linux/fs/xfs/linux-2.6/xfs_buf.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include <linux/stddef.h>
  20#include <linux/errno.h>
  21#include <linux/slab.h>
  22#include <linux/pagemap.h>
  23#include <linux/init.h>
  24#include <linux/vmalloc.h>
  25#include <linux/bio.h>
  26#include <linux/sysctl.h>
  27#include <linux/proc_fs.h>
  28#include <linux/workqueue.h>
  29#include <linux/percpu.h>
  30#include <linux/blkdev.h>
  31#include <linux/hash.h>
  32#include <linux/kthread.h>
  33#include <linux/migrate.h>
  34#include <linux/backing-dev.h>
  35#include <linux/freezer.h>
  36
  37static kmem_zone_t *xfs_buf_zone;
  38STATIC int xfsbufd(void *);
  39STATIC int xfsbufd_wakeup(int, gfp_t);
  40STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
  41static struct shrinker xfs_buf_shake = {
  42        .shrink = xfsbufd_wakeup,
  43        .seeks = DEFAULT_SEEKS,
  44};
  45
  46static struct workqueue_struct *xfslogd_workqueue;
  47struct workqueue_struct *xfsdatad_workqueue;
  48
  49#ifdef XFS_BUF_TRACE
  50void
  51xfs_buf_trace(
  52        xfs_buf_t       *bp,
  53        char            *id,
  54        void            *data,
  55        void            *ra)
  56{
  57        ktrace_enter(xfs_buf_trace_buf,
  58                bp, id,
  59                (void *)(unsigned long)bp->b_flags,
  60                (void *)(unsigned long)bp->b_hold.counter,
  61                (void *)(unsigned long)bp->b_sema.count.counter,
  62                (void *)current,
  63                data, ra,
  64                (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
  65                (void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
  66                (void *)(unsigned long)bp->b_buffer_length,
  67                NULL, NULL, NULL, NULL, NULL);
  68}
  69ktrace_t *xfs_buf_trace_buf;
  70#define XFS_BUF_TRACE_SIZE      4096
  71#define XB_TRACE(bp, id, data)  \
  72        xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
  73#else
  74#define XB_TRACE(bp, id, data)  do { } while (0)
  75#endif
  76
  77#ifdef XFS_BUF_LOCK_TRACKING
  78# define XB_SET_OWNER(bp)       ((bp)->b_last_holder = current->pid)
  79# define XB_CLEAR_OWNER(bp)     ((bp)->b_last_holder = -1)
  80# define XB_GET_OWNER(bp)       ((bp)->b_last_holder)
  81#else
  82# define XB_SET_OWNER(bp)       do { } while (0)
  83# define XB_CLEAR_OWNER(bp)     do { } while (0)
  84# define XB_GET_OWNER(bp)       do { } while (0)
  85#endif
  86
  87#define xb_to_gfp(flags) \
  88        ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
  89          ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
  90
  91#define xb_to_km(flags) \
  92         (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
  93
  94#define xfs_buf_allocate(flags) \
  95        kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
  96#define xfs_buf_deallocate(bp) \
  97        kmem_zone_free(xfs_buf_zone, (bp));
  98
  99/*
 100 *      Page Region interfaces.
 101 *
 102 *      For pages in filesystems where the blocksize is smaller than the
 103 *      pagesize, we use the page->private field (long) to hold a bitmap
 104 *      of uptodate regions within the page.
 105 *
 106 *      Each such region is "bytes per page / bits per long" bytes long.
 107 *
 108 *      NBPPR == number-of-bytes-per-page-region
 109 *      BTOPR == bytes-to-page-region (rounded up)
 110 *      BTOPRT == bytes-to-page-region-truncated (rounded down)
 111 */
 112#if (BITS_PER_LONG == 32)
 113#define PRSHIFT         (PAGE_CACHE_SHIFT - 5)  /* (32 == 1<<5) */
 114#elif (BITS_PER_LONG == 64)
 115#define PRSHIFT         (PAGE_CACHE_SHIFT - 6)  /* (64 == 1<<6) */
 116#else
 117#error BITS_PER_LONG must be 32 or 64
 118#endif
 119#define NBPPR           (PAGE_CACHE_SIZE/BITS_PER_LONG)
 120#define BTOPR(b)        (((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
 121#define BTOPRT(b)       (((unsigned int)(b) >> PRSHIFT))
 122
 123STATIC unsigned long
 124page_region_mask(
 125        size_t          offset,
 126        size_t          length)
 127{
 128        unsigned long   mask;
 129        int             first, final;
 130
 131        first = BTOPR(offset);
 132        final = BTOPRT(offset + length - 1);
 133        first = min(first, final);
 134
 135        mask = ~0UL;
 136        mask <<= BITS_PER_LONG - (final - first);
 137        mask >>= BITS_PER_LONG - (final);
 138
 139        ASSERT(offset + length <= PAGE_CACHE_SIZE);
 140        ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
 141
 142        return mask;
 143}
 144
 145STATIC_INLINE void
 146set_page_region(
 147        struct page     *page,
 148        size_t          offset,
 149        size_t          length)
 150{
 151        set_page_private(page,
 152                page_private(page) | page_region_mask(offset, length));
 153        if (page_private(page) == ~0UL)
 154                SetPageUptodate(page);
 155}
 156
 157STATIC_INLINE int
 158test_page_region(
 159        struct page     *page,
 160        size_t          offset,
 161        size_t          length)
 162{
 163        unsigned long   mask = page_region_mask(offset, length);
 164
 165        return (mask && (page_private(page) & mask) == mask);
 166}
 167
 168/*
 169 *      Mapping of multi-page buffers into contiguous virtual space
 170 */
 171
 172typedef struct a_list {
 173        void            *vm_addr;
 174        struct a_list   *next;
 175} a_list_t;
 176
 177static a_list_t         *as_free_head;
 178static int              as_list_len;
 179static DEFINE_SPINLOCK(as_lock);
 180
 181/*
 182 *      Try to batch vunmaps because they are costly.
 183 */
 184STATIC void
 185free_address(
 186        void            *addr)
 187{
 188        a_list_t        *aentry;
 189
 190#ifdef CONFIG_XEN
 191        /*
 192         * Xen needs to be able to make sure it can get an exclusive
 193         * RO mapping of pages it wants to turn into a pagetable.  If
 194         * a newly allocated page is also still being vmap()ed by xfs,
 195         * it will cause pagetable construction to fail.  This is a
 196         * quick workaround to always eagerly unmap pages so that Xen
 197         * is happy.
 198         */
 199        vunmap(addr);
 200        return;
 201#endif
 202
 203        aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
 204        if (likely(aentry)) {
 205                spin_lock(&as_lock);
 206                aentry->next = as_free_head;
 207                aentry->vm_addr = addr;
 208                as_free_head = aentry;
 209                as_list_len++;
 210                spin_unlock(&as_lock);
 211        } else {
 212                vunmap(addr);
 213        }
 214}
 215
 216STATIC void
 217purge_addresses(void)
 218{
 219        a_list_t        *aentry, *old;
 220
 221        if (as_free_head == NULL)
 222                return;
 223
 224        spin_lock(&as_lock);
 225        aentry = as_free_head;
 226        as_free_head = NULL;
 227        as_list_len = 0;
 228        spin_unlock(&as_lock);
 229
 230        while ((old = aentry) != NULL) {
 231                vunmap(aentry->vm_addr);
 232                aentry = aentry->next;
 233                kfree(old);
 234        }
 235}
 236
 237/*
 238 *      Internal xfs_buf_t object manipulation
 239 */
 240
 241STATIC void
 242_xfs_buf_initialize(
 243        xfs_buf_t               *bp,
 244        xfs_buftarg_t           *target,
 245        xfs_off_t               range_base,
 246        size_t                  range_length,
 247        xfs_buf_flags_t         flags)
 248{
 249        /*
 250         * We don't want certain flags to appear in b_flags.
 251         */
 252        flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
 253
 254        memset(bp, 0, sizeof(xfs_buf_t));
 255        atomic_set(&bp->b_hold, 1);
 256        init_MUTEX_LOCKED(&bp->b_iodonesema);
 257        INIT_LIST_HEAD(&bp->b_list);
 258        INIT_LIST_HEAD(&bp->b_hash_list);
 259        init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
 260        XB_SET_OWNER(bp);
 261        bp->b_target = target;
 262        bp->b_file_offset = range_base;
 263        /*
 264         * Set buffer_length and count_desired to the same value initially.
 265         * I/O routines should use count_desired, which will be the same in
 266         * most cases but may be reset (e.g. XFS recovery).
 267         */
 268        bp->b_buffer_length = bp->b_count_desired = range_length;
 269        bp->b_flags = flags;
 270        bp->b_bn = XFS_BUF_DADDR_NULL;
 271        atomic_set(&bp->b_pin_count, 0);
 272        init_waitqueue_head(&bp->b_waiters);
 273
 274        XFS_STATS_INC(xb_create);
 275        XB_TRACE(bp, "initialize", target);
 276}
 277
 278/*
 279 *      Allocate a page array capable of holding a specified number
 280 *      of pages, and point the page buf at it.
 281 */
 282STATIC int
 283_xfs_buf_get_pages(
 284        xfs_buf_t               *bp,
 285        int                     page_count,
 286        xfs_buf_flags_t         flags)
 287{
 288        /* Make sure that we have a page list */
 289        if (bp->b_pages == NULL) {
 290                bp->b_offset = xfs_buf_poff(bp->b_file_offset);
 291                bp->b_page_count = page_count;
 292                if (page_count <= XB_PAGES) {
 293                        bp->b_pages = bp->b_page_array;
 294                } else {
 295                        bp->b_pages = kmem_alloc(sizeof(struct page *) *
 296                                        page_count, xb_to_km(flags));
 297                        if (bp->b_pages == NULL)
 298                                return -ENOMEM;
 299                }
 300                memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 301        }
 302        return 0;
 303}
 304
 305/*
 306 *      Frees b_pages if it was allocated.
 307 */
 308STATIC void
 309_xfs_buf_free_pages(
 310        xfs_buf_t       *bp)
 311{
 312        if (bp->b_pages != bp->b_page_array) {
 313                kmem_free(bp->b_pages,
 314                          bp->b_page_count * sizeof(struct page *));
 315        }
 316}
 317
 318/*
 319 *      Releases the specified buffer.
 320 *
 321 *      The modification state of any associated pages is left unchanged.
 322 *      The buffer most not be on any hash - use xfs_buf_rele instead for
 323 *      hashed and refcounted buffers
 324 */
 325void
 326xfs_buf_free(
 327        xfs_buf_t               *bp)
 328{
 329        XB_TRACE(bp, "free", 0);
 330
 331        ASSERT(list_empty(&bp->b_hash_list));
 332
 333        if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
 334                uint            i;
 335
 336                if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
 337                        free_address(bp->b_addr - bp->b_offset);
 338
 339                for (i = 0; i < bp->b_page_count; i++) {
 340                        struct page     *page = bp->b_pages[i];
 341
 342                        if (bp->b_flags & _XBF_PAGE_CACHE)
 343                                ASSERT(!PagePrivate(page));
 344                        page_cache_release(page);
 345                }
 346                _xfs_buf_free_pages(bp);
 347        }
 348
 349        xfs_buf_deallocate(bp);
 350}
 351
 352/*
 353 *      Finds all pages for buffer in question and builds it's page list.
 354 */
 355STATIC int
 356_xfs_buf_lookup_pages(
 357        xfs_buf_t               *bp,
 358        uint                    flags)
 359{
 360        struct address_space    *mapping = bp->b_target->bt_mapping;
 361        size_t                  blocksize = bp->b_target->bt_bsize;
 362        size_t                  size = bp->b_count_desired;
 363        size_t                  nbytes, offset;
 364        gfp_t                   gfp_mask = xb_to_gfp(flags);
 365        unsigned short          page_count, i;
 366        pgoff_t                 first;
 367        xfs_off_t               end;
 368        int                     error;
 369
 370        end = bp->b_file_offset + bp->b_buffer_length;
 371        page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
 372
 373        error = _xfs_buf_get_pages(bp, page_count, flags);
 374        if (unlikely(error))
 375                return error;
 376        bp->b_flags |= _XBF_PAGE_CACHE;
 377
 378        offset = bp->b_offset;
 379        first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
 380
 381        for (i = 0; i < bp->b_page_count; i++) {
 382                struct page     *page;
 383                uint            retries = 0;
 384
 385              retry:
 386                page = find_or_create_page(mapping, first + i, gfp_mask);
 387                if (unlikely(page == NULL)) {
 388                        if (flags & XBF_READ_AHEAD) {
 389                                bp->b_page_count = i;
 390                                for (i = 0; i < bp->b_page_count; i++)
 391                                        unlock_page(bp->b_pages[i]);
 392                                return -ENOMEM;
 393                        }
 394
 395                        /*
 396                         * This could deadlock.
 397                         *
 398                         * But until all the XFS lowlevel code is revamped to
 399                         * handle buffer allocation failures we can't do much.
 400                         */
 401                        if (!(++retries % 100))
 402                                printk(KERN_ERR
 403                                        "XFS: possible memory allocation "
 404                                        "deadlock in %s (mode:0x%x)\n",
 405                                        __FUNCTION__, gfp_mask);
 406
 407                        XFS_STATS_INC(xb_page_retries);
 408                        xfsbufd_wakeup(0, gfp_mask);
 409                        congestion_wait(WRITE, HZ/50);
 410                        goto retry;
 411                }
 412
 413                XFS_STATS_INC(xb_page_found);
 414
 415                nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
 416                size -= nbytes;
 417
 418                ASSERT(!PagePrivate(page));
 419                if (!PageUptodate(page)) {
 420                        page_count--;
 421                        if (blocksize >= PAGE_CACHE_SIZE) {
 422                                if (flags & XBF_READ)
 423                                        bp->b_locked = 1;
 424                        } else if (!PagePrivate(page)) {
 425                                if (test_page_region(page, offset, nbytes))
 426                                        page_count++;
 427                        }
 428                }
 429
 430                bp->b_pages[i] = page;
 431                offset = 0;
 432        }
 433
 434        if (!bp->b_locked) {
 435                for (i = 0; i < bp->b_page_count; i++)
 436                        unlock_page(bp->b_pages[i]);
 437        }
 438
 439        if (page_count == bp->b_page_count)
 440                bp->b_flags |= XBF_DONE;
 441
 442        XB_TRACE(bp, "lookup_pages", (long)page_count);
 443        return error;
 444}
 445
 446/*
 447 *      Map buffer into kernel address-space if nessecary.
 448 */
 449STATIC int
 450_xfs_buf_map_pages(
 451        xfs_buf_t               *bp,
 452        uint                    flags)
 453{
 454        /* A single page buffer is always mappable */
 455        if (bp->b_page_count == 1) {
 456                bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 457                bp->b_flags |= XBF_MAPPED;
 458        } else if (flags & XBF_MAPPED) {
 459                if (as_list_len > 64)
 460                        purge_addresses();
 461                bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
 462                                        VM_MAP, PAGE_KERNEL);
 463                if (unlikely(bp->b_addr == NULL))
 464                        return -ENOMEM;
 465                bp->b_addr += bp->b_offset;
 466                bp->b_flags |= XBF_MAPPED;
 467        }
 468
 469        return 0;
 470}
 471
 472/*
 473 *      Finding and Reading Buffers
 474 */
 475
 476/*
 477 *      Look up, and creates if absent, a lockable buffer for
 478 *      a given range of an inode.  The buffer is returned
 479 *      locked.  If other overlapping buffers exist, they are
 480 *      released before the new buffer is created and locked,
 481 *      which may imply that this call will block until those buffers
 482 *      are unlocked.  No I/O is implied by this call.
 483 */
 484xfs_buf_t *
 485_xfs_buf_find(
 486        xfs_buftarg_t           *btp,   /* block device target          */
 487        xfs_off_t               ioff,   /* starting offset of range     */
 488        size_t                  isize,  /* length of range              */
 489        xfs_buf_flags_t         flags,
 490        xfs_buf_t               *new_bp)
 491{
 492        xfs_off_t               range_base;
 493        size_t                  range_length;
 494        xfs_bufhash_t           *hash;
 495        xfs_buf_t               *bp, *n;
 496
 497        range_base = (ioff << BBSHIFT);
 498        range_length = (isize << BBSHIFT);
 499
 500        /* Check for IOs smaller than the sector size / not sector aligned */
 501        ASSERT(!(range_length < (1 << btp->bt_sshift)));
 502        ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
 503
 504        hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
 505
 506        spin_lock(&hash->bh_lock);
 507
 508        list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
 509                ASSERT(btp == bp->b_target);
 510                if (bp->b_file_offset == range_base &&
 511                    bp->b_buffer_length == range_length) {
 512                        /*
 513                         * If we look at something, bring it to the
 514                         * front of the list for next time.
 515                         */
 516                        atomic_inc(&bp->b_hold);
 517                        list_move(&bp->b_hash_list, &hash->bh_list);
 518                        goto found;
 519                }
 520        }
 521
 522        /* No match found */
 523        if (new_bp) {
 524                _xfs_buf_initialize(new_bp, btp, range_base,
 525                                range_length, flags);
 526                new_bp->b_hash = hash;
 527                list_add(&new_bp->b_hash_list, &hash->bh_list);
 528        } else {
 529                XFS_STATS_INC(xb_miss_locked);
 530        }
 531
 532        spin_unlock(&hash->bh_lock);
 533        return new_bp;
 534
 535found:
 536        spin_unlock(&hash->bh_lock);
 537
 538        /* Attempt to get the semaphore without sleeping,
 539         * if this does not work then we need to drop the
 540         * spinlock and do a hard attempt on the semaphore.
 541         */
 542        if (down_trylock(&bp->b_sema)) {
 543                if (!(flags & XBF_TRYLOCK)) {
 544                        /* wait for buffer ownership */
 545                        XB_TRACE(bp, "get_lock", 0);
 546                        xfs_buf_lock(bp);
 547                        XFS_STATS_INC(xb_get_locked_waited);
 548                } else {
 549                        /* We asked for a trylock and failed, no need
 550                         * to look at file offset and length here, we
 551                         * know that this buffer at least overlaps our
 552                         * buffer and is locked, therefore our buffer
 553                         * either does not exist, or is this buffer.
 554                         */
 555                        xfs_buf_rele(bp);
 556                        XFS_STATS_INC(xb_busy_locked);
 557                        return NULL;
 558                }
 559        } else {
 560                /* trylock worked */
 561                XB_SET_OWNER(bp);
 562        }
 563
 564        if (bp->b_flags & XBF_STALE) {
 565                ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 566                bp->b_flags &= XBF_MAPPED;
 567        }
 568        XB_TRACE(bp, "got_lock", 0);
 569        XFS_STATS_INC(xb_get_locked);
 570        return bp;
 571}
 572
 573/*
 574 *      Assembles a buffer covering the specified range.
 575 *      Storage in memory for all portions of the buffer will be allocated,
 576 *      although backing storage may not be.
 577 */
 578xfs_buf_t *
 579xfs_buf_get_flags(
 580        xfs_buftarg_t           *target,/* target for buffer            */
 581        xfs_off_t               ioff,   /* starting offset of range     */
 582        size_t                  isize,  /* length of range              */
 583        xfs_buf_flags_t         flags)
 584{
 585        xfs_buf_t               *bp, *new_bp;
 586        int                     error = 0, i;
 587
 588        new_bp = xfs_buf_allocate(flags);
 589        if (unlikely(!new_bp))
 590                return NULL;
 591
 592        bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
 593        if (bp == new_bp) {
 594                error = _xfs_buf_lookup_pages(bp, flags);
 595                if (error)
 596                        goto no_buffer;
 597        } else {
 598                xfs_buf_deallocate(new_bp);
 599                if (unlikely(bp == NULL))
 600                        return NULL;
 601        }
 602
 603        for (i = 0; i < bp->b_page_count; i++)
 604                mark_page_accessed(bp->b_pages[i]);
 605
 606        if (!(bp->b_flags & XBF_MAPPED)) {
 607                error = _xfs_buf_map_pages(bp, flags);
 608                if (unlikely(error)) {
 609                        printk(KERN_WARNING "%s: failed to map pages\n",
 610                                        __FUNCTION__);
 611                        goto no_buffer;
 612                }
 613        }
 614
 615        XFS_STATS_INC(xb_get);
 616
 617        /*
 618         * Always fill in the block number now, the mapped cases can do
 619         * their own overlay of this later.
 620         */
 621        bp->b_bn = ioff;
 622        bp->b_count_desired = bp->b_buffer_length;
 623
 624        XB_TRACE(bp, "get", (unsigned long)flags);
 625        return bp;
 626
 627 no_buffer:
 628        if (flags & (XBF_LOCK | XBF_TRYLOCK))
 629                xfs_buf_unlock(bp);
 630        xfs_buf_rele(bp);
 631        return NULL;
 632}
 633
 634xfs_buf_t *
 635xfs_buf_read_flags(
 636        xfs_buftarg_t           *target,
 637        xfs_off_t               ioff,
 638        size_t                  isize,
 639        xfs_buf_flags_t         flags)
 640{
 641        xfs_buf_t               *bp;
 642
 643        flags |= XBF_READ;
 644
 645        bp = xfs_buf_get_flags(target, ioff, isize, flags);
 646        if (bp) {
 647                if (!XFS_BUF_ISDONE(bp)) {
 648                        XB_TRACE(bp, "read", (unsigned long)flags);
 649                        XFS_STATS_INC(xb_get_read);
 650                        xfs_buf_iostart(bp, flags);
 651                } else if (flags & XBF_ASYNC) {
 652                        XB_TRACE(bp, "read_async", (unsigned long)flags);
 653                        /*
 654                         * Read ahead call which is already satisfied,
 655                         * drop the buffer
 656                         */
 657                        goto no_buffer;
 658                } else {
 659                        XB_TRACE(bp, "read_done", (unsigned long)flags);
 660                        /* We do not want read in the flags */
 661                        bp->b_flags &= ~XBF_READ;
 662                }
 663        }
 664
 665        return bp;
 666
 667 no_buffer:
 668        if (flags & (XBF_LOCK | XBF_TRYLOCK))
 669                xfs_buf_unlock(bp);
 670        xfs_buf_rele(bp);
 671        return NULL;
 672}
 673
 674/*
 675 *      If we are not low on memory then do the readahead in a deadlock
 676 *      safe manner.
 677 */
 678void
 679xfs_buf_readahead(
 680        xfs_buftarg_t           *target,
 681        xfs_off_t               ioff,
 682        size_t                  isize,
 683        xfs_buf_flags_t         flags)
 684{
 685        struct backing_dev_info *bdi;
 686
 687        bdi = target->bt_mapping->backing_dev_info;
 688        if (bdi_read_congested(bdi))
 689                return;
 690
 691        flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
 692        xfs_buf_read_flags(target, ioff, isize, flags);
 693}
 694
 695xfs_buf_t *
 696xfs_buf_get_empty(
 697        size_t                  len,
 698        xfs_buftarg_t           *target)
 699{
 700        xfs_buf_t               *bp;
 701
 702        bp = xfs_buf_allocate(0);
 703        if (bp)
 704                _xfs_buf_initialize(bp, target, 0, len, 0);
 705        return bp;
 706}
 707
 708static inline struct page *
 709mem_to_page(
 710        void                    *addr)
 711{
 712        if (((unsigned long)addr < VMALLOC_START) ||
 713            ((unsigned long)addr >= VMALLOC_END)) {
 714                return virt_to_page(addr);
 715        } else {
 716                return vmalloc_to_page(addr);
 717        }
 718}
 719
 720int
 721xfs_buf_associate_memory(
 722        xfs_buf_t               *bp,
 723        void                    *mem,
 724        size_t                  len)
 725{
 726        int                     rval;
 727        int                     i = 0;
 728        unsigned long           pageaddr;
 729        unsigned long           offset;
 730        size_t                  buflen;
 731        int                     page_count;
 732
 733        pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
 734        offset = (unsigned long)mem - pageaddr;
 735        buflen = PAGE_CACHE_ALIGN(len + offset);
 736        page_count = buflen >> PAGE_CACHE_SHIFT;
 737
 738        /* Free any previous set of page pointers */
 739        if (bp->b_pages)
 740                _xfs_buf_free_pages(bp);
 741
 742        bp->b_pages = NULL;
 743        bp->b_addr = mem;
 744
 745        rval = _xfs_buf_get_pages(bp, page_count, 0);
 746        if (rval)
 747                return rval;
 748
 749        bp->b_offset = offset;
 750
 751        for (i = 0; i < bp->b_page_count; i++) {
 752                bp->b_pages[i] = mem_to_page((void *)pageaddr);
 753                pageaddr += PAGE_CACHE_SIZE;
 754        }
 755        bp->b_locked = 0;
 756
 757        bp->b_count_desired = len;
 758        bp->b_buffer_length = buflen;
 759        bp->b_flags |= XBF_MAPPED;
 760
 761        return 0;
 762}
 763
 764xfs_buf_t *
 765xfs_buf_get_noaddr(
 766        size_t                  len,
 767        xfs_buftarg_t           *target)
 768{
 769        unsigned long           page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
 770        int                     error, i;
 771        xfs_buf_t               *bp;
 772
 773        bp = xfs_buf_allocate(0);
 774        if (unlikely(bp == NULL))
 775                goto fail;
 776        _xfs_buf_initialize(bp, target, 0, len, 0);
 777
 778        error = _xfs_buf_get_pages(bp, page_count, 0);
 779        if (error)
 780                goto fail_free_buf;
 781
 782        for (i = 0; i < page_count; i++) {
 783                bp->b_pages[i] = alloc_page(GFP_KERNEL);
 784                if (!bp->b_pages[i])
 785                        goto fail_free_mem;
 786        }
 787        bp->b_flags |= _XBF_PAGES;
 788
 789        error = _xfs_buf_map_pages(bp, XBF_MAPPED);
 790        if (unlikely(error)) {
 791                printk(KERN_WARNING "%s: failed to map pages\n",
 792                                __FUNCTION__);
 793                goto fail_free_mem;
 794        }
 795
 796        xfs_buf_unlock(bp);
 797
 798        XB_TRACE(bp, "no_daddr", len);
 799        return bp;
 800
 801 fail_free_mem:
 802        while (--i >= 0)
 803                __free_page(bp->b_pages[i]);
 804        _xfs_buf_free_pages(bp);
 805 fail_free_buf:
 806        xfs_buf_deallocate(bp);
 807 fail:
 808        return NULL;
 809}
 810
 811/*
 812 *      Increment reference count on buffer, to hold the buffer concurrently
 813 *      with another thread which may release (free) the buffer asynchronously.
 814 *      Must hold the buffer already to call this function.
 815 */
 816void
 817xfs_buf_hold(
 818        xfs_buf_t               *bp)
 819{
 820        atomic_inc(&bp->b_hold);
 821        XB_TRACE(bp, "hold", 0);
 822}
 823
 824/*
 825 *      Releases a hold on the specified buffer.  If the
 826 *      the hold count is 1, calls xfs_buf_free.
 827 */
 828void
 829xfs_buf_rele(
 830        xfs_buf_t               *bp)
 831{
 832        xfs_bufhash_t           *hash = bp->b_hash;
 833
 834        XB_TRACE(bp, "rele", bp->b_relse);
 835
 836        if (unlikely(!hash)) {
 837                ASSERT(!bp->b_relse);
 838                if (atomic_dec_and_test(&bp->b_hold))
 839                        xfs_buf_free(bp);
 840                return;
 841        }
 842
 843        if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
 844                if (bp->b_relse) {
 845                        atomic_inc(&bp->b_hold);
 846                        spin_unlock(&hash->bh_lock);
 847                        (*(bp->b_relse)) (bp);
 848                } else if (bp->b_flags & XBF_FS_MANAGED) {
 849                        spin_unlock(&hash->bh_lock);
 850                } else {
 851                        ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
 852                        list_del_init(&bp->b_hash_list);
 853                        spin_unlock(&hash->bh_lock);
 854                        xfs_buf_free(bp);
 855                }
 856        } else {
 857                /*
 858                 * Catch reference count leaks
 859                 */
 860                ASSERT(atomic_read(&bp->b_hold) >= 0);
 861        }
 862}
 863
 864
 865/*
 866 *      Mutual exclusion on buffers.  Locking model:
 867 *
 868 *      Buffers associated with inodes for which buffer locking
 869 *      is not enabled are not protected by semaphores, and are
 870 *      assumed to be exclusively owned by the caller.  There is a
 871 *      spinlock in the buffer, used by the caller when concurrent
 872 *      access is possible.
 873 */
 874
 875/*
 876 *      Locks a buffer object, if it is not already locked.
 877 *      Note that this in no way locks the underlying pages, so it is only
 878 *      useful for synchronizing concurrent use of buffer objects, not for
 879 *      synchronizing independent access to the underlying pages.
 880 */
 881int
 882xfs_buf_cond_lock(
 883        xfs_buf_t               *bp)
 884{
 885        int                     locked;
 886
 887        locked = down_trylock(&bp->b_sema) == 0;
 888        if (locked) {
 889                XB_SET_OWNER(bp);
 890        }
 891        XB_TRACE(bp, "cond_lock", (long)locked);
 892        return locked ? 0 : -EBUSY;
 893}
 894
 895#if defined(DEBUG) || defined(XFS_BLI_TRACE)
 896int
 897xfs_buf_lock_value(
 898        xfs_buf_t               *bp)
 899{
 900        return atomic_read(&bp->b_sema.count);
 901}
 902#endif
 903
 904/*
 905 *      Locks a buffer object.
 906 *      Note that this in no way locks the underlying pages, so it is only
 907 *      useful for synchronizing concurrent use of buffer objects, not for
 908 *      synchronizing independent access to the underlying pages.
 909 */
 910void
 911xfs_buf_lock(
 912        xfs_buf_t               *bp)
 913{
 914        XB_TRACE(bp, "lock", 0);
 915        if (atomic_read(&bp->b_io_remaining))
 916                blk_run_address_space(bp->b_target->bt_mapping);
 917        down(&bp->b_sema);
 918        XB_SET_OWNER(bp);
 919        XB_TRACE(bp, "locked", 0);
 920}
 921
 922/*
 923 *      Releases the lock on the buffer object.
 924 *      If the buffer is marked delwri but is not queued, do so before we
 925 *      unlock the buffer as we need to set flags correctly.  We also need to
 926 *      take a reference for the delwri queue because the unlocker is going to
 927 *      drop their's and they don't know we just queued it.
 928 */
 929void
 930xfs_buf_unlock(
 931        xfs_buf_t               *bp)
 932{
 933        if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
 934                atomic_inc(&bp->b_hold);
 935                bp->b_flags |= XBF_ASYNC;
 936                xfs_buf_delwri_queue(bp, 0);
 937        }
 938
 939        XB_CLEAR_OWNER(bp);
 940        up(&bp->b_sema);
 941        XB_TRACE(bp, "unlock", 0);
 942}
 943
 944
 945/*
 946 *      Pinning Buffer Storage in Memory
 947 *      Ensure that no attempt to force a buffer to disk will succeed.
 948 */
 949void
 950xfs_buf_pin(
 951        xfs_buf_t               *bp)
 952{
 953        atomic_inc(&bp->b_pin_count);
 954        XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
 955}
 956
 957void
 958xfs_buf_unpin(
 959        xfs_buf_t               *bp)
 960{
 961        if (atomic_dec_and_test(&bp->b_pin_count))
 962                wake_up_all(&bp->b_waiters);
 963        XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
 964}
 965
 966int
 967xfs_buf_ispin(
 968        xfs_buf_t               *bp)
 969{
 970        return atomic_read(&bp->b_pin_count);
 971}
 972
 973STATIC void
 974xfs_buf_wait_unpin(
 975        xfs_buf_t               *bp)
 976{
 977        DECLARE_WAITQUEUE       (wait, current);
 978
 979        if (atomic_read(&bp->b_pin_count) == 0)
 980                return;
 981
 982        add_wait_queue(&bp->b_waiters, &wait);
 983        for (;;) {
 984                set_current_state(TASK_UNINTERRUPTIBLE);
 985                if (atomic_read(&bp->b_pin_count) == 0)
 986                        break;
 987                if (atomic_read(&bp->b_io_remaining))
 988                        blk_run_address_space(bp->b_target->bt_mapping);
 989                schedule();
 990        }
 991        remove_wait_queue(&bp->b_waiters, &wait);
 992        set_current_state(TASK_RUNNING);
 993}
 994
 995/*
 996 *      Buffer Utility Routines
 997 */
 998
 999STATIC void
1000xfs_buf_iodone_work(
1001        struct work_struct      *work)
1002{
1003        xfs_buf_t               *bp =
1004                container_of(work, xfs_buf_t, b_iodone_work);
1005
1006        /*
1007         * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
1008         * ordered flag and reissue them.  Because we can't tell the higher
1009         * layers directly that they should not issue ordered I/O anymore, they
1010         * need to check if the ordered flag was cleared during I/O completion.
1011         */
1012        if ((bp->b_error == EOPNOTSUPP) &&
1013            (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
1014                XB_TRACE(bp, "ordered_retry", bp->b_iodone);
1015                bp->b_flags &= ~XBF_ORDERED;
1016                xfs_buf_iorequest(bp);
1017        } else if (bp->b_iodone)
1018                (*(bp->b_iodone))(bp);
1019        else if (bp->b_flags & XBF_ASYNC)
1020                xfs_buf_relse(bp);
1021}
1022
1023void
1024xfs_buf_ioend(
1025        xfs_buf_t               *bp,
1026        int                     schedule)
1027{
1028        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1029        if (bp->b_error == 0)
1030                bp->b_flags |= XBF_DONE;
1031
1032        XB_TRACE(bp, "iodone", bp->b_iodone);
1033
1034        if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
1035                if (schedule) {
1036                        INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
1037                        queue_work(xfslogd_workqueue, &bp->b_iodone_work);
1038                } else {
1039                        xfs_buf_iodone_work(&bp->b_iodone_work);
1040                }
1041        } else {
1042                up(&bp->b_iodonesema);
1043        }
1044}
1045
1046void
1047xfs_buf_ioerror(
1048        xfs_buf_t               *bp,
1049        int                     error)
1050{
1051        ASSERT(error >= 0 && error <= 0xffff);
1052        bp->b_error = (unsigned short)error;
1053        XB_TRACE(bp, "ioerror", (unsigned long)error);
1054}
1055
1056/*
1057 *      Initiate I/O on a buffer, based on the flags supplied.
1058 *      The b_iodone routine in the buffer supplied will only be called
1059 *      when all of the subsidiary I/O requests, if any, have been completed.
1060 */
1061int
1062xfs_buf_iostart(
1063        xfs_buf_t               *bp,
1064        xfs_buf_flags_t         flags)
1065{
1066        int                     status = 0;
1067
1068        XB_TRACE(bp, "iostart", (unsigned long)flags);
1069
1070        if (flags & XBF_DELWRI) {
1071                bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC);
1072                bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC);
1073                xfs_buf_delwri_queue(bp, 1);
1074                return status;
1075        }
1076
1077        bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
1078                        XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1079        bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \
1080                        XBF_READ_AHEAD | _XBF_RUN_QUEUES);
1081
1082        BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL);
1083
1084        /* For writes allow an alternate strategy routine to precede
1085         * the actual I/O request (which may not be issued at all in
1086         * a shutdown situation, for example).
1087         */
1088        status = (flags & XBF_WRITE) ?
1089                xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp);
1090
1091        /* Wait for I/O if we are not an async request.
1092         * Note: async I/O request completion will release the buffer,
1093         * and that can already be done by this point.  So using the
1094         * buffer pointer from here on, after async I/O, is invalid.
1095         */
1096        if (!status && !(flags & XBF_ASYNC))
1097                status = xfs_buf_iowait(bp);
1098
1099        return status;
1100}
1101
1102STATIC_INLINE int
1103_xfs_buf_iolocked(
1104        xfs_buf_t               *bp)
1105{
1106        ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE));
1107        if (bp->b_flags & XBF_READ)
1108                return bp->b_locked;
1109        return 0;
1110}
1111
1112STATIC_INLINE void
1113_xfs_buf_ioend(
1114        xfs_buf_t               *bp,
1115        int                     schedule)
1116{
1117        if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1118                bp->b_locked = 0;
1119                xfs_buf_ioend(bp, schedule);
1120        }
1121}
1122
1123STATIC void
1124xfs_buf_bio_end_io(
1125        struct bio              *bio,
1126        int                     error)
1127{
1128        xfs_buf_t               *bp = (xfs_buf_t *)bio->bi_private;
1129        unsigned int            blocksize = bp->b_target->bt_bsize;
1130        struct bio_vec          *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1131
1132        if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1133                bp->b_error = EIO;
1134
1135        do {
1136                struct page     *page = bvec->bv_page;
1137
1138                ASSERT(!PagePrivate(page));
1139                if (unlikely(bp->b_error)) {
1140                        if (bp->b_flags & XBF_READ)
1141                                ClearPageUptodate(page);
1142                } else if (blocksize >= PAGE_CACHE_SIZE) {
1143                        SetPageUptodate(page);
1144                } else if (!PagePrivate(page) &&
1145                                (bp->b_flags & _XBF_PAGE_CACHE)) {
1146                        set_page_region(page, bvec->bv_offset, bvec->bv_len);
1147                }
1148
1149                if (--bvec >= bio->bi_io_vec)
1150                        prefetchw(&bvec->bv_page->flags);
1151
1152                if (_xfs_buf_iolocked(bp)) {
1153                        unlock_page(page);
1154                }
1155        } while (bvec >= bio->bi_io_vec);
1156
1157        _xfs_buf_ioend(bp, 1);
1158        bio_put(bio);
1159}
1160
1161STATIC void
1162_xfs_buf_ioapply(
1163        xfs_buf_t               *bp)
1164{
1165        int                     i, rw, map_i, total_nr_pages, nr_pages;
1166        struct bio              *bio;
1167        int                     offset = bp->b_offset;
1168        int                     size = bp->b_count_desired;
1169        sector_t                sector = bp->b_bn;
1170        unsigned int            blocksize = bp->b_target->bt_bsize;
1171        int                     locking = _xfs_buf_iolocked(bp);
1172
1173        total_nr_pages = bp->b_page_count;
1174        map_i = 0;
1175
1176        if (bp->b_flags & XBF_ORDERED) {
1177                ASSERT(!(bp->b_flags & XBF_READ));
1178                rw = WRITE_BARRIER;
1179        } else if (bp->b_flags & _XBF_RUN_QUEUES) {
1180                ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
1181                bp->b_flags &= ~_XBF_RUN_QUEUES;
1182                rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
1183        } else {
1184                rw = (bp->b_flags & XBF_WRITE) ? WRITE :
1185                     (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
1186        }
1187
1188        /* Special code path for reading a sub page size buffer in --
1189         * we populate up the whole page, and hence the other metadata
1190         * in the same page.  This optimization is only valid when the
1191         * filesystem block size is not smaller than the page size.
1192         */
1193        if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
1194            (bp->b_flags & XBF_READ) && locking &&
1195            (blocksize >= PAGE_CACHE_SIZE)) {
1196                bio = bio_alloc(GFP_NOIO, 1);
1197
1198                bio->bi_bdev = bp->b_target->bt_bdev;
1199                bio->bi_sector = sector - (offset >> BBSHIFT);
1200                bio->bi_end_io = xfs_buf_bio_end_io;
1201                bio->bi_private = bp;
1202
1203                bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
1204                size = 0;
1205
1206                atomic_inc(&bp->b_io_remaining);
1207
1208                goto submit_io;
1209        }
1210
1211        /* Lock down the pages which we need to for the request */
1212        if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) {
1213                for (i = 0; size; i++) {
1214                        int             nbytes = PAGE_CACHE_SIZE - offset;
1215                        struct page     *page = bp->b_pages[i];
1216
1217                        if (nbytes > size)
1218                                nbytes = size;
1219
1220                        lock_page(page);
1221
1222                        size -= nbytes;
1223                        offset = 0;
1224                }
1225                offset = bp->b_offset;
1226                size = bp->b_count_desired;
1227        }
1228
1229next_chunk:
1230        atomic_inc(&bp->b_io_remaining);
1231        nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
1232        if (nr_pages > total_nr_pages)
1233                nr_pages = total_nr_pages;
1234
1235        bio = bio_alloc(GFP_NOIO, nr_pages);
1236        bio->bi_bdev = bp->b_target->bt_bdev;
1237        bio->bi_sector = sector;
1238        bio->bi_end_io = xfs_buf_bio_end_io;
1239        bio->bi_private = bp;
1240
1241        for (; size && nr_pages; nr_pages--, map_i++) {
1242                int     rbytes, nbytes = PAGE_CACHE_SIZE - offset;
1243
1244                if (nbytes > size)
1245                        nbytes = size;
1246
1247                rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
1248                if (rbytes < nbytes)
1249                        break;
1250
1251                offset = 0;
1252                sector += nbytes >> BBSHIFT;
1253                size -= nbytes;
1254                total_nr_pages--;
1255        }
1256
1257submit_io:
1258        if (likely(bio->bi_size)) {
1259                submit_bio(rw, bio);
1260                if (size)
1261                        goto next_chunk;
1262        } else {
1263                bio_put(bio);
1264                xfs_buf_ioerror(bp, EIO);
1265        }
1266}
1267
1268int
1269xfs_buf_iorequest(
1270        xfs_buf_t               *bp)
1271{
1272        XB_TRACE(bp, "iorequest", 0);
1273
1274        if (bp->b_flags & XBF_DELWRI) {
1275                xfs_buf_delwri_queue(bp, 1);
1276                return 0;
1277        }
1278
1279        if (bp->b_flags & XBF_WRITE) {
1280                xfs_buf_wait_unpin(bp);
1281        }
1282
1283        xfs_buf_hold(bp);
1284
1285        /* Set the count to 1 initially, this will stop an I/O
1286         * completion callout which happens before we have started
1287         * all the I/O from calling xfs_buf_ioend too early.
1288         */
1289        atomic_set(&bp->b_io_remaining, 1);
1290        _xfs_buf_ioapply(bp);
1291        _xfs_buf_ioend(bp, 0);
1292
1293        xfs_buf_rele(bp);
1294        return 0;
1295}
1296
1297/*
1298 *      Waits for I/O to complete on the buffer supplied.
1299 *      It returns immediately if no I/O is pending.
1300 *      It returns the I/O error code, if any, or 0 if there was no error.
1301 */
1302int
1303xfs_buf_iowait(
1304        xfs_buf_t               *bp)
1305{
1306        XB_TRACE(bp, "iowait", 0);
1307        if (atomic_read(&bp->b_io_remaining))
1308                blk_run_address_space(bp->b_target->bt_mapping);
1309        down(&bp->b_iodonesema);
1310        XB_TRACE(bp, "iowaited", (long)bp->b_error);
1311        return bp->b_error;
1312}
1313
1314xfs_caddr_t
1315xfs_buf_offset(
1316        xfs_buf_t               *bp,
1317        size_t                  offset)
1318{
1319        struct page             *page;
1320
1321        if (bp->b_flags & XBF_MAPPED)
1322                return XFS_BUF_PTR(bp) + offset;
1323
1324        offset += bp->b_offset;
1325        page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
1326        return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
1327}
1328
1329/*
1330 *      Move data into or out of a buffer.
1331 */
1332void
1333xfs_buf_iomove(
1334        xfs_buf_t               *bp,    /* buffer to process            */
1335        size_t                  boff,   /* starting buffer offset       */
1336        size_t                  bsize,  /* length to copy               */
1337        caddr_t                 data,   /* data address                 */
1338        xfs_buf_rw_t            mode)   /* read/write/zero flag         */
1339{
1340        size_t                  bend, cpoff, csize;
1341        struct page             *page;
1342
1343        bend = boff + bsize;
1344        while (boff < bend) {
1345                page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
1346                cpoff = xfs_buf_poff(boff + bp->b_offset);
1347                csize = min_t(size_t,
1348                              PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
1349
1350                ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
1351
1352                switch (mode) {
1353                case XBRW_ZERO:
1354                        memset(page_address(page) + cpoff, 0, csize);
1355                        break;
1356                case XBRW_READ:
1357                        memcpy(data, page_address(page) + cpoff, csize);
1358                        break;
1359                case XBRW_WRITE:
1360                        memcpy(page_address(page) + cpoff, data, csize);
1361                }
1362
1363                boff += csize;
1364                data += csize;
1365        }
1366}
1367
1368/*
1369 *      Handling of buffer targets (buftargs).
1370 */
1371
1372/*
1373 *      Wait for any bufs with callbacks that have been submitted but
1374 *      have not yet returned... walk the hash list for the target.
1375 */
1376void
1377xfs_wait_buftarg(
1378        xfs_buftarg_t   *btp)
1379{
1380        xfs_buf_t       *bp, *n;
1381        xfs_bufhash_t   *hash;
1382        uint            i;
1383
1384        for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1385                hash = &btp->bt_hash[i];
1386again:
1387                spin_lock(&hash->bh_lock);
1388                list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
1389                        ASSERT(btp == bp->b_target);
1390                        if (!(bp->b_flags & XBF_FS_MANAGED)) {
1391                                spin_unlock(&hash->bh_lock);
1392                                /*
1393                                 * Catch superblock reference count leaks
1394                                 * immediately
1395                                 */
1396                                BUG_ON(bp->b_bn == 0);
1397                                delay(100);
1398                                goto again;
1399                        }
1400                }
1401                spin_unlock(&hash->bh_lock);
1402        }
1403}
1404
1405/*
1406 *      Allocate buffer hash table for a given target.
1407 *      For devices containing metadata (i.e. not the log/realtime devices)
1408 *      we need to allocate a much larger hash table.
1409 */
1410STATIC void
1411xfs_alloc_bufhash(
1412        xfs_buftarg_t           *btp,
1413        int                     external)
1414{
1415        unsigned int            i;
1416
1417        btp->bt_hashshift = external ? 3 : 8;   /* 8 or 256 buckets */
1418        btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
1419        btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
1420                                        sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
1421        for (i = 0; i < (1 << btp->bt_hashshift); i++) {
1422                spin_lock_init(&btp->bt_hash[i].bh_lock);
1423                INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
1424        }
1425}
1426
1427STATIC void
1428xfs_free_bufhash(
1429        xfs_buftarg_t           *btp)
1430{
1431        kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t));
1432        btp->bt_hash = NULL;
1433}
1434
1435/*
1436 *      buftarg list for delwrite queue processing
1437 */
1438static LIST_HEAD(xfs_buftarg_list);
1439static DEFINE_SPINLOCK(xfs_buftarg_lock);
1440
1441STATIC void
1442xfs_register_buftarg(
1443        xfs_buftarg_t           *btp)
1444{
1445        spin_lock(&xfs_buftarg_lock);
1446        list_add(&btp->bt_list, &xfs_buftarg_list);
1447        spin_unlock(&xfs_buftarg_lock);
1448}
1449
1450STATIC void
1451xfs_unregister_buftarg(
1452        xfs_buftarg_t           *btp)
1453{
1454        spin_lock(&xfs_buftarg_lock);
1455        list_del(&btp->bt_list);
1456        spin_unlock(&xfs_buftarg_lock);
1457}
1458
1459void
1460xfs_free_buftarg(
1461        xfs_buftarg_t           *btp,
1462        int                     external)
1463{
1464        xfs_flush_buftarg(btp, 1);
1465        xfs_blkdev_issue_flush(btp);
1466        if (external)
1467                xfs_blkdev_put(btp->bt_bdev);
1468        xfs_free_bufhash(btp);
1469        iput(btp->bt_mapping->host);
1470
1471        /* Unregister the buftarg first so that we don't get a
1472         * wakeup finding a non-existent task
1473         */
1474        xfs_unregister_buftarg(btp);
1475        kthread_stop(btp->bt_task);
1476
1477        kmem_free(btp, sizeof(*btp));
1478}
1479
1480STATIC int
1481xfs_setsize_buftarg_flags(
1482        xfs_buftarg_t           *btp,
1483        unsigned int            blocksize,
1484        unsigned int            sectorsize,
1485        int                     verbose)
1486{
1487        btp->bt_bsize = blocksize;
1488        btp->bt_sshift = ffs(sectorsize) - 1;
1489        btp->bt_smask = sectorsize - 1;
1490
1491        if (set_blocksize(btp->bt_bdev, sectorsize)) {
1492                printk(KERN_WARNING
1493                        "XFS: Cannot set_blocksize to %u on device %s\n",
1494                        sectorsize, XFS_BUFTARG_NAME(btp));
1495                return EINVAL;
1496        }
1497
1498        if (verbose &&
1499            (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
1500                printk(KERN_WARNING
1501                        "XFS: %u byte sectors in use on device %s.  "
1502                        "This is suboptimal; %u or greater is ideal.\n",
1503                        sectorsize, XFS_BUFTARG_NAME(btp),
1504                        (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
1505        }
1506
1507        return 0;
1508}
1509
1510/*
1511 *      When allocating the initial buffer target we have not yet
1512 *      read in the superblock, so don't know what sized sectors
1513 *      are being used is at this early stage.  Play safe.
1514 */
1515STATIC int
1516xfs_setsize_buftarg_early(
1517        xfs_buftarg_t           *btp,
1518        struct block_device     *bdev)
1519{
1520        return xfs_setsize_buftarg_flags(btp,
1521                        PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0);
1522}
1523
1524int
1525xfs_setsize_buftarg(
1526        xfs_buftarg_t           *btp,
1527        unsigned int            blocksize,
1528        unsigned int            sectorsize)
1529{
1530        return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
1531}
1532
1533STATIC int
1534xfs_mapping_buftarg(
1535        xfs_buftarg_t           *btp,
1536        struct block_device     *bdev)
1537{
1538        struct backing_dev_info *bdi;
1539        struct inode            *inode;
1540        struct address_space    *mapping;
1541        static const struct address_space_operations mapping_aops = {
1542                .sync_page = block_sync_page,
1543                .migratepage = fail_migrate_page,
1544        };
1545
1546        inode = new_inode(bdev->bd_inode->i_sb);
1547        if (!inode) {
1548                printk(KERN_WARNING
1549                        "XFS: Cannot allocate mapping inode for device %s\n",
1550                        XFS_BUFTARG_NAME(btp));
1551                return ENOMEM;
1552        }
1553        inode->i_mode = S_IFBLK;
1554        inode->i_bdev = bdev;
1555        inode->i_rdev = bdev->bd_dev;
1556        bdi = blk_get_backing_dev_info(bdev);
1557        if (!bdi)
1558                bdi = &default_backing_dev_info;
1559        mapping = &inode->i_data;
1560        mapping->a_ops = &mapping_aops;
1561        mapping->backing_dev_info = bdi;
1562        mapping_set_gfp_mask(mapping, GFP_NOFS);
1563        btp->bt_mapping = mapping;
1564        return 0;
1565}
1566
1567STATIC int
1568xfs_alloc_delwrite_queue(
1569        xfs_buftarg_t           *btp)
1570{
1571        int     error = 0;
1572
1573        INIT_LIST_HEAD(&btp->bt_list);
1574        INIT_LIST_HEAD(&btp->bt_delwrite_queue);
1575        spinlock_init(&btp->bt_delwrite_lock, "delwri_lock");
1576        btp->bt_flags = 0;
1577        btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
1578        if (IS_ERR(btp->bt_task)) {
1579                error = PTR_ERR(btp->bt_task);
1580                goto out_error;
1581        }
1582        xfs_register_buftarg(btp);
1583out_error:
1584        return error;
1585}
1586
1587xfs_buftarg_t *
1588xfs_alloc_buftarg(
1589        struct block_device     *bdev,
1590        int                     external)
1591{
1592        xfs_buftarg_t           *btp;
1593
1594        btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
1595
1596        btp->bt_dev =  bdev->bd_dev;
1597        btp->bt_bdev = bdev;
1598        if (xfs_setsize_buftarg_early(btp, bdev))
1599                goto error;
1600        if (xfs_mapping_buftarg(btp, bdev))
1601                goto error;
1602        if (xfs_alloc_delwrite_queue(btp))
1603                goto error;
1604        xfs_alloc_bufhash(btp, external);
1605        return btp;
1606
1607error:
1608        kmem_free(btp, sizeof(*btp));
1609        return NULL;
1610}
1611
1612
1613/*
1614 *      Delayed write buffer handling
1615 */
1616STATIC void
1617xfs_buf_delwri_queue(
1618        xfs_buf_t               *bp,
1619        int                     unlock)
1620{
1621        struct list_head        *dwq = &bp->b_target->bt_delwrite_queue;
1622        spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1623
1624        XB_TRACE(bp, "delwri_q", (long)unlock);
1625        ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
1626
1627        spin_lock(dwlk);
1628        /* If already in the queue, dequeue and place at tail */
1629        if (!list_empty(&bp->b_list)) {
1630                ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1631                if (unlock)
1632                        atomic_dec(&bp->b_hold);
1633                list_del(&bp->b_list);
1634        }
1635
1636        bp->b_flags |= _XBF_DELWRI_Q;
1637        list_add_tail(&bp->b_list, dwq);
1638        bp->b_queuetime = jiffies;
1639        spin_unlock(dwlk);
1640
1641        if (unlock)
1642                xfs_buf_unlock(bp);
1643}
1644
1645void
1646xfs_buf_delwri_dequeue(
1647        xfs_buf_t               *bp)
1648{
1649        spinlock_t              *dwlk = &bp->b_target->bt_delwrite_lock;
1650        int                     dequeued = 0;
1651
1652        spin_lock(dwlk);
1653        if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
1654                ASSERT(bp->b_flags & _XBF_DELWRI_Q);
1655                list_del_init(&bp->b_list);
1656                dequeued = 1;
1657        }
1658        bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
1659        spin_unlock(dwlk);
1660
1661        if (dequeued)
1662                xfs_buf_rele(bp);
1663
1664        XB_TRACE(bp, "delwri_dq", (long)dequeued);
1665}
1666
1667STATIC void
1668xfs_buf_runall_queues(
1669        struct workqueue_struct *queue)
1670{
1671        flush_workqueue(queue);
1672}
1673
1674STATIC int
1675xfsbufd_wakeup(
1676        int                     priority,
1677        gfp_t                   mask)
1678{
1679        xfs_buftarg_t           *btp;
1680
1681        spin_lock(&xfs_buftarg_lock);
1682        list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
1683                if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
1684                        continue;
1685                set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
1686                wake_up_process(btp->bt_task);
1687        }
1688        spin_unlock(&xfs_buftarg_lock);
1689        return 0;
1690}
1691
1692/*
1693 * Move as many buffers as specified to the supplied list
1694 * idicating if we skipped any buffers to prevent deadlocks.
1695 */
1696STATIC int
1697xfs_buf_delwri_split(
1698        xfs_buftarg_t   *target,
1699        struct list_head *list,
1700        unsigned long   age)
1701{
1702        xfs_buf_t       *bp, *n;
1703        struct list_head *dwq = &target->bt_delwrite_queue;
1704        spinlock_t      *dwlk = &target->bt_delwrite_lock;
1705        int             skipped = 0;
1706        int             force;
1707
1708        force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1709        INIT_LIST_HEAD(list);
1710        spin_lock(dwlk);
1711        list_for_each_entry_safe(bp, n, dwq, b_list) {
1712                XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
1713                ASSERT(bp->b_flags & XBF_DELWRI);
1714
1715                if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
1716                        if (!force &&
1717                            time_before(jiffies, bp->b_queuetime + age)) {
1718                                xfs_buf_unlock(bp);
1719                                break;
1720                        }
1721
1722                        bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
1723                                         _XBF_RUN_QUEUES);
1724                        bp->b_flags |= XBF_WRITE;
1725                        list_move_tail(&bp->b_list, list);
1726                } else
1727                        skipped++;
1728        }
1729        spin_unlock(dwlk);
1730
1731        return skipped;
1732
1733}
1734
1735STATIC int
1736xfsbufd(
1737        void            *data)
1738{
1739        struct list_head tmp;
1740        xfs_buftarg_t   *target = (xfs_buftarg_t *)data;
1741        int             count;
1742        xfs_buf_t       *bp;
1743
1744        current->flags |= PF_MEMALLOC;
1745
1746        set_freezable();
1747
1748        do {
1749                if (unlikely(freezing(current))) {
1750                        set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1751                        refrigerator();
1752                } else {
1753                        clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
1754                }
1755
1756                schedule_timeout_interruptible(
1757                        xfs_buf_timer_centisecs * msecs_to_jiffies(10));
1758
1759                xfs_buf_delwri_split(target, &tmp,
1760                                xfs_buf_age_centisecs * msecs_to_jiffies(10));
1761
1762                count = 0;
1763                while (!list_empty(&tmp)) {
1764                        bp = list_entry(tmp.next, xfs_buf_t, b_list);
1765                        ASSERT(target == bp->b_target);
1766
1767                        list_del_init(&bp->b_list);
1768                        xfs_buf_iostrategy(bp);
1769                        count++;
1770                }
1771
1772                if (as_list_len > 0)
1773                        purge_addresses();
1774                if (count)
1775                        blk_run_address_space(target->bt_mapping);
1776
1777        } while (!kthread_should_stop());
1778
1779        return 0;
1780}
1781
1782/*
1783 *      Go through all incore buffers, and release buffers if they belong to
1784 *      the given device. This is used in filesystem error handling to
1785 *      preserve the consistency of its metadata.
1786 */
1787int
1788xfs_flush_buftarg(
1789        xfs_buftarg_t   *target,
1790        int             wait)
1791{
1792        struct list_head tmp;
1793        xfs_buf_t       *bp, *n;
1794        int             pincount = 0;
1795
1796        xfs_buf_runall_queues(xfsdatad_workqueue);
1797        xfs_buf_runall_queues(xfslogd_workqueue);
1798
1799        set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
1800        pincount = xfs_buf_delwri_split(target, &tmp, 0);
1801
1802        /*
1803         * Dropped the delayed write list lock, now walk the temporary list
1804         */
1805        list_for_each_entry_safe(bp, n, &tmp, b_list) {
1806                ASSERT(target == bp->b_target);
1807                if (wait)
1808                        bp->b_flags &= ~XBF_ASYNC;
1809                else
1810                        list_del_init(&bp->b_list);
1811
1812                xfs_buf_iostrategy(bp);
1813        }
1814
1815        if (wait)
1816                blk_run_address_space(target->bt_mapping);
1817
1818        /*
1819         * Remaining list items must be flushed before returning
1820         */
1821        while (!list_empty(&tmp)) {
1822                bp = list_entry(tmp.next, xfs_buf_t, b_list);
1823
1824                list_del_init(&bp->b_list);
1825                xfs_iowait(bp);
1826                xfs_buf_relse(bp);
1827        }
1828
1829        return pincount;
1830}
1831
1832int __init
1833xfs_buf_init(void)
1834{
1835#ifdef XFS_BUF_TRACE
1836        xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP);
1837#endif
1838
1839        xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
1840                                                KM_ZONE_HWALIGN, NULL);
1841        if (!xfs_buf_zone)
1842                goto out_free_trace_buf;
1843
1844        xfslogd_workqueue = create_workqueue("xfslogd");
1845        if (!xfslogd_workqueue)
1846                goto out_free_buf_zone;
1847
1848        xfsdatad_workqueue = create_workqueue("xfsdatad");
1849        if (!xfsdatad_workqueue)
1850                goto out_destroy_xfslogd_workqueue;
1851
1852        register_shrinker(&xfs_buf_shake);
1853        return 0;
1854
1855 out_destroy_xfslogd_workqueue:
1856        destroy_workqueue(xfslogd_workqueue);
1857 out_free_buf_zone:
1858        kmem_zone_destroy(xfs_buf_zone);
1859 out_free_trace_buf:
1860#ifdef XFS_BUF_TRACE
1861        ktrace_free(xfs_buf_trace_buf);
1862#endif
1863        return -ENOMEM;
1864}
1865
1866void
1867xfs_buf_terminate(void)
1868{
1869        unregister_shrinker(&xfs_buf_shake);
1870        destroy_workqueue(xfsdatad_workqueue);
1871        destroy_workqueue(xfslogd_workqueue);
1872        kmem_zone_destroy(xfs_buf_zone);
1873#ifdef XFS_BUF_TRACE
1874        ktrace_free(xfs_buf_trace_buf);
1875#endif
1876}
1877
1878#ifdef CONFIG_KDB_MODULES
1879struct list_head *
1880xfs_get_buftarg_list(void)
1881{
1882        return &xfs_buftarg_list;
1883}
1884#endif
1885