1#ifndef _LINUX_LIST_H 2#define _LINUX_LIST_H 3 4#ifdef __KERNEL__ 5 6#include <linux/stddef.h> 7#include <linux/poison.h> 8#include <linux/prefetch.h> 9#include <asm/system.h> 10 11/* 12 * Simple doubly linked list implementation. 13 * 14 * Some of the internal functions ("__xxx") are useful when 15 * manipulating whole lists rather than single entries, as 16 * sometimes we already know the next/prev entries and we can 17 * generate better code by using them directly rather than 18 * using the generic single-entry routines. 19 */ 20 21struct list_head { 22 struct list_head *next, *prev; 23}; 24 25#define LIST_HEAD_INIT(name) { &(name), &(name) } 26 27#define LIST_HEAD(name) \ 28 struct list_head name = LIST_HEAD_INIT(name) 29 30static inline void INIT_LIST_HEAD(struct list_head *list) 31{ 32 list->next = list; 33 list->prev = list; 34} 35 36/* 37 * Insert a new entry between two known consecutive entries. 38 * 39 * This is only for internal list manipulation where we know 40 * the prev/next entries already! 41 */ 42#ifndef CONFIG_DEBUG_LIST 43static inline void __list_add(struct list_head *new, 44 struct list_head *prev, 45 struct list_head *next) 46{ 47 next->prev = new; 48 new->next = next; 49 new->prev = prev; 50 prev->next = new; 51} 52#else 53extern void __list_add(struct list_head *new, 54 struct list_head *prev, 55 struct list_head *next); 56#endif 57 58/** 59 * list_add - add a new entry 60 * @new: new entry to be added 61 * @head: list head to add it after 62 * 63 * Insert a new entry after the specified head. 64 * This is good for implementing stacks. 65 */ 66#ifndef CONFIG_DEBUG_LIST 67static inline void list_add(struct list_head *new, struct list_head *head) 68{ 69 __list_add(new, head, head->next); 70} 71#else 72extern void list_add(struct list_head *new, struct list_head *head); 73#endif 74 75 76/** 77 * list_add_tail - add a new entry 78 * @new: new entry to be added 79 * @head: list head to add it before 80 * 81 * Insert a new entry before the specified head. 82 * This is useful for implementing queues. 83 */ 84static inline void list_add_tail(struct list_head *new, struct list_head *head) 85{ 86 __list_add(new, head->prev, head); 87} 88 89/* 90 * Insert a new entry between two known consecutive entries. 91 * 92 * This is only for internal list manipulation where we know 93 * the prev/next entries already! 94 */ 95static inline void __list_add_rcu(struct list_head * new, 96 struct list_head * prev, struct list_head * next) 97{ 98 new->next = next; 99 new->prev = prev; 100 smp_wmb(); 101 next->prev = new; 102 prev->next = new; 103} 104 105/** 106 * list_add_rcu - add a new entry to rcu-protected list 107 * @new: new entry to be added 108 * @head: list head to add it after 109 * 110 * Insert a new entry after the specified head. 111 * This is good for implementing stacks. 112 * 113 * The caller must take whatever precautions are necessary 114 * (such as holding appropriate locks) to avoid racing 115 * with another list-mutation primitive, such as list_add_rcu() 116 * or list_del_rcu(), running on this same list. 117 * However, it is perfectly legal to run concurrently with 118 * the _rcu list-traversal primitives, such as 119 * list_for_each_entry_rcu(). 120 */ 121static inline void list_add_rcu(struct list_head *new, struct list_head *head) 122{ 123 __list_add_rcu(new, head, head->next); 124} 125 126/** 127 * list_add_tail_rcu - add a new entry to rcu-protected list 128 * @new: new entry to be added 129 * @head: list head to add it before 130 * 131 * Insert a new entry before the specified head. 132 * This is useful for implementing queues. 133 * 134 * The caller must take whatever precautions are necessary 135 * (such as holding appropriate locks) to avoid racing 136 * with another list-mutation primitive, such as list_add_tail_rcu() 137 * or list_del_rcu(), running on this same list. 138 * However, it is perfectly legal to run concurrently with 139 * the _rcu list-traversal primitives, such as 140 * list_for_each_entry_rcu(). 141 */ 142static inline void list_add_tail_rcu(struct list_head *new, 143 struct list_head *head) 144{ 145 __list_add_rcu(new, head->prev, head); 146} 147 148/* 149 * Delete a list entry by making the prev/next entries 150 * point to each other. 151 * 152 * This is only for internal list manipulation where we know 153 * the prev/next entries already! 154 */ 155static inline void __list_del(struct list_head * prev, struct list_head * next) 156{ 157 next->prev = prev; 158 prev->next = next; 159} 160 161/** 162 * list_del - deletes entry from list. 163 * @entry: the element to delete from the list. 164 * Note: list_empty() on entry does not return true after this, the entry is 165 * in an undefined state. 166 */ 167#ifndef CONFIG_DEBUG_LIST 168static inline void list_del(struct list_head *entry) 169{ 170 __list_del(entry->prev, entry->next); 171 entry->next = LIST_POISON1; 172 entry->prev = LIST_POISON2; 173} 174#else 175extern void list_del(struct list_head *entry); 176#endif 177 178/** 179 * list_del_rcu - deletes entry from list without re-initialization 180 * @entry: the element to delete from the list. 181 * 182 * Note: list_empty() on entry does not return true after this, 183 * the entry is in an undefined state. It is useful for RCU based 184 * lockfree traversal. 185 * 186 * In particular, it means that we can not poison the forward 187 * pointers that may still be used for walking the list. 188 * 189 * The caller must take whatever precautions are necessary 190 * (such as holding appropriate locks) to avoid racing 191 * with another list-mutation primitive, such as list_del_rcu() 192 * or list_add_rcu(), running on this same list. 193 * However, it is perfectly legal to run concurrently with 194 * the _rcu list-traversal primitives, such as 195 * list_for_each_entry_rcu(). 196 * 197 * Note that the caller is not permitted to immediately free 198 * the newly deleted entry. Instead, either synchronize_rcu() 199 * or call_rcu() must be used to defer freeing until an RCU 200 * grace period has elapsed. 201 */ 202static inline void list_del_rcu(struct list_head *entry) 203{ 204 __list_del(entry->prev, entry->next); 205 entry->prev = LIST_POISON2; 206} 207 208/** 209 * list_replace - replace old entry by new one 210 * @old : the element to be replaced 211 * @new : the new element to insert 212 * 213 * If @old was empty, it will be overwritten. 214 */ 215static inline void list_replace(struct list_head *old, 216 struct list_head *new) 217{ 218 new->next = old->next; 219 new->next->prev = new; 220 new->prev = old->prev; 221 new->prev->next = new; 222} 223 224static inline void list_replace_init(struct list_head *old, 225 struct list_head *new) 226{ 227 list_replace(old, new); 228 INIT_LIST_HEAD(old); 229} 230 231/** 232 * list_replace_rcu - replace old entry by new one 233 * @old : the element to be replaced 234 * @new : the new element to insert 235 * 236 * The @old entry will be replaced with the @new entry atomically. 237 * Note: @old should not be empty. 238 */ 239static inline void list_replace_rcu(struct list_head *old, 240 struct list_head *new) 241{ 242 new->next = old->next; 243 new->prev = old->prev; 244 smp_wmb(); 245 new->next->prev = new; 246 new->prev->next = new; 247 old->prev = LIST_POISON2; 248} 249 250/** 251 * list_del_init - deletes entry from list and reinitialize it. 252 * @entry: the element to delete from the list. 253 */ 254static inline void list_del_init(struct list_head *entry) 255{ 256 __list_del(entry->prev, entry->next); 257 INIT_LIST_HEAD(entry); 258} 259 260/** 261 * list_move - delete from one list and add as another's head 262 * @list: the entry to move 263 * @head: the head that will precede our entry 264 */ 265static inline void list_move(struct list_head *list, struct list_head *head) 266{ 267 __list_del(list->prev, list->next); 268 list_add(list, head); 269} 270 271/** 272 * list_move_tail - delete from one list and add as another's tail 273 * @list: the entry to move 274 * @head: the head that will follow our entry 275 */ 276static inline void list_move_tail(struct list_head *list, 277 struct list_head *head) 278{ 279 __list_del(list->prev, list->next); 280 list_add_tail(list, head); 281} 282 283/** 284 * list_is_last - tests whether @list is the last entry in list @head 285 * @list: the entry to test 286 * @head: the head of the list 287 */ 288static inline int list_is_last(const struct list_head *list, 289 const struct list_head *head) 290{ 291 return list->next == head; 292} 293 294/** 295 * list_empty - tests whether a list is empty 296 * @head: the list to test. 297 */ 298static inline int list_empty(const struct list_head *head) 299{ 300 return head->next == head; 301} 302 303/** 304 * list_empty_careful - tests whether a list is empty and not being modified 305 * @head: the list to test 306 * 307 * Description: 308 * tests whether a list is empty _and_ checks that no other CPU might be 309 * in the process of modifying either member (next or prev) 310 * 311 * NOTE: using list_empty_careful() without synchronization 312 * can only be safe if the only activity that can happen 313 * to the list entry is list_del_init(). Eg. it cannot be used 314 * if another CPU could re-list_add() it. 315 */ 316static inline int list_empty_careful(const struct list_head *head) 317{ 318 struct list_head *next = head->next; 319 return (next == head) && (next == head->prev); 320} 321 322static inline void __list_splice(struct list_head *list, 323 struct list_head *head) 324{ 325 struct list_head *first = list->next; 326 struct list_head *last = list->prev; 327 struct list_head *at = head->next; 328 329 first->prev = head; 330 head->next = first; 331 332 last->next = at; 333 at->prev = last; 334} 335 336/** 337 * list_splice - join two lists 338 * @list: the new list to add. 339 * @head: the place to add it in the first list. 340 */ 341static inline void list_splice(struct list_head *list, struct list_head *head) 342{ 343 if (!list_empty(list)) 344 __list_splice(list, head); 345} 346 347/** 348 * list_splice_init - join two lists and reinitialise the emptied list. 349 * @list: the new list to add. 350 * @head: the place to add it in the first list. 351 * 352 * The list at @list is reinitialised 353 */ 354static inline void list_splice_init(struct list_head *list, 355 struct list_head *head) 356{ 357 if (!list_empty(list)) { 358 __list_splice(list, head); 359 INIT_LIST_HEAD(list); 360 } 361} 362 363/** 364 * list_splice_init_rcu - splice an RCU-protected list into an existing list. 365 * @list: the RCU-protected list to splice 366 * @head: the place in the list to splice the first list into 367 * @sync: function to sync: synchronize_rcu(), synchronize_sched(), ... 368 * 369 * @head can be RCU-read traversed concurrently with this function. 370 * 371 * Note that this function blocks. 372 * 373 * Important note: the caller must take whatever action is necessary to 374 * prevent any other updates to @head. In principle, it is possible 375 * to modify the list as soon as sync() begins execution. 376 * If this sort of thing becomes necessary, an alternative version 377 * based on call_rcu() could be created. But only if -really- 378 * needed -- there is no shortage of RCU API members. 379 */ 380static inline void list_splice_init_rcu(struct list_head *list, 381 struct list_head *head, 382 void (*sync)(void)) 383{ 384 struct list_head *first = list->next; 385 struct list_head *last = list->prev; 386 struct list_head *at = head->next; 387 388 if (list_empty(head)) 389 return; 390 391 /* "first" and "last" tracking list, so initialize it. */ 392 393 INIT_LIST_HEAD(list); 394 395 /* 396 * At this point, the list body still points to the source list. 397 * Wait for any readers to finish using the list before splicing 398 * the list body into the new list. Any new readers will see 399 * an empty list. 400 */ 401 402 sync(); 403 404 /* 405 * Readers are finished with the source list, so perform splice. 406 * The order is important if the new list is global and accessible 407 * to concurrent RCU readers. Note that RCU readers are not 408 * permitted to traverse the prev pointers without excluding 409 * this function. 410 */ 411 412 last->next = at; 413 smp_wmb(); 414 head->next = first; 415 first->prev = head; 416 at->prev = last; 417} 418 419/** 420 * list_entry - get the struct for this entry 421 * @ptr: the &struct list_head pointer. 422 * @type: the type of the struct this is embedded in. 423 * @member: the name of the list_struct within the struct. 424 */ 425#define list_entry(ptr, type, member) \ 426 container_of(ptr, type, member) 427 428/** 429 * list_first_entry - get the first element from a list 430 * @ptr: the list head to take the element from. 431 * @type: the type of the struct this is embedded in. 432 * @member: the name of the list_struct within the struct. 433 * 434 * Note, that list is expected to be not empty. 435 */ 436#define list_first_entry(ptr, type, member) \ 437 list_entry((ptr)->next, type, member) 438 439/** 440 * list_for_each - iterate over a list 441 * @pos: the &struct list_head to use as a loop cursor. 442 * @head: the head for your list. 443 */ 444#define list_for_each(pos, head) \ 445 for (pos = (head)->next; prefetch(pos->next), pos != (head); \ 446 pos = pos->next) 447 448/** 449 * __list_for_each - iterate over a list 450 * @pos: the &struct list_head to use as a loop cursor. 451 * @head: the head for your list. 452 * 453 * This variant differs from list_for_each() in that it's the 454 * simplest possible list iteration code, no prefetching is done. 455 * Use this for code that knows the list to be very short (empty 456 * or 1 entry) most of the time. 457 */ 458#define __list_for_each(pos, head) \ 459 for (pos = (head)->next; pos != (head); pos = pos->next) 460 461/** 462 * list_for_each_prev - iterate over a list backwards 463 * @pos: the &struct list_head to use as a loop cursor. 464 * @head: the head for your list. 465 */ 466#define list_for_each_prev(pos, head) \ 467 for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \ 468 pos = pos->prev) 469 470/** 471 * list_for_each_safe - iterate over a list safe against removal of list entry 472 * @pos: the &struct list_head to use as a loop cursor. 473 * @n: another &struct list_head to use as temporary storage 474 * @head: the head for your list. 475 */ 476#define list_for_each_safe(pos, n, head) \ 477 for (pos = (head)->next, n = pos->next; pos != (head); \ 478 pos = n, n = pos->next) 479 480/** 481 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry 482 * @pos: the &struct list_head to use as a loop cursor. 483 * @n: another &struct list_head to use as temporary storage 484 * @head: the head for your list. 485 */ 486#define list_for_each_prev_safe(pos, n, head) \ 487 for (pos = (head)->prev, n = pos->prev; \ 488 prefetch(pos->prev), pos != (head); \ 489 pos = n, n = pos->prev) 490 491/** 492 * list_for_each_entry - iterate over list of given type 493 * @pos: the type * to use as a loop cursor. 494 * @head: the head for your list. 495 * @member: the name of the list_struct within the struct. 496 */ 497#define list_for_each_entry(pos, head, member) \ 498 for (pos = list_entry((head)->next, typeof(*pos), member); \ 499 prefetch(pos->member.next), &pos->member != (head); \ 500 pos = list_entry(pos->member.next, typeof(*pos), member)) 501 502/** 503 * list_for_each_entry_reverse - iterate backwards over list of given type. 504 * @pos: the type * to use as a loop cursor. 505 * @head: the head for your list. 506 * @member: the name of the list_struct within the struct. 507 */ 508#define list_for_each_entry_reverse(pos, head, member) \ 509 for (pos = list_entry((head)->prev, typeof(*pos), member); \ 510 prefetch(pos->member.prev), &pos->member != (head); \ 511 pos = list_entry(pos->member.prev, typeof(*pos), member)) 512 513/** 514 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue() 515 * @pos: the type * to use as a start point 516 * @head: the head of the list 517 * @member: the name of the list_struct within the struct. 518 * 519 * Prepares a pos entry for use as a start point in list_for_each_entry_continue(). 520 */ 521#define list_prepare_entry(pos, head, member) \ 522 ((pos) ? : list_entry(head, typeof(*pos), member)) 523 524/** 525 * list_for_each_entry_continue - continue iteration over list of given type 526 * @pos: the type * to use as a loop cursor. 527 * @head: the head for your list. 528 * @member: the name of the list_struct within the struct. 529 * 530 * Continue to iterate over list of given type, continuing after 531 * the current position. 532 */ 533#define list_for_each_entry_continue(pos, head, member) \ 534 for (pos = list_entry(pos->member.next, typeof(*pos), member); \ 535 prefetch(pos->member.next), &pos->member != (head); \ 536 pos = list_entry(pos->member.next, typeof(*pos), member)) 537 538/** 539 * list_for_each_entry_continue_reverse - iterate backwards from the given point 540 * @pos: the type * to use as a loop cursor. 541 * @head: the head for your list. 542 * @member: the name of the list_struct within the struct. 543 * 544 * Start to iterate over list of given type backwards, continuing after 545 * the current position. 546 */ 547#define list_for_each_entry_continue_reverse(pos, head, member) \ 548 for (pos = list_entry(pos->member.prev, typeof(*pos), member); \ 549 prefetch(pos->member.prev), &pos->member != (head); \ 550 pos = list_entry(pos->member.prev, typeof(*pos), member)) 551 552/** 553 * list_for_each_entry_from - iterate over list of given type from the current point 554 * @pos: the type * to use as a loop cursor. 555 * @head: the head for your list. 556 * @member: the name of the list_struct within the struct. 557 * 558 * Iterate over list of given type, continuing from current position. 559 */ 560#define list_for_each_entry_from(pos, head, member) \ 561 for (; prefetch(pos->member.next), &pos->member != (head); \ 562 pos = list_entry(pos->member.next, typeof(*pos), member)) 563 564/** 565 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry 566 * @pos: the type * to use as a loop cursor. 567 * @n: another type * to use as temporary storage 568 * @head: the head for your list. 569 * @member: the name of the list_struct within the struct. 570 */ 571#define list_for_each_entry_safe(pos, n, head, member) \ 572 for (pos = list_entry((head)->next, typeof(*pos), member), \ 573 n = list_entry(pos->member.next, typeof(*pos), member); \ 574 &pos->member != (head); \ 575 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 576 577/** 578 * list_for_each_entry_safe_continue 579 * @pos: the type * to use as a loop cursor. 580 * @n: another type * to use as temporary storage 581 * @head: the head for your list. 582 * @member: the name of the list_struct within the struct. 583 * 584 * Iterate over list of given type, continuing after current point, 585 * safe against removal of list entry. 586 */ 587#define list_for_each_entry_safe_continue(pos, n, head, member) \ 588 for (pos = list_entry(pos->member.next, typeof(*pos), member), \ 589 n = list_entry(pos->member.next, typeof(*pos), member); \ 590 &pos->member != (head); \ 591 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 592 593/** 594 * list_for_each_entry_safe_from 595 * @pos: the type * to use as a loop cursor. 596 * @n: another type * to use as temporary storage 597 * @head: the head for your list. 598 * @member: the name of the list_struct within the struct. 599 * 600 * Iterate over list of given type from current point, safe against 601 * removal of list entry. 602 */ 603#define list_for_each_entry_safe_from(pos, n, head, member) \ 604 for (n = list_entry(pos->member.next, typeof(*pos), member); \ 605 &pos->member != (head); \ 606 pos = n, n = list_entry(n->member.next, typeof(*n), member)) 607 608/** 609 * list_for_each_entry_safe_reverse 610 * @pos: the type * to use as a loop cursor. 611 * @n: another type * to use as temporary storage 612 * @head: the head for your list. 613 * @member: the name of the list_struct within the struct. 614 * 615 * Iterate backwards over list of given type, safe against removal 616 * of list entry. 617 */ 618#define list_for_each_entry_safe_reverse(pos, n, head, member) \ 619 for (pos = list_entry((head)->prev, typeof(*pos), member), \ 620 n = list_entry(pos->member.prev, typeof(*pos), member); \ 621 &pos->member != (head); \ 622 pos = n, n = list_entry(n->member.prev, typeof(*n), member)) 623 624/** 625 * list_for_each_rcu - iterate over an rcu-protected list 626 * @pos: the &struct list_head to use as a loop cursor. 627 * @head: the head for your list. 628 * 629 * This list-traversal primitive may safely run concurrently with 630 * the _rcu list-mutation primitives such as list_add_rcu() 631 * as long as the traversal is guarded by rcu_read_lock(). 632 */ 633#define list_for_each_rcu(pos, head) \ 634 for (pos = (head)->next; \ 635 prefetch(rcu_dereference(pos)->next), pos != (head); \ 636 pos = pos->next) 637 638#define __list_for_each_rcu(pos, head) \ 639 for (pos = (head)->next; \ 640 rcu_dereference(pos) != (head); \ 641 pos = pos->next) 642 643/** 644 * list_for_each_safe_rcu 645 * @pos: the &struct list_head to use as a loop cursor. 646 * @n: another &struct list_head to use as temporary storage 647 * @head: the head for your list. 648 * 649 * Iterate over an rcu-protected list, safe against removal of list entry. 650 * 651 * This list-traversal primitive may safely run concurrently with 652 * the _rcu list-mutation primitives such as list_add_rcu() 653 * as long as the traversal is guarded by rcu_read_lock(). 654 */ 655#define list_for_each_safe_rcu(pos, n, head) \ 656 for (pos = (head)->next; \ 657 n = rcu_dereference(pos)->next, pos != (head); \ 658 pos = n) 659 660/** 661 * list_for_each_entry_rcu - iterate over rcu list of given type 662 * @pos: the type * to use as a loop cursor. 663 * @head: the head for your list. 664 * @member: the name of the list_struct within the struct. 665 * 666 * This list-traversal primitive may safely run concurrently with 667 * the _rcu list-mutation primitives such as list_add_rcu() 668 * as long as the traversal is guarded by rcu_read_lock(). 669 */ 670#define list_for_each_entry_rcu(pos, head, member) \ 671 for (pos = list_entry((head)->next, typeof(*pos), member); \ 672 prefetch(rcu_dereference(pos)->member.next), \ 673 &pos->member != (head); \ 674 pos = list_entry(pos->member.next, typeof(*pos), member)) 675 676 677/** 678 * list_for_each_continue_rcu 679 * @pos: the &struct list_head to use as a loop cursor. 680 * @head: the head for your list. 681 * 682 * Iterate over an rcu-protected list, continuing after current point. 683 * 684 * This list-traversal primitive may safely run concurrently with 685 * the _rcu list-mutation primitives such as list_add_rcu() 686 * as long as the traversal is guarded by rcu_read_lock(). 687 */ 688#define list_for_each_continue_rcu(pos, head) \ 689 for ((pos) = (pos)->next; \ 690 prefetch(rcu_dereference((pos))->next), (pos) != (head); \ 691 (pos) = (pos)->next) 692 693/* 694 * Double linked lists with a single pointer list head. 695 * Mostly useful for hash tables where the two pointer list head is 696 * too wasteful. 697 * You lose the ability to access the tail in O(1). 698 */ 699 700struct hlist_head { 701 struct hlist_node *first; 702}; 703 704struct hlist_node { 705 struct hlist_node *next, **pprev; 706}; 707 708#define HLIST_HEAD_INIT { .first = NULL } 709#define HLIST_HEAD(name) struct hlist_head name = { .first = NULL } 710#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL) 711static inline void INIT_HLIST_NODE(struct hlist_node *h) 712{ 713 h->next = NULL; 714 h->pprev = NULL; 715} 716 717static inline int hlist_unhashed(const struct hlist_node *h) 718{ 719 return !h->pprev; 720} 721 722static inline int hlist_empty(const struct hlist_head *h) 723{ 724 return !h->first; 725} 726 727static inline void __hlist_del(struct hlist_node *n) 728{ 729 struct hlist_node *next = n->next; 730 struct hlist_node **pprev = n->pprev; 731 *pprev = next; 732 if (next) 733 next->pprev = pprev; 734} 735 736static inline void hlist_del(struct hlist_node *n) 737{ 738 __hlist_del(n); 739 n->next = LIST_POISON1; 740 n->pprev = LIST_POISON2; 741} 742 743/** 744 * hlist_del_rcu - deletes entry from hash list without re-initialization 745 * @n: the element to delete from the hash list. 746 * 747 * Note: list_unhashed() on entry does not return true after this, 748 * the entry is in an undefined state. It is useful for RCU based 749 * lockfree traversal. 750 * 751 * In particular, it means that we can not poison the forward 752 * pointers that may still be used for walking the hash list. 753 * 754 * The caller must take whatever precautions are necessary 755 * (such as holding appropriate locks) to avoid racing 756 * with another list-mutation primitive, such as hlist_add_head_rcu() 757 * or hlist_del_rcu(), running on this same list. 758 * However, it is perfectly legal to run concurrently with 759 * the _rcu list-traversal primitives, such as 760 * hlist_for_each_entry(). 761 */ 762static inline void hlist_del_rcu(struct hlist_node *n) 763{ 764 __hlist_del(n); 765 n->pprev = LIST_POISON2; 766} 767 768static inline void hlist_del_init(struct hlist_node *n) 769{ 770 if (!hlist_unhashed(n)) { 771 __hlist_del(n); 772 INIT_HLIST_NODE(n); 773 } 774} 775 776/** 777 * hlist_replace_rcu - replace old entry by new one 778 * @old : the element to be replaced 779 * @new : the new element to insert 780 * 781 * The @old entry will be replaced with the @new entry atomically. 782 */ 783static inline void hlist_replace_rcu(struct hlist_node *old, 784 struct hlist_node *new) 785{ 786 struct hlist_node *next = old->next; 787 788 new->next = next; 789 new->pprev = old->pprev; 790 smp_wmb(); 791 if (next) 792 new->next->pprev = &new->next; 793 *new->pprev = new; 794 old->pprev = LIST_POISON2; 795} 796 797static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h) 798{ 799 struct hlist_node *first = h->first; 800 n->next = first; 801 if (first) 802 first->pprev = &n->next; 803 h->first = n; 804 n->pprev = &h->first; 805} 806 807 808/** 809 * hlist_add_head_rcu 810 * @n: the element to add to the hash list. 811 * @h: the list to add to. 812 * 813 * Description: 814 * Adds the specified element to the specified hlist, 815 * while permitting racing traversals. 816 * 817 * The caller must take whatever precautions are necessary 818 * (such as holding appropriate locks) to avoid racing 819 * with another list-mutation primitive, such as hlist_add_head_rcu() 820 * or hlist_del_rcu(), running on this same list. 821 * However, it is perfectly legal to run concurrently with 822 * the _rcu list-traversal primitives, such as 823 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 824 * problems on Alpha CPUs. Regardless of the type of CPU, the 825 * list-traversal primitive must be guarded by rcu_read_lock(). 826 */ 827static inline void hlist_add_head_rcu(struct hlist_node *n, 828 struct hlist_head *h) 829{ 830 struct hlist_node *first = h->first; 831 n->next = first; 832 n->pprev = &h->first; 833 smp_wmb(); 834 if (first) 835 first->pprev = &n->next; 836 h->first = n; 837} 838 839/* next must be != NULL */ 840static inline void hlist_add_before(struct hlist_node *n, 841 struct hlist_node *next) 842{ 843 n->pprev = next->pprev; 844 n->next = next; 845 next->pprev = &n->next; 846 *(n->pprev) = n; 847} 848 849static inline void hlist_add_after(struct hlist_node *n, 850 struct hlist_node *next) 851{ 852 next->next = n->next; 853 n->next = next; 854 next->pprev = &n->next; 855 856 if(next->next) 857 next->next->pprev = &next->next; 858} 859 860/** 861 * hlist_add_before_rcu 862 * @n: the new element to add to the hash list. 863 * @next: the existing element to add the new element before. 864 * 865 * Description: 866 * Adds the specified element to the specified hlist 867 * before the specified node while permitting racing traversals. 868 * 869 * The caller must take whatever precautions are necessary 870 * (such as holding appropriate locks) to avoid racing 871 * with another list-mutation primitive, such as hlist_add_head_rcu() 872 * or hlist_del_rcu(), running on this same list. 873 * However, it is perfectly legal to run concurrently with 874 * the _rcu list-traversal primitives, such as 875 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 876 * problems on Alpha CPUs. 877 */ 878static inline void hlist_add_before_rcu(struct hlist_node *n, 879 struct hlist_node *next) 880{ 881 n->pprev = next->pprev; 882 n->next = next; 883 smp_wmb(); 884 next->pprev = &n->next; 885 *(n->pprev) = n; 886} 887 888/** 889 * hlist_add_after_rcu 890 * @prev: the existing element to add the new element after. 891 * @n: the new element to add to the hash list. 892 * 893 * Description: 894 * Adds the specified element to the specified hlist 895 * after the specified node while permitting racing traversals. 896 * 897 * The caller must take whatever precautions are necessary 898 * (such as holding appropriate locks) to avoid racing 899 * with another list-mutation primitive, such as hlist_add_head_rcu() 900 * or hlist_del_rcu(), running on this same list. 901 * However, it is perfectly legal to run concurrently with 902 * the _rcu list-traversal primitives, such as 903 * hlist_for_each_entry_rcu(), used to prevent memory-consistency 904 * problems on Alpha CPUs. 905 */ 906static inline void hlist_add_after_rcu(struct hlist_node *prev, 907 struct hlist_node *n) 908{ 909 n->next = prev->next; 910 n->pprev = &prev->next; 911 smp_wmb(); 912 prev->next = n; 913 if (n->next) 914 n->next->pprev = &n->next; 915} 916 917#define hlist_entry(ptr, type, member) container_of(ptr,type,member) 918 919#define hlist_for_each(pos, head) \ 920 for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \ 921 pos = pos->next) 922 923#define hlist_for_each_safe(pos, n, head) \ 924 for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \ 925 pos = n) 926 927/** 928 * hlist_for_each_entry - iterate over list of given type 929 * @tpos: the type * to use as a loop cursor. 930 * @pos: the &struct hlist_node to use as a loop cursor. 931 * @head: the head for your list. 932 * @member: the name of the hlist_node within the struct. 933 */ 934#define hlist_for_each_entry(tpos, pos, head, member) \ 935 for (pos = (head)->first; \ 936 pos && ({ prefetch(pos->next); 1;}) && \ 937 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 938 pos = pos->next) 939 940/** 941 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point 942 * @tpos: the type * to use as a loop cursor. 943 * @pos: the &struct hlist_node to use as a loop cursor. 944 * @member: the name of the hlist_node within the struct. 945 */ 946#define hlist_for_each_entry_continue(tpos, pos, member) \ 947 for (pos = (pos)->next; \ 948 pos && ({ prefetch(pos->next); 1;}) && \ 949 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 950 pos = pos->next) 951 952/** 953 * hlist_for_each_entry_from - iterate over a hlist continuing from current point 954 * @tpos: the type * to use as a loop cursor. 955 * @pos: the &struct hlist_node to use as a loop cursor. 956 * @member: the name of the hlist_node within the struct. 957 */ 958#define hlist_for_each_entry_from(tpos, pos, member) \ 959 for (; pos && ({ prefetch(pos->next); 1;}) && \ 960 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 961 pos = pos->next) 962 963/** 964 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry 965 * @tpos: the type * to use as a loop cursor. 966 * @pos: the &struct hlist_node to use as a loop cursor. 967 * @n: another &struct hlist_node to use as temporary storage 968 * @head: the head for your list. 969 * @member: the name of the hlist_node within the struct. 970 */ 971#define hlist_for_each_entry_safe(tpos, pos, n, head, member) \ 972 for (pos = (head)->first; \ 973 pos && ({ n = pos->next; 1; }) && \ 974 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 975 pos = n) 976 977/** 978 * hlist_for_each_entry_rcu - iterate over rcu list of given type 979 * @tpos: the type * to use as a loop cursor. 980 * @pos: the &struct hlist_node to use as a loop cursor. 981 * @head: the head for your list. 982 * @member: the name of the hlist_node within the struct. 983 * 984 * This list-traversal primitive may safely run concurrently with 985 * the _rcu list-mutation primitives such as hlist_add_head_rcu() 986 * as long as the traversal is guarded by rcu_read_lock(). 987 */ 988#define hlist_for_each_entry_rcu(tpos, pos, head, member) \ 989 for (pos = (head)->first; \ 990 rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) && \ 991 ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \ 992 pos = pos->next) 993 994#else 995#warning "don't include kernel headers in userspace" 996#endif /* __KERNEL__ */ 997#endif 998