linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifdef __KERNEL__
   5#ifndef __ASSEMBLY__
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <asm/atomic.h>
  19#include <asm/page.h>
  20
  21/* Free memory management - zoned buddy allocator.  */
  22#ifndef CONFIG_FORCE_MAX_ZONEORDER
  23#define MAX_ORDER 11
  24#else
  25#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  26#endif
  27#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  28
  29/*
  30 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  31 * costly to service.  That is between allocation orders which should
  32 * coelesce naturally under reasonable reclaim pressure and those which
  33 * will not.
  34 */
  35#define PAGE_ALLOC_COSTLY_ORDER 3
  36
  37#define MIGRATE_UNMOVABLE     0
  38#define MIGRATE_RECLAIMABLE   1
  39#define MIGRATE_MOVABLE       2
  40#define MIGRATE_RESERVE       3
  41#define MIGRATE_ISOLATE       4 /* can't allocate from here */
  42#define MIGRATE_TYPES         5
  43
  44#define for_each_migratetype_order(order, type) \
  45        for (order = 0; order < MAX_ORDER; order++) \
  46                for (type = 0; type < MIGRATE_TYPES; type++)
  47
  48extern int page_group_by_mobility_disabled;
  49
  50static inline int get_pageblock_migratetype(struct page *page)
  51{
  52        if (unlikely(page_group_by_mobility_disabled))
  53                return MIGRATE_UNMOVABLE;
  54
  55        return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  56}
  57
  58struct free_area {
  59        struct list_head        free_list[MIGRATE_TYPES];
  60        unsigned long           nr_free;
  61};
  62
  63struct pglist_data;
  64
  65/*
  66 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  67 * So add a wild amount of padding here to ensure that they fall into separate
  68 * cachelines.  There are very few zone structures in the machine, so space
  69 * consumption is not a concern here.
  70 */
  71#if defined(CONFIG_SMP)
  72struct zone_padding {
  73        char x[0];
  74} ____cacheline_internodealigned_in_smp;
  75#define ZONE_PADDING(name)      struct zone_padding name;
  76#else
  77#define ZONE_PADDING(name)
  78#endif
  79
  80enum zone_stat_item {
  81        /* First 128 byte cacheline (assuming 64 bit words) */
  82        NR_FREE_PAGES,
  83        NR_INACTIVE,
  84        NR_ACTIVE,
  85        NR_ANON_PAGES,  /* Mapped anonymous pages */
  86        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  87                           only modified from process context */
  88        NR_FILE_PAGES,
  89        NR_FILE_DIRTY,
  90        NR_WRITEBACK,
  91        /* Second 128 byte cacheline */
  92        NR_SLAB_RECLAIMABLE,
  93        NR_SLAB_UNRECLAIMABLE,
  94        NR_PAGETABLE,           /* used for pagetables */
  95        NR_UNSTABLE_NFS,        /* NFS unstable pages */
  96        NR_BOUNCE,
  97        NR_VMSCAN_WRITE,
  98#ifdef CONFIG_NUMA
  99        NUMA_HIT,               /* allocated in intended node */
 100        NUMA_MISS,              /* allocated in non intended node */
 101        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 102        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 103        NUMA_LOCAL,             /* allocation from local node */
 104        NUMA_OTHER,             /* allocation from other node */
 105#endif
 106        NR_VM_ZONE_STAT_ITEMS };
 107
 108struct per_cpu_pages {
 109        int count;              /* number of pages in the list */
 110        int high;               /* high watermark, emptying needed */
 111        int batch;              /* chunk size for buddy add/remove */
 112        struct list_head list;  /* the list of pages */
 113};
 114
 115struct per_cpu_pageset {
 116        struct per_cpu_pages pcp[2];    /* 0: hot.  1: cold */
 117#ifdef CONFIG_NUMA
 118        s8 expire;
 119#endif
 120#ifdef CONFIG_SMP
 121        s8 stat_threshold;
 122        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 123#endif
 124} ____cacheline_aligned_in_smp;
 125
 126#ifdef CONFIG_NUMA
 127#define zone_pcp(__z, __cpu) ((__z)->pageset[(__cpu)])
 128#else
 129#define zone_pcp(__z, __cpu) (&(__z)->pageset[(__cpu)])
 130#endif
 131
 132enum zone_type {
 133#ifdef CONFIG_ZONE_DMA
 134        /*
 135         * ZONE_DMA is used when there are devices that are not able
 136         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 137         * carve out the portion of memory that is needed for these devices.
 138         * The range is arch specific.
 139         *
 140         * Some examples
 141         *
 142         * Architecture         Limit
 143         * ---------------------------
 144         * parisc, ia64, sparc  <4G
 145         * s390                 <2G
 146         * arm                  Various
 147         * alpha                Unlimited or 0-16MB.
 148         *
 149         * i386, x86_64 and multiple other arches
 150         *                      <16M.
 151         */
 152        ZONE_DMA,
 153#endif
 154#ifdef CONFIG_ZONE_DMA32
 155        /*
 156         * x86_64 needs two ZONE_DMAs because it supports devices that are
 157         * only able to do DMA to the lower 16M but also 32 bit devices that
 158         * can only do DMA areas below 4G.
 159         */
 160        ZONE_DMA32,
 161#endif
 162        /*
 163         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 164         * performed on pages in ZONE_NORMAL if the DMA devices support
 165         * transfers to all addressable memory.
 166         */
 167        ZONE_NORMAL,
 168#ifdef CONFIG_HIGHMEM
 169        /*
 170         * A memory area that is only addressable by the kernel through
 171         * mapping portions into its own address space. This is for example
 172         * used by i386 to allow the kernel to address the memory beyond
 173         * 900MB. The kernel will set up special mappings (page
 174         * table entries on i386) for each page that the kernel needs to
 175         * access.
 176         */
 177        ZONE_HIGHMEM,
 178#endif
 179        ZONE_MOVABLE,
 180        MAX_NR_ZONES
 181};
 182
 183/*
 184 * When a memory allocation must conform to specific limitations (such
 185 * as being suitable for DMA) the caller will pass in hints to the
 186 * allocator in the gfp_mask, in the zone modifier bits.  These bits
 187 * are used to select a priority ordered list of memory zones which
 188 * match the requested limits. See gfp_zone() in include/linux/gfp.h
 189 */
 190
 191/*
 192 * Count the active zones.  Note that the use of defined(X) outside
 193 * #if and family is not necessarily defined so ensure we cannot use
 194 * it later.  Use __ZONE_COUNT to work out how many shift bits we need.
 195 */
 196#define __ZONE_COUNT (                  \
 197          defined(CONFIG_ZONE_DMA)      \
 198        + defined(CONFIG_ZONE_DMA32)    \
 199        + 1                             \
 200        + defined(CONFIG_HIGHMEM)       \
 201        + 1                             \
 202)
 203#if __ZONE_COUNT < 2
 204#define ZONES_SHIFT 0
 205#elif __ZONE_COUNT <= 2
 206#define ZONES_SHIFT 1
 207#elif __ZONE_COUNT <= 4
 208#define ZONES_SHIFT 2
 209#else
 210#error ZONES_SHIFT -- too many zones configured adjust calculation
 211#endif
 212#undef __ZONE_COUNT
 213
 214struct zone {
 215        /* Fields commonly accessed by the page allocator */
 216        unsigned long           pages_min, pages_low, pages_high;
 217        /*
 218         * We don't know if the memory that we're going to allocate will be freeable
 219         * or/and it will be released eventually, so to avoid totally wasting several
 220         * GB of ram we must reserve some of the lower zone memory (otherwise we risk
 221         * to run OOM on the lower zones despite there's tons of freeable ram
 222         * on the higher zones). This array is recalculated at runtime if the
 223         * sysctl_lowmem_reserve_ratio sysctl changes.
 224         */
 225        unsigned long           lowmem_reserve[MAX_NR_ZONES];
 226
 227#ifdef CONFIG_NUMA
 228        int node;
 229        /*
 230         * zone reclaim becomes active if more unmapped pages exist.
 231         */
 232        unsigned long           min_unmapped_pages;
 233        unsigned long           min_slab_pages;
 234        struct per_cpu_pageset  *pageset[NR_CPUS];
 235#else
 236        struct per_cpu_pageset  pageset[NR_CPUS];
 237#endif
 238        /*
 239         * free areas of different sizes
 240         */
 241        spinlock_t              lock;
 242#ifdef CONFIG_MEMORY_HOTPLUG
 243        /* see spanned/present_pages for more description */
 244        seqlock_t               span_seqlock;
 245#endif
 246        struct free_area        free_area[MAX_ORDER];
 247
 248#ifndef CONFIG_SPARSEMEM
 249        /*
 250         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 251         * In SPARSEMEM, this map is stored in struct mem_section
 252         */
 253        unsigned long           *pageblock_flags;
 254#endif /* CONFIG_SPARSEMEM */
 255
 256
 257        ZONE_PADDING(_pad1_)
 258
 259        /* Fields commonly accessed by the page reclaim scanner */
 260        spinlock_t              lru_lock;       
 261        struct list_head        active_list;
 262        struct list_head        inactive_list;
 263        unsigned long           nr_scan_active;
 264        unsigned long           nr_scan_inactive;
 265        unsigned long           pages_scanned;     /* since last reclaim */
 266        unsigned long           flags;             /* zone flags, see below */
 267
 268        /* Zone statistics */
 269        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 270
 271        /*
 272         * prev_priority holds the scanning priority for this zone.  It is
 273         * defined as the scanning priority at which we achieved our reclaim
 274         * target at the previous try_to_free_pages() or balance_pgdat()
 275         * invokation.
 276         *
 277         * We use prev_priority as a measure of how much stress page reclaim is
 278         * under - it drives the swappiness decision: whether to unmap mapped
 279         * pages.
 280         *
 281         * Access to both this field is quite racy even on uniprocessor.  But
 282         * it is expected to average out OK.
 283         */
 284        int prev_priority;
 285
 286
 287        ZONE_PADDING(_pad2_)
 288        /* Rarely used or read-mostly fields */
 289
 290        /*
 291         * wait_table           -- the array holding the hash table
 292         * wait_table_hash_nr_entries   -- the size of the hash table array
 293         * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
 294         *
 295         * The purpose of all these is to keep track of the people
 296         * waiting for a page to become available and make them
 297         * runnable again when possible. The trouble is that this
 298         * consumes a lot of space, especially when so few things
 299         * wait on pages at a given time. So instead of using
 300         * per-page waitqueues, we use a waitqueue hash table.
 301         *
 302         * The bucket discipline is to sleep on the same queue when
 303         * colliding and wake all in that wait queue when removing.
 304         * When something wakes, it must check to be sure its page is
 305         * truly available, a la thundering herd. The cost of a
 306         * collision is great, but given the expected load of the
 307         * table, they should be so rare as to be outweighed by the
 308         * benefits from the saved space.
 309         *
 310         * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
 311         * primary users of these fields, and in mm/page_alloc.c
 312         * free_area_init_core() performs the initialization of them.
 313         */
 314        wait_queue_head_t       * wait_table;
 315        unsigned long           wait_table_hash_nr_entries;
 316        unsigned long           wait_table_bits;
 317
 318        /*
 319         * Discontig memory support fields.
 320         */
 321        struct pglist_data      *zone_pgdat;
 322        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 323        unsigned long           zone_start_pfn;
 324
 325        /*
 326         * zone_start_pfn, spanned_pages and present_pages are all
 327         * protected by span_seqlock.  It is a seqlock because it has
 328         * to be read outside of zone->lock, and it is done in the main
 329         * allocator path.  But, it is written quite infrequently.
 330         *
 331         * The lock is declared along with zone->lock because it is
 332         * frequently read in proximity to zone->lock.  It's good to
 333         * give them a chance of being in the same cacheline.
 334         */
 335        unsigned long           spanned_pages;  /* total size, including holes */
 336        unsigned long           present_pages;  /* amount of memory (excluding holes) */
 337
 338        /*
 339         * rarely used fields:
 340         */
 341        const char              *name;
 342} ____cacheline_internodealigned_in_smp;
 343
 344typedef enum {
 345        ZONE_ALL_UNRECLAIMABLE,         /* all pages pinned */
 346        ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
 347        ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
 348} zone_flags_t;
 349
 350static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
 351{
 352        set_bit(flag, &zone->flags);
 353}
 354
 355static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
 356{
 357        return test_and_set_bit(flag, &zone->flags);
 358}
 359
 360static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
 361{
 362        clear_bit(flag, &zone->flags);
 363}
 364
 365static inline int zone_is_all_unreclaimable(const struct zone *zone)
 366{
 367        return test_bit(ZONE_ALL_UNRECLAIMABLE, &zone->flags);
 368}
 369
 370static inline int zone_is_reclaim_locked(const struct zone *zone)
 371{
 372        return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
 373}
 374
 375static inline int zone_is_oom_locked(const struct zone *zone)
 376{
 377        return test_bit(ZONE_OOM_LOCKED, &zone->flags);
 378}
 379
 380/*
 381 * The "priority" of VM scanning is how much of the queues we will scan in one
 382 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 383 * queues ("queue_length >> 12") during an aging round.
 384 */
 385#define DEF_PRIORITY 12
 386
 387/* Maximum number of zones on a zonelist */
 388#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 389
 390#ifdef CONFIG_NUMA
 391
 392/*
 393 * The NUMA zonelists are doubled becausse we need zonelists that restrict the
 394 * allocations to a single node for GFP_THISNODE.
 395 *
 396 * [0 .. MAX_NR_ZONES -1]               : Zonelists with fallback
 397 * [MAZ_NR_ZONES ... MAZ_ZONELISTS -1]  : No fallback (GFP_THISNODE)
 398 */
 399#define MAX_ZONELISTS (2 * MAX_NR_ZONES)
 400
 401
 402/*
 403 * We cache key information from each zonelist for smaller cache
 404 * footprint when scanning for free pages in get_page_from_freelist().
 405 *
 406 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 407 *    up short of free memory since the last time (last_fullzone_zap)
 408 *    we zero'd fullzones.
 409 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 410 *    id, so that we can efficiently evaluate whether that node is
 411 *    set in the current tasks mems_allowed.
 412 *
 413 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 414 * indexed by a zones offset in the zonelist zones[] array.
 415 *
 416 * The get_page_from_freelist() routine does two scans.  During the
 417 * first scan, we skip zones whose corresponding bit in 'fullzones'
 418 * is set or whose corresponding node in current->mems_allowed (which
 419 * comes from cpusets) is not set.  During the second scan, we bypass
 420 * this zonelist_cache, to ensure we look methodically at each zone.
 421 *
 422 * Once per second, we zero out (zap) fullzones, forcing us to
 423 * reconsider nodes that might have regained more free memory.
 424 * The field last_full_zap is the time we last zapped fullzones.
 425 *
 426 * This mechanism reduces the amount of time we waste repeatedly
 427 * reexaming zones for free memory when they just came up low on
 428 * memory momentarilly ago.
 429 *
 430 * The zonelist_cache struct members logically belong in struct
 431 * zonelist.  However, the mempolicy zonelists constructed for
 432 * MPOL_BIND are intentionally variable length (and usually much
 433 * shorter).  A general purpose mechanism for handling structs with
 434 * multiple variable length members is more mechanism than we want
 435 * here.  We resort to some special case hackery instead.
 436 *
 437 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 438 * part because they are shorter), so we put the fixed length stuff
 439 * at the front of the zonelist struct, ending in a variable length
 440 * zones[], as is needed by MPOL_BIND.
 441 *
 442 * Then we put the optional zonelist cache on the end of the zonelist
 443 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 444 * the fixed length portion at the front of the struct.  This pointer
 445 * both enables us to find the zonelist cache, and in the case of
 446 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 447 * to know that the zonelist cache is not there.
 448 *
 449 * The end result is that struct zonelists come in two flavors:
 450 *  1) The full, fixed length version, shown below, and
 451 *  2) The custom zonelists for MPOL_BIND.
 452 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 453 *
 454 * Even though there may be multiple CPU cores on a node modifying
 455 * fullzones or last_full_zap in the same zonelist_cache at the same
 456 * time, we don't lock it.  This is just hint data - if it is wrong now
 457 * and then, the allocator will still function, perhaps a bit slower.
 458 */
 459
 460
 461struct zonelist_cache {
 462        unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
 463        DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
 464        unsigned long last_full_zap;            /* when last zap'd (jiffies) */
 465};
 466#else
 467#define MAX_ZONELISTS MAX_NR_ZONES
 468struct zonelist_cache;
 469#endif
 470
 471/*
 472 * One allocation request operates on a zonelist. A zonelist
 473 * is a list of zones, the first one is the 'goal' of the
 474 * allocation, the other zones are fallback zones, in decreasing
 475 * priority.
 476 *
 477 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 478 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
 479 */
 480
 481struct zonelist {
 482        struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
 483        struct zone *zones[MAX_ZONES_PER_ZONELIST + 1];      // NULL delimited
 484#ifdef CONFIG_NUMA
 485        struct zonelist_cache zlcache;                       // optional ...
 486#endif
 487};
 488
 489#ifdef CONFIG_NUMA
 490/*
 491 * Only custom zonelists like MPOL_BIND need to be filtered as part of
 492 * policies. As described in the comment for struct zonelist_cache, these
 493 * zonelists will not have a zlcache so zlcache_ptr will not be set. Use
 494 * that to determine if the zonelists needs to be filtered or not.
 495 */
 496static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
 497{
 498        return !zonelist->zlcache_ptr;
 499}
 500#else
 501static inline int alloc_should_filter_zonelist(struct zonelist *zonelist)
 502{
 503        return 0;
 504}
 505#endif /* CONFIG_NUMA */
 506
 507#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 508struct node_active_region {
 509        unsigned long start_pfn;
 510        unsigned long end_pfn;
 511        int nid;
 512};
 513#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 514
 515#ifndef CONFIG_DISCONTIGMEM
 516/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 517extern struct page *mem_map;
 518#endif
 519
 520/*
 521 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 522 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 523 * zone denotes.
 524 *
 525 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 526 * it's memory layout.
 527 *
 528 * Memory statistics and page replacement data structures are maintained on a
 529 * per-zone basis.
 530 */
 531struct bootmem_data;
 532typedef struct pglist_data {
 533        struct zone node_zones[MAX_NR_ZONES];
 534        struct zonelist node_zonelists[MAX_ZONELISTS];
 535        int nr_zones;
 536#ifdef CONFIG_FLAT_NODE_MEM_MAP
 537        struct page *node_mem_map;
 538#endif
 539        struct bootmem_data *bdata;
 540#ifdef CONFIG_MEMORY_HOTPLUG
 541        /*
 542         * Must be held any time you expect node_start_pfn, node_present_pages
 543         * or node_spanned_pages stay constant.  Holding this will also
 544         * guarantee that any pfn_valid() stays that way.
 545         *
 546         * Nests above zone->lock and zone->size_seqlock.
 547         */
 548        spinlock_t node_size_lock;
 549#endif
 550        unsigned long node_start_pfn;
 551        unsigned long node_present_pages; /* total number of physical pages */
 552        unsigned long node_spanned_pages; /* total size of physical page
 553                                             range, including holes */
 554        int node_id;
 555        wait_queue_head_t kswapd_wait;
 556        struct task_struct *kswapd;
 557        int kswapd_max_order;
 558} pg_data_t;
 559
 560#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 561#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 562#ifdef CONFIG_FLAT_NODE_MEM_MAP
 563#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 564#else
 565#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 566#endif
 567#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 568
 569#include <linux/memory_hotplug.h>
 570
 571void get_zone_counts(unsigned long *active, unsigned long *inactive,
 572                        unsigned long *free);
 573void build_all_zonelists(void);
 574void wakeup_kswapd(struct zone *zone, int order);
 575int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
 576                int classzone_idx, int alloc_flags);
 577enum memmap_context {
 578        MEMMAP_EARLY,
 579        MEMMAP_HOTPLUG,
 580};
 581extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 582                                     unsigned long size,
 583                                     enum memmap_context context);
 584
 585#ifdef CONFIG_HAVE_MEMORY_PRESENT
 586void memory_present(int nid, unsigned long start, unsigned long end);
 587#else
 588static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 589#endif
 590
 591#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 592unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 593#endif
 594
 595/*
 596 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 597 */
 598#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 599
 600static inline int populated_zone(struct zone *zone)
 601{
 602        return (!!zone->present_pages);
 603}
 604
 605extern int movable_zone;
 606
 607static inline int zone_movable_is_highmem(void)
 608{
 609#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
 610        return movable_zone == ZONE_HIGHMEM;
 611#else
 612        return 0;
 613#endif
 614}
 615
 616static inline int is_highmem_idx(enum zone_type idx)
 617{
 618#ifdef CONFIG_HIGHMEM
 619        return (idx == ZONE_HIGHMEM ||
 620                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 621#else
 622        return 0;
 623#endif
 624}
 625
 626static inline int is_normal_idx(enum zone_type idx)
 627{
 628        return (idx == ZONE_NORMAL);
 629}
 630
 631/**
 632 * is_highmem - helper function to quickly check if a struct zone is a 
 633 *              highmem zone or not.  This is an attempt to keep references
 634 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 635 * @zone - pointer to struct zone variable
 636 */
 637static inline int is_highmem(struct zone *zone)
 638{
 639#ifdef CONFIG_HIGHMEM
 640        int zone_idx = zone - zone->zone_pgdat->node_zones;
 641        return zone_idx == ZONE_HIGHMEM ||
 642                (zone_idx == ZONE_MOVABLE && zone_movable_is_highmem());
 643#else
 644        return 0;
 645#endif
 646}
 647
 648static inline int is_normal(struct zone *zone)
 649{
 650        return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
 651}
 652
 653static inline int is_dma32(struct zone *zone)
 654{
 655#ifdef CONFIG_ZONE_DMA32
 656        return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
 657#else
 658        return 0;
 659#endif
 660}
 661
 662static inline int is_dma(struct zone *zone)
 663{
 664#ifdef CONFIG_ZONE_DMA
 665        return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
 666#else
 667        return 0;
 668#endif
 669}
 670
 671/* These two functions are used to setup the per zone pages min values */
 672struct ctl_table;
 673struct file;
 674int min_free_kbytes_sysctl_handler(struct ctl_table *, int, struct file *, 
 675                                        void __user *, size_t *, loff_t *);
 676extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 677int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, struct file *,
 678                                        void __user *, size_t *, loff_t *);
 679int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int, struct file *,
 680                                        void __user *, size_t *, loff_t *);
 681int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 682                        struct file *, void __user *, size_t *, loff_t *);
 683int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 684                        struct file *, void __user *, size_t *, loff_t *);
 685
 686extern int numa_zonelist_order_handler(struct ctl_table *, int,
 687                        struct file *, void __user *, size_t *, loff_t *);
 688extern char numa_zonelist_order[];
 689#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 690
 691#include <linux/topology.h>
 692/* Returns the number of the current Node. */
 693#ifndef numa_node_id
 694#define numa_node_id()          (cpu_to_node(raw_smp_processor_id()))
 695#endif
 696
 697#ifndef CONFIG_NEED_MULTIPLE_NODES
 698
 699extern struct pglist_data contig_page_data;
 700#define NODE_DATA(nid)          (&contig_page_data)
 701#define NODE_MEM_MAP(nid)       mem_map
 702#define MAX_NODES_SHIFT         1
 703
 704#else /* CONFIG_NEED_MULTIPLE_NODES */
 705
 706#include <asm/mmzone.h>
 707
 708#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 709
 710extern struct pglist_data *first_online_pgdat(void);
 711extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 712extern struct zone *next_zone(struct zone *zone);
 713
 714/**
 715 * for_each_pgdat - helper macro to iterate over all nodes
 716 * @pgdat - pointer to a pg_data_t variable
 717 */
 718#define for_each_online_pgdat(pgdat)                    \
 719        for (pgdat = first_online_pgdat();              \
 720             pgdat;                                     \
 721             pgdat = next_online_pgdat(pgdat))
 722/**
 723 * for_each_zone - helper macro to iterate over all memory zones
 724 * @zone - pointer to struct zone variable
 725 *
 726 * The user only needs to declare the zone variable, for_each_zone
 727 * fills it in.
 728 */
 729#define for_each_zone(zone)                             \
 730        for (zone = (first_online_pgdat())->node_zones; \
 731             zone;                                      \
 732             zone = next_zone(zone))
 733
 734#ifdef CONFIG_SPARSEMEM
 735#include <asm/sparsemem.h>
 736#endif
 737
 738#if BITS_PER_LONG == 32
 739/*
 740 * with 32 bit page->flags field, we reserve 9 bits for node/zone info.
 741 * there are 4 zones (3 bits) and this leaves 9-3=6 bits for nodes.
 742 */
 743#define FLAGS_RESERVED          9
 744
 745#elif BITS_PER_LONG == 64
 746/*
 747 * with 64 bit flags field, there's plenty of room.
 748 */
 749#define FLAGS_RESERVED          32
 750
 751#else
 752
 753#error BITS_PER_LONG not defined
 754
 755#endif
 756
 757#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
 758        !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
 759#define early_pfn_to_nid(nid)  (0UL)
 760#endif
 761
 762#ifdef CONFIG_FLATMEM
 763#define pfn_to_nid(pfn)         (0)
 764#endif
 765
 766#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
 767#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
 768
 769#ifdef CONFIG_SPARSEMEM
 770
 771/*
 772 * SECTION_SHIFT                #bits space required to store a section #
 773 *
 774 * PA_SECTION_SHIFT             physical address to/from section number
 775 * PFN_SECTION_SHIFT            pfn to/from section number
 776 */
 777#define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
 778
 779#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
 780#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
 781
 782#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
 783
 784#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
 785#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
 786
 787#define SECTION_BLOCKFLAGS_BITS \
 788        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
 789
 790#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
 791#error Allocator MAX_ORDER exceeds SECTION_SIZE
 792#endif
 793
 794struct page;
 795struct mem_section {
 796        /*
 797         * This is, logically, a pointer to an array of struct
 798         * pages.  However, it is stored with some other magic.
 799         * (see sparse.c::sparse_init_one_section())
 800         *
 801         * Additionally during early boot we encode node id of
 802         * the location of the section here to guide allocation.
 803         * (see sparse.c::memory_present())
 804         *
 805         * Making it a UL at least makes someone do a cast
 806         * before using it wrong.
 807         */
 808        unsigned long section_mem_map;
 809
 810        /* See declaration of similar field in struct zone */
 811        unsigned long *pageblock_flags;
 812};
 813
 814#ifdef CONFIG_SPARSEMEM_EXTREME
 815#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
 816#else
 817#define SECTIONS_PER_ROOT       1
 818#endif
 819
 820#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
 821#define NR_SECTION_ROOTS        (NR_MEM_SECTIONS / SECTIONS_PER_ROOT)
 822#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
 823
 824#ifdef CONFIG_SPARSEMEM_EXTREME
 825extern struct mem_section *mem_section[NR_SECTION_ROOTS];
 826#else
 827extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
 828#endif
 829
 830static inline struct mem_section *__nr_to_section(unsigned long nr)
 831{
 832        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
 833                return NULL;
 834        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
 835}
 836extern int __section_nr(struct mem_section* ms);
 837
 838/*
 839 * We use the lower bits of the mem_map pointer to store
 840 * a little bit of information.  There should be at least
 841 * 3 bits here due to 32-bit alignment.
 842 */
 843#define SECTION_MARKED_PRESENT  (1UL<<0)
 844#define SECTION_HAS_MEM_MAP     (1UL<<1)
 845#define SECTION_MAP_LAST_BIT    (1UL<<2)
 846#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
 847#define SECTION_NID_SHIFT       2
 848
 849static inline struct page *__section_mem_map_addr(struct mem_section *section)
 850{
 851        unsigned long map = section->section_mem_map;
 852        map &= SECTION_MAP_MASK;
 853        return (struct page *)map;
 854}
 855
 856static inline int present_section(struct mem_section *section)
 857{
 858        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
 859}
 860
 861static inline int present_section_nr(unsigned long nr)
 862{
 863        return present_section(__nr_to_section(nr));
 864}
 865
 866static inline int valid_section(struct mem_section *section)
 867{
 868        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
 869}
 870
 871static inline int valid_section_nr(unsigned long nr)
 872{
 873        return valid_section(__nr_to_section(nr));
 874}
 875
 876static inline struct mem_section *__pfn_to_section(unsigned long pfn)
 877{
 878        return __nr_to_section(pfn_to_section_nr(pfn));
 879}
 880
 881static inline int pfn_valid(unsigned long pfn)
 882{
 883        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
 884                return 0;
 885        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
 886}
 887
 888static inline int pfn_present(unsigned long pfn)
 889{
 890        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
 891                return 0;
 892        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
 893}
 894
 895/*
 896 * These are _only_ used during initialisation, therefore they
 897 * can use __initdata ...  They could have names to indicate
 898 * this restriction.
 899 */
 900#ifdef CONFIG_NUMA
 901#define pfn_to_nid(pfn)                                                 \
 902({                                                                      \
 903        unsigned long __pfn_to_nid_pfn = (pfn);                         \
 904        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
 905})
 906#else
 907#define pfn_to_nid(pfn)         (0)
 908#endif
 909
 910#define early_pfn_valid(pfn)    pfn_valid(pfn)
 911void sparse_init(void);
 912#else
 913#define sparse_init()   do {} while (0)
 914#define sparse_index_init(_sec, _nid)  do {} while (0)
 915#endif /* CONFIG_SPARSEMEM */
 916
 917#ifdef CONFIG_NODES_SPAN_OTHER_NODES
 918#define early_pfn_in_nid(pfn, nid)      (early_pfn_to_nid(pfn) == (nid))
 919#else
 920#define early_pfn_in_nid(pfn, nid)      (1)
 921#endif
 922
 923#ifndef early_pfn_valid
 924#define early_pfn_valid(pfn)    (1)
 925#endif
 926
 927void memory_present(int nid, unsigned long start, unsigned long end);
 928unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 929
 930/*
 931 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
 932 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
 933 * pfn_valid_within() should be used in this case; we optimise this away
 934 * when we have no holes within a MAX_ORDER_NR_PAGES block.
 935 */
 936#ifdef CONFIG_HOLES_IN_ZONE
 937#define pfn_valid_within(pfn) pfn_valid(pfn)
 938#else
 939#define pfn_valid_within(pfn) (1)
 940#endif
 941
 942#endif /* !__ASSEMBLY__ */
 943#endif /* __KERNEL__ */
 944#endif /* _LINUX_MMZONE_H */
 945