linux/include/asm-s390/pgtable.h
<<
>>
Prefs
   1/*
   2 *  include/asm-s390/pgtable.h
   3 *
   4 *  S390 version
   5 *    Copyright (C) 1999,2000 IBM Deutschland Entwicklung GmbH, IBM Corporation
   6 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   7 *               Ulrich Weigand (weigand@de.ibm.com)
   8 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   9 *
  10 *  Derived from "include/asm-i386/pgtable.h"
  11 */
  12
  13#ifndef _ASM_S390_PGTABLE_H
  14#define _ASM_S390_PGTABLE_H
  15
  16/*
  17 * The Linux memory management assumes a three-level page table setup. For
  18 * s390 31 bit we "fold" the mid level into the top-level page table, so
  19 * that we physically have the same two-level page table as the s390 mmu
  20 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  21 * the hardware provides (region first and region second tables are not
  22 * used).
  23 *
  24 * The "pgd_xxx()" functions are trivial for a folded two-level
  25 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  26 * into the pgd entry)
  27 *
  28 * This file contains the functions and defines necessary to modify and use
  29 * the S390 page table tree.
  30 */
  31#ifndef __ASSEMBLY__
  32#include <linux/mm_types.h>
  33#include <asm/bug.h>
  34#include <asm/processor.h>
  35
  36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  37extern void paging_init(void);
  38extern void vmem_map_init(void);
  39
  40/*
  41 * The S390 doesn't have any external MMU info: the kernel page
  42 * tables contain all the necessary information.
  43 */
  44#define update_mmu_cache(vma, address, pte)     do { } while (0)
  45
  46/*
  47 * ZERO_PAGE is a global shared page that is always zero: used
  48 * for zero-mapped memory areas etc..
  49 */
  50extern char empty_zero_page[PAGE_SIZE];
  51#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
  52#endif /* !__ASSEMBLY__ */
  53
  54/*
  55 * PMD_SHIFT determines the size of the area a second-level page
  56 * table can map
  57 * PGDIR_SHIFT determines what a third-level page table entry can map
  58 */
  59#ifndef __s390x__
  60# define PMD_SHIFT      22
  61# define PUD_SHIFT      22
  62# define PGDIR_SHIFT    22
  63#else /* __s390x__ */
  64# define PMD_SHIFT      21
  65# define PUD_SHIFT      31
  66# define PGDIR_SHIFT    31
  67#endif /* __s390x__ */
  68
  69#define PMD_SIZE        (1UL << PMD_SHIFT)
  70#define PMD_MASK        (~(PMD_SIZE-1))
  71#define PUD_SIZE        (1UL << PUD_SHIFT)
  72#define PUD_MASK        (~(PUD_SIZE-1))
  73#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  74#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  75
  76/*
  77 * entries per page directory level: the S390 is two-level, so
  78 * we don't really have any PMD directory physically.
  79 * for S390 segment-table entries are combined to one PGD
  80 * that leads to 1024 pte per pgd
  81 */
  82#ifndef __s390x__
  83# define PTRS_PER_PTE    1024
  84# define PTRS_PER_PMD    1
  85# define PTRS_PER_PUD   1
  86# define PTRS_PER_PGD    512
  87#else /* __s390x__ */
  88# define PTRS_PER_PTE    512
  89# define PTRS_PER_PMD    1024
  90# define PTRS_PER_PUD   1
  91# define PTRS_PER_PGD    2048
  92#endif /* __s390x__ */
  93
  94#define FIRST_USER_ADDRESS  0
  95
  96#define pte_ERROR(e) \
  97        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
  98#define pmd_ERROR(e) \
  99        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 100#define pud_ERROR(e) \
 101        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 102#define pgd_ERROR(e) \
 103        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 104
 105#ifndef __ASSEMBLY__
 106/*
 107 * Just any arbitrary offset to the start of the vmalloc VM area: the
 108 * current 8MB value just means that there will be a 8MB "hole" after the
 109 * physical memory until the kernel virtual memory starts.  That means that
 110 * any out-of-bounds memory accesses will hopefully be caught.
 111 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
 112 * area for the same reason. ;)
 113 * vmalloc area starts at 4GB to prevent syscall table entry exchanging
 114 * from modules.
 115 */
 116extern unsigned long vmalloc_end;
 117
 118#ifdef CONFIG_64BIT
 119#define VMALLOC_ADDR    (max(0x100000000UL, (unsigned long) high_memory))
 120#else
 121#define VMALLOC_ADDR    ((unsigned long) high_memory)
 122#endif
 123#define VMALLOC_OFFSET  (8*1024*1024)
 124#define VMALLOC_START   ((VMALLOC_ADDR + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
 125#define VMALLOC_END     vmalloc_end
 126
 127/*
 128 * We need some free virtual space to be able to do vmalloc.
 129 * VMALLOC_MIN_SIZE defines the minimum size of the vmalloc
 130 * area. On a machine with 2GB memory we make sure that we
 131 * have at least 128MB free space for vmalloc. On a machine
 132 * with 4TB we make sure we have at least 128GB.
 133 */
 134#ifndef __s390x__
 135#define VMALLOC_MIN_SIZE        0x8000000UL
 136#define VMALLOC_END_INIT        0x80000000UL
 137#else /* __s390x__ */
 138#define VMALLOC_MIN_SIZE        0x2000000000UL
 139#define VMALLOC_END_INIT        0x40000000000UL
 140#endif /* __s390x__ */
 141
 142/*
 143 * A 31 bit pagetable entry of S390 has following format:
 144 *  |   PFRA          |    |  OS  |
 145 * 0                   0IP0
 146 * 00000000001111111111222222222233
 147 * 01234567890123456789012345678901
 148 *
 149 * I Page-Invalid Bit:    Page is not available for address-translation
 150 * P Page-Protection Bit: Store access not possible for page
 151 *
 152 * A 31 bit segmenttable entry of S390 has following format:
 153 *  |   P-table origin      |  |PTL
 154 * 0                         IC
 155 * 00000000001111111111222222222233
 156 * 01234567890123456789012345678901
 157 *
 158 * I Segment-Invalid Bit:    Segment is not available for address-translation
 159 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 160 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 161 *
 162 * The 31 bit segmenttable origin of S390 has following format:
 163 *
 164 *  |S-table origin   |     | STL |
 165 * X                   **GPS
 166 * 00000000001111111111222222222233
 167 * 01234567890123456789012345678901
 168 *
 169 * X Space-Switch event:
 170 * G Segment-Invalid Bit:     *
 171 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 172 * S Storage-Alteration:
 173 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 174 *
 175 * A 64 bit pagetable entry of S390 has following format:
 176 * |                     PFRA                         |0IP0|  OS  |
 177 * 0000000000111111111122222222223333333333444444444455555555556666
 178 * 0123456789012345678901234567890123456789012345678901234567890123
 179 *
 180 * I Page-Invalid Bit:    Page is not available for address-translation
 181 * P Page-Protection Bit: Store access not possible for page
 182 *
 183 * A 64 bit segmenttable entry of S390 has following format:
 184 * |        P-table origin                              |      TT
 185 * 0000000000111111111122222222223333333333444444444455555555556666
 186 * 0123456789012345678901234567890123456789012345678901234567890123
 187 *
 188 * I Segment-Invalid Bit:    Segment is not available for address-translation
 189 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 190 * P Page-Protection Bit: Store access not possible for page
 191 * TT Type 00
 192 *
 193 * A 64 bit region table entry of S390 has following format:
 194 * |        S-table origin                             |   TF  TTTL
 195 * 0000000000111111111122222222223333333333444444444455555555556666
 196 * 0123456789012345678901234567890123456789012345678901234567890123
 197 *
 198 * I Segment-Invalid Bit:    Segment is not available for address-translation
 199 * TT Type 01
 200 * TF
 201 * TL Table length
 202 *
 203 * The 64 bit regiontable origin of S390 has following format:
 204 * |      region table origon                          |       DTTL
 205 * 0000000000111111111122222222223333333333444444444455555555556666
 206 * 0123456789012345678901234567890123456789012345678901234567890123
 207 *
 208 * X Space-Switch event:
 209 * G Segment-Invalid Bit:  
 210 * P Private-Space Bit:    
 211 * S Storage-Alteration:
 212 * R Real space
 213 * TL Table-Length:
 214 *
 215 * A storage key has the following format:
 216 * | ACC |F|R|C|0|
 217 *  0   3 4 5 6 7
 218 * ACC: access key
 219 * F  : fetch protection bit
 220 * R  : referenced bit
 221 * C  : changed bit
 222 */
 223
 224/* Hardware bits in the page table entry */
 225#define _PAGE_RO        0x200           /* HW read-only bit  */
 226#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 227
 228/* Software bits in the page table entry */
 229#define _PAGE_SWT       0x001           /* SW pte type bit t */
 230#define _PAGE_SWX       0x002           /* SW pte type bit x */
 231
 232/* Six different types of pages. */
 233#define _PAGE_TYPE_EMPTY        0x400
 234#define _PAGE_TYPE_NONE         0x401
 235#define _PAGE_TYPE_SWAP         0x403
 236#define _PAGE_TYPE_FILE         0x601   /* bit 0x002 is used for offset !! */
 237#define _PAGE_TYPE_RO           0x200
 238#define _PAGE_TYPE_RW           0x000
 239#define _PAGE_TYPE_EX_RO        0x202
 240#define _PAGE_TYPE_EX_RW        0x002
 241
 242/*
 243 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
 244 * pte_none and pte_file to find out the pte type WITHOUT holding the page
 245 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
 246 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
 247 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
 248 * This change is done while holding the lock, but the intermediate step
 249 * of a previously valid pte with the hw invalid bit set can be observed by
 250 * handle_pte_fault. That makes it necessary that all valid pte types with
 251 * the hw invalid bit set must be distinguishable from the four pte types
 252 * empty, none, swap and file.
 253 *
 254 *                      irxt  ipte  irxt
 255 * _PAGE_TYPE_EMPTY     1000   ->   1000
 256 * _PAGE_TYPE_NONE      1001   ->   1001
 257 * _PAGE_TYPE_SWAP      1011   ->   1011
 258 * _PAGE_TYPE_FILE      11?1   ->   11?1
 259 * _PAGE_TYPE_RO        0100   ->   1100
 260 * _PAGE_TYPE_RW        0000   ->   1000
 261 * _PAGE_TYPE_EX_RO     0110   ->   1110
 262 * _PAGE_TYPE_EX_RW     0010   ->   1010
 263 *
 264 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
 265 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
 266 * pte_file is true for bits combinations 1101, 1111
 267 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
 268 */
 269
 270#ifndef __s390x__
 271
 272/* Bits in the segment table address-space-control-element */
 273#define _ASCE_SPACE_SWITCH      0x80000000UL    /* space switch event       */
 274#define _ASCE_ORIGIN_MASK       0x7ffff000UL    /* segment table origin     */
 275#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 276#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 277#define _ASCE_TABLE_LENGTH      0x7f    /* 128 x 64 entries = 8k            */
 278
 279/* Bits in the segment table entry */
 280#define _SEGMENT_ENTRY_ORIGIN   0x7fffffc0UL    /* page table origin        */
 281#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 282#define _SEGMENT_ENTRY_COMMON   0x10    /* common segment bit               */
 283#define _SEGMENT_ENTRY_PTL      0x0f    /* page table length                */
 284
 285#define _SEGMENT_ENTRY          (_SEGMENT_ENTRY_PTL)
 286#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 287
 288#else /* __s390x__ */
 289
 290/* Bits in the segment/region table address-space-control-element */
 291#define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
 292#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 293#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 294#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 295#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 296#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 297#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 298#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 299#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 300#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 301#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 302
 303/* Bits in the region table entry */
 304#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 305#define _REGION_ENTRY_INV       0x20    /* invalid region table entry       */
 306#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
 307#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 308#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 309#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 310#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 311
 312#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 313#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
 314#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 315#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
 316#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 317#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
 318
 319/* Bits in the segment table entry */
 320#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
 321#define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
 322#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 323
 324#define _SEGMENT_ENTRY          (0)
 325#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 326
 327#endif /* __s390x__ */
 328
 329/*
 330 * A user page table pointer has the space-switch-event bit, the
 331 * private-space-control bit and the storage-alteration-event-control
 332 * bit set. A kernel page table pointer doesn't need them.
 333 */
 334#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 335                                 _ASCE_ALT_EVENT)
 336
 337/* Bits int the storage key */
 338#define _PAGE_CHANGED    0x02          /* HW changed bit                   */
 339#define _PAGE_REFERENCED 0x04          /* HW referenced bit                */
 340
 341/*
 342 * Page protection definitions.
 343 */
 344#define PAGE_NONE       __pgprot(_PAGE_TYPE_NONE)
 345#define PAGE_RO         __pgprot(_PAGE_TYPE_RO)
 346#define PAGE_RW         __pgprot(_PAGE_TYPE_RW)
 347#define PAGE_EX_RO      __pgprot(_PAGE_TYPE_EX_RO)
 348#define PAGE_EX_RW      __pgprot(_PAGE_TYPE_EX_RW)
 349
 350#define PAGE_KERNEL     PAGE_RW
 351#define PAGE_COPY       PAGE_RO
 352
 353/*
 354 * Dependent on the EXEC_PROTECT option s390 can do execute protection.
 355 * Write permission always implies read permission. In theory with a
 356 * primary/secondary page table execute only can be implemented but
 357 * it would cost an additional bit in the pte to distinguish all the
 358 * different pte types. To avoid that execute permission currently
 359 * implies read permission as well.
 360 */
 361         /*xwr*/
 362#define __P000  PAGE_NONE
 363#define __P001  PAGE_RO
 364#define __P010  PAGE_RO
 365#define __P011  PAGE_RO
 366#define __P100  PAGE_EX_RO
 367#define __P101  PAGE_EX_RO
 368#define __P110  PAGE_EX_RO
 369#define __P111  PAGE_EX_RO
 370
 371#define __S000  PAGE_NONE
 372#define __S001  PAGE_RO
 373#define __S010  PAGE_RW
 374#define __S011  PAGE_RW
 375#define __S100  PAGE_EX_RO
 376#define __S101  PAGE_EX_RO
 377#define __S110  PAGE_EX_RW
 378#define __S111  PAGE_EX_RW
 379
 380#ifndef __s390x__
 381# define PxD_SHADOW_SHIFT       1
 382#else /* __s390x__ */
 383# define PxD_SHADOW_SHIFT       2
 384#endif /* __s390x__ */
 385
 386static inline struct page *get_shadow_page(struct page *page)
 387{
 388        if (s390_noexec && page->index)
 389                return virt_to_page((void *)(addr_t) page->index);
 390        return NULL;
 391}
 392
 393static inline void *get_shadow_pte(void *table)
 394{
 395        unsigned long addr, offset;
 396        struct page *page;
 397
 398        addr = (unsigned long) table;
 399        offset = addr & (PAGE_SIZE - 1);
 400        page = virt_to_page((void *)(addr ^ offset));
 401        return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
 402}
 403
 404static inline void *get_shadow_table(void *table)
 405{
 406        unsigned long addr, offset;
 407        struct page *page;
 408
 409        addr = (unsigned long) table;
 410        offset = addr & ((PAGE_SIZE << PxD_SHADOW_SHIFT) - 1);
 411        page = virt_to_page((void *)(addr ^ offset));
 412        return (void *)(addr_t)(page->index ? (page->index | offset) : 0UL);
 413}
 414
 415/*
 416 * Certain architectures need to do special things when PTEs
 417 * within a page table are directly modified.  Thus, the following
 418 * hook is made available.
 419 */
 420static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 421                              pte_t *pteptr, pte_t pteval)
 422{
 423        pte_t *shadow_pte = get_shadow_pte(pteptr);
 424
 425        *pteptr = pteval;
 426        if (shadow_pte) {
 427                if (!(pte_val(pteval) & _PAGE_INVALID) &&
 428                    (pte_val(pteval) & _PAGE_SWX))
 429                        pte_val(*shadow_pte) = pte_val(pteval) | _PAGE_RO;
 430                else
 431                        pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY;
 432        }
 433}
 434
 435/*
 436 * pgd/pmd/pte query functions
 437 */
 438#ifndef __s390x__
 439
 440static inline int pgd_present(pgd_t pgd) { return 1; }
 441static inline int pgd_none(pgd_t pgd)    { return 0; }
 442static inline int pgd_bad(pgd_t pgd)     { return 0; }
 443
 444static inline int pud_present(pud_t pud) { return 1; }
 445static inline int pud_none(pud_t pud)    { return 0; }
 446static inline int pud_bad(pud_t pud)     { return 0; }
 447
 448#else /* __s390x__ */
 449
 450static inline int pgd_present(pgd_t pgd) { return 1; }
 451static inline int pgd_none(pgd_t pgd)    { return 0; }
 452static inline int pgd_bad(pgd_t pgd)     { return 0; }
 453
 454static inline int pud_present(pud_t pud)
 455{
 456        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 457}
 458
 459static inline int pud_none(pud_t pud)
 460{
 461        return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
 462}
 463
 464static inline int pud_bad(pud_t pud)
 465{
 466        unsigned long mask = ~_REGION_ENTRY_ORIGIN & ~_REGION_ENTRY_INV;
 467        return (pud_val(pud) & mask) != _REGION3_ENTRY;
 468}
 469
 470#endif /* __s390x__ */
 471
 472static inline int pmd_present(pmd_t pmd)
 473{
 474        return (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN) != 0UL;
 475}
 476
 477static inline int pmd_none(pmd_t pmd)
 478{
 479        return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) != 0UL;
 480}
 481
 482static inline int pmd_bad(pmd_t pmd)
 483{
 484        unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
 485        return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
 486}
 487
 488static inline int pte_none(pte_t pte)
 489{
 490        return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
 491}
 492
 493static inline int pte_present(pte_t pte)
 494{
 495        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
 496        return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
 497                (!(pte_val(pte) & _PAGE_INVALID) &&
 498                 !(pte_val(pte) & _PAGE_SWT));
 499}
 500
 501static inline int pte_file(pte_t pte)
 502{
 503        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
 504        return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
 505}
 506
 507#define __HAVE_ARCH_PTE_SAME
 508#define pte_same(a,b)  (pte_val(a) == pte_val(b))
 509
 510/*
 511 * query functions pte_write/pte_dirty/pte_young only work if
 512 * pte_present() is true. Undefined behaviour if not..
 513 */
 514static inline int pte_write(pte_t pte)
 515{
 516        return (pte_val(pte) & _PAGE_RO) == 0;
 517}
 518
 519static inline int pte_dirty(pte_t pte)
 520{
 521        /* A pte is neither clean nor dirty on s/390. The dirty bit
 522         * is in the storage key. See page_test_and_clear_dirty for
 523         * details.
 524         */
 525        return 0;
 526}
 527
 528static inline int pte_young(pte_t pte)
 529{
 530        /* A pte is neither young nor old on s/390. The young bit
 531         * is in the storage key. See page_test_and_clear_young for
 532         * details.
 533         */
 534        return 0;
 535}
 536
 537/*
 538 * pgd/pmd/pte modification functions
 539 */
 540
 541#ifndef __s390x__
 542
 543#define pgd_clear(pgd)          do { } while (0)
 544#define pud_clear(pud)          do { } while (0)
 545
 546static inline void pmd_clear_kernel(pmd_t * pmdp)
 547{
 548        pmd_val(pmdp[0]) = _SEGMENT_ENTRY_EMPTY;
 549        pmd_val(pmdp[1]) = _SEGMENT_ENTRY_EMPTY;
 550        pmd_val(pmdp[2]) = _SEGMENT_ENTRY_EMPTY;
 551        pmd_val(pmdp[3]) = _SEGMENT_ENTRY_EMPTY;
 552}
 553
 554#else /* __s390x__ */
 555
 556#define pgd_clear(pgd)          do { } while (0)
 557
 558static inline void pud_clear_kernel(pud_t *pud)
 559{
 560        pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 561}
 562
 563static inline void pud_clear(pud_t * pud)
 564{
 565        pud_t *shadow = get_shadow_table(pud);
 566
 567        pud_clear_kernel(pud);
 568        if (shadow)
 569                pud_clear_kernel(shadow);
 570}
 571
 572static inline void pmd_clear_kernel(pmd_t * pmdp)
 573{
 574        pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 575        pmd_val1(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 576}
 577
 578#endif /* __s390x__ */
 579
 580static inline void pmd_clear(pmd_t * pmdp)
 581{
 582        pmd_t *shadow_pmd = get_shadow_table(pmdp);
 583
 584        pmd_clear_kernel(pmdp);
 585        if (shadow_pmd)
 586                pmd_clear_kernel(shadow_pmd);
 587}
 588
 589static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 590{
 591        pte_t *shadow_pte = get_shadow_pte(ptep);
 592
 593        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 594        if (shadow_pte)
 595                pte_val(*shadow_pte) = _PAGE_TYPE_EMPTY;
 596}
 597
 598/*
 599 * The following pte modification functions only work if
 600 * pte_present() is true. Undefined behaviour if not..
 601 */
 602static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 603{
 604        pte_val(pte) &= PAGE_MASK;
 605        pte_val(pte) |= pgprot_val(newprot);
 606        return pte;
 607}
 608
 609static inline pte_t pte_wrprotect(pte_t pte)
 610{
 611        /* Do not clobber _PAGE_TYPE_NONE pages!  */
 612        if (!(pte_val(pte) & _PAGE_INVALID))
 613                pte_val(pte) |= _PAGE_RO;
 614        return pte;
 615}
 616
 617static inline pte_t pte_mkwrite(pte_t pte)
 618{
 619        pte_val(pte) &= ~_PAGE_RO;
 620        return pte;
 621}
 622
 623static inline pte_t pte_mkclean(pte_t pte)
 624{
 625        /* The only user of pte_mkclean is the fork() code.
 626           We must *not* clear the *physical* page dirty bit
 627           just because fork() wants to clear the dirty bit in
 628           *one* of the page's mappings.  So we just do nothing. */
 629        return pte;
 630}
 631
 632static inline pte_t pte_mkdirty(pte_t pte)
 633{
 634        /* We do not explicitly set the dirty bit because the
 635         * sske instruction is slow. It is faster to let the
 636         * next instruction set the dirty bit.
 637         */
 638        return pte;
 639}
 640
 641static inline pte_t pte_mkold(pte_t pte)
 642{
 643        /* S/390 doesn't keep its dirty/referenced bit in the pte.
 644         * There is no point in clearing the real referenced bit.
 645         */
 646        return pte;
 647}
 648
 649static inline pte_t pte_mkyoung(pte_t pte)
 650{
 651        /* S/390 doesn't keep its dirty/referenced bit in the pte.
 652         * There is no point in setting the real referenced bit.
 653         */
 654        return pte;
 655}
 656
 657#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 658static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 659                                            unsigned long addr, pte_t *ptep)
 660{
 661        return 0;
 662}
 663
 664#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 665static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
 666                                         unsigned long address, pte_t *ptep)
 667{
 668        /* No need to flush TLB; bits are in storage key */
 669        return 0;
 670}
 671
 672static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
 673{
 674        if (!(pte_val(*ptep) & _PAGE_INVALID)) {
 675#ifndef __s390x__
 676                /* S390 has 1mb segments, we are emulating 4MB segments */
 677                pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
 678#else
 679                /* ipte in zarch mode can do the math */
 680                pte_t *pto = ptep;
 681#endif
 682                asm volatile(
 683                        "       ipte    %2,%3"
 684                        : "=m" (*ptep) : "m" (*ptep),
 685                          "a" (pto), "a" (address));
 686        }
 687        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 688}
 689
 690static inline void ptep_invalidate(unsigned long address, pte_t *ptep)
 691{
 692        __ptep_ipte(address, ptep);
 693        ptep = get_shadow_pte(ptep);
 694        if (ptep)
 695                __ptep_ipte(address, ptep);
 696}
 697
 698/*
 699 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
 700 * both clear the TLB for the unmapped pte. The reason is that
 701 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
 702 * to modify an active pte. The sequence is
 703 *   1) ptep_get_and_clear
 704 *   2) set_pte_at
 705 *   3) flush_tlb_range
 706 * On s390 the tlb needs to get flushed with the modification of the pte
 707 * if the pte is active. The only way how this can be implemented is to
 708 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
 709 * is a nop.
 710 */
 711#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 712#define ptep_get_and_clear(__mm, __address, __ptep)                     \
 713({                                                                      \
 714        pte_t __pte = *(__ptep);                                        \
 715        if (atomic_read(&(__mm)->mm_users) > 1 ||                       \
 716            (__mm) != current->active_mm)                               \
 717                ptep_invalidate(__address, __ptep);                     \
 718        else                                                            \
 719                pte_clear((__mm), (__address), (__ptep));               \
 720        __pte;                                                          \
 721})
 722
 723#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
 724static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
 725                                     unsigned long address, pte_t *ptep)
 726{
 727        pte_t pte = *ptep;
 728        ptep_invalidate(address, ptep);
 729        return pte;
 730}
 731
 732/*
 733 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
 734 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
 735 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
 736 * cannot be accessed while the batched unmap is running. In this case
 737 * full==1 and a simple pte_clear is enough. See tlb.h.
 738 */
 739#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 740static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 741                                            unsigned long addr,
 742                                            pte_t *ptep, int full)
 743{
 744        pte_t pte = *ptep;
 745
 746        if (full)
 747                pte_clear(mm, addr, ptep);
 748        else
 749                ptep_invalidate(addr, ptep);
 750        return pte;
 751}
 752
 753#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 754#define ptep_set_wrprotect(__mm, __addr, __ptep)                        \
 755({                                                                      \
 756        pte_t __pte = *(__ptep);                                        \
 757        if (pte_write(__pte)) {                                         \
 758                if (atomic_read(&(__mm)->mm_users) > 1 ||               \
 759                    (__mm) != current->active_mm)                       \
 760                        ptep_invalidate(__addr, __ptep);                \
 761                set_pte_at(__mm, __addr, __ptep, pte_wrprotect(__pte)); \
 762        }                                                               \
 763})
 764
 765#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 766#define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __dirty)  \
 767({                                                                      \
 768        int __changed = !pte_same(*(__ptep), __entry);                  \
 769        if (__changed) {                                                \
 770                ptep_invalidate(__addr, __ptep);                        \
 771                set_pte_at((__vma)->vm_mm, __addr, __ptep, __entry);    \
 772        }                                                               \
 773        __changed;                                                      \
 774})
 775
 776/*
 777 * Test and clear dirty bit in storage key.
 778 * We can't clear the changed bit atomically. This is a potential
 779 * race against modification of the referenced bit. This function
 780 * should therefore only be called if it is not mapped in any
 781 * address space.
 782 */
 783#define __HAVE_ARCH_PAGE_TEST_DIRTY
 784static inline int page_test_dirty(struct page *page)
 785{
 786        return (page_get_storage_key(page_to_phys(page)) & _PAGE_CHANGED) != 0;
 787}
 788
 789#define __HAVE_ARCH_PAGE_CLEAR_DIRTY
 790static inline void page_clear_dirty(struct page *page)
 791{
 792        page_set_storage_key(page_to_phys(page), PAGE_DEFAULT_KEY);
 793}
 794
 795/*
 796 * Test and clear referenced bit in storage key.
 797 */
 798#define __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
 799static inline int page_test_and_clear_young(struct page *page)
 800{
 801        unsigned long physpage = page_to_phys(page);
 802        int ccode;
 803
 804        asm volatile(
 805                "       rrbe    0,%1\n"
 806                "       ipm     %0\n"
 807                "       srl     %0,28\n"
 808                : "=d" (ccode) : "a" (physpage) : "cc" );
 809        return ccode & 2;
 810}
 811
 812/*
 813 * Conversion functions: convert a page and protection to a page entry,
 814 * and a page entry and page directory to the page they refer to.
 815 */
 816static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
 817{
 818        pte_t __pte;
 819        pte_val(__pte) = physpage + pgprot_val(pgprot);
 820        return __pte;
 821}
 822
 823static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
 824{
 825        unsigned long physpage = page_to_phys(page);
 826
 827        return mk_pte_phys(physpage, pgprot);
 828}
 829
 830#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
 831#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
 832#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
 833#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
 834
 835#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
 836#define pgd_offset_k(address) pgd_offset(&init_mm, address)
 837
 838#ifndef __s390x__
 839
 840#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
 841#define pud_deref(pmd) ({ BUG(); 0UL; })
 842#define pgd_deref(pmd) ({ BUG(); 0UL; })
 843
 844#define pud_offset(pgd, address) ((pud_t *) pgd)
 845#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
 846
 847#else /* __s390x__ */
 848
 849#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
 850#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
 851#define pgd_deref(pgd) ({ BUG(); 0UL; })
 852
 853#define pud_offset(pgd, address) ((pud_t *) pgd)
 854
 855static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
 856{
 857        pmd_t *pmd = (pmd_t *) pud_deref(*pud);
 858        return pmd + pmd_index(address);
 859}
 860
 861#endif /* __s390x__ */
 862
 863#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
 864#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
 865#define pte_page(x) pfn_to_page(pte_pfn(x))
 866
 867#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
 868
 869/* Find an entry in the lowest level page table.. */
 870#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
 871#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
 872#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
 873#define pte_offset_map_nested(pmd, address) pte_offset_kernel(pmd, address)
 874#define pte_unmap(pte) do { } while (0)
 875#define pte_unmap_nested(pte) do { } while (0)
 876
 877/*
 878 * 31 bit swap entry format:
 879 * A page-table entry has some bits we have to treat in a special way.
 880 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
 881 * exception will occur instead of a page translation exception. The
 882 * specifiation exception has the bad habit not to store necessary
 883 * information in the lowcore.
 884 * Bit 21 and bit 22 are the page invalid bit and the page protection
 885 * bit. We set both to indicate a swapped page.
 886 * Bit 30 and 31 are used to distinguish the different page types. For
 887 * a swapped page these bits need to be zero.
 888 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
 889 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
 890 * plus 24 for the offset.
 891 * 0|     offset        |0110|o|type |00|
 892 * 0 0000000001111111111 2222 2 22222 33
 893 * 0 1234567890123456789 0123 4 56789 01
 894 *
 895 * 64 bit swap entry format:
 896 * A page-table entry has some bits we have to treat in a special way.
 897 * Bits 52 and bit 55 have to be zero, otherwise an specification
 898 * exception will occur instead of a page translation exception. The
 899 * specifiation exception has the bad habit not to store necessary
 900 * information in the lowcore.
 901 * Bit 53 and bit 54 are the page invalid bit and the page protection
 902 * bit. We set both to indicate a swapped page.
 903 * Bit 62 and 63 are used to distinguish the different page types. For
 904 * a swapped page these bits need to be zero.
 905 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
 906 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
 907 * plus 56 for the offset.
 908 * |                      offset                        |0110|o|type |00|
 909 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
 910 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
 911 */
 912#ifndef __s390x__
 913#define __SWP_OFFSET_MASK (~0UL >> 12)
 914#else
 915#define __SWP_OFFSET_MASK (~0UL >> 11)
 916#endif
 917static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
 918{
 919        pte_t pte;
 920        offset &= __SWP_OFFSET_MASK;
 921        pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
 922                ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
 923        return pte;
 924}
 925
 926#define __swp_type(entry)       (((entry).val >> 2) & 0x1f)
 927#define __swp_offset(entry)     (((entry).val >> 11) | (((entry).val >> 7) & 1))
 928#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
 929
 930#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
 931#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
 932
 933#ifndef __s390x__
 934# define PTE_FILE_MAX_BITS      26
 935#else /* __s390x__ */
 936# define PTE_FILE_MAX_BITS      59
 937#endif /* __s390x__ */
 938
 939#define pte_to_pgoff(__pte) \
 940        ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
 941
 942#define pgoff_to_pte(__off) \
 943        ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
 944                   | _PAGE_TYPE_FILE })
 945
 946#endif /* !__ASSEMBLY__ */
 947
 948#define kern_addr_valid(addr)   (1)
 949
 950extern int add_shared_memory(unsigned long start, unsigned long size);
 951extern int remove_shared_memory(unsigned long start, unsigned long size);
 952
 953/*
 954 * No page table caches to initialise
 955 */
 956#define pgtable_cache_init()    do { } while (0)
 957
 958#define __HAVE_ARCH_MEMMAP_INIT
 959extern void memmap_init(unsigned long, int, unsigned long, unsigned long);
 960
 961#include <asm-generic/pgtable.h>
 962
 963#endif /* _S390_PAGE_H */
 964