linux/include/linux/list.h
<<
>>
Prefs
   1#ifndef _LINUX_LIST_H
   2#define _LINUX_LIST_H
   3
   4#ifdef __KERNEL__
   5
   6#include <linux/stddef.h>
   7#include <linux/poison.h>
   8#include <linux/prefetch.h>
   9#include <asm/system.h>
  10
  11/*
  12 * Simple doubly linked list implementation.
  13 *
  14 * Some of the internal functions ("__xxx") are useful when
  15 * manipulating whole lists rather than single entries, as
  16 * sometimes we already know the next/prev entries and we can
  17 * generate better code by using them directly rather than
  18 * using the generic single-entry routines.
  19 */
  20
  21struct list_head {
  22        struct list_head *next, *prev;
  23};
  24
  25#define LIST_HEAD_INIT(name) { &(name), &(name) }
  26
  27#define LIST_HEAD(name) \
  28        struct list_head name = LIST_HEAD_INIT(name)
  29
  30static inline void INIT_LIST_HEAD(struct list_head *list)
  31{
  32        list->next = list;
  33        list->prev = list;
  34}
  35
  36/*
  37 * Insert a new entry between two known consecutive entries.
  38 *
  39 * This is only for internal list manipulation where we know
  40 * the prev/next entries already!
  41 */
  42#ifndef CONFIG_DEBUG_LIST
  43static inline void __list_add(struct list_head *new,
  44                              struct list_head *prev,
  45                              struct list_head *next)
  46{
  47        next->prev = new;
  48        new->next = next;
  49        new->prev = prev;
  50        prev->next = new;
  51}
  52#else
  53extern void __list_add(struct list_head *new,
  54                              struct list_head *prev,
  55                              struct list_head *next);
  56#endif
  57
  58/**
  59 * list_add - add a new entry
  60 * @new: new entry to be added
  61 * @head: list head to add it after
  62 *
  63 * Insert a new entry after the specified head.
  64 * This is good for implementing stacks.
  65 */
  66#ifndef CONFIG_DEBUG_LIST
  67static inline void list_add(struct list_head *new, struct list_head *head)
  68{
  69        __list_add(new, head, head->next);
  70}
  71#else
  72extern void list_add(struct list_head *new, struct list_head *head);
  73#endif
  74
  75
  76/**
  77 * list_add_tail - add a new entry
  78 * @new: new entry to be added
  79 * @head: list head to add it before
  80 *
  81 * Insert a new entry before the specified head.
  82 * This is useful for implementing queues.
  83 */
  84static inline void list_add_tail(struct list_head *new, struct list_head *head)
  85{
  86        __list_add(new, head->prev, head);
  87}
  88
  89/*
  90 * Insert a new entry between two known consecutive entries.
  91 *
  92 * This is only for internal list manipulation where we know
  93 * the prev/next entries already!
  94 */
  95static inline void __list_add_rcu(struct list_head * new,
  96                struct list_head * prev, struct list_head * next)
  97{
  98        new->next = next;
  99        new->prev = prev;
 100        smp_wmb();
 101        next->prev = new;
 102        prev->next = new;
 103}
 104
 105/**
 106 * list_add_rcu - add a new entry to rcu-protected list
 107 * @new: new entry to be added
 108 * @head: list head to add it after
 109 *
 110 * Insert a new entry after the specified head.
 111 * This is good for implementing stacks.
 112 *
 113 * The caller must take whatever precautions are necessary
 114 * (such as holding appropriate locks) to avoid racing
 115 * with another list-mutation primitive, such as list_add_rcu()
 116 * or list_del_rcu(), running on this same list.
 117 * However, it is perfectly legal to run concurrently with
 118 * the _rcu list-traversal primitives, such as
 119 * list_for_each_entry_rcu().
 120 */
 121static inline void list_add_rcu(struct list_head *new, struct list_head *head)
 122{
 123        __list_add_rcu(new, head, head->next);
 124}
 125
 126/**
 127 * list_add_tail_rcu - add a new entry to rcu-protected list
 128 * @new: new entry to be added
 129 * @head: list head to add it before
 130 *
 131 * Insert a new entry before the specified head.
 132 * This is useful for implementing queues.
 133 *
 134 * The caller must take whatever precautions are necessary
 135 * (such as holding appropriate locks) to avoid racing
 136 * with another list-mutation primitive, such as list_add_tail_rcu()
 137 * or list_del_rcu(), running on this same list.
 138 * However, it is perfectly legal to run concurrently with
 139 * the _rcu list-traversal primitives, such as
 140 * list_for_each_entry_rcu().
 141 */
 142static inline void list_add_tail_rcu(struct list_head *new,
 143                                        struct list_head *head)
 144{
 145        __list_add_rcu(new, head->prev, head);
 146}
 147
 148/*
 149 * Delete a list entry by making the prev/next entries
 150 * point to each other.
 151 *
 152 * This is only for internal list manipulation where we know
 153 * the prev/next entries already!
 154 */
 155static inline void __list_del(struct list_head * prev, struct list_head * next)
 156{
 157        next->prev = prev;
 158        prev->next = next;
 159}
 160
 161/**
 162 * list_del - deletes entry from list.
 163 * @entry: the element to delete from the list.
 164 * Note: list_empty() on entry does not return true after this, the entry is
 165 * in an undefined state.
 166 */
 167#ifndef CONFIG_DEBUG_LIST
 168static inline void list_del(struct list_head *entry)
 169{
 170        __list_del(entry->prev, entry->next);
 171        entry->next = LIST_POISON1;
 172        entry->prev = LIST_POISON2;
 173}
 174#else
 175extern void list_del(struct list_head *entry);
 176#endif
 177
 178/**
 179 * list_del_rcu - deletes entry from list without re-initialization
 180 * @entry: the element to delete from the list.
 181 *
 182 * Note: list_empty() on entry does not return true after this,
 183 * the entry is in an undefined state. It is useful for RCU based
 184 * lockfree traversal.
 185 *
 186 * In particular, it means that we can not poison the forward
 187 * pointers that may still be used for walking the list.
 188 *
 189 * The caller must take whatever precautions are necessary
 190 * (such as holding appropriate locks) to avoid racing
 191 * with another list-mutation primitive, such as list_del_rcu()
 192 * or list_add_rcu(), running on this same list.
 193 * However, it is perfectly legal to run concurrently with
 194 * the _rcu list-traversal primitives, such as
 195 * list_for_each_entry_rcu().
 196 *
 197 * Note that the caller is not permitted to immediately free
 198 * the newly deleted entry.  Instead, either synchronize_rcu()
 199 * or call_rcu() must be used to defer freeing until an RCU
 200 * grace period has elapsed.
 201 */
 202static inline void list_del_rcu(struct list_head *entry)
 203{
 204        __list_del(entry->prev, entry->next);
 205        entry->prev = LIST_POISON2;
 206}
 207
 208/**
 209 * list_replace - replace old entry by new one
 210 * @old : the element to be replaced
 211 * @new : the new element to insert
 212 *
 213 * If @old was empty, it will be overwritten.
 214 */
 215static inline void list_replace(struct list_head *old,
 216                                struct list_head *new)
 217{
 218        new->next = old->next;
 219        new->next->prev = new;
 220        new->prev = old->prev;
 221        new->prev->next = new;
 222}
 223
 224static inline void list_replace_init(struct list_head *old,
 225                                        struct list_head *new)
 226{
 227        list_replace(old, new);
 228        INIT_LIST_HEAD(old);
 229}
 230
 231/**
 232 * list_replace_rcu - replace old entry by new one
 233 * @old : the element to be replaced
 234 * @new : the new element to insert
 235 *
 236 * The @old entry will be replaced with the @new entry atomically.
 237 * Note: @old should not be empty.
 238 */
 239static inline void list_replace_rcu(struct list_head *old,
 240                                struct list_head *new)
 241{
 242        new->next = old->next;
 243        new->prev = old->prev;
 244        smp_wmb();
 245        new->next->prev = new;
 246        new->prev->next = new;
 247        old->prev = LIST_POISON2;
 248}
 249
 250/**
 251 * list_del_init - deletes entry from list and reinitialize it.
 252 * @entry: the element to delete from the list.
 253 */
 254static inline void list_del_init(struct list_head *entry)
 255{
 256        __list_del(entry->prev, entry->next);
 257        INIT_LIST_HEAD(entry);
 258}
 259
 260/**
 261 * list_move - delete from one list and add as another's head
 262 * @list: the entry to move
 263 * @head: the head that will precede our entry
 264 */
 265static inline void list_move(struct list_head *list, struct list_head *head)
 266{
 267        __list_del(list->prev, list->next);
 268        list_add(list, head);
 269}
 270
 271/**
 272 * list_move_tail - delete from one list and add as another's tail
 273 * @list: the entry to move
 274 * @head: the head that will follow our entry
 275 */
 276static inline void list_move_tail(struct list_head *list,
 277                                  struct list_head *head)
 278{
 279        __list_del(list->prev, list->next);
 280        list_add_tail(list, head);
 281}
 282
 283/**
 284 * list_is_last - tests whether @list is the last entry in list @head
 285 * @list: the entry to test
 286 * @head: the head of the list
 287 */
 288static inline int list_is_last(const struct list_head *list,
 289                                const struct list_head *head)
 290{
 291        return list->next == head;
 292}
 293
 294/**
 295 * list_empty - tests whether a list is empty
 296 * @head: the list to test.
 297 */
 298static inline int list_empty(const struct list_head *head)
 299{
 300        return head->next == head;
 301}
 302
 303/**
 304 * list_empty_careful - tests whether a list is empty and not being modified
 305 * @head: the list to test
 306 *
 307 * Description:
 308 * tests whether a list is empty _and_ checks that no other CPU might be
 309 * in the process of modifying either member (next or prev)
 310 *
 311 * NOTE: using list_empty_careful() without synchronization
 312 * can only be safe if the only activity that can happen
 313 * to the list entry is list_del_init(). Eg. it cannot be used
 314 * if another CPU could re-list_add() it.
 315 */
 316static inline int list_empty_careful(const struct list_head *head)
 317{
 318        struct list_head *next = head->next;
 319        return (next == head) && (next == head->prev);
 320}
 321
 322static inline void __list_splice(struct list_head *list,
 323                                 struct list_head *head)
 324{
 325        struct list_head *first = list->next;
 326        struct list_head *last = list->prev;
 327        struct list_head *at = head->next;
 328
 329        first->prev = head;
 330        head->next = first;
 331
 332        last->next = at;
 333        at->prev = last;
 334}
 335
 336/**
 337 * list_splice - join two lists
 338 * @list: the new list to add.
 339 * @head: the place to add it in the first list.
 340 */
 341static inline void list_splice(struct list_head *list, struct list_head *head)
 342{
 343        if (!list_empty(list))
 344                __list_splice(list, head);
 345}
 346
 347/**
 348 * list_splice_init - join two lists and reinitialise the emptied list.
 349 * @list: the new list to add.
 350 * @head: the place to add it in the first list.
 351 *
 352 * The list at @list is reinitialised
 353 */
 354static inline void list_splice_init(struct list_head *list,
 355                                    struct list_head *head)
 356{
 357        if (!list_empty(list)) {
 358                __list_splice(list, head);
 359                INIT_LIST_HEAD(list);
 360        }
 361}
 362
 363/**
 364 * list_splice_init_rcu - splice an RCU-protected list into an existing list.
 365 * @list:       the RCU-protected list to splice
 366 * @head:       the place in the list to splice the first list into
 367 * @sync:       function to sync: synchronize_rcu(), synchronize_sched(), ...
 368 *
 369 * @head can be RCU-read traversed concurrently with this function.
 370 *
 371 * Note that this function blocks.
 372 *
 373 * Important note: the caller must take whatever action is necessary to
 374 *      prevent any other updates to @head.  In principle, it is possible
 375 *      to modify the list as soon as sync() begins execution.
 376 *      If this sort of thing becomes necessary, an alternative version
 377 *      based on call_rcu() could be created.  But only if -really-
 378 *      needed -- there is no shortage of RCU API members.
 379 */
 380static inline void list_splice_init_rcu(struct list_head *list,
 381                                        struct list_head *head,
 382                                        void (*sync)(void))
 383{
 384        struct list_head *first = list->next;
 385        struct list_head *last = list->prev;
 386        struct list_head *at = head->next;
 387
 388        if (list_empty(head))
 389                return;
 390
 391        /* "first" and "last" tracking list, so initialize it. */
 392
 393        INIT_LIST_HEAD(list);
 394
 395        /*
 396         * At this point, the list body still points to the source list.
 397         * Wait for any readers to finish using the list before splicing
 398         * the list body into the new list.  Any new readers will see
 399         * an empty list.
 400         */
 401
 402        sync();
 403
 404        /*
 405         * Readers are finished with the source list, so perform splice.
 406         * The order is important if the new list is global and accessible
 407         * to concurrent RCU readers.  Note that RCU readers are not
 408         * permitted to traverse the prev pointers without excluding
 409         * this function.
 410         */
 411
 412        last->next = at;
 413        smp_wmb();
 414        head->next = first;
 415        first->prev = head;
 416        at->prev = last;
 417}
 418
 419/**
 420 * list_entry - get the struct for this entry
 421 * @ptr:        the &struct list_head pointer.
 422 * @type:       the type of the struct this is embedded in.
 423 * @member:     the name of the list_struct within the struct.
 424 */
 425#define list_entry(ptr, type, member) \
 426        container_of(ptr, type, member)
 427
 428/**
 429 * list_first_entry - get the first element from a list
 430 * @ptr:        the list head to take the element from.
 431 * @type:       the type of the struct this is embedded in.
 432 * @member:     the name of the list_struct within the struct.
 433 *
 434 * Note, that list is expected to be not empty.
 435 */
 436#define list_first_entry(ptr, type, member) \
 437        list_entry((ptr)->next, type, member)
 438
 439/**
 440 * list_for_each        -       iterate over a list
 441 * @pos:        the &struct list_head to use as a loop cursor.
 442 * @head:       the head for your list.
 443 */
 444#define list_for_each(pos, head) \
 445        for (pos = (head)->next; prefetch(pos->next), pos != (head); \
 446                pos = pos->next)
 447
 448/**
 449 * __list_for_each      -       iterate over a list
 450 * @pos:        the &struct list_head to use as a loop cursor.
 451 * @head:       the head for your list.
 452 *
 453 * This variant differs from list_for_each() in that it's the
 454 * simplest possible list iteration code, no prefetching is done.
 455 * Use this for code that knows the list to be very short (empty
 456 * or 1 entry) most of the time.
 457 */
 458#define __list_for_each(pos, head) \
 459        for (pos = (head)->next; pos != (head); pos = pos->next)
 460
 461/**
 462 * list_for_each_prev   -       iterate over a list backwards
 463 * @pos:        the &struct list_head to use as a loop cursor.
 464 * @head:       the head for your list.
 465 */
 466#define list_for_each_prev(pos, head) \
 467        for (pos = (head)->prev; prefetch(pos->prev), pos != (head); \
 468                pos = pos->prev)
 469
 470/**
 471 * list_for_each_safe - iterate over a list safe against removal of list entry
 472 * @pos:        the &struct list_head to use as a loop cursor.
 473 * @n:          another &struct list_head to use as temporary storage
 474 * @head:       the head for your list.
 475 */
 476#define list_for_each_safe(pos, n, head) \
 477        for (pos = (head)->next, n = pos->next; pos != (head); \
 478                pos = n, n = pos->next)
 479
 480/**
 481 * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
 482 * @pos:        the &struct list_head to use as a loop cursor.
 483 * @n:          another &struct list_head to use as temporary storage
 484 * @head:       the head for your list.
 485 */
 486#define list_for_each_prev_safe(pos, n, head) \
 487        for (pos = (head)->prev, n = pos->prev; \
 488             prefetch(pos->prev), pos != (head); \
 489             pos = n, n = pos->prev)
 490
 491/**
 492 * list_for_each_entry  -       iterate over list of given type
 493 * @pos:        the type * to use as a loop cursor.
 494 * @head:       the head for your list.
 495 * @member:     the name of the list_struct within the struct.
 496 */
 497#define list_for_each_entry(pos, head, member)                          \
 498        for (pos = list_entry((head)->next, typeof(*pos), member);      \
 499             prefetch(pos->member.next), &pos->member != (head);        \
 500             pos = list_entry(pos->member.next, typeof(*pos), member))
 501
 502/**
 503 * list_for_each_entry_reverse - iterate backwards over list of given type.
 504 * @pos:        the type * to use as a loop cursor.
 505 * @head:       the head for your list.
 506 * @member:     the name of the list_struct within the struct.
 507 */
 508#define list_for_each_entry_reverse(pos, head, member)                  \
 509        for (pos = list_entry((head)->prev, typeof(*pos), member);      \
 510             prefetch(pos->member.prev), &pos->member != (head);        \
 511             pos = list_entry(pos->member.prev, typeof(*pos), member))
 512
 513/**
 514 * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
 515 * @pos:        the type * to use as a start point
 516 * @head:       the head of the list
 517 * @member:     the name of the list_struct within the struct.
 518 *
 519 * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
 520 */
 521#define list_prepare_entry(pos, head, member) \
 522        ((pos) ? : list_entry(head, typeof(*pos), member))
 523
 524/**
 525 * list_for_each_entry_continue - continue iteration over list of given type
 526 * @pos:        the type * to use as a loop cursor.
 527 * @head:       the head for your list.
 528 * @member:     the name of the list_struct within the struct.
 529 *
 530 * Continue to iterate over list of given type, continuing after
 531 * the current position.
 532 */
 533#define list_for_each_entry_continue(pos, head, member)                 \
 534        for (pos = list_entry(pos->member.next, typeof(*pos), member);  \
 535             prefetch(pos->member.next), &pos->member != (head);        \
 536             pos = list_entry(pos->member.next, typeof(*pos), member))
 537
 538/**
 539 * list_for_each_entry_continue_reverse - iterate backwards from the given point
 540 * @pos:        the type * to use as a loop cursor.
 541 * @head:       the head for your list.
 542 * @member:     the name of the list_struct within the struct.
 543 *
 544 * Start to iterate over list of given type backwards, continuing after
 545 * the current position.
 546 */
 547#define list_for_each_entry_continue_reverse(pos, head, member)         \
 548        for (pos = list_entry(pos->member.prev, typeof(*pos), member);  \
 549             prefetch(pos->member.prev), &pos->member != (head);        \
 550             pos = list_entry(pos->member.prev, typeof(*pos), member))
 551
 552/**
 553 * list_for_each_entry_from - iterate over list of given type from the current point
 554 * @pos:        the type * to use as a loop cursor.
 555 * @head:       the head for your list.
 556 * @member:     the name of the list_struct within the struct.
 557 *
 558 * Iterate over list of given type, continuing from current position.
 559 */
 560#define list_for_each_entry_from(pos, head, member)                     \
 561        for (; prefetch(pos->member.next), &pos->member != (head);      \
 562             pos = list_entry(pos->member.next, typeof(*pos), member))
 563
 564/**
 565 * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 566 * @pos:        the type * to use as a loop cursor.
 567 * @n:          another type * to use as temporary storage
 568 * @head:       the head for your list.
 569 * @member:     the name of the list_struct within the struct.
 570 */
 571#define list_for_each_entry_safe(pos, n, head, member)                  \
 572        for (pos = list_entry((head)->next, typeof(*pos), member),      \
 573                n = list_entry(pos->member.next, typeof(*pos), member); \
 574             &pos->member != (head);                                    \
 575             pos = n, n = list_entry(n->member.next, typeof(*n), member))
 576
 577/**
 578 * list_for_each_entry_safe_continue
 579 * @pos:        the type * to use as a loop cursor.
 580 * @n:          another type * to use as temporary storage
 581 * @head:       the head for your list.
 582 * @member:     the name of the list_struct within the struct.
 583 *
 584 * Iterate over list of given type, continuing after current point,
 585 * safe against removal of list entry.
 586 */
 587#define list_for_each_entry_safe_continue(pos, n, head, member)                 \
 588        for (pos = list_entry(pos->member.next, typeof(*pos), member),          \
 589                n = list_entry(pos->member.next, typeof(*pos), member);         \
 590             &pos->member != (head);                                            \
 591             pos = n, n = list_entry(n->member.next, typeof(*n), member))
 592
 593/**
 594 * list_for_each_entry_safe_from
 595 * @pos:        the type * to use as a loop cursor.
 596 * @n:          another type * to use as temporary storage
 597 * @head:       the head for your list.
 598 * @member:     the name of the list_struct within the struct.
 599 *
 600 * Iterate over list of given type from current point, safe against
 601 * removal of list entry.
 602 */
 603#define list_for_each_entry_safe_from(pos, n, head, member)                     \
 604        for (n = list_entry(pos->member.next, typeof(*pos), member);            \
 605             &pos->member != (head);                                            \
 606             pos = n, n = list_entry(n->member.next, typeof(*n), member))
 607
 608/**
 609 * list_for_each_entry_safe_reverse
 610 * @pos:        the type * to use as a loop cursor.
 611 * @n:          another type * to use as temporary storage
 612 * @head:       the head for your list.
 613 * @member:     the name of the list_struct within the struct.
 614 *
 615 * Iterate backwards over list of given type, safe against removal
 616 * of list entry.
 617 */
 618#define list_for_each_entry_safe_reverse(pos, n, head, member)          \
 619        for (pos = list_entry((head)->prev, typeof(*pos), member),      \
 620                n = list_entry(pos->member.prev, typeof(*pos), member); \
 621             &pos->member != (head);                                    \
 622             pos = n, n = list_entry(n->member.prev, typeof(*n), member))
 623
 624/**
 625 * list_for_each_rcu    -       iterate over an rcu-protected list
 626 * @pos:        the &struct list_head to use as a loop cursor.
 627 * @head:       the head for your list.
 628 *
 629 * This list-traversal primitive may safely run concurrently with
 630 * the _rcu list-mutation primitives such as list_add_rcu()
 631 * as long as the traversal is guarded by rcu_read_lock().
 632 */
 633#define list_for_each_rcu(pos, head) \
 634        for (pos = (head)->next; \
 635                prefetch(rcu_dereference(pos)->next), pos != (head); \
 636                pos = pos->next)
 637
 638#define __list_for_each_rcu(pos, head) \
 639        for (pos = (head)->next; \
 640                rcu_dereference(pos) != (head); \
 641                pos = pos->next)
 642
 643/**
 644 * list_for_each_safe_rcu
 645 * @pos:        the &struct list_head to use as a loop cursor.
 646 * @n:          another &struct list_head to use as temporary storage
 647 * @head:       the head for your list.
 648 *
 649 * Iterate over an rcu-protected list, safe against removal of list entry.
 650 *
 651 * This list-traversal primitive may safely run concurrently with
 652 * the _rcu list-mutation primitives such as list_add_rcu()
 653 * as long as the traversal is guarded by rcu_read_lock().
 654 */
 655#define list_for_each_safe_rcu(pos, n, head) \
 656        for (pos = (head)->next; \
 657                n = rcu_dereference(pos)->next, pos != (head); \
 658                pos = n)
 659
 660/**
 661 * list_for_each_entry_rcu      -       iterate over rcu list of given type
 662 * @pos:        the type * to use as a loop cursor.
 663 * @head:       the head for your list.
 664 * @member:     the name of the list_struct within the struct.
 665 *
 666 * This list-traversal primitive may safely run concurrently with
 667 * the _rcu list-mutation primitives such as list_add_rcu()
 668 * as long as the traversal is guarded by rcu_read_lock().
 669 */
 670#define list_for_each_entry_rcu(pos, head, member) \
 671        for (pos = list_entry((head)->next, typeof(*pos), member); \
 672                prefetch(rcu_dereference(pos)->member.next), \
 673                        &pos->member != (head); \
 674                pos = list_entry(pos->member.next, typeof(*pos), member))
 675
 676
 677/**
 678 * list_for_each_continue_rcu
 679 * @pos:        the &struct list_head to use as a loop cursor.
 680 * @head:       the head for your list.
 681 *
 682 * Iterate over an rcu-protected list, continuing after current point.
 683 *
 684 * This list-traversal primitive may safely run concurrently with
 685 * the _rcu list-mutation primitives such as list_add_rcu()
 686 * as long as the traversal is guarded by rcu_read_lock().
 687 */
 688#define list_for_each_continue_rcu(pos, head) \
 689        for ((pos) = (pos)->next; \
 690                prefetch(rcu_dereference((pos))->next), (pos) != (head); \
 691                (pos) = (pos)->next)
 692
 693/*
 694 * Double linked lists with a single pointer list head.
 695 * Mostly useful for hash tables where the two pointer list head is
 696 * too wasteful.
 697 * You lose the ability to access the tail in O(1).
 698 */
 699
 700struct hlist_head {
 701        struct hlist_node *first;
 702};
 703
 704struct hlist_node {
 705        struct hlist_node *next, **pprev;
 706};
 707
 708#define HLIST_HEAD_INIT { .first = NULL }
 709#define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
 710#define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
 711static inline void INIT_HLIST_NODE(struct hlist_node *h)
 712{
 713        h->next = NULL;
 714        h->pprev = NULL;
 715}
 716
 717static inline int hlist_unhashed(const struct hlist_node *h)
 718{
 719        return !h->pprev;
 720}
 721
 722static inline int hlist_empty(const struct hlist_head *h)
 723{
 724        return !h->first;
 725}
 726
 727static inline void __hlist_del(struct hlist_node *n)
 728{
 729        struct hlist_node *next = n->next;
 730        struct hlist_node **pprev = n->pprev;
 731        *pprev = next;
 732        if (next)
 733                next->pprev = pprev;
 734}
 735
 736static inline void hlist_del(struct hlist_node *n)
 737{
 738        __hlist_del(n);
 739        n->next = LIST_POISON1;
 740        n->pprev = LIST_POISON2;
 741}
 742
 743/**
 744 * hlist_del_rcu - deletes entry from hash list without re-initialization
 745 * @n: the element to delete from the hash list.
 746 *
 747 * Note: list_unhashed() on entry does not return true after this,
 748 * the entry is in an undefined state. It is useful for RCU based
 749 * lockfree traversal.
 750 *
 751 * In particular, it means that we can not poison the forward
 752 * pointers that may still be used for walking the hash list.
 753 *
 754 * The caller must take whatever precautions are necessary
 755 * (such as holding appropriate locks) to avoid racing
 756 * with another list-mutation primitive, such as hlist_add_head_rcu()
 757 * or hlist_del_rcu(), running on this same list.
 758 * However, it is perfectly legal to run concurrently with
 759 * the _rcu list-traversal primitives, such as
 760 * hlist_for_each_entry().
 761 */
 762static inline void hlist_del_rcu(struct hlist_node *n)
 763{
 764        __hlist_del(n);
 765        n->pprev = LIST_POISON2;
 766}
 767
 768static inline void hlist_del_init(struct hlist_node *n)
 769{
 770        if (!hlist_unhashed(n)) {
 771                __hlist_del(n);
 772                INIT_HLIST_NODE(n);
 773        }
 774}
 775
 776/**
 777 * hlist_replace_rcu - replace old entry by new one
 778 * @old : the element to be replaced
 779 * @new : the new element to insert
 780 *
 781 * The @old entry will be replaced with the @new entry atomically.
 782 */
 783static inline void hlist_replace_rcu(struct hlist_node *old,
 784                                        struct hlist_node *new)
 785{
 786        struct hlist_node *next = old->next;
 787
 788        new->next = next;
 789        new->pprev = old->pprev;
 790        smp_wmb();
 791        if (next)
 792                new->next->pprev = &new->next;
 793        *new->pprev = new;
 794        old->pprev = LIST_POISON2;
 795}
 796
 797static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
 798{
 799        struct hlist_node *first = h->first;
 800        n->next = first;
 801        if (first)
 802                first->pprev = &n->next;
 803        h->first = n;
 804        n->pprev = &h->first;
 805}
 806
 807
 808/**
 809 * hlist_add_head_rcu
 810 * @n: the element to add to the hash list.
 811 * @h: the list to add to.
 812 *
 813 * Description:
 814 * Adds the specified element to the specified hlist,
 815 * while permitting racing traversals.
 816 *
 817 * The caller must take whatever precautions are necessary
 818 * (such as holding appropriate locks) to avoid racing
 819 * with another list-mutation primitive, such as hlist_add_head_rcu()
 820 * or hlist_del_rcu(), running on this same list.
 821 * However, it is perfectly legal to run concurrently with
 822 * the _rcu list-traversal primitives, such as
 823 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 824 * problems on Alpha CPUs.  Regardless of the type of CPU, the
 825 * list-traversal primitive must be guarded by rcu_read_lock().
 826 */
 827static inline void hlist_add_head_rcu(struct hlist_node *n,
 828                                        struct hlist_head *h)
 829{
 830        struct hlist_node *first = h->first;
 831        n->next = first;
 832        n->pprev = &h->first;
 833        smp_wmb();
 834        if (first)
 835                first->pprev = &n->next;
 836        h->first = n;
 837}
 838
 839/* next must be != NULL */
 840static inline void hlist_add_before(struct hlist_node *n,
 841                                        struct hlist_node *next)
 842{
 843        n->pprev = next->pprev;
 844        n->next = next;
 845        next->pprev = &n->next;
 846        *(n->pprev) = n;
 847}
 848
 849static inline void hlist_add_after(struct hlist_node *n,
 850                                        struct hlist_node *next)
 851{
 852        next->next = n->next;
 853        n->next = next;
 854        next->pprev = &n->next;
 855
 856        if(next->next)
 857                next->next->pprev  = &next->next;
 858}
 859
 860/**
 861 * hlist_add_before_rcu
 862 * @n: the new element to add to the hash list.
 863 * @next: the existing element to add the new element before.
 864 *
 865 * Description:
 866 * Adds the specified element to the specified hlist
 867 * before the specified node while permitting racing traversals.
 868 *
 869 * The caller must take whatever precautions are necessary
 870 * (such as holding appropriate locks) to avoid racing
 871 * with another list-mutation primitive, such as hlist_add_head_rcu()
 872 * or hlist_del_rcu(), running on this same list.
 873 * However, it is perfectly legal to run concurrently with
 874 * the _rcu list-traversal primitives, such as
 875 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 876 * problems on Alpha CPUs.
 877 */
 878static inline void hlist_add_before_rcu(struct hlist_node *n,
 879                                        struct hlist_node *next)
 880{
 881        n->pprev = next->pprev;
 882        n->next = next;
 883        smp_wmb();
 884        next->pprev = &n->next;
 885        *(n->pprev) = n;
 886}
 887
 888/**
 889 * hlist_add_after_rcu
 890 * @prev: the existing element to add the new element after.
 891 * @n: the new element to add to the hash list.
 892 *
 893 * Description:
 894 * Adds the specified element to the specified hlist
 895 * after the specified node while permitting racing traversals.
 896 *
 897 * The caller must take whatever precautions are necessary
 898 * (such as holding appropriate locks) to avoid racing
 899 * with another list-mutation primitive, such as hlist_add_head_rcu()
 900 * or hlist_del_rcu(), running on this same list.
 901 * However, it is perfectly legal to run concurrently with
 902 * the _rcu list-traversal primitives, such as
 903 * hlist_for_each_entry_rcu(), used to prevent memory-consistency
 904 * problems on Alpha CPUs.
 905 */
 906static inline void hlist_add_after_rcu(struct hlist_node *prev,
 907                                       struct hlist_node *n)
 908{
 909        n->next = prev->next;
 910        n->pprev = &prev->next;
 911        smp_wmb();
 912        prev->next = n;
 913        if (n->next)
 914                n->next->pprev = &n->next;
 915}
 916
 917#define hlist_entry(ptr, type, member) container_of(ptr,type,member)
 918
 919#define hlist_for_each(pos, head) \
 920        for (pos = (head)->first; pos && ({ prefetch(pos->next); 1; }); \
 921             pos = pos->next)
 922
 923#define hlist_for_each_safe(pos, n, head) \
 924        for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
 925             pos = n)
 926
 927/**
 928 * hlist_for_each_entry - iterate over list of given type
 929 * @tpos:       the type * to use as a loop cursor.
 930 * @pos:        the &struct hlist_node to use as a loop cursor.
 931 * @head:       the head for your list.
 932 * @member:     the name of the hlist_node within the struct.
 933 */
 934#define hlist_for_each_entry(tpos, pos, head, member)                    \
 935        for (pos = (head)->first;                                        \
 936             pos && ({ prefetch(pos->next); 1;}) &&                      \
 937                ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
 938             pos = pos->next)
 939
 940/**
 941 * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
 942 * @tpos:       the type * to use as a loop cursor.
 943 * @pos:        the &struct hlist_node to use as a loop cursor.
 944 * @member:     the name of the hlist_node within the struct.
 945 */
 946#define hlist_for_each_entry_continue(tpos, pos, member)                 \
 947        for (pos = (pos)->next;                                          \
 948             pos && ({ prefetch(pos->next); 1;}) &&                      \
 949                ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
 950             pos = pos->next)
 951
 952/**
 953 * hlist_for_each_entry_from - iterate over a hlist continuing from current point
 954 * @tpos:       the type * to use as a loop cursor.
 955 * @pos:        the &struct hlist_node to use as a loop cursor.
 956 * @member:     the name of the hlist_node within the struct.
 957 */
 958#define hlist_for_each_entry_from(tpos, pos, member)                     \
 959        for (; pos && ({ prefetch(pos->next); 1;}) &&                    \
 960                ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
 961             pos = pos->next)
 962
 963/**
 964 * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
 965 * @tpos:       the type * to use as a loop cursor.
 966 * @pos:        the &struct hlist_node to use as a loop cursor.
 967 * @n:          another &struct hlist_node to use as temporary storage
 968 * @head:       the head for your list.
 969 * @member:     the name of the hlist_node within the struct.
 970 */
 971#define hlist_for_each_entry_safe(tpos, pos, n, head, member)            \
 972        for (pos = (head)->first;                                        \
 973             pos && ({ n = pos->next; 1; }) &&                           \
 974                ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
 975             pos = n)
 976
 977/**
 978 * hlist_for_each_entry_rcu - iterate over rcu list of given type
 979 * @tpos:       the type * to use as a loop cursor.
 980 * @pos:        the &struct hlist_node to use as a loop cursor.
 981 * @head:       the head for your list.
 982 * @member:     the name of the hlist_node within the struct.
 983 *
 984 * This list-traversal primitive may safely run concurrently with
 985 * the _rcu list-mutation primitives such as hlist_add_head_rcu()
 986 * as long as the traversal is guarded by rcu_read_lock().
 987 */
 988#define hlist_for_each_entry_rcu(tpos, pos, head, member)                \
 989        for (pos = (head)->first;                                        \
 990             rcu_dereference(pos) && ({ prefetch(pos->next); 1;}) &&     \
 991                ({ tpos = hlist_entry(pos, typeof(*tpos), member); 1;}); \
 992             pos = pos->next)
 993
 994#else
 995#warning "don't include kernel headers in userspace"
 996#endif /* __KERNEL__ */
 997#endif
 998