linux/fs/nfs/dir.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/nfs/dir.c
   3 *
   4 *  Copyright (C) 1992  Rick Sladkey
   5 *
   6 *  nfs directory handling functions
   7 *
   8 * 10 Apr 1996  Added silly rename for unlink   --okir
   9 * 28 Sep 1996  Improved directory cache --okir
  10 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de 
  11 *              Re-implemented silly rename for unlink, newly implemented
  12 *              silly rename for nfs_rename() following the suggestions
  13 *              of Olaf Kirch (okir) found in this file.
  14 *              Following Linus comments on my original hack, this version
  15 *              depends only on the dcache stuff and doesn't touch the inode
  16 *              layer (iput() and friends).
  17 *  6 Jun 1999  Cache readdir lookups in the page cache. -DaveM
  18 */
  19
  20#include <linux/time.h>
  21#include <linux/errno.h>
  22#include <linux/stat.h>
  23#include <linux/fcntl.h>
  24#include <linux/string.h>
  25#include <linux/kernel.h>
  26#include <linux/slab.h>
  27#include <linux/mm.h>
  28#include <linux/sunrpc/clnt.h>
  29#include <linux/nfs_fs.h>
  30#include <linux/nfs_mount.h>
  31#include <linux/pagemap.h>
  32#include <linux/smp_lock.h>
  33#include <linux/pagevec.h>
  34#include <linux/namei.h>
  35#include <linux/mount.h>
  36#include <linux/sched.h>
  37
  38#include "nfs4_fs.h"
  39#include "delegation.h"
  40#include "iostat.h"
  41#include "internal.h"
  42
  43/* #define NFS_DEBUG_VERBOSE 1 */
  44
  45static int nfs_opendir(struct inode *, struct file *);
  46static int nfs_readdir(struct file *, void *, filldir_t);
  47static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
  48static int nfs_create(struct inode *, struct dentry *, int, struct nameidata *);
  49static int nfs_mkdir(struct inode *, struct dentry *, int);
  50static int nfs_rmdir(struct inode *, struct dentry *);
  51static int nfs_unlink(struct inode *, struct dentry *);
  52static int nfs_symlink(struct inode *, struct dentry *, const char *);
  53static int nfs_link(struct dentry *, struct inode *, struct dentry *);
  54static int nfs_mknod(struct inode *, struct dentry *, int, dev_t);
  55static int nfs_rename(struct inode *, struct dentry *,
  56                      struct inode *, struct dentry *);
  57static int nfs_fsync_dir(struct file *, struct dentry *, int);
  58static loff_t nfs_llseek_dir(struct file *, loff_t, int);
  59
  60const struct file_operations nfs_dir_operations = {
  61        .llseek         = nfs_llseek_dir,
  62        .read           = generic_read_dir,
  63        .readdir        = nfs_readdir,
  64        .open           = nfs_opendir,
  65        .release        = nfs_release,
  66        .fsync          = nfs_fsync_dir,
  67};
  68
  69const struct inode_operations nfs_dir_inode_operations = {
  70        .create         = nfs_create,
  71        .lookup         = nfs_lookup,
  72        .link           = nfs_link,
  73        .unlink         = nfs_unlink,
  74        .symlink        = nfs_symlink,
  75        .mkdir          = nfs_mkdir,
  76        .rmdir          = nfs_rmdir,
  77        .mknod          = nfs_mknod,
  78        .rename         = nfs_rename,
  79        .permission     = nfs_permission,
  80        .getattr        = nfs_getattr,
  81        .setattr        = nfs_setattr,
  82};
  83
  84#ifdef CONFIG_NFS_V3
  85const struct inode_operations nfs3_dir_inode_operations = {
  86        .create         = nfs_create,
  87        .lookup         = nfs_lookup,
  88        .link           = nfs_link,
  89        .unlink         = nfs_unlink,
  90        .symlink        = nfs_symlink,
  91        .mkdir          = nfs_mkdir,
  92        .rmdir          = nfs_rmdir,
  93        .mknod          = nfs_mknod,
  94        .rename         = nfs_rename,
  95        .permission     = nfs_permission,
  96        .getattr        = nfs_getattr,
  97        .setattr        = nfs_setattr,
  98        .listxattr      = nfs3_listxattr,
  99        .getxattr       = nfs3_getxattr,
 100        .setxattr       = nfs3_setxattr,
 101        .removexattr    = nfs3_removexattr,
 102};
 103#endif  /* CONFIG_NFS_V3 */
 104
 105#ifdef CONFIG_NFS_V4
 106
 107static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
 108const struct inode_operations nfs4_dir_inode_operations = {
 109        .create         = nfs_create,
 110        .lookup         = nfs_atomic_lookup,
 111        .link           = nfs_link,
 112        .unlink         = nfs_unlink,
 113        .symlink        = nfs_symlink,
 114        .mkdir          = nfs_mkdir,
 115        .rmdir          = nfs_rmdir,
 116        .mknod          = nfs_mknod,
 117        .rename         = nfs_rename,
 118        .permission     = nfs_permission,
 119        .getattr        = nfs_getattr,
 120        .setattr        = nfs_setattr,
 121        .getxattr       = nfs4_getxattr,
 122        .setxattr       = nfs4_setxattr,
 123        .listxattr      = nfs4_listxattr,
 124};
 125
 126#endif /* CONFIG_NFS_V4 */
 127
 128/*
 129 * Open file
 130 */
 131static int
 132nfs_opendir(struct inode *inode, struct file *filp)
 133{
 134        int res;
 135
 136        dfprintk(VFS, "NFS: opendir(%s/%ld)\n",
 137                        inode->i_sb->s_id, inode->i_ino);
 138
 139        lock_kernel();
 140        /* Call generic open code in order to cache credentials */
 141        res = nfs_open(inode, filp);
 142        unlock_kernel();
 143        return res;
 144}
 145
 146typedef __be32 * (*decode_dirent_t)(__be32 *, struct nfs_entry *, int);
 147typedef struct {
 148        struct file     *file;
 149        struct page     *page;
 150        unsigned long   page_index;
 151        __be32          *ptr;
 152        u64             *dir_cookie;
 153        loff_t          current_index;
 154        struct nfs_entry *entry;
 155        decode_dirent_t decode;
 156        int             plus;
 157        int             error;
 158        unsigned long   timestamp;
 159        int             timestamp_valid;
 160} nfs_readdir_descriptor_t;
 161
 162/* Now we cache directories properly, by stuffing the dirent
 163 * data directly in the page cache.
 164 *
 165 * Inode invalidation due to refresh etc. takes care of
 166 * _everything_, no sloppy entry flushing logic, no extraneous
 167 * copying, network direct to page cache, the way it was meant
 168 * to be.
 169 *
 170 * NOTE: Dirent information verification is done always by the
 171 *       page-in of the RPC reply, nowhere else, this simplies
 172 *       things substantially.
 173 */
 174static
 175int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page *page)
 176{
 177        struct file     *file = desc->file;
 178        struct inode    *inode = file->f_path.dentry->d_inode;
 179        struct rpc_cred *cred = nfs_file_cred(file);
 180        unsigned long   timestamp;
 181        int             error;
 182
 183        dfprintk(DIRCACHE, "NFS: %s: reading cookie %Lu into page %lu\n",
 184                        __FUNCTION__, (long long)desc->entry->cookie,
 185                        page->index);
 186
 187 again:
 188        timestamp = jiffies;
 189        error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, desc->entry->cookie, page,
 190                                          NFS_SERVER(inode)->dtsize, desc->plus);
 191        if (error < 0) {
 192                /* We requested READDIRPLUS, but the server doesn't grok it */
 193                if (error == -ENOTSUPP && desc->plus) {
 194                        NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
 195                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
 196                        desc->plus = 0;
 197                        goto again;
 198                }
 199                goto error;
 200        }
 201        desc->timestamp = timestamp;
 202        desc->timestamp_valid = 1;
 203        SetPageUptodate(page);
 204        /* Ensure consistent page alignment of the data.
 205         * Note: assumes we have exclusive access to this mapping either
 206         *       through inode->i_mutex or some other mechanism.
 207         */
 208        if (page->index == 0 && invalidate_inode_pages2_range(inode->i_mapping, PAGE_CACHE_SIZE, -1) < 0) {
 209                /* Should never happen */
 210                nfs_zap_mapping(inode, inode->i_mapping);
 211        }
 212        unlock_page(page);
 213        return 0;
 214 error:
 215        unlock_page(page);
 216        desc->error = error;
 217        return -EIO;
 218}
 219
 220static inline
 221int dir_decode(nfs_readdir_descriptor_t *desc)
 222{
 223        __be32  *p = desc->ptr;
 224        p = desc->decode(p, desc->entry, desc->plus);
 225        if (IS_ERR(p))
 226                return PTR_ERR(p);
 227        desc->ptr = p;
 228        if (desc->timestamp_valid)
 229                desc->entry->fattr->time_start = desc->timestamp;
 230        else
 231                desc->entry->fattr->valid &= ~NFS_ATTR_FATTR;
 232        return 0;
 233}
 234
 235static inline
 236void dir_page_release(nfs_readdir_descriptor_t *desc)
 237{
 238        kunmap(desc->page);
 239        page_cache_release(desc->page);
 240        desc->page = NULL;
 241        desc->ptr = NULL;
 242}
 243
 244/*
 245 * Given a pointer to a buffer that has already been filled by a call
 246 * to readdir, find the next entry with cookie '*desc->dir_cookie'.
 247 *
 248 * If the end of the buffer has been reached, return -EAGAIN, if not,
 249 * return the offset within the buffer of the next entry to be
 250 * read.
 251 */
 252static inline
 253int find_dirent(nfs_readdir_descriptor_t *desc)
 254{
 255        struct nfs_entry *entry = desc->entry;
 256        int             loop_count = 0,
 257                        status;
 258
 259        while((status = dir_decode(desc)) == 0) {
 260                dfprintk(DIRCACHE, "NFS: %s: examining cookie %Lu\n",
 261                                __FUNCTION__, (unsigned long long)entry->cookie);
 262                if (entry->prev_cookie == *desc->dir_cookie)
 263                        break;
 264                if (loop_count++ > 200) {
 265                        loop_count = 0;
 266                        schedule();
 267                }
 268        }
 269        return status;
 270}
 271
 272/*
 273 * Given a pointer to a buffer that has already been filled by a call
 274 * to readdir, find the entry at offset 'desc->file->f_pos'.
 275 *
 276 * If the end of the buffer has been reached, return -EAGAIN, if not,
 277 * return the offset within the buffer of the next entry to be
 278 * read.
 279 */
 280static inline
 281int find_dirent_index(nfs_readdir_descriptor_t *desc)
 282{
 283        struct nfs_entry *entry = desc->entry;
 284        int             loop_count = 0,
 285                        status;
 286
 287        for(;;) {
 288                status = dir_decode(desc);
 289                if (status)
 290                        break;
 291
 292                dfprintk(DIRCACHE, "NFS: found cookie %Lu at index %Ld\n",
 293                                (unsigned long long)entry->cookie, desc->current_index);
 294
 295                if (desc->file->f_pos == desc->current_index) {
 296                        *desc->dir_cookie = entry->cookie;
 297                        break;
 298                }
 299                desc->current_index++;
 300                if (loop_count++ > 200) {
 301                        loop_count = 0;
 302                        schedule();
 303                }
 304        }
 305        return status;
 306}
 307
 308/*
 309 * Find the given page, and call find_dirent() or find_dirent_index in
 310 * order to try to return the next entry.
 311 */
 312static inline
 313int find_dirent_page(nfs_readdir_descriptor_t *desc)
 314{
 315        struct inode    *inode = desc->file->f_path.dentry->d_inode;
 316        struct page     *page;
 317        int             status;
 318
 319        dfprintk(DIRCACHE, "NFS: %s: searching page %ld for target %Lu\n",
 320                        __FUNCTION__, desc->page_index,
 321                        (long long) *desc->dir_cookie);
 322
 323        /* If we find the page in the page_cache, we cannot be sure
 324         * how fresh the data is, so we will ignore readdir_plus attributes.
 325         */
 326        desc->timestamp_valid = 0;
 327        page = read_cache_page(inode->i_mapping, desc->page_index,
 328                               (filler_t *)nfs_readdir_filler, desc);
 329        if (IS_ERR(page)) {
 330                status = PTR_ERR(page);
 331                goto out;
 332        }
 333
 334        /* NOTE: Someone else may have changed the READDIRPLUS flag */
 335        desc->page = page;
 336        desc->ptr = kmap(page);         /* matching kunmap in nfs_do_filldir */
 337        if (*desc->dir_cookie != 0)
 338                status = find_dirent(desc);
 339        else
 340                status = find_dirent_index(desc);
 341        if (status < 0)
 342                dir_page_release(desc);
 343 out:
 344        dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, status);
 345        return status;
 346}
 347
 348/*
 349 * Recurse through the page cache pages, and return a
 350 * filled nfs_entry structure of the next directory entry if possible.
 351 *
 352 * The target for the search is '*desc->dir_cookie' if non-0,
 353 * 'desc->file->f_pos' otherwise
 354 */
 355static inline
 356int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
 357{
 358        int             loop_count = 0;
 359        int             res;
 360
 361        /* Always search-by-index from the beginning of the cache */
 362        if (*desc->dir_cookie == 0) {
 363                dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for offset %Ld\n",
 364                                (long long)desc->file->f_pos);
 365                desc->page_index = 0;
 366                desc->entry->cookie = desc->entry->prev_cookie = 0;
 367                desc->entry->eof = 0;
 368                desc->current_index = 0;
 369        } else
 370                dfprintk(DIRCACHE, "NFS: readdir_search_pagecache() searching for cookie %Lu\n",
 371                                (unsigned long long)*desc->dir_cookie);
 372
 373        for (;;) {
 374                res = find_dirent_page(desc);
 375                if (res != -EAGAIN)
 376                        break;
 377                /* Align to beginning of next page */
 378                desc->page_index ++;
 379                if (loop_count++ > 200) {
 380                        loop_count = 0;
 381                        schedule();
 382                }
 383        }
 384
 385        dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __FUNCTION__, res);
 386        return res;
 387}
 388
 389static inline unsigned int dt_type(struct inode *inode)
 390{
 391        return (inode->i_mode >> 12) & 15;
 392}
 393
 394static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc);
 395
 396/*
 397 * Once we've found the start of the dirent within a page: fill 'er up...
 398 */
 399static 
 400int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
 401                   filldir_t filldir)
 402{
 403        struct file     *file = desc->file;
 404        struct nfs_entry *entry = desc->entry;
 405        struct dentry   *dentry = NULL;
 406        u64             fileid;
 407        int             loop_count = 0,
 408                        res;
 409
 410        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling starting @ cookie %Lu\n",
 411                        (unsigned long long)entry->cookie);
 412
 413        for(;;) {
 414                unsigned d_type = DT_UNKNOWN;
 415                /* Note: entry->prev_cookie contains the cookie for
 416                 *       retrieving the current dirent on the server */
 417                fileid = entry->ino;
 418
 419                /* Get a dentry if we have one */
 420                if (dentry != NULL)
 421                        dput(dentry);
 422                dentry = nfs_readdir_lookup(desc);
 423
 424                /* Use readdirplus info */
 425                if (dentry != NULL && dentry->d_inode != NULL) {
 426                        d_type = dt_type(dentry->d_inode);
 427                        fileid = NFS_FILEID(dentry->d_inode);
 428                }
 429
 430                res = filldir(dirent, entry->name, entry->len, 
 431                              file->f_pos, nfs_compat_user_ino64(fileid),
 432                              d_type);
 433                if (res < 0)
 434                        break;
 435                file->f_pos++;
 436                *desc->dir_cookie = entry->cookie;
 437                if (dir_decode(desc) != 0) {
 438                        desc->page_index ++;
 439                        break;
 440                }
 441                if (loop_count++ > 200) {
 442                        loop_count = 0;
 443                        schedule();
 444                }
 445        }
 446        dir_page_release(desc);
 447        if (dentry != NULL)
 448                dput(dentry);
 449        dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
 450                        (unsigned long long)*desc->dir_cookie, res);
 451        return res;
 452}
 453
 454/*
 455 * If we cannot find a cookie in our cache, we suspect that this is
 456 * because it points to a deleted file, so we ask the server to return
 457 * whatever it thinks is the next entry. We then feed this to filldir.
 458 * If all goes well, we should then be able to find our way round the
 459 * cache on the next call to readdir_search_pagecache();
 460 *
 461 * NOTE: we cannot add the anonymous page to the pagecache because
 462 *       the data it contains might not be page aligned. Besides,
 463 *       we should already have a complete representation of the
 464 *       directory in the page cache by the time we get here.
 465 */
 466static inline
 467int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
 468                     filldir_t filldir)
 469{
 470        struct file     *file = desc->file;
 471        struct inode    *inode = file->f_path.dentry->d_inode;
 472        struct rpc_cred *cred = nfs_file_cred(file);
 473        struct page     *page = NULL;
 474        int             status;
 475        unsigned long   timestamp;
 476
 477        dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
 478                        (unsigned long long)*desc->dir_cookie);
 479
 480        page = alloc_page(GFP_HIGHUSER);
 481        if (!page) {
 482                status = -ENOMEM;
 483                goto out;
 484        }
 485        timestamp = jiffies;
 486        desc->error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, *desc->dir_cookie,
 487                                                page,
 488                                                NFS_SERVER(inode)->dtsize,
 489                                                desc->plus);
 490        desc->page = page;
 491        desc->ptr = kmap(page);         /* matching kunmap in nfs_do_filldir */
 492        if (desc->error >= 0) {
 493                desc->timestamp = timestamp;
 494                desc->timestamp_valid = 1;
 495                if ((status = dir_decode(desc)) == 0)
 496                        desc->entry->prev_cookie = *desc->dir_cookie;
 497        } else
 498                status = -EIO;
 499        if (status < 0)
 500                goto out_release;
 501
 502        status = nfs_do_filldir(desc, dirent, filldir);
 503
 504        /* Reset read descriptor so it searches the page cache from
 505         * the start upon the next call to readdir_search_pagecache() */
 506        desc->page_index = 0;
 507        desc->entry->cookie = desc->entry->prev_cookie = 0;
 508        desc->entry->eof = 0;
 509 out:
 510        dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
 511                        __FUNCTION__, status);
 512        return status;
 513 out_release:
 514        dir_page_release(desc);
 515        goto out;
 516}
 517
 518/* The file offset position represents the dirent entry number.  A
 519   last cookie cache takes care of the common case of reading the
 520   whole directory.
 521 */
 522static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
 523{
 524        struct dentry   *dentry = filp->f_path.dentry;
 525        struct inode    *inode = dentry->d_inode;
 526        nfs_readdir_descriptor_t my_desc,
 527                        *desc = &my_desc;
 528        struct nfs_entry my_entry;
 529        struct nfs_fh    fh;
 530        struct nfs_fattr fattr;
 531        long            res;
 532
 533        dfprintk(VFS, "NFS: readdir(%s/%s) starting at cookie %Lu\n",
 534                        dentry->d_parent->d_name.name, dentry->d_name.name,
 535                        (long long)filp->f_pos);
 536        nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
 537
 538        lock_kernel();
 539
 540        res = nfs_revalidate_mapping_nolock(inode, filp->f_mapping);
 541        if (res < 0) {
 542                unlock_kernel();
 543                return res;
 544        }
 545
 546        /*
 547         * filp->f_pos points to the dirent entry number.
 548         * *desc->dir_cookie has the cookie for the next entry. We have
 549         * to either find the entry with the appropriate number or
 550         * revalidate the cookie.
 551         */
 552        memset(desc, 0, sizeof(*desc));
 553
 554        desc->file = filp;
 555        desc->dir_cookie = &nfs_file_open_context(filp)->dir_cookie;
 556        desc->decode = NFS_PROTO(inode)->decode_dirent;
 557        desc->plus = NFS_USE_READDIRPLUS(inode);
 558
 559        my_entry.cookie = my_entry.prev_cookie = 0;
 560        my_entry.eof = 0;
 561        my_entry.fh = &fh;
 562        my_entry.fattr = &fattr;
 563        nfs_fattr_init(&fattr);
 564        desc->entry = &my_entry;
 565
 566        nfs_block_sillyrename(dentry);
 567        while(!desc->entry->eof) {
 568                res = readdir_search_pagecache(desc);
 569
 570                if (res == -EBADCOOKIE) {
 571                        /* This means either end of directory */
 572                        if (*desc->dir_cookie && desc->entry->cookie != *desc->dir_cookie) {
 573                                /* Or that the server has 'lost' a cookie */
 574                                res = uncached_readdir(desc, dirent, filldir);
 575                                if (res >= 0)
 576                                        continue;
 577                        }
 578                        res = 0;
 579                        break;
 580                }
 581                if (res == -ETOOSMALL && desc->plus) {
 582                        clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_FLAGS(inode));
 583                        nfs_zap_caches(inode);
 584                        desc->plus = 0;
 585                        desc->entry->eof = 0;
 586                        continue;
 587                }
 588                if (res < 0)
 589                        break;
 590
 591                res = nfs_do_filldir(desc, dirent, filldir);
 592                if (res < 0) {
 593                        res = 0;
 594                        break;
 595                }
 596        }
 597        nfs_unblock_sillyrename(dentry);
 598        unlock_kernel();
 599        if (res > 0)
 600                res = 0;
 601        dfprintk(VFS, "NFS: readdir(%s/%s) returns %ld\n",
 602                        dentry->d_parent->d_name.name, dentry->d_name.name,
 603                        res);
 604        return res;
 605}
 606
 607static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
 608{
 609        mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
 610        switch (origin) {
 611                case 1:
 612                        offset += filp->f_pos;
 613                case 0:
 614                        if (offset >= 0)
 615                                break;
 616                default:
 617                        offset = -EINVAL;
 618                        goto out;
 619        }
 620        if (offset != filp->f_pos) {
 621                filp->f_pos = offset;
 622                nfs_file_open_context(filp)->dir_cookie = 0;
 623        }
 624out:
 625        mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
 626        return offset;
 627}
 628
 629/*
 630 * All directory operations under NFS are synchronous, so fsync()
 631 * is a dummy operation.
 632 */
 633static int nfs_fsync_dir(struct file *filp, struct dentry *dentry, int datasync)
 634{
 635        dfprintk(VFS, "NFS: fsync_dir(%s/%s) datasync %d\n",
 636                        dentry->d_parent->d_name.name, dentry->d_name.name,
 637                        datasync);
 638
 639        return 0;
 640}
 641
 642/*
 643 * A check for whether or not the parent directory has changed.
 644 * In the case it has, we assume that the dentries are untrustworthy
 645 * and may need to be looked up again.
 646 */
 647static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
 648{
 649        if (IS_ROOT(dentry))
 650                return 1;
 651        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 652                return 0;
 653        /* Revalidate nfsi->cache_change_attribute before we declare a match */
 654        if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
 655                return 0;
 656        if (!nfs_verify_change_attribute(dir, dentry->d_time))
 657                return 0;
 658        return 1;
 659}
 660
 661/*
 662 * Return the intent data that applies to this particular path component
 663 *
 664 * Note that the current set of intents only apply to the very last
 665 * component of the path.
 666 * We check for this using LOOKUP_CONTINUE and LOOKUP_PARENT.
 667 */
 668static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd, unsigned int mask)
 669{
 670        if (nd->flags & (LOOKUP_CONTINUE|LOOKUP_PARENT))
 671                return 0;
 672        return nd->flags & mask;
 673}
 674
 675/*
 676 * Use intent information to check whether or not we're going to do
 677 * an O_EXCL create using this path component.
 678 */
 679static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
 680{
 681        if (NFS_PROTO(dir)->version == 2)
 682                return 0;
 683        if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_CREATE) == 0)
 684                return 0;
 685        return (nd->intent.open.flags & O_EXCL) != 0;
 686}
 687
 688/*
 689 * Inode and filehandle revalidation for lookups.
 690 *
 691 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
 692 * or if the intent information indicates that we're about to open this
 693 * particular file and the "nocto" mount flag is not set.
 694 *
 695 */
 696static inline
 697int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
 698{
 699        struct nfs_server *server = NFS_SERVER(inode);
 700
 701        if (nd != NULL) {
 702                /* VFS wants an on-the-wire revalidation */
 703                if (nd->flags & LOOKUP_REVAL)
 704                        goto out_force;
 705                /* This is an open(2) */
 706                if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
 707                                !(server->flags & NFS_MOUNT_NOCTO) &&
 708                                (S_ISREG(inode->i_mode) ||
 709                                 S_ISDIR(inode->i_mode)))
 710                        goto out_force;
 711                return 0;
 712        }
 713        return nfs_revalidate_inode(server, inode);
 714out_force:
 715        return __nfs_revalidate_inode(server, inode);
 716}
 717
 718/*
 719 * We judge how long we want to trust negative
 720 * dentries by looking at the parent inode mtime.
 721 *
 722 * If parent mtime has changed, we revalidate, else we wait for a
 723 * period corresponding to the parent's attribute cache timeout value.
 724 */
 725static inline
 726int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
 727                       struct nameidata *nd)
 728{
 729        /* Don't revalidate a negative dentry if we're creating a new file */
 730        if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
 731                return 0;
 732        return !nfs_check_verifier(dir, dentry);
 733}
 734
 735/*
 736 * This is called every time the dcache has a lookup hit,
 737 * and we should check whether we can really trust that
 738 * lookup.
 739 *
 740 * NOTE! The hit can be a negative hit too, don't assume
 741 * we have an inode!
 742 *
 743 * If the parent directory is seen to have changed, we throw out the
 744 * cached dentry and do a new lookup.
 745 */
 746static int nfs_lookup_revalidate(struct dentry * dentry, struct nameidata *nd)
 747{
 748        struct inode *dir;
 749        struct inode *inode;
 750        struct dentry *parent;
 751        int error;
 752        struct nfs_fh fhandle;
 753        struct nfs_fattr fattr;
 754
 755        parent = dget_parent(dentry);
 756        lock_kernel();
 757        dir = parent->d_inode;
 758        nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
 759        inode = dentry->d_inode;
 760
 761        if (!inode) {
 762                if (nfs_neg_need_reval(dir, dentry, nd))
 763                        goto out_bad;
 764                goto out_valid;
 765        }
 766
 767        if (is_bad_inode(inode)) {
 768                dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
 769                                __FUNCTION__, dentry->d_parent->d_name.name,
 770                                dentry->d_name.name);
 771                goto out_bad;
 772        }
 773
 774        /* Force a full look up iff the parent directory has changed */
 775        if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
 776                if (nfs_lookup_verify_inode(inode, nd))
 777                        goto out_zap_parent;
 778                goto out_valid;
 779        }
 780
 781        if (NFS_STALE(inode))
 782                goto out_bad;
 783
 784        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
 785        if (error)
 786                goto out_bad;
 787        if (nfs_compare_fh(NFS_FH(inode), &fhandle))
 788                goto out_bad;
 789        if ((error = nfs_refresh_inode(inode, &fattr)) != 0)
 790                goto out_bad;
 791
 792        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 793 out_valid:
 794        unlock_kernel();
 795        dput(parent);
 796        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
 797                        __FUNCTION__, dentry->d_parent->d_name.name,
 798                        dentry->d_name.name);
 799        return 1;
 800out_zap_parent:
 801        nfs_zap_caches(dir);
 802 out_bad:
 803        nfs_mark_for_revalidate(dir);
 804        if (inode && S_ISDIR(inode->i_mode)) {
 805                /* Purge readdir caches. */
 806                nfs_zap_caches(inode);
 807                /* If we have submounts, don't unhash ! */
 808                if (have_submounts(dentry))
 809                        goto out_valid;
 810                shrink_dcache_parent(dentry);
 811        }
 812        d_drop(dentry);
 813        unlock_kernel();
 814        dput(parent);
 815        dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
 816                        __FUNCTION__, dentry->d_parent->d_name.name,
 817                        dentry->d_name.name);
 818        return 0;
 819}
 820
 821/*
 822 * This is called from dput() when d_count is going to 0.
 823 */
 824static int nfs_dentry_delete(struct dentry *dentry)
 825{
 826        dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
 827                dentry->d_parent->d_name.name, dentry->d_name.name,
 828                dentry->d_flags);
 829
 830        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
 831                /* Unhash it, so that ->d_iput() would be called */
 832                return 1;
 833        }
 834        if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
 835                /* Unhash it, so that ancestors of killed async unlink
 836                 * files will be cleaned up during umount */
 837                return 1;
 838        }
 839        return 0;
 840
 841}
 842
 843/*
 844 * Called when the dentry loses inode.
 845 * We use it to clean up silly-renamed files.
 846 */
 847static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
 848{
 849        nfs_inode_return_delegation(inode);
 850        if (S_ISDIR(inode->i_mode))
 851                /* drop any readdir cache as it could easily be old */
 852                NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
 853
 854        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
 855                lock_kernel();
 856                drop_nlink(inode);
 857                nfs_complete_unlink(dentry, inode);
 858                unlock_kernel();
 859        }
 860        iput(inode);
 861}
 862
 863struct dentry_operations nfs_dentry_operations = {
 864        .d_revalidate   = nfs_lookup_revalidate,
 865        .d_delete       = nfs_dentry_delete,
 866        .d_iput         = nfs_dentry_iput,
 867};
 868
 869static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
 870{
 871        struct dentry *res;
 872        struct dentry *parent;
 873        struct inode *inode = NULL;
 874        int error;
 875        struct nfs_fh fhandle;
 876        struct nfs_fattr fattr;
 877
 878        dfprintk(VFS, "NFS: lookup(%s/%s)\n",
 879                dentry->d_parent->d_name.name, dentry->d_name.name);
 880        nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
 881
 882        res = ERR_PTR(-ENAMETOOLONG);
 883        if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
 884                goto out;
 885
 886        res = ERR_PTR(-ENOMEM);
 887        dentry->d_op = NFS_PROTO(dir)->dentry_ops;
 888
 889        lock_kernel();
 890
 891        /*
 892         * If we're doing an exclusive create, optimize away the lookup
 893         * but don't hash the dentry.
 894         */
 895        if (nfs_is_exclusive_create(dir, nd)) {
 896                d_instantiate(dentry, NULL);
 897                res = NULL;
 898                goto out_unlock;
 899        }
 900
 901        parent = dentry->d_parent;
 902        /* Protect against concurrent sillydeletes */
 903        nfs_block_sillyrename(parent);
 904        error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, &fhandle, &fattr);
 905        if (error == -ENOENT)
 906                goto no_entry;
 907        if (error < 0) {
 908                res = ERR_PTR(error);
 909                goto out_unblock_sillyrename;
 910        }
 911        inode = nfs_fhget(dentry->d_sb, &fhandle, &fattr);
 912        res = (struct dentry *)inode;
 913        if (IS_ERR(res))
 914                goto out_unblock_sillyrename;
 915
 916no_entry:
 917        res = d_materialise_unique(dentry, inode);
 918        if (res != NULL) {
 919                if (IS_ERR(res))
 920                        goto out_unblock_sillyrename;
 921                dentry = res;
 922        }
 923        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
 924out_unblock_sillyrename:
 925        nfs_unblock_sillyrename(parent);
 926out_unlock:
 927        unlock_kernel();
 928out:
 929        return res;
 930}
 931
 932#ifdef CONFIG_NFS_V4
 933static int nfs_open_revalidate(struct dentry *, struct nameidata *);
 934
 935struct dentry_operations nfs4_dentry_operations = {
 936        .d_revalidate   = nfs_open_revalidate,
 937        .d_delete       = nfs_dentry_delete,
 938        .d_iput         = nfs_dentry_iput,
 939};
 940
 941/*
 942 * Use intent information to determine whether we need to substitute
 943 * the NFSv4-style stateful OPEN for the LOOKUP call
 944 */
 945static int is_atomic_open(struct inode *dir, struct nameidata *nd)
 946{
 947        if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
 948                return 0;
 949        /* NFS does not (yet) have a stateful open for directories */
 950        if (nd->flags & LOOKUP_DIRECTORY)
 951                return 0;
 952        /* Are we trying to write to a read only partition? */
 953        if (IS_RDONLY(dir) && (nd->intent.open.flags & (O_CREAT|O_TRUNC|FMODE_WRITE)))
 954                return 0;
 955        return 1;
 956}
 957
 958static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
 959{
 960        struct dentry *res = NULL;
 961        int error;
 962
 963        dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
 964                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
 965
 966        /* Check that we are indeed trying to open this file */
 967        if (!is_atomic_open(dir, nd))
 968                goto no_open;
 969
 970        if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
 971                res = ERR_PTR(-ENAMETOOLONG);
 972                goto out;
 973        }
 974        dentry->d_op = NFS_PROTO(dir)->dentry_ops;
 975
 976        /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
 977         * the dentry. */
 978        if (nd->intent.open.flags & O_EXCL) {
 979                d_instantiate(dentry, NULL);
 980                goto out;
 981        }
 982
 983        /* Open the file on the server */
 984        lock_kernel();
 985        res = nfs4_atomic_open(dir, dentry, nd);
 986        unlock_kernel();
 987        if (IS_ERR(res)) {
 988                error = PTR_ERR(res);
 989                switch (error) {
 990                        /* Make a negative dentry */
 991                        case -ENOENT:
 992                                res = NULL;
 993                                goto out;
 994                        /* This turned out not to be a regular file */
 995                        case -EISDIR:
 996                        case -ENOTDIR:
 997                                goto no_open;
 998                        case -ELOOP:
 999                                if (!(nd->intent.open.flags & O_NOFOLLOW))
1000                                        goto no_open;
1001                        /* case -EINVAL: */
1002                        default:
1003                                goto out;
1004                }
1005        } else if (res != NULL)
1006                dentry = res;
1007out:
1008        return res;
1009no_open:
1010        return nfs_lookup(dir, dentry, nd);
1011}
1012
1013static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1014{
1015        struct dentry *parent = NULL;
1016        struct inode *inode = dentry->d_inode;
1017        struct inode *dir;
1018        int openflags, ret = 0;
1019
1020        parent = dget_parent(dentry);
1021        dir = parent->d_inode;
1022        if (!is_atomic_open(dir, nd))
1023                goto no_open;
1024        /* We can't create new files in nfs_open_revalidate(), so we
1025         * optimize away revalidation of negative dentries.
1026         */
1027        if (inode == NULL) {
1028                if (!nfs_neg_need_reval(dir, dentry, nd))
1029                        ret = 1;
1030                goto out;
1031        }
1032
1033        /* NFS only supports OPEN on regular files */
1034        if (!S_ISREG(inode->i_mode))
1035                goto no_open;
1036        openflags = nd->intent.open.flags;
1037        /* We cannot do exclusive creation on a positive dentry */
1038        if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1039                goto no_open;
1040        /* We can't create new files, or truncate existing ones here */
1041        openflags &= ~(O_CREAT|O_TRUNC);
1042
1043        /*
1044         * Note: we're not holding inode->i_mutex and so may be racing with
1045         * operations that change the directory. We therefore save the
1046         * change attribute *before* we do the RPC call.
1047         */
1048        lock_kernel();
1049        ret = nfs4_open_revalidate(dir, dentry, openflags, nd);
1050        unlock_kernel();
1051out:
1052        dput(parent);
1053        if (!ret)
1054                d_drop(dentry);
1055        return ret;
1056no_open:
1057        dput(parent);
1058        if (inode != NULL && nfs_have_delegation(inode, FMODE_READ))
1059                return 1;
1060        return nfs_lookup_revalidate(dentry, nd);
1061}
1062#endif /* CONFIG_NFSV4 */
1063
1064static struct dentry *nfs_readdir_lookup(nfs_readdir_descriptor_t *desc)
1065{
1066        struct dentry *parent = desc->file->f_path.dentry;
1067        struct inode *dir = parent->d_inode;
1068        struct nfs_entry *entry = desc->entry;
1069        struct dentry *dentry, *alias;
1070        struct qstr name = {
1071                .name = entry->name,
1072                .len = entry->len,
1073        };
1074        struct inode *inode;
1075        unsigned long verf = nfs_save_change_attribute(dir);
1076
1077        switch (name.len) {
1078                case 2:
1079                        if (name.name[0] == '.' && name.name[1] == '.')
1080                                return dget_parent(parent);
1081                        break;
1082                case 1:
1083                        if (name.name[0] == '.')
1084                                return dget(parent);
1085        }
1086
1087        spin_lock(&dir->i_lock);
1088        if (NFS_I(dir)->cache_validity & NFS_INO_INVALID_DATA) {
1089                spin_unlock(&dir->i_lock);
1090                return NULL;
1091        }
1092        spin_unlock(&dir->i_lock);
1093
1094        name.hash = full_name_hash(name.name, name.len);
1095        dentry = d_lookup(parent, &name);
1096        if (dentry != NULL) {
1097                /* Is this a positive dentry that matches the readdir info? */
1098                if (dentry->d_inode != NULL &&
1099                                (NFS_FILEID(dentry->d_inode) == entry->ino ||
1100                                d_mountpoint(dentry))) {
1101                        if (!desc->plus || entry->fh->size == 0)
1102                                return dentry;
1103                        if (nfs_compare_fh(NFS_FH(dentry->d_inode),
1104                                                entry->fh) == 0)
1105                                goto out_renew;
1106                }
1107                /* No, so d_drop to allow one to be created */
1108                d_drop(dentry);
1109                dput(dentry);
1110        }
1111        if (!desc->plus || !(entry->fattr->valid & NFS_ATTR_FATTR))
1112                return NULL;
1113        if (name.len > NFS_SERVER(dir)->namelen)
1114                return NULL;
1115        /* Note: caller is already holding the dir->i_mutex! */
1116        dentry = d_alloc(parent, &name);
1117        if (dentry == NULL)
1118                return NULL;
1119        dentry->d_op = NFS_PROTO(dir)->dentry_ops;
1120        inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
1121        if (IS_ERR(inode)) {
1122                dput(dentry);
1123                return NULL;
1124        }
1125
1126        alias = d_materialise_unique(dentry, inode);
1127        if (alias != NULL) {
1128                dput(dentry);
1129                if (IS_ERR(alias))
1130                        return NULL;
1131                dentry = alias;
1132        }
1133
1134out_renew:
1135        nfs_set_verifier(dentry, verf);
1136        return dentry;
1137}
1138
1139/*
1140 * Code common to create, mkdir, and mknod.
1141 */
1142int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1143                                struct nfs_fattr *fattr)
1144{
1145        struct dentry *parent = dget_parent(dentry);
1146        struct inode *dir = parent->d_inode;
1147        struct inode *inode;
1148        int error = -EACCES;
1149
1150        d_drop(dentry);
1151
1152        /* We may have been initialized further down */
1153        if (dentry->d_inode)
1154                goto out;
1155        if (fhandle->size == 0) {
1156                error = NFS_PROTO(dir)->lookup(dir, &dentry->d_name, fhandle, fattr);
1157                if (error)
1158                        goto out_error;
1159        }
1160        nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1161        if (!(fattr->valid & NFS_ATTR_FATTR)) {
1162                struct nfs_server *server = NFS_SB(dentry->d_sb);
1163                error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1164                if (error < 0)
1165                        goto out_error;
1166        }
1167        inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1168        error = PTR_ERR(inode);
1169        if (IS_ERR(inode))
1170                goto out_error;
1171        d_add(dentry, inode);
1172out:
1173        dput(parent);
1174        return 0;
1175out_error:
1176        nfs_mark_for_revalidate(dir);
1177        dput(parent);
1178        return error;
1179}
1180
1181/*
1182 * Following a failed create operation, we drop the dentry rather
1183 * than retain a negative dentry. This avoids a problem in the event
1184 * that the operation succeeded on the server, but an error in the
1185 * reply path made it appear to have failed.
1186 */
1187static int nfs_create(struct inode *dir, struct dentry *dentry, int mode,
1188                struct nameidata *nd)
1189{
1190        struct iattr attr;
1191        int error;
1192        int open_flags = 0;
1193
1194        dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1195                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1196
1197        attr.ia_mode = mode;
1198        attr.ia_valid = ATTR_MODE;
1199
1200        if ((nd->flags & LOOKUP_CREATE) != 0)
1201                open_flags = nd->intent.open.flags;
1202
1203        lock_kernel();
1204        error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, nd);
1205        if (error != 0)
1206                goto out_err;
1207        unlock_kernel();
1208        return 0;
1209out_err:
1210        unlock_kernel();
1211        d_drop(dentry);
1212        return error;
1213}
1214
1215/*
1216 * See comments for nfs_proc_create regarding failed operations.
1217 */
1218static int
1219nfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rdev)
1220{
1221        struct iattr attr;
1222        int status;
1223
1224        dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1225                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1226
1227        if (!new_valid_dev(rdev))
1228                return -EINVAL;
1229
1230        attr.ia_mode = mode;
1231        attr.ia_valid = ATTR_MODE;
1232
1233        lock_kernel();
1234        status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1235        if (status != 0)
1236                goto out_err;
1237        unlock_kernel();
1238        return 0;
1239out_err:
1240        unlock_kernel();
1241        d_drop(dentry);
1242        return status;
1243}
1244
1245/*
1246 * See comments for nfs_proc_create regarding failed operations.
1247 */
1248static int nfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
1249{
1250        struct iattr attr;
1251        int error;
1252
1253        dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1254                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1255
1256        attr.ia_valid = ATTR_MODE;
1257        attr.ia_mode = mode | S_IFDIR;
1258
1259        lock_kernel();
1260        error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1261        if (error != 0)
1262                goto out_err;
1263        unlock_kernel();
1264        return 0;
1265out_err:
1266        d_drop(dentry);
1267        unlock_kernel();
1268        return error;
1269}
1270
1271static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1272{
1273        int error;
1274
1275        dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1276                        dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1277
1278        lock_kernel();
1279        error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1280        /* Ensure the VFS deletes this inode */
1281        if (error == 0 && dentry->d_inode != NULL)
1282                clear_nlink(dentry->d_inode);
1283        unlock_kernel();
1284
1285        return error;
1286}
1287
1288static int nfs_sillyrename(struct inode *dir, struct dentry *dentry)
1289{
1290        static unsigned int sillycounter;
1291        const int      fileidsize  = sizeof(NFS_FILEID(dentry->d_inode))*2;
1292        const int      countersize = sizeof(sillycounter)*2;
1293        const int      slen        = sizeof(".nfs")+fileidsize+countersize-1;
1294        char           silly[slen+1];
1295        struct qstr    qsilly;
1296        struct dentry *sdentry;
1297        int            error = -EIO;
1298
1299        dfprintk(VFS, "NFS: silly-rename(%s/%s, ct=%d)\n",
1300                dentry->d_parent->d_name.name, dentry->d_name.name, 
1301                atomic_read(&dentry->d_count));
1302        nfs_inc_stats(dir, NFSIOS_SILLYRENAME);
1303
1304        /*
1305         * We don't allow a dentry to be silly-renamed twice.
1306         */
1307        error = -EBUSY;
1308        if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1309                goto out;
1310
1311        sprintf(silly, ".nfs%*.*Lx",
1312                fileidsize, fileidsize,
1313                (unsigned long long)NFS_FILEID(dentry->d_inode));
1314
1315        /* Return delegation in anticipation of the rename */
1316        nfs_inode_return_delegation(dentry->d_inode);
1317
1318        sdentry = NULL;
1319        do {
1320                char *suffix = silly + slen - countersize;
1321
1322                dput(sdentry);
1323                sillycounter++;
1324                sprintf(suffix, "%*.*x", countersize, countersize, sillycounter);
1325
1326                dfprintk(VFS, "NFS: trying to rename %s to %s\n",
1327                                dentry->d_name.name, silly);
1328                
1329                sdentry = lookup_one_len(silly, dentry->d_parent, slen);
1330                /*
1331                 * N.B. Better to return EBUSY here ... it could be
1332                 * dangerous to delete the file while it's in use.
1333                 */
1334                if (IS_ERR(sdentry))
1335                        goto out;
1336        } while(sdentry->d_inode != NULL); /* need negative lookup */
1337
1338        qsilly.name = silly;
1339        qsilly.len  = strlen(silly);
1340        if (dentry->d_inode) {
1341                error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1342                                dir, &qsilly);
1343                nfs_mark_for_revalidate(dentry->d_inode);
1344        } else
1345                error = NFS_PROTO(dir)->rename(dir, &dentry->d_name,
1346                                dir, &qsilly);
1347        if (!error) {
1348                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1349                d_move(dentry, sdentry);
1350                error = nfs_async_unlink(dir, dentry);
1351                /* If we return 0 we don't unlink */
1352        }
1353        dput(sdentry);
1354out:
1355        return error;
1356}
1357
1358/*
1359 * Remove a file after making sure there are no pending writes,
1360 * and after checking that the file has only one user. 
1361 *
1362 * We invalidate the attribute cache and free the inode prior to the operation
1363 * to avoid possible races if the server reuses the inode.
1364 */
1365static int nfs_safe_remove(struct dentry *dentry)
1366{
1367        struct inode *dir = dentry->d_parent->d_inode;
1368        struct inode *inode = dentry->d_inode;
1369        int error = -EBUSY;
1370                
1371        dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1372                dentry->d_parent->d_name.name, dentry->d_name.name);
1373
1374        /* If the dentry was sillyrenamed, we simply call d_delete() */
1375        if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1376                error = 0;
1377                goto out;
1378        }
1379
1380        if (inode != NULL) {
1381                nfs_inode_return_delegation(inode);
1382                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1383                /* The VFS may want to delete this inode */
1384                if (error == 0)
1385                        drop_nlink(inode);
1386                nfs_mark_for_revalidate(inode);
1387        } else
1388                error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1389out:
1390        return error;
1391}
1392
1393/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
1394 *  belongs to an active ".nfs..." file and we return -EBUSY.
1395 *
1396 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
1397 */
1398static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1399{
1400        int error;
1401        int need_rehash = 0;
1402
1403        dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1404                dir->i_ino, dentry->d_name.name);
1405
1406        lock_kernel();
1407        spin_lock(&dcache_lock);
1408        spin_lock(&dentry->d_lock);
1409        if (atomic_read(&dentry->d_count) > 1) {
1410                spin_unlock(&dentry->d_lock);
1411                spin_unlock(&dcache_lock);
1412                /* Start asynchronous writeout of the inode */
1413                write_inode_now(dentry->d_inode, 0);
1414                error = nfs_sillyrename(dir, dentry);
1415                unlock_kernel();
1416                return error;
1417        }
1418        if (!d_unhashed(dentry)) {
1419                __d_drop(dentry);
1420                need_rehash = 1;
1421        }
1422        spin_unlock(&dentry->d_lock);
1423        spin_unlock(&dcache_lock);
1424        error = nfs_safe_remove(dentry);
1425        if (!error) {
1426                nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1427        } else if (need_rehash)
1428                d_rehash(dentry);
1429        unlock_kernel();
1430        return error;
1431}
1432
1433/*
1434 * To create a symbolic link, most file systems instantiate a new inode,
1435 * add a page to it containing the path, then write it out to the disk
1436 * using prepare_write/commit_write.
1437 *
1438 * Unfortunately the NFS client can't create the in-core inode first
1439 * because it needs a file handle to create an in-core inode (see
1440 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
1441 * symlink request has completed on the server.
1442 *
1443 * So instead we allocate a raw page, copy the symname into it, then do
1444 * the SYMLINK request with the page as the buffer.  If it succeeds, we
1445 * now have a new file handle and can instantiate an in-core NFS inode
1446 * and move the raw page into its mapping.
1447 */
1448static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1449{
1450        struct pagevec lru_pvec;
1451        struct page *page;
1452        char *kaddr;
1453        struct iattr attr;
1454        unsigned int pathlen = strlen(symname);
1455        int error;
1456
1457        dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1458                dir->i_ino, dentry->d_name.name, symname);
1459
1460        if (pathlen > PAGE_SIZE)
1461                return -ENAMETOOLONG;
1462
1463        attr.ia_mode = S_IFLNK | S_IRWXUGO;
1464        attr.ia_valid = ATTR_MODE;
1465
1466        lock_kernel();
1467
1468        page = alloc_page(GFP_HIGHUSER);
1469        if (!page) {
1470                unlock_kernel();
1471                return -ENOMEM;
1472        }
1473
1474        kaddr = kmap_atomic(page, KM_USER0);
1475        memcpy(kaddr, symname, pathlen);
1476        if (pathlen < PAGE_SIZE)
1477                memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1478        kunmap_atomic(kaddr, KM_USER0);
1479
1480        error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1481        if (error != 0) {
1482                dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1483                        dir->i_sb->s_id, dir->i_ino,
1484                        dentry->d_name.name, symname, error);
1485                d_drop(dentry);
1486                __free_page(page);
1487                unlock_kernel();
1488                return error;
1489        }
1490
1491        /*
1492         * No big deal if we can't add this page to the page cache here.
1493         * READLINK will get the missing page from the server if needed.
1494         */
1495        pagevec_init(&lru_pvec, 0);
1496        if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1497                                                        GFP_KERNEL)) {
1498                pagevec_add(&lru_pvec, page);
1499                pagevec_lru_add(&lru_pvec);
1500                SetPageUptodate(page);
1501                unlock_page(page);
1502        } else
1503                __free_page(page);
1504
1505        unlock_kernel();
1506        return 0;
1507}
1508
1509static int 
1510nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1511{
1512        struct inode *inode = old_dentry->d_inode;
1513        int error;
1514
1515        dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1516                old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1517                dentry->d_parent->d_name.name, dentry->d_name.name);
1518
1519        lock_kernel();
1520        d_drop(dentry);
1521        error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1522        if (error == 0) {
1523                atomic_inc(&inode->i_count);
1524                d_add(dentry, inode);
1525        }
1526        unlock_kernel();
1527        return error;
1528}
1529
1530/*
1531 * RENAME
1532 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1533 * different file handle for the same inode after a rename (e.g. when
1534 * moving to a different directory). A fail-safe method to do so would
1535 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1536 * rename the old file using the sillyrename stuff. This way, the original
1537 * file in old_dir will go away when the last process iput()s the inode.
1538 *
1539 * FIXED.
1540 * 
1541 * It actually works quite well. One needs to have the possibility for
1542 * at least one ".nfs..." file in each directory the file ever gets
1543 * moved or linked to which happens automagically with the new
1544 * implementation that only depends on the dcache stuff instead of
1545 * using the inode layer
1546 *
1547 * Unfortunately, things are a little more complicated than indicated
1548 * above. For a cross-directory move, we want to make sure we can get
1549 * rid of the old inode after the operation.  This means there must be
1550 * no pending writes (if it's a file), and the use count must be 1.
1551 * If these conditions are met, we can drop the dentries before doing
1552 * the rename.
1553 */
1554static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1555                      struct inode *new_dir, struct dentry *new_dentry)
1556{
1557        struct inode *old_inode = old_dentry->d_inode;
1558        struct inode *new_inode = new_dentry->d_inode;
1559        struct dentry *dentry = NULL, *rehash = NULL;
1560        int error = -EBUSY;
1561
1562        /*
1563         * To prevent any new references to the target during the rename,
1564         * we unhash the dentry and free the inode in advance.
1565         */
1566        lock_kernel();
1567        if (!d_unhashed(new_dentry)) {
1568                d_drop(new_dentry);
1569                rehash = new_dentry;
1570        }
1571
1572        dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1573                 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1574                 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1575                 atomic_read(&new_dentry->d_count));
1576
1577        /*
1578         * First check whether the target is busy ... we can't
1579         * safely do _any_ rename if the target is in use.
1580         *
1581         * For files, make a copy of the dentry and then do a 
1582         * silly-rename. If the silly-rename succeeds, the
1583         * copied dentry is hashed and becomes the new target.
1584         */
1585        if (!new_inode)
1586                goto go_ahead;
1587        if (S_ISDIR(new_inode->i_mode)) {
1588                error = -EISDIR;
1589                if (!S_ISDIR(old_inode->i_mode))
1590                        goto out;
1591        } else if (atomic_read(&new_dentry->d_count) > 2) {
1592                int err;
1593                /* copy the target dentry's name */
1594                dentry = d_alloc(new_dentry->d_parent,
1595                                 &new_dentry->d_name);
1596                if (!dentry)
1597                        goto out;
1598
1599                /* silly-rename the existing target ... */
1600                err = nfs_sillyrename(new_dir, new_dentry);
1601                if (!err) {
1602                        new_dentry = rehash = dentry;
1603                        new_inode = NULL;
1604                        /* instantiate the replacement target */
1605                        d_instantiate(new_dentry, NULL);
1606                } else if (atomic_read(&new_dentry->d_count) > 1)
1607                        /* dentry still busy? */
1608                        goto out;
1609        } else
1610                drop_nlink(new_inode);
1611
1612go_ahead:
1613        /*
1614         * ... prune child dentries and writebacks if needed.
1615         */
1616        if (atomic_read(&old_dentry->d_count) > 1) {
1617                if (S_ISREG(old_inode->i_mode))
1618                        nfs_wb_all(old_inode);
1619                shrink_dcache_parent(old_dentry);
1620        }
1621        nfs_inode_return_delegation(old_inode);
1622
1623        if (new_inode != NULL) {
1624                nfs_inode_return_delegation(new_inode);
1625                d_delete(new_dentry);
1626        }
1627
1628        error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
1629                                           new_dir, &new_dentry->d_name);
1630        nfs_mark_for_revalidate(old_inode);
1631out:
1632        if (rehash)
1633                d_rehash(rehash);
1634        if (!error) {
1635                d_move(old_dentry, new_dentry);
1636                nfs_set_verifier(new_dentry,
1637                                        nfs_save_change_attribute(new_dir));
1638        }
1639
1640        /* new dentry created? */
1641        if (dentry)
1642                dput(dentry);
1643        unlock_kernel();
1644        return error;
1645}
1646
1647static DEFINE_SPINLOCK(nfs_access_lru_lock);
1648static LIST_HEAD(nfs_access_lru_list);
1649static atomic_long_t nfs_access_nr_entries;
1650
1651static void nfs_access_free_entry(struct nfs_access_entry *entry)
1652{
1653        put_rpccred(entry->cred);
1654        kfree(entry);
1655        smp_mb__before_atomic_dec();
1656        atomic_long_dec(&nfs_access_nr_entries);
1657        smp_mb__after_atomic_dec();
1658}
1659
1660int nfs_access_cache_shrinker(int nr_to_scan, gfp_t gfp_mask)
1661{
1662        LIST_HEAD(head);
1663        struct nfs_inode *nfsi;
1664        struct nfs_access_entry *cache;
1665
1666restart:
1667        spin_lock(&nfs_access_lru_lock);
1668        list_for_each_entry(nfsi, &nfs_access_lru_list, access_cache_inode_lru) {
1669                struct inode *inode;
1670
1671                if (nr_to_scan-- == 0)
1672                        break;
1673                inode = igrab(&nfsi->vfs_inode);
1674                if (inode == NULL)
1675                        continue;
1676                spin_lock(&inode->i_lock);
1677                if (list_empty(&nfsi->access_cache_entry_lru))
1678                        goto remove_lru_entry;
1679                cache = list_entry(nfsi->access_cache_entry_lru.next,
1680                                struct nfs_access_entry, lru);
1681                list_move(&cache->lru, &head);
1682                rb_erase(&cache->rb_node, &nfsi->access_cache);
1683                if (!list_empty(&nfsi->access_cache_entry_lru))
1684                        list_move_tail(&nfsi->access_cache_inode_lru,
1685                                        &nfs_access_lru_list);
1686                else {
1687remove_lru_entry:
1688                        list_del_init(&nfsi->access_cache_inode_lru);
1689                        clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
1690                }
1691                spin_unlock(&inode->i_lock);
1692                spin_unlock(&nfs_access_lru_lock);
1693                iput(inode);
1694                goto restart;
1695        }
1696        spin_unlock(&nfs_access_lru_lock);
1697        while (!list_empty(&head)) {
1698                cache = list_entry(head.next, struct nfs_access_entry, lru);
1699                list_del(&cache->lru);
1700                nfs_access_free_entry(cache);
1701        }
1702        return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
1703}
1704
1705static void __nfs_access_zap_cache(struct inode *inode)
1706{
1707        struct nfs_inode *nfsi = NFS_I(inode);
1708        struct rb_root *root_node = &nfsi->access_cache;
1709        struct rb_node *n, *dispose = NULL;
1710        struct nfs_access_entry *entry;
1711
1712        /* Unhook entries from the cache */
1713        while ((n = rb_first(root_node)) != NULL) {
1714                entry = rb_entry(n, struct nfs_access_entry, rb_node);
1715                rb_erase(n, root_node);
1716                list_del(&entry->lru);
1717                n->rb_left = dispose;
1718                dispose = n;
1719        }
1720        nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
1721        spin_unlock(&inode->i_lock);
1722
1723        /* Now kill them all! */
1724        while (dispose != NULL) {
1725                n = dispose;
1726                dispose = n->rb_left;
1727                nfs_access_free_entry(rb_entry(n, struct nfs_access_entry, rb_node));
1728        }
1729}
1730
1731void nfs_access_zap_cache(struct inode *inode)
1732{
1733        /* Remove from global LRU init */
1734        if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1735                spin_lock(&nfs_access_lru_lock);
1736                list_del_init(&NFS_I(inode)->access_cache_inode_lru);
1737                spin_unlock(&nfs_access_lru_lock);
1738        }
1739
1740        spin_lock(&inode->i_lock);
1741        /* This will release the spinlock */
1742        __nfs_access_zap_cache(inode);
1743}
1744
1745static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
1746{
1747        struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
1748        struct nfs_access_entry *entry;
1749
1750        while (n != NULL) {
1751                entry = rb_entry(n, struct nfs_access_entry, rb_node);
1752
1753                if (cred < entry->cred)
1754                        n = n->rb_left;
1755                else if (cred > entry->cred)
1756                        n = n->rb_right;
1757                else
1758                        return entry;
1759        }
1760        return NULL;
1761}
1762
1763static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
1764{
1765        struct nfs_inode *nfsi = NFS_I(inode);
1766        struct nfs_access_entry *cache;
1767        int err = -ENOENT;
1768
1769        spin_lock(&inode->i_lock);
1770        if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
1771                goto out_zap;
1772        cache = nfs_access_search_rbtree(inode, cred);
1773        if (cache == NULL)
1774                goto out;
1775        if (!time_in_range(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
1776                goto out_stale;
1777        res->jiffies = cache->jiffies;
1778        res->cred = cache->cred;
1779        res->mask = cache->mask;
1780        list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
1781        err = 0;
1782out:
1783        spin_unlock(&inode->i_lock);
1784        return err;
1785out_stale:
1786        rb_erase(&cache->rb_node, &nfsi->access_cache);
1787        list_del(&cache->lru);
1788        spin_unlock(&inode->i_lock);
1789        nfs_access_free_entry(cache);
1790        return -ENOENT;
1791out_zap:
1792        /* This will release the spinlock */
1793        __nfs_access_zap_cache(inode);
1794        return -ENOENT;
1795}
1796
1797static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
1798{
1799        struct nfs_inode *nfsi = NFS_I(inode);
1800        struct rb_root *root_node = &nfsi->access_cache;
1801        struct rb_node **p = &root_node->rb_node;
1802        struct rb_node *parent = NULL;
1803        struct nfs_access_entry *entry;
1804
1805        spin_lock(&inode->i_lock);
1806        while (*p != NULL) {
1807                parent = *p;
1808                entry = rb_entry(parent, struct nfs_access_entry, rb_node);
1809
1810                if (set->cred < entry->cred)
1811                        p = &parent->rb_left;
1812                else if (set->cred > entry->cred)
1813                        p = &parent->rb_right;
1814                else
1815                        goto found;
1816        }
1817        rb_link_node(&set->rb_node, parent, p);
1818        rb_insert_color(&set->rb_node, root_node);
1819        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1820        spin_unlock(&inode->i_lock);
1821        return;
1822found:
1823        rb_replace_node(parent, &set->rb_node, root_node);
1824        list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
1825        list_del(&entry->lru);
1826        spin_unlock(&inode->i_lock);
1827        nfs_access_free_entry(entry);
1828}
1829
1830static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
1831{
1832        struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
1833        if (cache == NULL)
1834                return;
1835        RB_CLEAR_NODE(&cache->rb_node);
1836        cache->jiffies = set->jiffies;
1837        cache->cred = get_rpccred(set->cred);
1838        cache->mask = set->mask;
1839
1840        nfs_access_add_rbtree(inode, cache);
1841
1842        /* Update accounting */
1843        smp_mb__before_atomic_inc();
1844        atomic_long_inc(&nfs_access_nr_entries);
1845        smp_mb__after_atomic_inc();
1846
1847        /* Add inode to global LRU list */
1848        if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_FLAGS(inode))) {
1849                spin_lock(&nfs_access_lru_lock);
1850                list_add_tail(&NFS_I(inode)->access_cache_inode_lru, &nfs_access_lru_list);
1851                spin_unlock(&nfs_access_lru_lock);
1852        }
1853}
1854
1855static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
1856{
1857        struct nfs_access_entry cache;
1858        int status;
1859
1860        status = nfs_access_get_cached(inode, cred, &cache);
1861        if (status == 0)
1862                goto out;
1863
1864        /* Be clever: ask server to check for all possible rights */
1865        cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
1866        cache.cred = cred;
1867        cache.jiffies = jiffies;
1868        status = NFS_PROTO(inode)->access(inode, &cache);
1869        if (status != 0)
1870                return status;
1871        nfs_access_add_cache(inode, &cache);
1872out:
1873        if ((cache.mask & mask) == mask)
1874                return 0;
1875        return -EACCES;
1876}
1877
1878static int nfs_open_permission_mask(int openflags)
1879{
1880        int mask = 0;
1881
1882        if (openflags & FMODE_READ)
1883                mask |= MAY_READ;
1884        if (openflags & FMODE_WRITE)
1885                mask |= MAY_WRITE;
1886        if (openflags & FMODE_EXEC)
1887                mask |= MAY_EXEC;
1888        return mask;
1889}
1890
1891int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
1892{
1893        return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
1894}
1895
1896int nfs_permission(struct inode *inode, int mask, struct nameidata *nd)
1897{
1898        struct rpc_cred *cred;
1899        int res = 0;
1900
1901        nfs_inc_stats(inode, NFSIOS_VFSACCESS);
1902
1903        if (mask == 0)
1904                goto out;
1905        /* Is this sys_access() ? */
1906        if (nd != NULL && (nd->flags & LOOKUP_ACCESS))
1907                goto force_lookup;
1908
1909        switch (inode->i_mode & S_IFMT) {
1910                case S_IFLNK:
1911                        goto out;
1912                case S_IFREG:
1913                        /* NFSv4 has atomic_open... */
1914                        if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
1915                                        && nd != NULL
1916                                        && (nd->flags & LOOKUP_OPEN))
1917                                goto out;
1918                        break;
1919                case S_IFDIR:
1920                        /*
1921                         * Optimize away all write operations, since the server
1922                         * will check permissions when we perform the op.
1923                         */
1924                        if ((mask & MAY_WRITE) && !(mask & MAY_READ))
1925                                goto out;
1926        }
1927
1928force_lookup:
1929        lock_kernel();
1930
1931        if (!NFS_PROTO(inode)->access)
1932                goto out_notsup;
1933
1934        cred = rpcauth_lookupcred(NFS_CLIENT(inode)->cl_auth, 0);
1935        if (!IS_ERR(cred)) {
1936                res = nfs_do_access(inode, cred, mask);
1937                put_rpccred(cred);
1938        } else
1939                res = PTR_ERR(cred);
1940        unlock_kernel();
1941out:
1942        dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
1943                inode->i_sb->s_id, inode->i_ino, mask, res);
1944        return res;
1945out_notsup:
1946        res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
1947        if (res == 0)
1948                res = generic_permission(inode, mask, NULL);
1949        unlock_kernel();
1950        goto out;
1951}
1952
1953/*
1954 * Local variables:
1955 *  version-control: t
1956 *  kept-new-versions: 5
1957 * End:
1958 */
1959