* compute start L1 */ 3374 k = blkno >> L2MAXL1SIZE; 3375 l2leaf = l2dcp->stree + CTLLEAFIND + k; 3376 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */ 3377 3378 /* 3379 * extend each L1 in L2 3380 */ 3381 for (; k < LPERCTL; k++, p += nbperpage) { 3382 /* get L1 page */ 3383 if (j0) { 3384 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */ 3385 l1mp = read_metapage(ipbmap, p, PSIZE, 0); 3386 if (l1mp == NULL) 3387 goto errout; 3388 l1dcp = (struct dmapctl *) l1mp->data; 3389 3390 /* compute start L0 */ 3391 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE; 3392 l1leaf = l1dcp->stree + CTLLEAFIND + j; 3393 p = BLKTOL0(blkno, sbi->l2nbperpage); 3394 j0 = false; 3395 } else { 3396 /* assign/init L1 page */ 3397 l1mp = get_metapage(ipbmap, p, PSIZE, 0); 3398 if (l1mp == NULL) 3399 goto errout; 3400 3401 l1dcp = (struct dmapctl *) l1mp->data; 3402 3403 /* compute start L0 */ 3404 j = 0; 3405 l1leaf = l1dcp->stree + CTLLEAFIND; 3406 p += nbperpage; /* 1st L0 of L1.k */ 3407 } 3408 3409 /* 3410 * extend each L0 in L1 3411 */ 3412 for (; j < LPERCTL; j++) { 3413 /* get L0 page */ 3414 if (i0) { 3415 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */ 3416 3417 l0mp = read_metapage(ipbmap, p, PSIZE, 0); 3418 if (l0mp == NULL) 3419 goto errout; 3420 l0dcp = (struct dmapctl *) l0mp->data; 3421 3422 /* compute start dmap */ 3423 i = (blkno & (MAXL0SIZE - 1)) >> 3424 L2BPERDMAP; 3425 l0leaf = l0dcp->stree + CTLLEAFIND + i; 3426 p = BLKTODMAP(blkno, 3427 sbi->l2nbperpage); 3428 i0 = false; 3429 } else { 3430 /* assign/init L0 page */ 3431 l0mp = get_metapage(ipbmap, p, PSIZE, 0); 3432 if (l0mp == NULL) 3433 goto errout; 3434 3435 l0dcp = (struct dmapctl *) l0mp->data; 3436 3437 /* compute start dmap */ 3438 i = 0; 3439 l0leaf = l0dcp->stree + CTLLEAFIND; 3440 p += nbperpage; /* 1st dmap of L0.j */ 3441 } 3442 3443 /* 3444 * extend each dmap in L0 3445 */ 3446 for (; i < LPERCTL; i++) { 3447 /* 3448 * reconstruct the dmap page, and 3449 * initialize corresponding parent L0 leaf 3450 */ 3451 if ((n = blkno & (BPERDMAP - 1))) { 3452 /* read in dmap page: */ 3453 mp = read_metapage(ipbmap, p, 3454 PSIZE, 0); 3455 if (mp == NULL) 3456 goto errout; 3457 n = min(nblocks, (s64)BPERDMAP - n); 3458 } else { 3459 /* assign/init dmap page */ 3460 mp = read_metapage(ipbmap, p, 3461 PSIZE, 0); 3462 if (mp == NULL) 3463 goto errout; 3464 3465 n = min(nblocks, (s64)BPERDMAP); 3466 } 3467 3468 dp = (struct dmap *) mp->data; 3469 *l0leaf = dbInitDmap(dp, blkno, n); 3470 3471 bmp->db_nfree += n; 3472 agno = le64_to_cpu(dp->start) >> l2agsize; 3473 bmp->db_agfree[agno] += n; 3474 3475 write_metapage(mp); 3476 3477 l0leaf++; 3478 p += nbperpage; 3479 3480 blkno += n; 3481 nblocks -= n; 3482 if (nblocks == 0) 3483 break; 3484 } /* for each dmap in a L0 */ 3485 3486 /* 3487 * build current L0 page from its leaves, and 3488 * initialize corresponding parent L1 leaf 3489 */ 3490 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i); 3491 write_metapage(l0mp); 3492 l0mp = NULL; 3493 3494 if (nblocks) 3495 l1leaf++; /* continue for next L0 */ 3496 else { 3497 /* more than 1 L0 ? */ 3498 if (j > 0) 3499 break; /* build L1 page */ 3500 else { 3501 /* summarize in global bmap page */ 3502 bmp->db_maxfreebud = *l1leaf; 3503 release_metapage(l1mp); 3504 release_metapage(l2mp); 3505 goto finalize; 3506 } 3507 } 3508 } /* for each L0 in a L1 */ 3509 3510 /* 3511 * build current L1 page from its leaves, and 3512 * initialize corresponding parent L2 leaf 3513 */ 3514 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j); 3515 write_metapage(l1mp); 3516 l1mp = NULL; 3517 3518 if (nblocks) 3519 l2leaf++; /* continue for next L1 */ 3520 else { 3521 /* more than 1 L1 ? */ 3522 if (k > 0) 3523 break; /* build L2 page */ 3524 else { 3525 /* summarize in global bmap page */ 3526 bmp->db_maxfreebud = *l2leaf; 3527 release_metapage(l2mp); 3528 goto finalize; 3529 } 3530 } 3531 } /* for each L1 in a L2 */ 3532 3533 jfs_error(ipbmap->i_sb, 3534 "dbExtendFS: function has not returned as expected"); 3535errout: 3536 if (l0mp) 3537 release_metapage(l0mp); 3538 if (l1mp) 3539 release_metapage(l1mp); 3540 release_metapage(l2mp); 3541 return -EIO; 3542 3543 /* 3544 * finalize bmap control page 3545 */ 3546finalize: 3547 3548 return 0; 3549} 3550 3551 3552/* 3553 * dbFinalizeBmap() 3554 */ 3555void dbFinalizeBmap(struct inode *ipbmap) 3556{ 3557 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap; 3558 int actags, inactags, l2nl; 3559 s64 ag_rem, actfree, inactfree, avgfree; 3560 int i, n; 3561 3562 /* 3563 * finalize bmap control page 3564 */ 3565//finalize: 3566 /* 3567 * compute db_agpref: preferred ag to allocate from 3568 * (the leftmost ag with average free space in it); 3569 */ 3570//agpref: 3571 /* get the number of active ags and inacitve ags */ 3572 actags = bmp->db_maxag + 1; 3573 inactags = bmp->db_numag - actags; 3574 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */ 3575 3576 /* determine how many blocks are in the inactive allocation 3577 * groups. in doing this, we must account for the fact that 3578 * the rightmost group might be a partial group (i.e. file 3579 * system size is not a multiple of the group size). 3580 */ 3581 inactfree = (inactags && ag_rem) ? 3582 ((inactags - 1) << bmp->db_agl2size) + ag_rem 3583 : inactags << bmp->db_agl2size; 3584 3585 /* determine how many free blocks are in the active 3586 * allocation groups plus the average number of free blocks 3587 * within the active ags. 3588 */ 3589 actfree = bmp->db_nfree - inactfree; 3590 avgfree = (u32) actfree / (u32) actags; 3591 3592 /* if the preferred allocation group has not average free space. 3593 * re-establish the preferred group as the leftmost 3594 * group with average free space. 3595 */ 3596 if (bmp->db_agfree[bmp->db_agpref] < avgfree) { 3597 for (bmp->db_agpref = 0; bmp->db_agpref < actags; 3598 bmp->db_agpref++) { 3599 if (bmp->db_agfree[bmp->db_agpref] >= avgfree) 3600 break; 3601 } 3602 if (bmp->db_agpref >= bmp->db_numag) { 3603 jfs_error(ipbmap->i_sb, 3604 "cannot find ag with average freespace"); 3605 } 3606 } 3607 3608 /* 3609 * compute db_aglevel, db_agheigth, db_width, db_agstart: 3610 * an ag is covered in aglevel dmapctl summary tree, 3611 * at agheight level height (from leaf) with agwidth number of nodes 3612 * each, which starts at agstart index node of the smmary tree node 3613 * array; 3614 */ 3615 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize); 3616 l2nl = 3617 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL); 3618 bmp->db_agheigth = l2nl >> 1; 3619 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheigth << 1)); 3620 for (i = 5 - bmp->db_agheigth, bmp->db_agstart = 0, n = 1; i > 0; 3621 i--) { 3622 bmp->db_agstart += n; 3623 n <<= 2; 3624 } 3625 3626} 3627 3628 3629/* 3630 * NAME: dbInitDmap()/ujfs_idmap_page() 3631 * 3632 * FUNCTION: initialize working/persistent bitmap of the dmap page 3633 * for the specified number of blocks: 3634 * 3635 * at entry, the bitmaps had been initialized as free (ZEROS); 3636 * The number of blocks will only account for the actually 3637 * existing blocks. Blocks which don't actually exist in 3638 * the aggregate will be marked as allocated (ONES); 3639 * 3640 * PARAMETERS: 3641 * dp - pointer to page of map 3642 * nblocks - number of blocks this page 3643 * 3644 * RETURNS: NONE 3645 */ 3646static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks) 3647{ 3648 int blkno, w, b, r, nw, nb, i; 3649 3650 /* starting block number within the dmap */ 3651 blkno = Blkno & (BPERDMAP - 1); 3652 3653 if (blkno == 0) { 3654 dp->nblocks = dp->nfree = cpu_to_le32(nblocks); 3655 dp->start = cpu_to_le64(Blkno); 3656 3657 if (nblocks == BPERDMAP) { 3658 memset(&dp->wmap[0], 0, LPERDMAP * 4); 3659 memset(&dp->pmap[0], 0, LPERDMAP * 4); 3660 goto initTree; 3661 } 3662 } else { 3663 dp->nblocks = 3664 cpu_to_le32(le32_to_cpu(dp->nblocks) + nblocks); 3665 dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks); 3666 } 3667 3668 /* word number containing start block number */ 3669 w = blkno >> L2DBWORD; 3670 3671 /* 3672 * free the bits corresponding to the block range (ZEROS): 3673 * note: not all bits of the first and last words may be contained 3674 * within the block range. 3675 */ 3676 for (r = nblocks; r > 0; r -= nb, blkno += nb) { 3677 /* number of bits preceding range to be freed in the word */ 3678 b = blkno & (DBWORD - 1); 3679 /* number of bits to free in the word */ 3680 nb = min(r, DBWORD - b); 3681 3682 /* is partial word to be freed ? */ 3683 if (nb < DBWORD) { 3684 /* free (set to 0) from the bitmap word */ 3685 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb) 3686 >> b)); 3687 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb) 3688 >> b)); 3689 3690 /* skip the word freed */ 3691 w++; 3692 } else { 3693 /* free (set to 0) contiguous bitmap words */ 3694 nw = r >> L2DBWORD; 3695 memset(&dp->wmap[w], 0, nw * 4); 3696 memset(&dp->pmap[w], 0, nw * 4); 3697 3698 /* skip the words freed */ 3699 nb = nw << L2DBWORD; 3700 w += nw; 3701 } 3702 } 3703 3704 /* 3705 * mark bits following the range to be freed (non-existing 3706 * blocks) as allocated (ONES) 3707 */ 3708 3709 if (blkno == BPERDMAP) 3710 goto initTree; 3711 3712 /* the first word beyond the end of existing blocks */ 3713 w = blkno >> L2DBWORD; 3714 3715 /* does nblocks fall on a 32-bit boundary ? */ 3716 b = blkno & (DBWORD - 1); 3717 if (b) { 3718 /* mark a partial word allocated */ 3719 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b); 3720 w++; 3721 } 3722 3723 /* set the rest of the words in the page to allocated (ONES) */ 3724 for (i = w; i < LPERDMAP; i++) 3725 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES); 3726 3727 /* 3728 * init tree 3729 */ 3730 initTree: 3731 return (dbInitDmapTree(dp)); 3732} 3733 3734 3735/* 3736 * NAME: dbInitDmapTree()/ujfs_complete_dmap() 3737 * 3738 * FUNCTION: initialize summary tree of the specified dmap: 3739 * 3740 * at entry, bitmap of the dmap has been initialized; 3741 * 3742 * PARAMETERS: 3743 * dp - dmap to complete 3744 * blkno - starting block number for this dmap 3745 * treemax - will be filled in with max free for this dmap 3746 * 3747 * RETURNS: max free string at the root of the tree 3748 */ 3749static int dbInitDmapTree(struct dmap * dp) 3750{ 3751 struct dmaptree *tp; 3752 s8 *cp; 3753 int i; 3754 3755 /* init fixed info of tree */ 3756 tp = &dp->tree; 3757 tp->nleafs = cpu_to_le32(LPERDMAP); 3758 tp->l2nleafs = cpu_to_le32(L2LPERDMAP); 3759 tp->leafidx = cpu_to_le32(LEAFIND); 3760 tp->height = cpu_to_le32(4); 3761 tp->budmin = BUDMIN; 3762 3763 /* init each leaf from corresponding wmap word: 3764 * note: leaf is set to NOFREE(-1) if all blocks of corresponding 3765 * bitmap word are allocated. 3766 */ 3767 cp = tp->stree + le32_to_cpu(tp->leafidx); 3768 for (i = 0; i < LPERDMAP; i++) 3769 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]); 3770 3771 /* build the dmap's binary buddy summary tree */ 3772 return (dbInitTree(tp)); 3773} 3774 3775 3776/* 3777 * NAME: dbInitTree()/ujfs_adjtree() 3778 * 3779 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl. 3780 * 3781 * at entry, the leaves of the tree has been initialized 3782 * from corresponding bitmap word or root of summary tree 3783 * of the child control page; 3784 * configure binary buddy system at the leaf level, then 3785 * bubble up the values of the leaf nodes up the tree. 3786 * 3787 * PARAMETERS: 3788 * cp - Pointer to the root of the tree 3789 * l2leaves- Number of leaf nodes as a power of 2 3790 * l2min - Number of blocks that can be covered by a leaf 3791 * as a power of 2 3792 * 3793 * RETURNS: max free string at the root of the tree 3794 */ 3795static int dbInitTree(struct dmaptree * dtp) 3796{ 3797 int l2max, l2free, bsize, nextb, i; 3798 int child, parent, nparent; 3799 s8 *tp, *cp, *cp1; 3800 3801 tp = dtp->stree; 3802 3803 /* Determine the maximum free string possible for the leaves */ 3804 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin; 3805 3806 /* 3807 * configure the leaf levevl into binary buddy system 3808 * 3809 * Try to combine buddies starting with a buddy size of 1 3810 * (i.e. two leaves). At a buddy size of 1 two buddy leaves 3811 * can be combined if both buddies have a maximum free of l2min; 3812 * the combination will result in the left-most buddy leaf having 3813 * a maximum free of l2min+1. 3814 * After processing all buddies for a given size, process buddies 3815 * at the next higher buddy size (i.e. current size * 2) and 3816 * the next maximum free (current free + 1). 3817 * This continues until the maximum possible buddy combination 3818 * yields maximum free. 3819 */ 3820 for (l2free = dtp->budmin, bsize = 1; l2free < l2max; 3821 l2free++, bsize = nextb) { 3822 /* get next buddy size == current buddy pair size */ 3823 nextb = bsize << 1; 3824 3825 /* scan each adjacent buddy pair at current buddy size */ 3826 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx); 3827 i < le32_to_cpu(dtp->nleafs); 3828 i += nextb, cp += nextb) { 3829 /* coalesce if both adjacent buddies are max free */ 3830 if (*cp == l2free && *(cp + bsize) == l2free) { 3831 *cp = l2free + 1; /* left take right */ 3832 *(cp + bsize) = -1; /* right give left */ 3833 } 3834 } 3835 } 3836 3837 /* 3838 * bubble summary information of leaves up the tree. 3839 * 3840 * Starting at the leaf node level, the four nodes described by 3841 * the higher level parent node are compared for a maximum free and 3842 * this maximum becomes the value of the parent node. 3843 * when all lower level nodes are processed in this fashion then 3844 * move up to the next level (parent becomes a lower level node) and 3845 * continue the process for that level. 3846 */ 3847 for (child = le32_to_cpu(dtp->leafidx), 3848 nparent = le32_to_cpu(dtp->nleafs) >> 2; 3849 nparent > 0; nparent >>= 2, child = parent) { 3850 /* get index of 1st node of parent level */ 3851 parent = (child - 1) >> 2; 3852 3853 /* set the value of the parent node as the maximum 3854 * of the four nodes of the current level. 3855 */ 3856 for (i = 0, cp = tp + child, cp1 = tp + parent; 3857 i < nparent; i++, cp += 4, cp1++) 3858 *cp1 = TREEMAX(cp); 3859 } 3860 3861 return (*tp); 3862} 3863 3864 3865/* 3866 * dbInitDmapCtl() 3867 * 3868 * function: initialize dmapctl page 3869 */ 3870static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i) 3871{ /* start leaf index not covered by range */ 3872 s8 *cp; 3873 3874 dcp->nleafs = cpu_to_le32(LPERCTL); 3875 dcp->l2nleafs = cpu_to_le32(L2LPERCTL); 3876 dcp->leafidx = cpu_to_le32(CTLLEAFIND); 3877 dcp->height = cpu_to_le32(5); 3878 dcp->budmin = L2BPERDMAP + L2LPERCTL * level; 3879 3880 /* 3881 * initialize the leaves of current level that were not covered 3882 * by the specified input block range (i.e. the leaves have no 3883 * low level dmapctl or dmap). 3884 */ 3885 cp = &dcp->stree[CTLLEAFIND + i]; 3886 for (; i < LPERCTL; i++) 3887 *cp++ = NOFREE; 3888 3889 /* build the dmap's binary buddy summary tree */ 3890 return (dbInitTree((struct dmaptree *) dcp)); 3891} 3892 3893 3894/* 3895 * NAME: dbGetL2AGSize()/ujfs_getagl2size() 3896 * 3897 * FUNCTION: Determine log2(allocation group size) from aggregate size 3898 * 3899 * PARAMETERS: 3900 * nblocks - Number of blocks in aggregate 3901 * 3902 * RETURNS: log2(allocation group size) in aggregate blocks 3903 */ 3904static int dbGetL2AGSize(s64 nblocks) 3905{ 3906 s64 sz; 3907 s64 m; 3908 int l2sz; 3909 3910 if (nblocks < BPERDMAP * MAXAG) 3911 return (L2BPERDMAP); 3912 3913 /* round up aggregate size to power of 2 */ 3914 m = ((u64) 1 << (64 - 1)); 3915 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) { 3916 if (m & nblocks) 3917 break; 3918 } 3919 3920 sz = (s64) 1 << l2sz; 3921 if (sz < nblocks) 3922 l2sz += 1; 3923 3924 /* agsize = roundupSize/max_number_of_ag */ 3925 return (l2sz - L2MAXAG); 3926} 3927 3928 3929/* 3930 * NAME: dbMapFileSizeToMapSize() 3931 * 3932 * FUNCTION: compute number of blocks the block allocation map file 3933 * can cover from the map file size; 3934 * 3935 * RETURNS: Number of blocks which can be covered by this block map file; 3936 */ 3937 3938/* 3939 * maximum number of map pages at each level including control pages 3940 */ 3941#define MAXL0PAGES (1 + LPERCTL) 3942#define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES) 3943#define MAXL2PAGES (1 + LPERCTL * MAXL1PAGES) 3944 3945/* 3946 * convert number of map pages to the zero origin top dmapctl level 3947 */ 3948#define BMAPPGTOLEV(npages) \ 3949 (((npages) <= 3 + MAXL0PAGES) ? 0 : \ 3950 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2) 3951 3952s64 dbMapFileSizeToMapSize(struct inode * ipbmap) 3953{ 3954 struct super_block *sb = ipbmap->i_sb; 3955 s64 nblocks; 3956 s64 npages, ndmaps; 3957 int level, i; 3958 int complete, factor; 3959 3960 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize; 3961 npages = nblocks >> JFS_SBI(sb)->l2nbperpage; 3962 level = BMAPPGTOLEV(npages); 3963 3964 /* At each level, accumulate the number of dmap pages covered by 3965 * the number of full child levels below it; 3966 * repeat for the last incomplete child level. 3967 */ 3968 ndmaps = 0; 3969 npages--; /* skip the first global control page */ 3970 /* skip higher level control pages above top level covered by map */ 3971 npages -= (2 - level); 3972 npages--; /* skip top level's control page */ 3973 for (i = level; i >= 0; i--) { 3974 factor = 3975 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1); 3976 complete = (u32) npages / factor; 3977 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL : 3978 ((i == 1) ? LPERCTL : 1)); 3979 3980 /* pages in last/incomplete child */ 3981 npages = (u32) npages % factor; 3982 /* skip incomplete child's level control page */ 3983 npages--; 3984 } 3985 3986 /* convert the number of dmaps into the number of blocks 3987 * which can be covered by the dmaps; 3988 */ 3989 nblocks = ndmaps << L2BPERDMAP; 3990 3991 return (nblocks); 3992} 3993