linux/include/linux/reiserfs_fs.h
<<
>>
Prefs
   1/*
   2 * Copyright 1996, 1997, 1998 Hans Reiser, see reiserfs/README for licensing and copyright details
   3 */
   4
   5                                /* this file has an amazingly stupid
   6                                   name, yura please fix it to be
   7                                   reiserfs.h, and merge all the rest
   8                                   of our .h files that are in this
   9                                   directory into it.  */
  10
  11#ifndef _LINUX_REISER_FS_H
  12#define _LINUX_REISER_FS_H
  13
  14#include <linux/types.h>
  15#include <linux/magic.h>
  16
  17#ifdef __KERNEL__
  18#include <linux/slab.h>
  19#include <linux/interrupt.h>
  20#include <linux/sched.h>
  21#include <linux/workqueue.h>
  22#include <asm/unaligned.h>
  23#include <linux/bitops.h>
  24#include <linux/proc_fs.h>
  25#include <linux/smp_lock.h>
  26#include <linux/buffer_head.h>
  27#include <linux/reiserfs_fs_i.h>
  28#include <linux/reiserfs_fs_sb.h>
  29#endif
  30
  31struct fid;
  32
  33/*
  34 *  include/linux/reiser_fs.h
  35 *
  36 *  Reiser File System constants and structures
  37 *
  38 */
  39
  40/* in reading the #defines, it may help to understand that they employ
  41   the following abbreviations:
  42
  43   B = Buffer
  44   I = Item header
  45   H = Height within the tree (should be changed to LEV)
  46   N = Number of the item in the node
  47   STAT = stat data
  48   DEH = Directory Entry Header
  49   EC = Entry Count
  50   E = Entry number
  51   UL = Unsigned Long
  52   BLKH = BLocK Header
  53   UNFM = UNForMatted node
  54   DC = Disk Child
  55   P = Path
  56
  57   These #defines are named by concatenating these abbreviations,
  58   where first comes the arguments, and last comes the return value,
  59   of the macro.
  60
  61*/
  62
  63#define USE_INODE_GENERATION_COUNTER
  64
  65#define REISERFS_PREALLOCATE
  66#define DISPLACE_NEW_PACKING_LOCALITIES
  67#define PREALLOCATION_SIZE 9
  68
  69/* n must be power of 2 */
  70#define _ROUND_UP(x,n) (((x)+(n)-1u) & ~((n)-1u))
  71
  72// to be ok for alpha and others we have to align structures to 8 byte
  73// boundary.
  74// FIXME: do not change 4 by anything else: there is code which relies on that
  75#define ROUND_UP(x) _ROUND_UP(x,8LL)
  76
  77/* debug levels.  Right now, CONFIG_REISERFS_CHECK means print all debug
  78** messages.
  79*/
  80#define REISERFS_DEBUG_CODE 5   /* extra messages to help find/debug errors */
  81
  82void reiserfs_warning(struct super_block *s, const char *fmt, ...);
  83/* assertions handling */
  84
  85/** always check a condition and panic if it's false. */
  86#define __RASSERT( cond, scond, format, args... )                                       \
  87if( !( cond ) )                                                                 \
  88  reiserfs_panic( NULL, "reiserfs[%i]: assertion " scond " failed at "  \
  89                  __FILE__ ":%i:%s: " format "\n",              \
  90                  in_interrupt() ? -1 : task_pid_nr(current), __LINE__ , __FUNCTION__ , ##args )
  91
  92#define RASSERT(cond, format, args...) __RASSERT(cond, #cond, format, ##args)
  93
  94#if defined( CONFIG_REISERFS_CHECK )
  95#define RFALSE(cond, format, args...) __RASSERT(!(cond), "!(" #cond ")", format, ##args)
  96#else
  97#define RFALSE( cond, format, args... ) do {;} while( 0 )
  98#endif
  99
 100#define CONSTF __attribute_const__
 101/*
 102 * Disk Data Structures
 103 */
 104
 105/***************************************************************************/
 106/*                             SUPER BLOCK                                 */
 107/***************************************************************************/
 108
 109/*
 110 * Structure of super block on disk, a version of which in RAM is often accessed as REISERFS_SB(s)->s_rs
 111 * the version in RAM is part of a larger structure containing fields never written to disk.
 112 */
 113#define UNSET_HASH 0            // read_super will guess about, what hash names
 114                     // in directories were sorted with
 115#define TEA_HASH  1
 116#define YURA_HASH 2
 117#define R5_HASH   3
 118#define DEFAULT_HASH R5_HASH
 119
 120struct journal_params {
 121        __le32 jp_journal_1st_block;    /* where does journal start from on its
 122                                         * device */
 123        __le32 jp_journal_dev;  /* journal device st_rdev */
 124        __le32 jp_journal_size; /* size of the journal */
 125        __le32 jp_journal_trans_max;    /* max number of blocks in a transaction. */
 126        __le32 jp_journal_magic;        /* random value made on fs creation (this
 127                                         * was sb_journal_block_count) */
 128        __le32 jp_journal_max_batch;    /* max number of blocks to batch into a
 129                                         * trans */
 130        __le32 jp_journal_max_commit_age;       /* in seconds, how old can an async
 131                                                 * commit be */
 132        __le32 jp_journal_max_trans_age;        /* in seconds, how old can a transaction
 133                                                 * be */
 134};
 135
 136/* this is the super from 3.5.X, where X >= 10 */
 137struct reiserfs_super_block_v1 {
 138        __le32 s_block_count;   /* blocks count         */
 139        __le32 s_free_blocks;   /* free blocks count    */
 140        __le32 s_root_block;    /* root block number    */
 141        struct journal_params s_journal;
 142        __le16 s_blocksize;     /* block size */
 143        __le16 s_oid_maxsize;   /* max size of object id array, see
 144                                 * get_objectid() commentary  */
 145        __le16 s_oid_cursize;   /* current size of object id array */
 146        __le16 s_umount_state;  /* this is set to 1 when filesystem was
 147                                 * umounted, to 2 - when not */
 148        char s_magic[10];       /* reiserfs magic string indicates that
 149                                 * file system is reiserfs:
 150                                 * "ReIsErFs" or "ReIsEr2Fs" or "ReIsEr3Fs" */
 151        __le16 s_fs_state;      /* it is set to used by fsck to mark which
 152                                 * phase of rebuilding is done */
 153        __le32 s_hash_function_code;    /* indicate, what hash function is being use
 154                                         * to sort names in a directory*/
 155        __le16 s_tree_height;   /* height of disk tree */
 156        __le16 s_bmap_nr;       /* amount of bitmap blocks needed to address
 157                                 * each block of file system */
 158        __le16 s_version;       /* this field is only reliable on filesystem
 159                                 * with non-standard journal */
 160        __le16 s_reserved_for_journal;  /* size in blocks of journal area on main
 161                                         * device, we need to keep after
 162                                         * making fs with non-standard journal */
 163} __attribute__ ((__packed__));
 164
 165#define SB_SIZE_V1 (sizeof(struct reiserfs_super_block_v1))
 166
 167/* this is the on disk super block */
 168struct reiserfs_super_block {
 169        struct reiserfs_super_block_v1 s_v1;
 170        __le32 s_inode_generation;
 171        __le32 s_flags;         /* Right now used only by inode-attributes, if enabled */
 172        unsigned char s_uuid[16];       /* filesystem unique identifier */
 173        unsigned char s_label[16];      /* filesystem volume label */
 174        char s_unused[88];      /* zero filled by mkreiserfs and
 175                                 * reiserfs_convert_objectid_map_v1()
 176                                 * so any additions must be updated
 177                                 * there as well. */
 178} __attribute__ ((__packed__));
 179
 180#define SB_SIZE (sizeof(struct reiserfs_super_block))
 181
 182#define REISERFS_VERSION_1 0
 183#define REISERFS_VERSION_2 2
 184
 185// on-disk super block fields converted to cpu form
 186#define SB_DISK_SUPER_BLOCK(s) (REISERFS_SB(s)->s_rs)
 187#define SB_V1_DISK_SUPER_BLOCK(s) (&(SB_DISK_SUPER_BLOCK(s)->s_v1))
 188#define SB_BLOCKSIZE(s) \
 189        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_blocksize))
 190#define SB_BLOCK_COUNT(s) \
 191        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_block_count))
 192#define SB_FREE_BLOCKS(s) \
 193        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks))
 194#define SB_REISERFS_MAGIC(s) \
 195        (SB_V1_DISK_SUPER_BLOCK(s)->s_magic)
 196#define SB_ROOT_BLOCK(s) \
 197        le32_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_root_block))
 198#define SB_TREE_HEIGHT(s) \
 199        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height))
 200#define SB_REISERFS_STATE(s) \
 201        le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state))
 202#define SB_VERSION(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_version))
 203#define SB_BMAP_NR(s) le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr))
 204
 205#define PUT_SB_BLOCK_COUNT(s, val) \
 206   do { SB_V1_DISK_SUPER_BLOCK(s)->s_block_count = cpu_to_le32(val); } while (0)
 207#define PUT_SB_FREE_BLOCKS(s, val) \
 208   do { SB_V1_DISK_SUPER_BLOCK(s)->s_free_blocks = cpu_to_le32(val); } while (0)
 209#define PUT_SB_ROOT_BLOCK(s, val) \
 210   do { SB_V1_DISK_SUPER_BLOCK(s)->s_root_block = cpu_to_le32(val); } while (0)
 211#define PUT_SB_TREE_HEIGHT(s, val) \
 212   do { SB_V1_DISK_SUPER_BLOCK(s)->s_tree_height = cpu_to_le16(val); } while (0)
 213#define PUT_SB_REISERFS_STATE(s, val) \
 214   do { SB_V1_DISK_SUPER_BLOCK(s)->s_umount_state = cpu_to_le16(val); } while (0)
 215#define PUT_SB_VERSION(s, val) \
 216   do { SB_V1_DISK_SUPER_BLOCK(s)->s_version = cpu_to_le16(val); } while (0)
 217#define PUT_SB_BMAP_NR(s, val) \
 218   do { SB_V1_DISK_SUPER_BLOCK(s)->s_bmap_nr = cpu_to_le16 (val); } while (0)
 219
 220#define SB_ONDISK_JP(s) (&SB_V1_DISK_SUPER_BLOCK(s)->s_journal)
 221#define SB_ONDISK_JOURNAL_SIZE(s) \
 222         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_size))
 223#define SB_ONDISK_JOURNAL_1st_BLOCK(s) \
 224         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_1st_block))
 225#define SB_ONDISK_JOURNAL_DEVICE(s) \
 226         le32_to_cpu ((SB_ONDISK_JP(s)->jp_journal_dev))
 227#define SB_ONDISK_RESERVED_FOR_JOURNAL(s) \
 228         le16_to_cpu ((SB_V1_DISK_SUPER_BLOCK(s)->s_reserved_for_journal))
 229
 230#define is_block_in_log_or_reserved_area(s, block) \
 231         block >= SB_JOURNAL_1st_RESERVED_BLOCK(s) \
 232         && block < SB_JOURNAL_1st_RESERVED_BLOCK(s) +  \
 233         ((!is_reiserfs_jr(SB_DISK_SUPER_BLOCK(s)) ? \
 234         SB_ONDISK_JOURNAL_SIZE(s) + 1 : SB_ONDISK_RESERVED_FOR_JOURNAL(s)))
 235
 236int is_reiserfs_3_5(struct reiserfs_super_block *rs);
 237int is_reiserfs_3_6(struct reiserfs_super_block *rs);
 238int is_reiserfs_jr(struct reiserfs_super_block *rs);
 239
 240/* ReiserFS leaves the first 64k unused, so that partition labels have
 241   enough space.  If someone wants to write a fancy bootloader that
 242   needs more than 64k, let us know, and this will be increased in size.
 243   This number must be larger than than the largest block size on any
 244   platform, or code will break.  -Hans */
 245#define REISERFS_DISK_OFFSET_IN_BYTES (64 * 1024)
 246#define REISERFS_FIRST_BLOCK unused_define
 247#define REISERFS_JOURNAL_OFFSET_IN_BYTES REISERFS_DISK_OFFSET_IN_BYTES
 248
 249/* the spot for the super in versions 3.5 - 3.5.10 (inclusive) */
 250#define REISERFS_OLD_DISK_OFFSET_IN_BYTES (8 * 1024)
 251
 252// reiserfs internal error code (used by search_by_key adn fix_nodes))
 253#define CARRY_ON      0
 254#define REPEAT_SEARCH -1
 255#define IO_ERROR      -2
 256#define NO_DISK_SPACE -3
 257#define NO_BALANCING_NEEDED  (-4)
 258#define NO_MORE_UNUSED_CONTIGUOUS_BLOCKS (-5)
 259#define QUOTA_EXCEEDED -6
 260
 261typedef __u32 b_blocknr_t;
 262typedef __le32 unp_t;
 263
 264struct unfm_nodeinfo {
 265        unp_t unfm_nodenum;
 266        unsigned short unfm_freespace;
 267};
 268
 269/* there are two formats of keys: 3.5 and 3.6
 270 */
 271#define KEY_FORMAT_3_5 0
 272#define KEY_FORMAT_3_6 1
 273
 274/* there are two stat datas */
 275#define STAT_DATA_V1 0
 276#define STAT_DATA_V2 1
 277
 278static inline struct reiserfs_inode_info *REISERFS_I(const struct inode *inode)
 279{
 280        return container_of(inode, struct reiserfs_inode_info, vfs_inode);
 281}
 282
 283static inline struct reiserfs_sb_info *REISERFS_SB(const struct super_block *sb)
 284{
 285        return sb->s_fs_info;
 286}
 287
 288/* Don't trust REISERFS_SB(sb)->s_bmap_nr, it's a u16
 289 * which overflows on large file systems. */
 290static inline u32 reiserfs_bmap_count(struct super_block *sb)
 291{
 292        return (SB_BLOCK_COUNT(sb) - 1) / (sb->s_blocksize * 8) + 1;
 293}
 294
 295static inline int bmap_would_wrap(unsigned bmap_nr)
 296{
 297        return bmap_nr > ((1LL << 16) - 1);
 298}
 299
 300/** this says about version of key of all items (but stat data) the
 301    object consists of */
 302#define get_inode_item_key_version( inode )                                    \
 303    ((REISERFS_I(inode)->i_flags & i_item_key_version_mask) ? KEY_FORMAT_3_6 : KEY_FORMAT_3_5)
 304
 305#define set_inode_item_key_version( inode, version )                           \
 306         ({ if((version)==KEY_FORMAT_3_6)                                      \
 307                REISERFS_I(inode)->i_flags |= i_item_key_version_mask;      \
 308            else                                                               \
 309                REISERFS_I(inode)->i_flags &= ~i_item_key_version_mask; })
 310
 311#define get_inode_sd_version(inode)                                            \
 312    ((REISERFS_I(inode)->i_flags & i_stat_data_version_mask) ? STAT_DATA_V2 : STAT_DATA_V1)
 313
 314#define set_inode_sd_version(inode, version)                                   \
 315         ({ if((version)==STAT_DATA_V2)                                        \
 316                REISERFS_I(inode)->i_flags |= i_stat_data_version_mask;     \
 317            else                                                               \
 318                REISERFS_I(inode)->i_flags &= ~i_stat_data_version_mask; })
 319
 320/* This is an aggressive tail suppression policy, I am hoping it
 321   improves our benchmarks. The principle behind it is that percentage
 322   space saving is what matters, not absolute space saving.  This is
 323   non-intuitive, but it helps to understand it if you consider that the
 324   cost to access 4 blocks is not much more than the cost to access 1
 325   block, if you have to do a seek and rotate.  A tail risks a
 326   non-linear disk access that is significant as a percentage of total
 327   time cost for a 4 block file and saves an amount of space that is
 328   less significant as a percentage of space, or so goes the hypothesis.
 329   -Hans */
 330#define STORE_TAIL_IN_UNFM_S1(n_file_size,n_tail_size,n_block_size) \
 331(\
 332  (!(n_tail_size)) || \
 333  (((n_tail_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) || \
 334   ( (n_file_size) >= (n_block_size) * 4 ) || \
 335   ( ( (n_file_size) >= (n_block_size) * 3 ) && \
 336     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/4) ) || \
 337   ( ( (n_file_size) >= (n_block_size) * 2 ) && \
 338     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size))/2) ) || \
 339   ( ( (n_file_size) >= (n_block_size) ) && \
 340     ( (n_tail_size) >=   (MAX_DIRECT_ITEM_LEN(n_block_size) * 3)/4) ) ) \
 341)
 342
 343/* Another strategy for tails, this one means only create a tail if all the
 344   file would fit into one DIRECT item.
 345   Primary intention for this one is to increase performance by decreasing
 346   seeking.
 347*/
 348#define STORE_TAIL_IN_UNFM_S2(n_file_size,n_tail_size,n_block_size) \
 349(\
 350  (!(n_tail_size)) || \
 351  (((n_file_size) > MAX_DIRECT_ITEM_LEN(n_block_size)) ) \
 352)
 353
 354/*
 355 * values for s_umount_state field
 356 */
 357#define REISERFS_VALID_FS    1
 358#define REISERFS_ERROR_FS    2
 359
 360//
 361// there are 5 item types currently
 362//
 363#define TYPE_STAT_DATA 0
 364#define TYPE_INDIRECT 1
 365#define TYPE_DIRECT 2
 366#define TYPE_DIRENTRY 3
 367#define TYPE_MAXTYPE 3
 368#define TYPE_ANY 15             // FIXME: comment is required
 369
 370/***************************************************************************/
 371/*                       KEY & ITEM HEAD                                   */
 372/***************************************************************************/
 373
 374//
 375// directories use this key as well as old files
 376//
 377struct offset_v1 {
 378        __le32 k_offset;
 379        __le32 k_uniqueness;
 380} __attribute__ ((__packed__));
 381
 382struct offset_v2 {
 383        __le64 v;
 384} __attribute__ ((__packed__));
 385
 386static inline __u16 offset_v2_k_type(const struct offset_v2 *v2)
 387{
 388        __u8 type = le64_to_cpu(v2->v) >> 60;
 389        return (type <= TYPE_MAXTYPE) ? type : TYPE_ANY;
 390}
 391
 392static inline void set_offset_v2_k_type(struct offset_v2 *v2, int type)
 393{
 394        v2->v =
 395            (v2->v & cpu_to_le64(~0ULL >> 4)) | cpu_to_le64((__u64) type << 60);
 396}
 397
 398static inline loff_t offset_v2_k_offset(const struct offset_v2 *v2)
 399{
 400        return le64_to_cpu(v2->v) & (~0ULL >> 4);
 401}
 402
 403static inline void set_offset_v2_k_offset(struct offset_v2 *v2, loff_t offset)
 404{
 405        offset &= (~0ULL >> 4);
 406        v2->v = (v2->v & cpu_to_le64(15ULL << 60)) | cpu_to_le64(offset);
 407}
 408
 409/* Key of an item determines its location in the S+tree, and
 410   is composed of 4 components */
 411struct reiserfs_key {
 412        __le32 k_dir_id;        /* packing locality: by default parent
 413                                   directory object id */
 414        __le32 k_objectid;      /* object identifier */
 415        union {
 416                struct offset_v1 k_offset_v1;
 417                struct offset_v2 k_offset_v2;
 418        } __attribute__ ((__packed__)) u;
 419} __attribute__ ((__packed__));
 420
 421struct in_core_key {
 422        __u32 k_dir_id;         /* packing locality: by default parent
 423                                   directory object id */
 424        __u32 k_objectid;       /* object identifier */
 425        __u64 k_offset;
 426        __u8 k_type;
 427};
 428
 429struct cpu_key {
 430        struct in_core_key on_disk_key;
 431        int version;
 432        int key_length;         /* 3 in all cases but direct2indirect and
 433                                   indirect2direct conversion */
 434};
 435
 436/* Our function for comparing keys can compare keys of different
 437   lengths.  It takes as a parameter the length of the keys it is to
 438   compare.  These defines are used in determining what is to be passed
 439   to it as that parameter. */
 440#define REISERFS_FULL_KEY_LEN     4
 441#define REISERFS_SHORT_KEY_LEN    2
 442
 443/* The result of the key compare */
 444#define FIRST_GREATER 1
 445#define SECOND_GREATER -1
 446#define KEYS_IDENTICAL 0
 447#define KEY_FOUND 1
 448#define KEY_NOT_FOUND 0
 449
 450#define KEY_SIZE (sizeof(struct reiserfs_key))
 451#define SHORT_KEY_SIZE (sizeof (__u32) + sizeof (__u32))
 452
 453/* return values for search_by_key and clones */
 454#define ITEM_FOUND 1
 455#define ITEM_NOT_FOUND 0
 456#define ENTRY_FOUND 1
 457#define ENTRY_NOT_FOUND 0
 458#define DIRECTORY_NOT_FOUND -1
 459#define REGULAR_FILE_FOUND -2
 460#define DIRECTORY_FOUND -3
 461#define BYTE_FOUND 1
 462#define BYTE_NOT_FOUND 0
 463#define FILE_NOT_FOUND -1
 464
 465#define POSITION_FOUND 1
 466#define POSITION_NOT_FOUND 0
 467
 468// return values for reiserfs_find_entry and search_by_entry_key
 469#define NAME_FOUND 1
 470#define NAME_NOT_FOUND 0
 471#define GOTO_PREVIOUS_ITEM 2
 472#define NAME_FOUND_INVISIBLE 3
 473
 474/*  Everything in the filesystem is stored as a set of items.  The
 475    item head contains the key of the item, its free space (for
 476    indirect items) and specifies the location of the item itself
 477    within the block.  */
 478
 479struct item_head {
 480        /* Everything in the tree is found by searching for it based on
 481         * its key.*/
 482        struct reiserfs_key ih_key;
 483        union {
 484                /* The free space in the last unformatted node of an
 485                   indirect item if this is an indirect item.  This
 486                   equals 0xFFFF iff this is a direct item or stat data
 487                   item. Note that the key, not this field, is used to
 488                   determine the item type, and thus which field this
 489                   union contains. */
 490                __le16 ih_free_space_reserved;
 491                /* Iff this is a directory item, this field equals the
 492                   number of directory entries in the directory item. */
 493                __le16 ih_entry_count;
 494        } __attribute__ ((__packed__)) u;
 495        __le16 ih_item_len;     /* total size of the item body */
 496        __le16 ih_item_location;        /* an offset to the item body
 497                                         * within the block */
 498        __le16 ih_version;      /* 0 for all old items, 2 for new
 499                                   ones. Highest bit is set by fsck
 500                                   temporary, cleaned after all
 501                                   done */
 502} __attribute__ ((__packed__));
 503/* size of item header     */
 504#define IH_SIZE (sizeof(struct item_head))
 505
 506#define ih_free_space(ih)            le16_to_cpu((ih)->u.ih_free_space_reserved)
 507#define ih_version(ih)               le16_to_cpu((ih)->ih_version)
 508#define ih_entry_count(ih)           le16_to_cpu((ih)->u.ih_entry_count)
 509#define ih_location(ih)              le16_to_cpu((ih)->ih_item_location)
 510#define ih_item_len(ih)              le16_to_cpu((ih)->ih_item_len)
 511
 512#define put_ih_free_space(ih, val)   do { (ih)->u.ih_free_space_reserved = cpu_to_le16(val); } while(0)
 513#define put_ih_version(ih, val)      do { (ih)->ih_version = cpu_to_le16(val); } while (0)
 514#define put_ih_entry_count(ih, val)  do { (ih)->u.ih_entry_count = cpu_to_le16(val); } while (0)
 515#define put_ih_location(ih, val)     do { (ih)->ih_item_location = cpu_to_le16(val); } while (0)
 516#define put_ih_item_len(ih, val)     do { (ih)->ih_item_len = cpu_to_le16(val); } while (0)
 517
 518#define unreachable_item(ih) (ih_version(ih) & (1 << 15))
 519
 520#define get_ih_free_space(ih) (ih_version (ih) == KEY_FORMAT_3_6 ? 0 : ih_free_space (ih))
 521#define set_ih_free_space(ih,val) put_ih_free_space((ih), ((ih_version(ih) == KEY_FORMAT_3_6) ? 0 : (val)))
 522
 523/* these operate on indirect items, where you've got an array of ints
 524** at a possibly unaligned location.  These are a noop on ia32
 525** 
 526** p is the array of __u32, i is the index into the array, v is the value
 527** to store there.
 528*/
 529#define get_block_num(p, i) le32_to_cpu(get_unaligned((p) + (i)))
 530#define put_block_num(p, i, v) put_unaligned(cpu_to_le32(v), (p) + (i))
 531
 532//
 533// in old version uniqueness field shows key type
 534//
 535#define V1_SD_UNIQUENESS 0
 536#define V1_INDIRECT_UNIQUENESS 0xfffffffe
 537#define V1_DIRECT_UNIQUENESS 0xffffffff
 538#define V1_DIRENTRY_UNIQUENESS 500
 539#define V1_ANY_UNIQUENESS 555   // FIXME: comment is required
 540
 541//
 542// here are conversion routines
 543//
 544static inline int uniqueness2type(__u32 uniqueness) CONSTF;
 545static inline int uniqueness2type(__u32 uniqueness)
 546{
 547        switch ((int)uniqueness) {
 548        case V1_SD_UNIQUENESS:
 549                return TYPE_STAT_DATA;
 550        case V1_INDIRECT_UNIQUENESS:
 551                return TYPE_INDIRECT;
 552        case V1_DIRECT_UNIQUENESS:
 553                return TYPE_DIRECT;
 554        case V1_DIRENTRY_UNIQUENESS:
 555                return TYPE_DIRENTRY;
 556        default:
 557                reiserfs_warning(NULL, "vs-500: unknown uniqueness %d",
 558                                 uniqueness);
 559        case V1_ANY_UNIQUENESS:
 560                return TYPE_ANY;
 561        }
 562}
 563
 564static inline __u32 type2uniqueness(int type) CONSTF;
 565static inline __u32 type2uniqueness(int type)
 566{
 567        switch (type) {
 568        case TYPE_STAT_DATA:
 569                return V1_SD_UNIQUENESS;
 570        case TYPE_INDIRECT:
 571                return V1_INDIRECT_UNIQUENESS;
 572        case TYPE_DIRECT:
 573                return V1_DIRECT_UNIQUENESS;
 574        case TYPE_DIRENTRY:
 575                return V1_DIRENTRY_UNIQUENESS;
 576        default:
 577                reiserfs_warning(NULL, "vs-501: unknown type %d", type);
 578        case TYPE_ANY:
 579                return V1_ANY_UNIQUENESS;
 580        }
 581}
 582
 583//
 584// key is pointer to on disk key which is stored in le, result is cpu,
 585// there is no way to get version of object from key, so, provide
 586// version to these defines
 587//
 588static inline loff_t le_key_k_offset(int version,
 589                                     const struct reiserfs_key *key)
 590{
 591        return (version == KEY_FORMAT_3_5) ?
 592            le32_to_cpu(key->u.k_offset_v1.k_offset) :
 593            offset_v2_k_offset(&(key->u.k_offset_v2));
 594}
 595
 596static inline loff_t le_ih_k_offset(const struct item_head *ih)
 597{
 598        return le_key_k_offset(ih_version(ih), &(ih->ih_key));
 599}
 600
 601static inline loff_t le_key_k_type(int version, const struct reiserfs_key *key)
 602{
 603        return (version == KEY_FORMAT_3_5) ?
 604            uniqueness2type(le32_to_cpu(key->u.k_offset_v1.k_uniqueness)) :
 605            offset_v2_k_type(&(key->u.k_offset_v2));
 606}
 607
 608static inline loff_t le_ih_k_type(const struct item_head *ih)
 609{
 610        return le_key_k_type(ih_version(ih), &(ih->ih_key));
 611}
 612
 613static inline void set_le_key_k_offset(int version, struct reiserfs_key *key,
 614                                       loff_t offset)
 615{
 616        (version == KEY_FORMAT_3_5) ? (void)(key->u.k_offset_v1.k_offset = cpu_to_le32(offset)) :       /* jdm check */
 617            (void)(set_offset_v2_k_offset(&(key->u.k_offset_v2), offset));
 618}
 619
 620static inline void set_le_ih_k_offset(struct item_head *ih, loff_t offset)
 621{
 622        set_le_key_k_offset(ih_version(ih), &(ih->ih_key), offset);
 623}
 624
 625static inline void set_le_key_k_type(int version, struct reiserfs_key *key,
 626                                     int type)
 627{
 628        (version == KEY_FORMAT_3_5) ?
 629            (void)(key->u.k_offset_v1.k_uniqueness =
 630                   cpu_to_le32(type2uniqueness(type)))
 631            : (void)(set_offset_v2_k_type(&(key->u.k_offset_v2), type));
 632}
 633static inline void set_le_ih_k_type(struct item_head *ih, int type)
 634{
 635        set_le_key_k_type(ih_version(ih), &(ih->ih_key), type);
 636}
 637
 638#define is_direntry_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRENTRY)
 639#define is_direct_le_key(version,key) (le_key_k_type (version, key) == TYPE_DIRECT)
 640#define is_indirect_le_key(version,key) (le_key_k_type (version, key) == TYPE_INDIRECT)
 641#define is_statdata_le_key(version,key) (le_key_k_type (version, key) == TYPE_STAT_DATA)
 642
 643//
 644// item header has version.
 645//
 646#define is_direntry_le_ih(ih) is_direntry_le_key (ih_version (ih), &((ih)->ih_key))
 647#define is_direct_le_ih(ih) is_direct_le_key (ih_version (ih), &((ih)->ih_key))
 648#define is_indirect_le_ih(ih) is_indirect_le_key (ih_version(ih), &((ih)->ih_key))
 649#define is_statdata_le_ih(ih) is_statdata_le_key (ih_version (ih), &((ih)->ih_key))
 650
 651//
 652// key is pointer to cpu key, result is cpu
 653//
 654static inline loff_t cpu_key_k_offset(const struct cpu_key *key)
 655{
 656        return key->on_disk_key.k_offset;
 657}
 658
 659static inline loff_t cpu_key_k_type(const struct cpu_key *key)
 660{
 661        return key->on_disk_key.k_type;
 662}
 663
 664static inline void set_cpu_key_k_offset(struct cpu_key *key, loff_t offset)
 665{
 666        key->on_disk_key.k_offset = offset;
 667}
 668
 669static inline void set_cpu_key_k_type(struct cpu_key *key, int type)
 670{
 671        key->on_disk_key.k_type = type;
 672}
 673
 674static inline void cpu_key_k_offset_dec(struct cpu_key *key)
 675{
 676        key->on_disk_key.k_offset--;
 677}
 678
 679#define is_direntry_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRENTRY)
 680#define is_direct_cpu_key(key) (cpu_key_k_type (key) == TYPE_DIRECT)
 681#define is_indirect_cpu_key(key) (cpu_key_k_type (key) == TYPE_INDIRECT)
 682#define is_statdata_cpu_key(key) (cpu_key_k_type (key) == TYPE_STAT_DATA)
 683
 684/* are these used ? */
 685#define is_direntry_cpu_ih(ih) (is_direntry_cpu_key (&((ih)->ih_key)))
 686#define is_direct_cpu_ih(ih) (is_direct_cpu_key (&((ih)->ih_key)))
 687#define is_indirect_cpu_ih(ih) (is_indirect_cpu_key (&((ih)->ih_key)))
 688#define is_statdata_cpu_ih(ih) (is_statdata_cpu_key (&((ih)->ih_key)))
 689
 690#define I_K_KEY_IN_ITEM(p_s_ih, p_s_key, n_blocksize) \
 691    ( ! COMP_SHORT_KEYS(p_s_ih, p_s_key) && \
 692          I_OFF_BYTE_IN_ITEM(p_s_ih, k_offset (p_s_key), n_blocksize) )
 693
 694/* maximal length of item */
 695#define MAX_ITEM_LEN(block_size) (block_size - BLKH_SIZE - IH_SIZE)
 696#define MIN_ITEM_LEN 1
 697
 698/* object identifier for root dir */
 699#define REISERFS_ROOT_OBJECTID 2
 700#define REISERFS_ROOT_PARENT_OBJECTID 1
 701extern struct reiserfs_key root_key;
 702
 703/* 
 704 * Picture represents a leaf of the S+tree
 705 *  ______________________________________________________
 706 * |      |  Array of     |                   |           |
 707 * |Block |  Object-Item  |      F r e e      |  Objects- |
 708 * | head |  Headers      |     S p a c e     |   Items   |
 709 * |______|_______________|___________________|___________|
 710 */
 711
 712/* Header of a disk block.  More precisely, header of a formatted leaf
 713   or internal node, and not the header of an unformatted node. */
 714struct block_head {
 715        __le16 blk_level;       /* Level of a block in the tree. */
 716        __le16 blk_nr_item;     /* Number of keys/items in a block. */
 717        __le16 blk_free_space;  /* Block free space in bytes. */
 718        __le16 blk_reserved;
 719        /* dump this in v4/planA */
 720        struct reiserfs_key blk_right_delim_key;        /* kept only for compatibility */
 721};
 722
 723#define BLKH_SIZE                     (sizeof(struct block_head))
 724#define blkh_level(p_blkh)            (le16_to_cpu((p_blkh)->blk_level))
 725#define blkh_nr_item(p_blkh)          (le16_to_cpu((p_blkh)->blk_nr_item))
 726#define blkh_free_space(p_blkh)       (le16_to_cpu((p_blkh)->blk_free_space))
 727#define blkh_reserved(p_blkh)         (le16_to_cpu((p_blkh)->blk_reserved))
 728#define set_blkh_level(p_blkh,val)    ((p_blkh)->blk_level = cpu_to_le16(val))
 729#define set_blkh_nr_item(p_blkh,val)  ((p_blkh)->blk_nr_item = cpu_to_le16(val))
 730#define set_blkh_free_space(p_blkh,val) ((p_blkh)->blk_free_space = cpu_to_le16(val))
 731#define set_blkh_reserved(p_blkh,val) ((p_blkh)->blk_reserved = cpu_to_le16(val))
 732#define blkh_right_delim_key(p_blkh)  ((p_blkh)->blk_right_delim_key)
 733#define set_blkh_right_delim_key(p_blkh,val)  ((p_blkh)->blk_right_delim_key = val)
 734
 735/*
 736 * values for blk_level field of the struct block_head
 737 */
 738
 739#define FREE_LEVEL 0            /* when node gets removed from the tree its
 740                                   blk_level is set to FREE_LEVEL. It is then
 741                                   used to see whether the node is still in the
 742                                   tree */
 743
 744#define DISK_LEAF_NODE_LEVEL  1 /* Leaf node level. */
 745
 746/* Given the buffer head of a formatted node, resolve to the block head of that node. */
 747#define B_BLK_HEAD(p_s_bh)            ((struct block_head *)((p_s_bh)->b_data))
 748/* Number of items that are in buffer. */
 749#define B_NR_ITEMS(p_s_bh)            (blkh_nr_item(B_BLK_HEAD(p_s_bh)))
 750#define B_LEVEL(p_s_bh)               (blkh_level(B_BLK_HEAD(p_s_bh)))
 751#define B_FREE_SPACE(p_s_bh)          (blkh_free_space(B_BLK_HEAD(p_s_bh)))
 752
 753#define PUT_B_NR_ITEMS(p_s_bh,val)    do { set_blkh_nr_item(B_BLK_HEAD(p_s_bh),val); } while (0)
 754#define PUT_B_LEVEL(p_s_bh,val)       do { set_blkh_level(B_BLK_HEAD(p_s_bh),val); } while (0)
 755#define PUT_B_FREE_SPACE(p_s_bh,val)  do { set_blkh_free_space(B_BLK_HEAD(p_s_bh),val); } while (0)
 756
 757/* Get right delimiting key. -- little endian */
 758#define B_PRIGHT_DELIM_KEY(p_s_bh)   (&(blk_right_delim_key(B_BLK_HEAD(p_s_bh))))
 759
 760/* Does the buffer contain a disk leaf. */
 761#define B_IS_ITEMS_LEVEL(p_s_bh)     (B_LEVEL(p_s_bh) == DISK_LEAF_NODE_LEVEL)
 762
 763/* Does the buffer contain a disk internal node */
 764#define B_IS_KEYS_LEVEL(p_s_bh)      (B_LEVEL(p_s_bh) > DISK_LEAF_NODE_LEVEL \
 765                                            && B_LEVEL(p_s_bh) <= MAX_HEIGHT)
 766
 767/***************************************************************************/
 768/*                             STAT DATA                                   */
 769/***************************************************************************/
 770
 771//
 772// old stat data is 32 bytes long. We are going to distinguish new one by
 773// different size
 774//
 775struct stat_data_v1 {
 776        __le16 sd_mode;         /* file type, permissions */
 777        __le16 sd_nlink;        /* number of hard links */
 778        __le16 sd_uid;          /* owner */
 779        __le16 sd_gid;          /* group */
 780        __le32 sd_size;         /* file size */
 781        __le32 sd_atime;        /* time of last access */
 782        __le32 sd_mtime;        /* time file was last modified  */
 783        __le32 sd_ctime;        /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
 784        union {
 785                __le32 sd_rdev;
 786                __le32 sd_blocks;       /* number of blocks file uses */
 787        } __attribute__ ((__packed__)) u;
 788        __le32 sd_first_direct_byte;    /* first byte of file which is stored
 789                                           in a direct item: except that if it
 790                                           equals 1 it is a symlink and if it
 791                                           equals ~(__u32)0 there is no
 792                                           direct item.  The existence of this
 793                                           field really grates on me. Let's
 794                                           replace it with a macro based on
 795                                           sd_size and our tail suppression
 796                                           policy.  Someday.  -Hans */
 797} __attribute__ ((__packed__));
 798
 799#define SD_V1_SIZE              (sizeof(struct stat_data_v1))
 800#define stat_data_v1(ih)        (ih_version (ih) == KEY_FORMAT_3_5)
 801#define sd_v1_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
 802#define set_sd_v1_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
 803#define sd_v1_nlink(sdp)        (le16_to_cpu((sdp)->sd_nlink))
 804#define set_sd_v1_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le16(v))
 805#define sd_v1_uid(sdp)          (le16_to_cpu((sdp)->sd_uid))
 806#define set_sd_v1_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le16(v))
 807#define sd_v1_gid(sdp)          (le16_to_cpu((sdp)->sd_gid))
 808#define set_sd_v1_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le16(v))
 809#define sd_v1_size(sdp)         (le32_to_cpu((sdp)->sd_size))
 810#define set_sd_v1_size(sdp,v)   ((sdp)->sd_size = cpu_to_le32(v))
 811#define sd_v1_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
 812#define set_sd_v1_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
 813#define sd_v1_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
 814#define set_sd_v1_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
 815#define sd_v1_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
 816#define set_sd_v1_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
 817#define sd_v1_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
 818#define set_sd_v1_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
 819#define sd_v1_blocks(sdp)       (le32_to_cpu((sdp)->u.sd_blocks))
 820#define set_sd_v1_blocks(sdp,v) ((sdp)->u.sd_blocks = cpu_to_le32(v))
 821#define sd_v1_first_direct_byte(sdp) \
 822                                (le32_to_cpu((sdp)->sd_first_direct_byte))
 823#define set_sd_v1_first_direct_byte(sdp,v) \
 824                                ((sdp)->sd_first_direct_byte = cpu_to_le32(v))
 825
 826/* inode flags stored in sd_attrs (nee sd_reserved) */
 827
 828/* we want common flags to have the same values as in ext2,
 829   so chattr(1) will work without problems */
 830#define REISERFS_IMMUTABLE_FL FS_IMMUTABLE_FL
 831#define REISERFS_APPEND_FL    FS_APPEND_FL
 832#define REISERFS_SYNC_FL      FS_SYNC_FL
 833#define REISERFS_NOATIME_FL   FS_NOATIME_FL
 834#define REISERFS_NODUMP_FL    FS_NODUMP_FL
 835#define REISERFS_SECRM_FL     FS_SECRM_FL
 836#define REISERFS_UNRM_FL      FS_UNRM_FL
 837#define REISERFS_COMPR_FL     FS_COMPR_FL
 838#define REISERFS_NOTAIL_FL    FS_NOTAIL_FL
 839
 840/* persistent flags that file inherits from the parent directory */
 841#define REISERFS_INHERIT_MASK ( REISERFS_IMMUTABLE_FL | \
 842                                REISERFS_SYNC_FL |      \
 843                                REISERFS_NOATIME_FL |   \
 844                                REISERFS_NODUMP_FL |    \
 845                                REISERFS_SECRM_FL |     \
 846                                REISERFS_COMPR_FL |     \
 847                                REISERFS_NOTAIL_FL )
 848
 849/* Stat Data on disk (reiserfs version of UFS disk inode minus the
 850   address blocks) */
 851struct stat_data {
 852        __le16 sd_mode;         /* file type, permissions */
 853        __le16 sd_attrs;        /* persistent inode flags */
 854        __le32 sd_nlink;        /* number of hard links */
 855        __le64 sd_size;         /* file size */
 856        __le32 sd_uid;          /* owner */
 857        __le32 sd_gid;          /* group */
 858        __le32 sd_atime;        /* time of last access */
 859        __le32 sd_mtime;        /* time file was last modified  */
 860        __le32 sd_ctime;        /* time inode (stat data) was last changed (except changes to sd_atime and sd_mtime) */
 861        __le32 sd_blocks;
 862        union {
 863                __le32 sd_rdev;
 864                __le32 sd_generation;
 865                //__le32 sd_first_direct_byte;
 866                /* first byte of file which is stored in a
 867                   direct item: except that if it equals 1
 868                   it is a symlink and if it equals
 869                   ~(__u32)0 there is no direct item.  The
 870                   existence of this field really grates
 871                   on me. Let's replace it with a macro
 872                   based on sd_size and our tail
 873                   suppression policy? */
 874        } __attribute__ ((__packed__)) u;
 875} __attribute__ ((__packed__));
 876//
 877// this is 44 bytes long
 878//
 879#define SD_SIZE (sizeof(struct stat_data))
 880#define SD_V2_SIZE              SD_SIZE
 881#define stat_data_v2(ih)        (ih_version (ih) == KEY_FORMAT_3_6)
 882#define sd_v2_mode(sdp)         (le16_to_cpu((sdp)->sd_mode))
 883#define set_sd_v2_mode(sdp,v)   ((sdp)->sd_mode = cpu_to_le16(v))
 884/* sd_reserved */
 885/* set_sd_reserved */
 886#define sd_v2_nlink(sdp)        (le32_to_cpu((sdp)->sd_nlink))
 887#define set_sd_v2_nlink(sdp,v)  ((sdp)->sd_nlink = cpu_to_le32(v))
 888#define sd_v2_size(sdp)         (le64_to_cpu((sdp)->sd_size))
 889#define set_sd_v2_size(sdp,v)   ((sdp)->sd_size = cpu_to_le64(v))
 890#define sd_v2_uid(sdp)          (le32_to_cpu((sdp)->sd_uid))
 891#define set_sd_v2_uid(sdp,v)    ((sdp)->sd_uid = cpu_to_le32(v))
 892#define sd_v2_gid(sdp)          (le32_to_cpu((sdp)->sd_gid))
 893#define set_sd_v2_gid(sdp,v)    ((sdp)->sd_gid = cpu_to_le32(v))
 894#define sd_v2_atime(sdp)        (le32_to_cpu((sdp)->sd_atime))
 895#define set_sd_v2_atime(sdp,v)  ((sdp)->sd_atime = cpu_to_le32(v))
 896#define sd_v2_mtime(sdp)        (le32_to_cpu((sdp)->sd_mtime))
 897#define set_sd_v2_mtime(sdp,v)  ((sdp)->sd_mtime = cpu_to_le32(v))
 898#define sd_v2_ctime(sdp)        (le32_to_cpu((sdp)->sd_ctime))
 899#define set_sd_v2_ctime(sdp,v)  ((sdp)->sd_ctime = cpu_to_le32(v))
 900#define sd_v2_blocks(sdp)       (le32_to_cpu((sdp)->sd_blocks))
 901#define set_sd_v2_blocks(sdp,v) ((sdp)->sd_blocks = cpu_to_le32(v))
 902#define sd_v2_rdev(sdp)         (le32_to_cpu((sdp)->u.sd_rdev))
 903#define set_sd_v2_rdev(sdp,v)   ((sdp)->u.sd_rdev = cpu_to_le32(v))
 904#define sd_v2_generation(sdp)   (le32_to_cpu((sdp)->u.sd_generation))
 905#define set_sd_v2_generation(sdp,v) ((sdp)->u.sd_generation = cpu_to_le32(v))
 906#define sd_v2_attrs(sdp)         (le16_to_cpu((sdp)->sd_attrs))
 907#define set_sd_v2_attrs(sdp,v)   ((sdp)->sd_attrs = cpu_to_le16(v))
 908
 909/***************************************************************************/
 910/*                      DIRECTORY STRUCTURE                                */
 911/***************************************************************************/
 912/* 
 913   Picture represents the structure of directory items
 914   ________________________________________________
 915   |  Array of     |   |     |        |       |   |
 916   | directory     |N-1| N-2 | ....   |   1st |0th|
 917   | entry headers |   |     |        |       |   |
 918   |_______________|___|_____|________|_______|___|
 919                    <----   directory entries         ------>
 920
 921 First directory item has k_offset component 1. We store "." and ".."
 922 in one item, always, we never split "." and ".." into differing
 923 items.  This makes, among other things, the code for removing
 924 directories simpler. */
 925#define SD_OFFSET  0
 926#define SD_UNIQUENESS 0
 927#define DOT_OFFSET 1
 928#define DOT_DOT_OFFSET 2
 929#define DIRENTRY_UNIQUENESS 500
 930
 931/* */
 932#define FIRST_ITEM_OFFSET 1
 933
 934/*
 935   Q: How to get key of object pointed to by entry from entry?  
 936
 937   A: Each directory entry has its header. This header has deh_dir_id and deh_objectid fields, those are key
 938      of object, entry points to */
 939
 940/* NOT IMPLEMENTED:   
 941   Directory will someday contain stat data of object */
 942
 943struct reiserfs_de_head {
 944        __le32 deh_offset;      /* third component of the directory entry key */
 945        __le32 deh_dir_id;      /* objectid of the parent directory of the object, that is referenced
 946                                   by directory entry */
 947        __le32 deh_objectid;    /* objectid of the object, that is referenced by directory entry */
 948        __le16 deh_location;    /* offset of name in the whole item */
 949        __le16 deh_state;       /* whether 1) entry contains stat data (for future), and 2) whether
 950                                   entry is hidden (unlinked) */
 951} __attribute__ ((__packed__));
 952#define DEH_SIZE                  sizeof(struct reiserfs_de_head)
 953#define deh_offset(p_deh)         (le32_to_cpu((p_deh)->deh_offset))
 954#define deh_dir_id(p_deh)         (le32_to_cpu((p_deh)->deh_dir_id))
 955#define deh_objectid(p_deh)       (le32_to_cpu((p_deh)->deh_objectid))
 956#define deh_location(p_deh)       (le16_to_cpu((p_deh)->deh_location))
 957#define deh_state(p_deh)          (le16_to_cpu((p_deh)->deh_state))
 958
 959#define put_deh_offset(p_deh,v)   ((p_deh)->deh_offset = cpu_to_le32((v)))
 960#define put_deh_dir_id(p_deh,v)   ((p_deh)->deh_dir_id = cpu_to_le32((v)))
 961#define put_deh_objectid(p_deh,v) ((p_deh)->deh_objectid = cpu_to_le32((v)))
 962#define put_deh_location(p_deh,v) ((p_deh)->deh_location = cpu_to_le16((v)))
 963#define put_deh_state(p_deh,v)    ((p_deh)->deh_state = cpu_to_le16((v)))
 964
 965/* empty directory contains two entries "." and ".." and their headers */
 966#define EMPTY_DIR_SIZE \
 967(DEH_SIZE * 2 + ROUND_UP (strlen (".")) + ROUND_UP (strlen ("..")))
 968
 969/* old format directories have this size when empty */
 970#define EMPTY_DIR_SIZE_V1 (DEH_SIZE * 2 + 3)
 971
 972#define DEH_Statdata 0          /* not used now */
 973#define DEH_Visible 2
 974
 975/* 64 bit systems (and the S/390) need to be aligned explicitly -jdm */
 976#if BITS_PER_LONG == 64 || defined(__s390__) || defined(__hppa__)
 977#   define ADDR_UNALIGNED_BITS  (3)
 978#endif
 979
 980/* These are only used to manipulate deh_state.
 981 * Because of this, we'll use the ext2_ bit routines,
 982 * since they are little endian */
 983#ifdef ADDR_UNALIGNED_BITS
 984
 985#   define aligned_address(addr)           ((void *)((long)(addr) & ~((1UL << ADDR_UNALIGNED_BITS) - 1)))
 986#   define unaligned_offset(addr)          (((int)((long)(addr) & ((1 << ADDR_UNALIGNED_BITS) - 1))) << 3)
 987
 988#   define set_bit_unaligned(nr, addr)     ext2_set_bit((nr) + unaligned_offset(addr), aligned_address(addr))
 989#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit((nr) + unaligned_offset(addr), aligned_address(addr))
 990#   define test_bit_unaligned(nr, addr)    ext2_test_bit((nr) + unaligned_offset(addr), aligned_address(addr))
 991
 992#else
 993
 994#   define set_bit_unaligned(nr, addr)     ext2_set_bit(nr, addr)
 995#   define clear_bit_unaligned(nr, addr)   ext2_clear_bit(nr, addr)
 996#   define test_bit_unaligned(nr, addr)    ext2_test_bit(nr, addr)
 997
 998#endif
 999
1000#define mark_de_with_sd(deh)        set_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1001#define mark_de_without_sd(deh)     clear_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1002#define mark_de_visible(deh)        set_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1003#define mark_de_hidden(deh)         clear_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1004
1005#define de_with_sd(deh)             test_bit_unaligned (DEH_Statdata, &((deh)->deh_state))
1006#define de_visible(deh)             test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1007#define de_hidden(deh)              !test_bit_unaligned (DEH_Visible, &((deh)->deh_state))
1008
1009extern void make_empty_dir_item_v1(char *body, __le32 dirid, __le32 objid,
1010                                   __le32 par_dirid, __le32 par_objid);
1011extern void make_empty_dir_item(char *body, __le32 dirid, __le32 objid,
1012                                __le32 par_dirid, __le32 par_objid);
1013
1014/* array of the entry headers */
1015 /* get item body */
1016#define B_I_PITEM(bh,ih) ( (bh)->b_data + ih_location(ih) )
1017#define B_I_DEH(bh,ih) ((struct reiserfs_de_head *)(B_I_PITEM(bh,ih)))
1018
1019/* length of the directory entry in directory item. This define
1020   calculates length of i-th directory entry using directory entry
1021   locations from dir entry head. When it calculates length of 0-th
1022   directory entry, it uses length of whole item in place of entry
1023   location of the non-existent following entry in the calculation.
1024   See picture above.*/
1025/*
1026#define I_DEH_N_ENTRY_LENGTH(ih,deh,i) \
1027((i) ? (deh_location((deh)-1) - deh_location((deh))) : (ih_item_len((ih)) - deh_location((deh))))
1028*/
1029static inline int entry_length(const struct buffer_head *bh,
1030                               const struct item_head *ih, int pos_in_item)
1031{
1032        struct reiserfs_de_head *deh;
1033
1034        deh = B_I_DEH(bh, ih) + pos_in_item;
1035        if (pos_in_item)
1036                return deh_location(deh - 1) - deh_location(deh);
1037
1038        return ih_item_len(ih) - deh_location(deh);
1039}
1040
1041/* number of entries in the directory item, depends on ENTRY_COUNT being at the start of directory dynamic data. */
1042#define I_ENTRY_COUNT(ih) (ih_entry_count((ih)))
1043
1044/* name by bh, ih and entry_num */
1045#define B_I_E_NAME(bh,ih,entry_num) ((char *)(bh->b_data + ih_location(ih) + deh_location(B_I_DEH(bh,ih)+(entry_num))))
1046
1047// two entries per block (at least)
1048#define REISERFS_MAX_NAME(block_size) 255
1049
1050/* this structure is used for operations on directory entries. It is
1051   not a disk structure. */
1052/* When reiserfs_find_entry or search_by_entry_key find directory
1053   entry, they return filled reiserfs_dir_entry structure */
1054struct reiserfs_dir_entry {
1055        struct buffer_head *de_bh;
1056        int de_item_num;
1057        struct item_head *de_ih;
1058        int de_entry_num;
1059        struct reiserfs_de_head *de_deh;
1060        int de_entrylen;
1061        int de_namelen;
1062        char *de_name;
1063        unsigned long *de_gen_number_bit_string;
1064
1065        __u32 de_dir_id;
1066        __u32 de_objectid;
1067
1068        struct cpu_key de_entry_key;
1069};
1070
1071/* these defines are useful when a particular member of a reiserfs_dir_entry is needed */
1072
1073/* pointer to file name, stored in entry */
1074#define B_I_DEH_ENTRY_FILE_NAME(bh,ih,deh) (B_I_PITEM (bh, ih) + deh_location(deh))
1075
1076/* length of name */
1077#define I_DEH_N_ENTRY_FILE_NAME_LENGTH(ih,deh,entry_num) \
1078(I_DEH_N_ENTRY_LENGTH (ih, deh, entry_num) - (de_with_sd (deh) ? SD_SIZE : 0))
1079
1080/* hash value occupies bits from 7 up to 30 */
1081#define GET_HASH_VALUE(offset) ((offset) & 0x7fffff80LL)
1082/* generation number occupies 7 bits starting from 0 up to 6 */
1083#define GET_GENERATION_NUMBER(offset) ((offset) & 0x7fLL)
1084#define MAX_GENERATION_NUMBER  127
1085
1086#define SET_GENERATION_NUMBER(offset,gen_number) (GET_HASH_VALUE(offset)|(gen_number))
1087
1088/*
1089 * Picture represents an internal node of the reiserfs tree
1090 *  ______________________________________________________
1091 * |      |  Array of     |  Array of         |  Free     |
1092 * |block |    keys       |  pointers         | space     |
1093 * | head |      N        |      N+1          |           |
1094 * |______|_______________|___________________|___________|
1095 */
1096
1097/***************************************************************************/
1098/*                      DISK CHILD                                         */
1099/***************************************************************************/
1100/* Disk child pointer: The pointer from an internal node of the tree
1101   to a node that is on disk. */
1102struct disk_child {
1103        __le32 dc_block_number; /* Disk child's block number. */
1104        __le16 dc_size;         /* Disk child's used space.   */
1105        __le16 dc_reserved;
1106};
1107
1108#define DC_SIZE (sizeof(struct disk_child))
1109#define dc_block_number(dc_p)   (le32_to_cpu((dc_p)->dc_block_number))
1110#define dc_size(dc_p)           (le16_to_cpu((dc_p)->dc_size))
1111#define put_dc_block_number(dc_p, val)   do { (dc_p)->dc_block_number = cpu_to_le32(val); } while(0)
1112#define put_dc_size(dc_p, val)   do { (dc_p)->dc_size = cpu_to_le16(val); } while(0)
1113
1114/* Get disk child by buffer header and position in the tree node. */
1115#define B_N_CHILD(p_s_bh,n_pos)  ((struct disk_child *)\
1116((p_s_bh)->b_data+BLKH_SIZE+B_NR_ITEMS(p_s_bh)*KEY_SIZE+DC_SIZE*(n_pos)))
1117
1118/* Get disk child number by buffer header and position in the tree node. */
1119#define B_N_CHILD_NUM(p_s_bh,n_pos) (dc_block_number(B_N_CHILD(p_s_bh,n_pos)))
1120#define PUT_B_N_CHILD_NUM(p_s_bh,n_pos, val) (put_dc_block_number(B_N_CHILD(p_s_bh,n_pos), val ))
1121
1122 /* maximal value of field child_size in structure disk_child */
1123 /* child size is the combined size of all items and their headers */
1124#define MAX_CHILD_SIZE(bh) ((int)( (bh)->b_size - BLKH_SIZE ))
1125
1126/* amount of used space in buffer (not including block head) */
1127#define B_CHILD_SIZE(cur) (MAX_CHILD_SIZE(cur)-(B_FREE_SPACE(cur)))
1128
1129/* max and min number of keys in internal node */
1130#define MAX_NR_KEY(bh) ( (MAX_CHILD_SIZE(bh)-DC_SIZE)/(KEY_SIZE+DC_SIZE) )
1131#define MIN_NR_KEY(bh)    (MAX_NR_KEY(bh)/2)
1132
1133/***************************************************************************/
1134/*                      PATH STRUCTURES AND DEFINES                        */
1135/***************************************************************************/
1136
1137/* Search_by_key fills up the path from the root to the leaf as it descends the tree looking for the
1138   key.  It uses reiserfs_bread to try to find buffers in the cache given their block number.  If it
1139   does not find them in the cache it reads them from disk.  For each node search_by_key finds using
1140   reiserfs_bread it then uses bin_search to look through that node.  bin_search will find the
1141   position of the block_number of the next node if it is looking through an internal node.  If it
1142   is looking through a leaf node bin_search will find the position of the item which has key either
1143   equal to given key, or which is the maximal key less than the given key. */
1144
1145struct path_element {
1146        struct buffer_head *pe_buffer;  /* Pointer to the buffer at the path in the tree. */
1147        int pe_position;        /* Position in the tree node which is placed in the */
1148        /* buffer above.                                  */
1149};
1150
1151#define MAX_HEIGHT 5            /* maximal height of a tree. don't change this without changing JOURNAL_PER_BALANCE_CNT */
1152#define EXTENDED_MAX_HEIGHT         7   /* Must be equals MAX_HEIGHT + FIRST_PATH_ELEMENT_OFFSET */
1153#define FIRST_PATH_ELEMENT_OFFSET   2   /* Must be equal to at least 2. */
1154
1155#define ILLEGAL_PATH_ELEMENT_OFFSET 1   /* Must be equal to FIRST_PATH_ELEMENT_OFFSET - 1 */
1156#define MAX_FEB_SIZE 6          /* this MUST be MAX_HEIGHT + 1. See about FEB below */
1157
1158/* We need to keep track of who the ancestors of nodes are.  When we
1159   perform a search we record which nodes were visited while
1160   descending the tree looking for the node we searched for. This list
1161   of nodes is called the path.  This information is used while
1162   performing balancing.  Note that this path information may become
1163   invalid, and this means we must check it when using it to see if it
1164   is still valid. You'll need to read search_by_key and the comments
1165   in it, especially about decrement_counters_in_path(), to understand
1166   this structure.  
1167
1168Paths make the code so much harder to work with and debug.... An
1169enormous number of bugs are due to them, and trying to write or modify
1170code that uses them just makes my head hurt.  They are based on an
1171excessive effort to avoid disturbing the precious VFS code.:-( The
1172gods only know how we are going to SMP the code that uses them.
1173znodes are the way! */
1174
1175#define PATH_READA      0x1     /* do read ahead */
1176#define PATH_READA_BACK 0x2     /* read backwards */
1177
1178struct treepath {
1179        int path_length;        /* Length of the array above.   */
1180        int reada;
1181        struct path_element path_elements[EXTENDED_MAX_HEIGHT]; /* Array of the path elements.  */
1182        int pos_in_item;
1183};
1184
1185#define pos_in_item(path) ((path)->pos_in_item)
1186
1187#define INITIALIZE_PATH(var) \
1188struct treepath var = {.path_length = ILLEGAL_PATH_ELEMENT_OFFSET, .reada = 0,}
1189
1190/* Get path element by path and path position. */
1191#define PATH_OFFSET_PELEMENT(p_s_path,n_offset)  ((p_s_path)->path_elements +(n_offset))
1192
1193/* Get buffer header at the path by path and path position. */
1194#define PATH_OFFSET_PBUFFER(p_s_path,n_offset)   (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_buffer)
1195
1196/* Get position in the element at the path by path and path position. */
1197#define PATH_OFFSET_POSITION(p_s_path,n_offset) (PATH_OFFSET_PELEMENT(p_s_path,n_offset)->pe_position)
1198
1199#define PATH_PLAST_BUFFER(p_s_path) (PATH_OFFSET_PBUFFER((p_s_path), (p_s_path)->path_length))
1200                                /* you know, to the person who didn't
1201                                   write this the macro name does not
1202                                   at first suggest what it does.
1203                                   Maybe POSITION_FROM_PATH_END? Or
1204                                   maybe we should just focus on
1205                                   dumping paths... -Hans */
1206#define PATH_LAST_POSITION(p_s_path) (PATH_OFFSET_POSITION((p_s_path), (p_s_path)->path_length))
1207
1208#define PATH_PITEM_HEAD(p_s_path)    B_N_PITEM_HEAD(PATH_PLAST_BUFFER(p_s_path),PATH_LAST_POSITION(p_s_path))
1209
1210/* in do_balance leaf has h == 0 in contrast with path structure,
1211   where root has level == 0. That is why we need these defines */
1212#define PATH_H_PBUFFER(p_s_path, h) PATH_OFFSET_PBUFFER (p_s_path, p_s_path->path_length - (h)) /* tb->S[h] */
1213#define PATH_H_PPARENT(path, h) PATH_H_PBUFFER (path, (h) + 1)  /* tb->F[h] or tb->S[0]->b_parent */
1214#define PATH_H_POSITION(path, h) PATH_OFFSET_POSITION (path, path->path_length - (h))
1215#define PATH_H_B_ITEM_ORDER(path, h) PATH_H_POSITION(path, h + 1)       /* tb->S[h]->b_item_order */
1216
1217#define PATH_H_PATH_OFFSET(p_s_path, n_h) ((p_s_path)->path_length - (n_h))
1218
1219#define get_last_bh(path) PATH_PLAST_BUFFER(path)
1220#define get_ih(path) PATH_PITEM_HEAD(path)
1221#define get_item_pos(path) PATH_LAST_POSITION(path)
1222#define get_item(path) ((void *)B_N_PITEM(PATH_PLAST_BUFFER(path), PATH_LAST_POSITION (path)))
1223#define item_moved(ih,path) comp_items(ih, path)
1224#define path_changed(ih,path) comp_items (ih, path)
1225
1226/***************************************************************************/
1227/*                       MISC                                              */
1228/***************************************************************************/
1229
1230/* Size of pointer to the unformatted node. */
1231#define UNFM_P_SIZE (sizeof(unp_t))
1232#define UNFM_P_SHIFT 2
1233
1234// in in-core inode key is stored on le form
1235#define INODE_PKEY(inode) ((struct reiserfs_key *)(REISERFS_I(inode)->i_key))
1236
1237#define MAX_UL_INT 0xffffffff
1238#define MAX_INT    0x7ffffff
1239#define MAX_US_INT 0xffff
1240
1241// reiserfs version 2 has max offset 60 bits. Version 1 - 32 bit offset
1242#define U32_MAX (~(__u32)0)
1243
1244static inline loff_t max_reiserfs_offset(struct inode *inode)
1245{
1246        if (get_inode_item_key_version(inode) == KEY_FORMAT_3_5)
1247                return (loff_t) U32_MAX;
1248
1249        return (loff_t) ((~(__u64) 0) >> 4);
1250}
1251
1252/*#define MAX_KEY_UNIQUENESS    MAX_UL_INT*/
1253#define MAX_KEY_OBJECTID        MAX_UL_INT
1254
1255#define MAX_B_NUM  MAX_UL_INT
1256#define MAX_FC_NUM MAX_US_INT
1257
1258/* the purpose is to detect overflow of an unsigned short */
1259#define REISERFS_LINK_MAX (MAX_US_INT - 1000)
1260
1261/* The following defines are used in reiserfs_insert_item and reiserfs_append_item  */
1262#define REISERFS_KERNEL_MEM             0       /* reiserfs kernel memory mode  */
1263#define REISERFS_USER_MEM               1       /* reiserfs user memory mode            */
1264
1265#define fs_generation(s) (REISERFS_SB(s)->s_generation_counter)
1266#define get_generation(s) atomic_read (&fs_generation(s))
1267#define FILESYSTEM_CHANGED_TB(tb)  (get_generation((tb)->tb_sb) != (tb)->fs_gen)
1268#define __fs_changed(gen,s) (gen != get_generation (s))
1269#define fs_changed(gen,s) ({cond_resched(); __fs_changed(gen, s);})
1270
1271/***************************************************************************/
1272/*                  FIXATE NODES                                           */
1273/***************************************************************************/
1274
1275#define VI_TYPE_LEFT_MERGEABLE 1
1276#define VI_TYPE_RIGHT_MERGEABLE 2
1277
1278/* To make any changes in the tree we always first find node, that
1279   contains item to be changed/deleted or place to insert a new
1280   item. We call this node S. To do balancing we need to decide what
1281   we will shift to left/right neighbor, or to a new node, where new
1282   item will be etc. To make this analysis simpler we build virtual
1283   node. Virtual node is an array of items, that will replace items of
1284   node S. (For instance if we are going to delete an item, virtual
1285   node does not contain it). Virtual node keeps information about
1286   item sizes and types, mergeability of first and last items, sizes
1287   of all entries in directory item. We use this array of items when
1288   calculating what we can shift to neighbors and how many nodes we
1289   have to have if we do not any shiftings, if we shift to left/right
1290   neighbor or to both. */
1291struct virtual_item {
1292        int vi_index;           // index in the array of item operations
1293        unsigned short vi_type; // left/right mergeability
1294        unsigned short vi_item_len;     /* length of item that it will have after balancing */
1295        struct item_head *vi_ih;
1296        const char *vi_item;    // body of item (old or new)
1297        const void *vi_new_data;        // 0 always but paste mode
1298        void *vi_uarea;         // item specific area
1299};
1300
1301struct virtual_node {
1302        char *vn_free_ptr;      /* this is a pointer to the free space in the buffer */
1303        unsigned short vn_nr_item;      /* number of items in virtual node */
1304        short vn_size;          /* size of node , that node would have if it has unlimited size and no balancing is performed */
1305        short vn_mode;          /* mode of balancing (paste, insert, delete, cut) */
1306        short vn_affected_item_num;
1307        short vn_pos_in_item;
1308        struct item_head *vn_ins_ih;    /* item header of inserted item, 0 for other modes */
1309        const void *vn_data;
1310        struct virtual_item *vn_vi;     /* array of items (including a new one, excluding item to be deleted) */
1311};
1312
1313/* used by directory items when creating virtual nodes */
1314struct direntry_uarea {
1315        int flags;
1316        __u16 entry_count;
1317        __u16 entry_sizes[1];
1318} __attribute__ ((__packed__));
1319
1320/***************************************************************************/
1321/*                  TREE BALANCE                                           */
1322/***************************************************************************/
1323
1324/* This temporary structure is used in tree balance algorithms, and
1325   constructed as we go to the extent that its various parts are
1326   needed.  It contains arrays of nodes that can potentially be
1327   involved in the balancing of node S, and parameters that define how
1328   each of the nodes must be balanced.  Note that in these algorithms
1329   for balancing the worst case is to need to balance the current node
1330   S and the left and right neighbors and all of their parents plus
1331   create a new node.  We implement S1 balancing for the leaf nodes
1332   and S0 balancing for the internal nodes (S1 and S0 are defined in
1333   our papers.)*/
1334
1335#define MAX_FREE_BLOCK 7        /* size of the array of buffers to free at end of do_balance */
1336
1337/* maximum number of FEB blocknrs on a single level */
1338#define MAX_AMOUNT_NEEDED 2
1339
1340/* someday somebody will prefix every field in this struct with tb_ */
1341struct tree_balance {
1342        int tb_mode;
1343        int need_balance_dirty;
1344        struct super_block *tb_sb;
1345        struct reiserfs_transaction_handle *transaction_handle;
1346        struct treepath *tb_path;
1347        struct buffer_head *L[MAX_HEIGHT];      /* array of left neighbors of nodes in the path */
1348        struct buffer_head *R[MAX_HEIGHT];      /* array of right neighbors of nodes in the path */
1349        struct buffer_head *FL[MAX_HEIGHT];     /* array of fathers of the left  neighbors      */
1350        struct buffer_head *FR[MAX_HEIGHT];     /* array of fathers of the right neighbors      */
1351        struct buffer_head *CFL[MAX_HEIGHT];    /* array of common parents of center node and its left neighbor  */
1352        struct buffer_head *CFR[MAX_HEIGHT];    /* array of common parents of center node and its right neighbor */
1353
1354        struct buffer_head *FEB[MAX_FEB_SIZE];  /* array of empty buffers. Number of buffers in array equals
1355                                                   cur_blknum. */
1356        struct buffer_head *used[MAX_FEB_SIZE];
1357        struct buffer_head *thrown[MAX_FEB_SIZE];
1358        int lnum[MAX_HEIGHT];   /* array of number of items which must be
1359                                   shifted to the left in order to balance the
1360                                   current node; for leaves includes item that
1361                                   will be partially shifted; for internal
1362                                   nodes, it is the number of child pointers
1363                                   rather than items. It includes the new item
1364                                   being created. The code sometimes subtracts
1365                                   one to get the number of wholly shifted
1366                                   items for other purposes. */
1367        int rnum[MAX_HEIGHT];   /* substitute right for left in comment above */
1368        int lkey[MAX_HEIGHT];   /* array indexed by height h mapping the key delimiting L[h] and
1369                                   S[h] to its item number within the node CFL[h] */
1370        int rkey[MAX_HEIGHT];   /* substitute r for l in comment above */
1371        int insert_size[MAX_HEIGHT];    /* the number of bytes by we are trying to add or remove from
1372                                           S[h]. A negative value means removing.  */
1373        int blknum[MAX_HEIGHT]; /* number of nodes that will replace node S[h] after
1374                                   balancing on the level h of the tree.  If 0 then S is
1375                                   being deleted, if 1 then S is remaining and no new nodes
1376                                   are being created, if 2 or 3 then 1 or 2 new nodes is
1377                                   being created */
1378
1379        /* fields that are used only for balancing leaves of the tree */
1380        int cur_blknum;         /* number of empty blocks having been already allocated                 */
1381        int s0num;              /* number of items that fall into left most  node when S[0] splits     */
1382        int s1num;              /* number of items that fall into first  new node when S[0] splits     */
1383        int s2num;              /* number of items that fall into second new node when S[0] splits     */
1384        int lbytes;             /* number of bytes which can flow to the left neighbor from the        left    */
1385        /* most liquid item that cannot be shifted from S[0] entirely         */
1386        /* if -1 then nothing will be partially shifted */
1387        int rbytes;             /* number of bytes which will flow to the right neighbor from the right        */
1388        /* most liquid item that cannot be shifted from S[0] entirely         */
1389        /* if -1 then nothing will be partially shifted                           */
1390        int s1bytes;            /* number of bytes which flow to the first  new node when S[0] splits   */
1391        /* note: if S[0] splits into 3 nodes, then items do not need to be cut  */
1392        int s2bytes;
1393        struct buffer_head *buf_to_free[MAX_FREE_BLOCK];        /* buffers which are to be freed after do_balance finishes by unfix_nodes */
1394        char *vn_buf;           /* kmalloced memory. Used to create
1395                                   virtual node and keep map of
1396                                   dirtied bitmap blocks */
1397        int vn_buf_size;        /* size of the vn_buf */
1398        struct virtual_node *tb_vn;     /* VN starts after bitmap of bitmap blocks */
1399
1400        int fs_gen;             /* saved value of `reiserfs_generation' counter
1401                                   see FILESYSTEM_CHANGED() macro in reiserfs_fs.h */
1402#ifdef DISPLACE_NEW_PACKING_LOCALITIES
1403        struct in_core_key key; /* key pointer, to pass to block allocator or
1404                                   another low-level subsystem */
1405#endif
1406};
1407
1408/* These are modes of balancing */
1409
1410/* When inserting an item. */
1411#define M_INSERT        'i'
1412/* When inserting into (directories only) or appending onto an already
1413   existant item. */
1414#define M_PASTE         'p'
1415/* When deleting an item. */
1416#define M_DELETE        'd'
1417/* When truncating an item or removing an entry from a (directory) item. */
1418#define M_CUT           'c'
1419
1420/* used when balancing on leaf level skipped (in reiserfsck) */
1421#define M_INTERNAL      'n'
1422
1423/* When further balancing is not needed, then do_balance does not need
1424   to be called. */
1425#define M_SKIP_BALANCING                's'
1426#define M_CONVERT       'v'
1427
1428/* modes of leaf_move_items */
1429#define LEAF_FROM_S_TO_L 0
1430#define LEAF_FROM_S_TO_R 1
1431#define LEAF_FROM_R_TO_L 2
1432#define LEAF_FROM_L_TO_R 3
1433#define LEAF_FROM_S_TO_SNEW 4
1434
1435#define FIRST_TO_LAST 0
1436#define LAST_TO_FIRST 1
1437
1438/* used in do_balance for passing parent of node information that has
1439   been gotten from tb struct */
1440struct buffer_info {
1441        struct tree_balance *tb;
1442        struct buffer_head *bi_bh;
1443        struct buffer_head *bi_parent;
1444        int bi_position;
1445};
1446
1447/* there are 4 types of items: stat data, directory item, indirect, direct.
1448+-------------------+------------+--------------+------------+
1449|                   |  k_offset  | k_uniqueness | mergeable? |
1450+-------------------+------------+--------------+------------+
1451|     stat data     |   0        |      0       |   no       |
1452+-------------------+------------+--------------+------------+
1453| 1st directory item| DOT_OFFSET |DIRENTRY_UNIQUENESS|   no       | 
1454| non 1st directory | hash value |              |   yes      |
1455|     item          |            |              |            |
1456+-------------------+------------+--------------+------------+
1457| indirect item     | offset + 1 |TYPE_INDIRECT |   if this is not the first indirect item of the object
1458+-------------------+------------+--------------+------------+
1459| direct item       | offset + 1 |TYPE_DIRECT   | if not this is not the first direct item of the object
1460+-------------------+------------+--------------+------------+
1461*/
1462
1463struct item_operations {
1464        int (*bytes_number) (struct item_head * ih, int block_size);
1465        void (*decrement_key) (struct cpu_key *);
1466        int (*is_left_mergeable) (struct reiserfs_key * ih,
1467                                  unsigned long bsize);
1468        void (*print_item) (struct item_head *, char *item);
1469        void (*check_item) (struct item_head *, char *item);
1470
1471        int (*create_vi) (struct virtual_node * vn, struct virtual_item * vi,
1472                          int is_affected, int insert_size);
1473        int (*check_left) (struct virtual_item * vi, int free,
1474                           int start_skip, int end_skip);
1475        int (*check_right) (struct virtual_item * vi, int free);
1476        int (*part_size) (struct virtual_item * vi, int from, int to);
1477        int (*unit_num) (struct virtual_item * vi);
1478        void (*print_vi) (struct virtual_item * vi);
1479};
1480
1481extern struct item_operations *item_ops[TYPE_ANY + 1];
1482
1483#define op_bytes_number(ih,bsize)                    item_ops[le_ih_k_type (ih)]->bytes_number (ih, bsize)
1484#define op_is_left_mergeable(key,bsize)              item_ops[le_key_k_type (le_key_version (key), key)]->is_left_mergeable (key, bsize)
1485#define op_print_item(ih,item)                       item_ops[le_ih_k_type (ih)]->print_item (ih, item)
1486#define op_check_item(ih,item)                       item_ops[le_ih_k_type (ih)]->check_item (ih, item)
1487#define op_create_vi(vn,vi,is_affected,insert_size)  item_ops[le_ih_k_type ((vi)->vi_ih)]->create_vi (vn,vi,is_affected,insert_size)
1488#define op_check_left(vi,free,start_skip,end_skip) item_ops[(vi)->vi_index]->check_left (vi, free, start_skip, end_skip)
1489#define op_check_right(vi,free)                      item_ops[(vi)->vi_index]->check_right (vi, free)
1490#define op_part_size(vi,from,to)                     item_ops[(vi)->vi_index]->part_size (vi, from, to)
1491#define op_unit_num(vi)                              item_ops[(vi)->vi_index]->unit_num (vi)
1492#define op_print_vi(vi)                              item_ops[(vi)->vi_index]->print_vi (vi)
1493
1494#define COMP_SHORT_KEYS comp_short_keys
1495
1496/* number of blocks pointed to by the indirect item */
1497#define I_UNFM_NUM(p_s_ih)      ( ih_item_len(p_s_ih) / UNFM_P_SIZE )
1498
1499/* the used space within the unformatted node corresponding to pos within the item pointed to by ih */
1500#define I_POS_UNFM_SIZE(ih,pos,size) (((pos) == I_UNFM_NUM(ih) - 1 ) ? (size) - ih_free_space(ih) : (size))
1501
1502/* number of bytes contained by the direct item or the unformatted nodes the indirect item points to */
1503
1504/* get the item header */
1505#define B_N_PITEM_HEAD(bh,item_num) ( (struct item_head * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1506
1507/* get key */
1508#define B_N_PDELIM_KEY(bh,item_num) ( (struct reiserfs_key * )((bh)->b_data + BLKH_SIZE) + (item_num) )
1509
1510/* get the key */
1511#define B_N_PKEY(bh,item_num) ( &(B_N_PITEM_HEAD(bh,item_num)->ih_key) )
1512
1513/* get item body */
1514#define B_N_PITEM(bh,item_num) ( (bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(item_num))))
1515
1516/* get the stat data by the buffer header and the item order */
1517#define B_N_STAT_DATA(bh,nr) \
1518( (struct stat_data *)((bh)->b_data + ih_location(B_N_PITEM_HEAD((bh),(nr))) ) )
1519
1520    /* following defines use reiserfs buffer header and item header */
1521
1522/* get stat-data */
1523#define B_I_STAT_DATA(bh, ih) ( (struct stat_data * )((bh)->b_data + ih_location(ih)) )
1524
1525// this is 3976 for size==4096
1526#define MAX_DIRECT_ITEM_LEN(size) ((size) - BLKH_SIZE - 2*IH_SIZE - SD_SIZE - UNFM_P_SIZE)
1527
1528/* indirect items consist of entries which contain blocknrs, pos
1529   indicates which entry, and B_I_POS_UNFM_POINTER resolves to the
1530   blocknr contained by the entry pos points to */
1531#define B_I_POS_UNFM_POINTER(bh,ih,pos) le32_to_cpu(*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)))
1532#define PUT_B_I_POS_UNFM_POINTER(bh,ih,pos, val) do {*(((unp_t *)B_I_PITEM(bh,ih)) + (pos)) = cpu_to_le32(val); } while (0)
1533
1534struct reiserfs_iget_args {
1535        __u32 objectid;
1536        __u32 dirid;
1537};
1538
1539/***************************************************************************/
1540/*                    FUNCTION DECLARATIONS                                */
1541/***************************************************************************/
1542
1543/*#ifdef __KERNEL__*/
1544#define get_journal_desc_magic(bh) (bh->b_data + bh->b_size - 12)
1545
1546#define journal_trans_half(blocksize) \
1547        ((blocksize - sizeof (struct reiserfs_journal_desc) + sizeof (__u32) - 12) / sizeof (__u32))
1548
1549/* journal.c see journal.c for all the comments here */
1550
1551/* first block written in a commit.  */
1552struct reiserfs_journal_desc {
1553        __le32 j_trans_id;      /* id of commit */
1554        __le32 j_len;           /* length of commit. len +1 is the commit block */
1555        __le32 j_mount_id;      /* mount id of this trans */
1556        __le32 j_realblock[1];  /* real locations for each block */
1557};
1558
1559#define get_desc_trans_id(d)   le32_to_cpu((d)->j_trans_id)
1560#define get_desc_trans_len(d)  le32_to_cpu((d)->j_len)
1561#define get_desc_mount_id(d)   le32_to_cpu((d)->j_mount_id)
1562
1563#define set_desc_trans_id(d,val)       do { (d)->j_trans_id = cpu_to_le32 (val); } while (0)
1564#define set_desc_trans_len(d,val)      do { (d)->j_len = cpu_to_le32 (val); } while (0)
1565#define set_desc_mount_id(d,val)       do { (d)->j_mount_id = cpu_to_le32 (val); } while (0)
1566
1567/* last block written in a commit */
1568struct reiserfs_journal_commit {
1569        __le32 j_trans_id;      /* must match j_trans_id from the desc block */
1570        __le32 j_len;           /* ditto */
1571        __le32 j_realblock[1];  /* real locations for each block */
1572};
1573
1574#define get_commit_trans_id(c) le32_to_cpu((c)->j_trans_id)
1575#define get_commit_trans_len(c)        le32_to_cpu((c)->j_len)
1576#define get_commit_mount_id(c) le32_to_cpu((c)->j_mount_id)
1577
1578#define set_commit_trans_id(c,val)     do { (c)->j_trans_id = cpu_to_le32 (val); } while (0)
1579#define set_commit_trans_len(c,val)    do { (c)->j_len = cpu_to_le32 (val); } while (0)
1580
1581/* this header block gets written whenever a transaction is considered fully flushed, and is more recent than the
1582** last fully flushed transaction.  fully flushed means all the log blocks and all the real blocks are on disk,
1583** and this transaction does not need to be replayed.
1584*/
1585struct reiserfs_journal_header {
1586        __le32 j_last_flush_trans_id;   /* id of last fully flushed transaction */
1587        __le32 j_first_unflushed_offset;        /* offset in the log of where to start replay after a crash */
1588        __le32 j_mount_id;
1589        /* 12 */ struct journal_params jh_journal;
1590};
1591
1592/* biggest tunable defines are right here */
1593#define JOURNAL_BLOCK_COUNT 8192        /* number of blocks in the journal */
1594#define JOURNAL_TRANS_MAX_DEFAULT 1024  /* biggest possible single transaction, don't change for now (8/3/99) */
1595#define JOURNAL_TRANS_MIN_DEFAULT 256
1596#define JOURNAL_MAX_BATCH_DEFAULT   900 /* max blocks to batch into one transaction, don't make this any bigger than 900 */
1597#define JOURNAL_MIN_RATIO 2
1598#define JOURNAL_MAX_COMMIT_AGE 30
1599#define JOURNAL_MAX_TRANS_AGE 30
1600#define JOURNAL_PER_BALANCE_CNT (3 * (MAX_HEIGHT-2) + 9)
1601#ifdef CONFIG_QUOTA
1602/* We need to update data and inode (atime) */
1603#define REISERFS_QUOTA_TRANS_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? 2 : 0)
1604/* 1 balancing, 1 bitmap, 1 data per write + stat data update */
1605#define REISERFS_QUOTA_INIT_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1606(DQUOT_INIT_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_INIT_REWRITE+1) : 0)
1607/* same as with INIT */
1608#define REISERFS_QUOTA_DEL_BLOCKS(s) (REISERFS_SB(s)->s_mount_opt & (1<<REISERFS_QUOTA) ? \
1609(DQUOT_DEL_ALLOC*(JOURNAL_PER_BALANCE_CNT+2)+DQUOT_DEL_REWRITE+1) : 0)
1610#else
1611#define REISERFS_QUOTA_TRANS_BLOCKS(s) 0
1612#define REISERFS_QUOTA_INIT_BLOCKS(s) 0
1613#define REISERFS_QUOTA_DEL_BLOCKS(s) 0
1614#endif
1615
1616/* both of these can be as low as 1, or as high as you want.  The min is the
1617** number of 4k bitmap nodes preallocated on mount. New nodes are allocated
1618** as needed, and released when transactions are committed.  On release, if 
1619** the current number of nodes is > max, the node is freed, otherwise, 
1620** it is put on a free list for faster use later.
1621*/
1622#define REISERFS_MIN_BITMAP_NODES 10
1623#define REISERFS_MAX_BITMAP_NODES 100
1624
1625#define JBH_HASH_SHIFT 13       /* these are based on journal hash size of 8192 */
1626#define JBH_HASH_MASK 8191
1627
1628#define _jhashfn(sb,block)      \
1629        (((unsigned long)sb>>L1_CACHE_SHIFT) ^ \
1630         (((block)<<(JBH_HASH_SHIFT - 6)) ^ ((block) >> 13) ^ ((block) << (JBH_HASH_SHIFT - 12))))
1631#define journal_hash(t,sb,block) ((t)[_jhashfn((sb),(block)) & JBH_HASH_MASK])
1632
1633// We need these to make journal.c code more readable
1634#define journal_find_get_block(s, block) __find_get_block(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1635#define journal_getblk(s, block) __getblk(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1636#define journal_bread(s, block) __bread(SB_JOURNAL(s)->j_dev_bd, block, s->s_blocksize)
1637
1638enum reiserfs_bh_state_bits {
1639        BH_JDirty = BH_PrivateStart,    /* buffer is in current transaction */
1640        BH_JDirty_wait,
1641        BH_JNew,                /* disk block was taken off free list before
1642                                 * being in a finished transaction, or
1643                                 * written to disk. Can be reused immed. */
1644        BH_JPrepared,
1645        BH_JRestore_dirty,
1646        BH_JTest,               // debugging only will go away
1647};
1648
1649BUFFER_FNS(JDirty, journaled);
1650TAS_BUFFER_FNS(JDirty, journaled);
1651BUFFER_FNS(JDirty_wait, journal_dirty);
1652TAS_BUFFER_FNS(JDirty_wait, journal_dirty);
1653BUFFER_FNS(JNew, journal_new);
1654TAS_BUFFER_FNS(JNew, journal_new);
1655BUFFER_FNS(JPrepared, journal_prepared);
1656TAS_BUFFER_FNS(JPrepared, journal_prepared);
1657BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1658TAS_BUFFER_FNS(JRestore_dirty, journal_restore_dirty);
1659BUFFER_FNS(JTest, journal_test);
1660TAS_BUFFER_FNS(JTest, journal_test);
1661
1662/*
1663** transaction handle which is passed around for all journal calls
1664*/
1665struct reiserfs_transaction_handle {
1666        struct super_block *t_super;    /* super for this FS when journal_begin was
1667                                           called. saves calls to reiserfs_get_super
1668                                           also used by nested transactions to make
1669                                           sure they are nesting on the right FS
1670                                           _must_ be first in the handle
1671                                         */
1672        int t_refcount;
1673        int t_blocks_logged;    /* number of blocks this writer has logged */
1674        int t_blocks_allocated; /* number of blocks this writer allocated */
1675        unsigned long t_trans_id;       /* sanity check, equals the current trans id */
1676        void *t_handle_save;    /* save existing current->journal_info */
1677        unsigned displace_new_blocks:1; /* if new block allocation occurres, that block
1678                                           should be displaced from others */
1679        struct list_head t_list;
1680};
1681
1682/* used to keep track of ordered and tail writes, attached to the buffer
1683 * head through b_journal_head.
1684 */
1685struct reiserfs_jh {
1686        struct reiserfs_journal_list *jl;
1687        struct buffer_head *bh;
1688        struct list_head list;
1689};
1690
1691void reiserfs_free_jh(struct buffer_head *bh);
1692int reiserfs_add_tail_list(struct inode *inode, struct buffer_head *bh);
1693int reiserfs_add_ordered_list(struct inode *inode, struct buffer_head *bh);
1694int journal_mark_dirty(struct reiserfs_transaction_handle *,
1695                       struct super_block *, struct buffer_head *bh);
1696
1697static inline int reiserfs_file_data_log(struct inode *inode)
1698{
1699        if (reiserfs_data_log(inode->i_sb) ||
1700            (REISERFS_I(inode)->i_flags & i_data_log))
1701                return 1;
1702        return 0;
1703}
1704
1705static inline int reiserfs_transaction_running(struct super_block *s)
1706{
1707        struct reiserfs_transaction_handle *th = current->journal_info;
1708        if (th && th->t_super == s)
1709                return 1;
1710        if (th && th->t_super == NULL)
1711                BUG();
1712        return 0;
1713}
1714
1715static inline int reiserfs_transaction_free_space(struct reiserfs_transaction_handle *th)
1716{
1717        return th->t_blocks_allocated - th->t_blocks_logged;
1718}
1719
1720struct reiserfs_transaction_handle *reiserfs_persistent_transaction(struct
1721                                                                    super_block
1722                                                                    *,
1723                                                                    int count);
1724int reiserfs_end_persistent_transaction(struct reiserfs_transaction_handle *);
1725int reiserfs_commit_page(struct inode *inode, struct page *page,
1726                         unsigned from, unsigned to);
1727int reiserfs_flush_old_commits(struct super_block *);
1728int reiserfs_commit_for_inode(struct inode *);
1729int reiserfs_inode_needs_commit(struct inode *);
1730void reiserfs_update_inode_transaction(struct inode *);
1731void reiserfs_wait_on_write_block(struct super_block *s);
1732void reiserfs_block_writes(struct reiserfs_transaction_handle *th);
1733void reiserfs_allow_writes(struct super_block *s);
1734void reiserfs_check_lock_depth(struct super_block *s, char *caller);
1735int reiserfs_prepare_for_journal(struct super_block *, struct buffer_head *bh,
1736                                 int wait);
1737void reiserfs_restore_prepared_buffer(struct super_block *,
1738                                      struct buffer_head *bh);
1739int journal_init(struct super_block *, const char *j_dev_name, int old_format,
1740                 unsigned int);
1741int journal_release(struct reiserfs_transaction_handle *, struct super_block *);
1742int journal_release_error(struct reiserfs_transaction_handle *,
1743                          struct super_block *);
1744int journal_end(struct reiserfs_transaction_handle *, struct super_block *,
1745                unsigned long);
1746int journal_end_sync(struct reiserfs_transaction_handle *, struct super_block *,
1747                     unsigned long);
1748int journal_mark_freed(struct reiserfs_transaction_handle *,
1749                       struct super_block *, b_blocknr_t blocknr);
1750int journal_transaction_should_end(struct reiserfs_transaction_handle *, int);
1751int reiserfs_in_journal(struct super_block *p_s_sb, unsigned int bmap_nr,
1752                        int bit_nr, int searchall, b_blocknr_t *next);
1753int journal_begin(struct reiserfs_transaction_handle *,
1754                  struct super_block *p_s_sb, unsigned long);
1755int journal_join_abort(struct reiserfs_transaction_handle *,
1756                       struct super_block *p_s_sb, unsigned long);
1757void reiserfs_journal_abort(struct super_block *sb, int errno);
1758void reiserfs_abort(struct super_block *sb, int errno, const char *fmt, ...);
1759int reiserfs_allocate_list_bitmaps(struct super_block *s,
1760                                   struct reiserfs_list_bitmap *, unsigned int);
1761
1762void add_save_link(struct reiserfs_transaction_handle *th,
1763                   struct inode *inode, int truncate);
1764int remove_save_link(struct inode *inode, int truncate);
1765
1766/* objectid.c */
1767__u32 reiserfs_get_unused_objectid(struct reiserfs_transaction_handle *th);
1768void reiserfs_release_objectid(struct reiserfs_transaction_handle *th,
1769                               __u32 objectid_to_release);
1770int reiserfs_convert_objectid_map_v1(struct super_block *);
1771
1772/* stree.c */
1773int B_IS_IN_TREE(const struct buffer_head *);
1774extern void copy_item_head(struct item_head *p_v_to,
1775                           const struct item_head *p_v_from);
1776
1777// first key is in cpu form, second - le
1778extern int comp_short_keys(const struct reiserfs_key *le_key,
1779                           const struct cpu_key *cpu_key);
1780extern void le_key2cpu_key(struct cpu_key *to, const struct reiserfs_key *from);
1781
1782// both are in le form
1783extern int comp_le_keys(const struct reiserfs_key *,
1784                        const struct reiserfs_key *);
1785extern int comp_short_le_keys(const struct reiserfs_key *,
1786                              const struct reiserfs_key *);
1787
1788//
1789// get key version from on disk key - kludge
1790//
1791static inline int le_key_version(const struct reiserfs_key *key)
1792{
1793        int type;
1794
1795        type = offset_v2_k_type(&(key->u.k_offset_v2));
1796        if (type != TYPE_DIRECT && type != TYPE_INDIRECT
1797            && type != TYPE_DIRENTRY)
1798                return KEY_FORMAT_3_5;
1799
1800        return KEY_FORMAT_3_6;
1801
1802}
1803
1804static inline void copy_key(struct reiserfs_key *to,
1805                            const struct reiserfs_key *from)
1806{
1807        memcpy(to, from, KEY_SIZE);
1808}
1809
1810int comp_items(const struct item_head *stored_ih, const struct treepath *p_s_path);
1811const struct reiserfs_key *get_rkey(const struct treepath *p_s_chk_path,
1812                                    const struct super_block *p_s_sb);
1813int search_by_key(struct super_block *, const struct cpu_key *,
1814                  struct treepath *, int);
1815#define search_item(s,key,path) search_by_key (s, key, path, DISK_LEAF_NODE_LEVEL)
1816int search_for_position_by_key(struct super_block *p_s_sb,
1817                               const struct cpu_key *p_s_cpu_key,
1818                               struct treepath *p_s_search_path);
1819extern void decrement_bcount(struct buffer_head *p_s_bh);
1820void decrement_counters_in_path(struct treepath *p_s_search_path);
1821void pathrelse(struct treepath *p_s_search_path);
1822int reiserfs_check_path(struct treepath *p);
1823void pathrelse_and_restore(struct super_block *s, struct treepath *p_s_search_path);
1824
1825int reiserfs_insert_item(struct reiserfs_transaction_handle *th,
1826                         struct treepath *path,
1827                         const struct cpu_key *key,
1828                         struct item_head *ih,
1829                         struct inode *inode, const char *body);
1830
1831int reiserfs_paste_into_item(struct reiserfs_transaction_handle *th,
1832                             struct treepath *path,
1833                             const struct cpu_key *key,
1834                             struct inode *inode,
1835                             const char *body, int paste_size);
1836
1837int reiserfs_cut_from_item(struct reiserfs_transaction_handle *th,
1838                           struct treepath *path,
1839                           struct cpu_key *key,
1840                           struct inode *inode,
1841                           struct page *page, loff_t new_file_size);
1842
1843int reiserfs_delete_item(struct reiserfs_transaction_handle *th,
1844                         struct treepath *path,
1845                         const struct cpu_key *key,
1846                         struct inode *inode, struct buffer_head *p_s_un_bh);
1847
1848void reiserfs_delete_solid_item(struct reiserfs_transaction_handle *th,
1849                                struct inode *inode, struct reiserfs_key *key);
1850int reiserfs_delete_object(struct reiserfs_transaction_handle *th,
1851                           struct inode *p_s_inode);
1852int reiserfs_do_truncate(struct reiserfs_transaction_handle *th,
1853                         struct inode *p_s_inode, struct page *,
1854                         int update_timestamps);
1855
1856#define i_block_size(inode) ((inode)->i_sb->s_blocksize)
1857#define file_size(inode) ((inode)->i_size)
1858#define tail_size(inode) (file_size (inode) & (i_block_size (inode) - 1))
1859
1860#define tail_has_to_be_packed(inode) (have_large_tails ((inode)->i_sb)?\
1861!STORE_TAIL_IN_UNFM_S1(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):have_small_tails ((inode)->i_sb)?!STORE_TAIL_IN_UNFM_S2(file_size (inode), tail_size(inode), inode->i_sb->s_blocksize):0 )
1862
1863void padd_item(char *item, int total_length, int length);
1864
1865/* inode.c */
1866/* args for the create parameter of reiserfs_get_block */
1867#define GET_BLOCK_NO_CREATE 0   /* don't create new blocks or convert tails */
1868#define GET_BLOCK_CREATE 1      /* add anything you need to find block */
1869#define GET_BLOCK_NO_HOLE 2     /* return -ENOENT for file holes */
1870#define GET_BLOCK_READ_DIRECT 4 /* read the tail if indirect item not found */
1871#define GET_BLOCK_NO_IMUX     8 /* i_mutex is not held, don't preallocate */
1872#define GET_BLOCK_NO_DANGLE   16        /* don't leave any transactions running */
1873
1874void reiserfs_read_locked_inode(struct inode *inode,
1875                                struct reiserfs_iget_args *args);
1876int reiserfs_find_actor(struct inode *inode, void *p);
1877int reiserfs_init_locked_inode(struct inode *inode, void *p);
1878void reiserfs_delete_inode(struct inode *inode);
1879int reiserfs_write_inode(struct inode *inode, int);
1880int reiserfs_get_block(struct inode *inode, sector_t block,
1881                       struct buffer_head *bh_result, int create);
1882struct dentry *reiserfs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1883                                     int fh_len, int fh_type);
1884struct dentry *reiserfs_fh_to_parent(struct super_block *sb, struct fid *fid,
1885                                     int fh_len, int fh_type);
1886int reiserfs_encode_fh(struct dentry *dentry, __u32 * data, int *lenp,
1887                       int connectable);
1888
1889int reiserfs_truncate_file(struct inode *, int update_timestamps);
1890void make_cpu_key(struct cpu_key *cpu_key, struct inode *inode, loff_t offset,
1891                  int type, int key_length);
1892void make_le_item_head(struct item_head *ih, const struct cpu_key *key,
1893                       int version,
1894                       loff_t offset, int type, int length, int entry_count);
1895struct inode *reiserfs_iget(struct super_block *s, const struct cpu_key *key);
1896
1897int reiserfs_new_inode(struct reiserfs_transaction_handle *th,
1898                       struct inode *dir, int mode,
1899                       const char *symname, loff_t i_size,
1900                       struct dentry *dentry, struct inode *inode);
1901
1902void reiserfs_update_sd_size(struct reiserfs_transaction_handle *th,
1903                             struct inode *inode, loff_t size);
1904
1905static inline void reiserfs_update_sd(struct reiserfs_transaction_handle *th,
1906                                      struct inode *inode)
1907{
1908        reiserfs_update_sd_size(th, inode, inode->i_size);
1909}
1910
1911void sd_attrs_to_i_attrs(__u16 sd_attrs, struct inode *inode);
1912void i_attrs_to_sd_attrs(struct inode *inode, __u16 * sd_attrs);
1913int reiserfs_setattr(struct dentry *dentry, struct iattr *attr);
1914
1915/* namei.c */
1916void set_de_name_and_namelen(struct reiserfs_dir_entry *de);
1917int search_by_entry_key(struct super_block *sb, const struct cpu_key *key,
1918                        struct treepath *path, struct reiserfs_dir_entry *de);
1919struct dentry *reiserfs_get_parent(struct dentry *);
1920/* procfs.c */
1921
1922#if defined( CONFIG_PROC_FS ) && defined( CONFIG_REISERFS_PROC_INFO )
1923#define REISERFS_PROC_INFO
1924#else
1925#undef REISERFS_PROC_INFO
1926#endif
1927
1928int reiserfs_proc_info_init(struct super_block *sb);
1929int reiserfs_proc_info_done(struct super_block *sb);
1930struct proc_dir_entry *reiserfs_proc_register_global(char *name,
1931                                                     read_proc_t * func);
1932void reiserfs_proc_unregister_global(const char *name);
1933int reiserfs_proc_info_global_init(void);
1934int reiserfs_proc_info_global_done(void);
1935int reiserfs_global_version_in_proc(char *buffer, char **start, off_t offset,
1936                                    int count, int *eof, void *data);
1937
1938#if defined( REISERFS_PROC_INFO )
1939
1940#define PROC_EXP( e )   e
1941
1942#define __PINFO( sb ) REISERFS_SB(sb) -> s_proc_info_data
1943#define PROC_INFO_MAX( sb, field, value )                                                               \
1944    __PINFO( sb ).field =                                                                                               \
1945        max( REISERFS_SB( sb ) -> s_proc_info_data.field, value )
1946#define PROC_INFO_INC( sb, field ) ( ++ ( __PINFO( sb ).field ) )
1947#define PROC_INFO_ADD( sb, field, val ) ( __PINFO( sb ).field += ( val ) )
1948#define PROC_INFO_BH_STAT( sb, bh, level )                                                      \
1949    PROC_INFO_INC( sb, sbk_read_at[ ( level ) ] );                                              \
1950    PROC_INFO_ADD( sb, free_at[ ( level ) ], B_FREE_SPACE( bh ) );      \
1951    PROC_INFO_ADD( sb, items_at[ ( level ) ], B_NR_ITEMS( bh ) )
1952#else
1953#define PROC_EXP( e )
1954#define VOID_V ( ( void ) 0 )
1955#define PROC_INFO_MAX( sb, field, value ) VOID_V
1956#define PROC_INFO_INC( sb, field ) VOID_V
1957#define PROC_INFO_ADD( sb, field, val ) VOID_V
1958#define PROC_INFO_BH_STAT( p_s_sb, p_s_bh, n_node_level ) VOID_V
1959#endif
1960
1961/* dir.c */
1962extern const struct inode_operations reiserfs_dir_inode_operations;
1963extern const struct inode_operations reiserfs_symlink_inode_operations;
1964extern const struct inode_operations reiserfs_special_inode_operations;
1965extern const struct file_operations reiserfs_dir_operations;
1966
1967/* tail_conversion.c */
1968int direct2indirect(struct reiserfs_transaction_handle *, struct inode *,
1969                    struct treepath *, struct buffer_head *, loff_t);
1970int indirect2direct(struct reiserfs_transaction_handle *, struct inode *,
1971                    struct page *, struct treepath *, const struct cpu_key *,
1972                    loff_t, char *);
1973void reiserfs_unmap_buffer(struct buffer_head *);
1974
1975/* file.c */
1976extern const struct inode_operations reiserfs_file_inode_operations;
1977extern const struct file_operations reiserfs_file_operations;
1978extern const struct address_space_operations reiserfs_address_space_operations;
1979
1980/* fix_nodes.c */
1981
1982int fix_nodes(int n_op_mode, struct tree_balance *p_s_tb,
1983              struct item_head *p_s_ins_ih, const void *);
1984void unfix_nodes(struct tree_balance *);
1985
1986/* prints.c */
1987void reiserfs_panic(struct super_block *s, const char *fmt, ...)
1988    __attribute__ ((noreturn));
1989void reiserfs_info(struct super_block *s, const char *fmt, ...);
1990void reiserfs_debug(struct super_block *s, int level, const char *fmt, ...);
1991void print_indirect_item(struct buffer_head *bh, int item_num);
1992void store_print_tb(struct tree_balance *tb);
1993void print_cur_tb(char *mes);
1994void print_de(struct reiserfs_dir_entry *de);
1995void print_bi(struct buffer_info *bi, char *mes);
1996#define PRINT_LEAF_ITEMS 1      /* print all items */
1997#define PRINT_DIRECTORY_ITEMS 2 /* print directory items */
1998#define PRINT_DIRECT_ITEMS 4    /* print contents of direct items */
1999void print_block(struct buffer_head *bh, ...);
2000void print_bmap(struct super_block *s, int silent);
2001void print_bmap_block(int i, char *data, int size, int silent);
2002/*void print_super_block (struct super_block * s, char * mes);*/
2003void print_objectid_map(struct super_block *s);
2004void print_block_head(struct buffer_head *bh, char *mes);
2005void check_leaf(struct buffer_head *bh);
2006void check_internal(struct buffer_head *bh);
2007void print_statistics(struct super_block *s);
2008char *reiserfs_hashname(int code);
2009
2010/* lbalance.c */
2011int leaf_move_items(int shift_mode, struct tree_balance *tb, int mov_num,
2012                    int mov_bytes, struct buffer_head *Snew);
2013int leaf_shift_left(struct tree_balance *tb, int shift_num, int shift_bytes);
2014int leaf_shift_right(struct tree_balance *tb, int shift_num, int shift_bytes);
2015void leaf_delete_items(struct buffer_info *cur_bi, int last_first, int first,
2016                       int del_num, int del_bytes);
2017void leaf_insert_into_buf(struct buffer_info *bi, int before,
2018                          struct item_head *inserted_item_ih,
2019                          const char *inserted_item_body, int zeros_number);
2020void leaf_paste_in_buffer(struct buffer_info *bi, int pasted_item_num,
2021                          int pos_in_item, int paste_size, const char *body,
2022                          int zeros_number);
2023void leaf_cut_from_buffer(struct buffer_info *bi, int cut_item_num,
2024                          int pos_in_item, int cut_size);
2025void leaf_paste_entries(struct buffer_head *bh, int item_num, int before,
2026                        int new_entry_count, struct reiserfs_de_head *new_dehs,
2027                        const char *records, int paste_size);
2028/* ibalance.c */
2029int balance_internal(struct tree_balance *, int, int, struct item_head *,
2030                     struct buffer_head **);
2031
2032/* do_balance.c */
2033void do_balance_mark_leaf_dirty(struct tree_balance *tb,
2034                                struct buffer_head *bh, int flag);
2035#define do_balance_mark_internal_dirty do_balance_mark_leaf_dirty
2036#define do_balance_mark_sb_dirty do_balance_mark_leaf_dirty
2037
2038void do_balance(struct tree_balance *tb, struct item_head *ih,
2039                const char *body, int flag);
2040void reiserfs_invalidate_buffer(struct tree_balance *tb,
2041                                struct buffer_head *bh);
2042
2043int get_left_neighbor_position(struct tree_balance *tb, int h);
2044int get_right_neighbor_position(struct tree_balance *tb, int h);
2045void replace_key(struct tree_balance *tb, struct buffer_head *, int,
2046                 struct buffer_head *, int);
2047void make_empty_node(struct buffer_info *);
2048struct buffer_head *get_FEB(struct tree_balance *);
2049
2050/* bitmap.c */
2051
2052/* structure contains hints for block allocator, and it is a container for
2053 * arguments, such as node, search path, transaction_handle, etc. */
2054struct __reiserfs_blocknr_hint {
2055        struct inode *inode;    /* inode passed to allocator, if we allocate unf. nodes */
2056        sector_t block;         /* file offset, in blocks */
2057        struct in_core_key key;
2058        struct treepath *path;  /* search path, used by allocator to deternine search_start by
2059                                 * various ways */
2060        struct reiserfs_transaction_handle *th; /* transaction handle is needed to log super blocks and
2061                                                 * bitmap blocks changes  */
2062        b_blocknr_t beg, end;
2063        b_blocknr_t search_start;       /* a field used to transfer search start value (block number)
2064                                         * between different block allocator procedures
2065                                         * (determine_search_start() and others) */
2066        int prealloc_size;      /* is set in determine_prealloc_size() function, used by underlayed
2067                                 * function that do actual allocation */
2068
2069        unsigned formatted_node:1;      /* the allocator uses different polices for getting disk space for
2070                                         * formatted/unformatted blocks with/without preallocation */
2071        unsigned preallocate:1;
2072};
2073
2074typedef struct __reiserfs_blocknr_hint reiserfs_blocknr_hint_t;
2075
2076int reiserfs_parse_alloc_options(struct super_block *, char *);
2077void reiserfs_init_alloc_options(struct super_block *s);
2078
2079/*
2080 * given a directory, this will tell you what packing locality
2081 * to use for a new object underneat it.  The locality is returned
2082 * in disk byte order (le).
2083 */
2084__le32 reiserfs_choose_packing(struct inode *dir);
2085
2086int reiserfs_init_bitmap_cache(struct super_block *sb);
2087void reiserfs_free_bitmap_cache(struct super_block *sb);
2088void reiserfs_cache_bitmap_metadata(struct super_block *sb, struct buffer_head *bh, struct reiserfs_bitmap_info *info);
2089struct buffer_head *reiserfs_read_bitmap_block(struct super_block *sb, unsigned int bitmap);
2090int is_reusable(struct super_block *s, b_blocknr_t block, int bit_value);
2091void reiserfs_free_block(struct reiserfs_transaction_handle *th, struct inode *,
2092                         b_blocknr_t, int for_unformatted);
2093int reiserfs_allocate_blocknrs(reiserfs_blocknr_hint_t *, b_blocknr_t *, int,
2094                               int);
2095static inline int reiserfs_new_form_blocknrs(struct tree_balance *tb,
2096                                             b_blocknr_t * new_blocknrs,
2097                                             int amount_needed)
2098{
2099        reiserfs_blocknr_hint_t hint = {
2100                .th = tb->transaction_handle,
2101                .path = tb->tb_path,
2102                .inode = NULL,
2103                .key = tb->key,
2104                .block = 0,
2105                .formatted_node = 1
2106        };
2107        return reiserfs_allocate_blocknrs(&hint, new_blocknrs, amount_needed,
2108                                          0);
2109}
2110
2111static inline int reiserfs_new_unf_blocknrs(struct reiserfs_transaction_handle
2112                                            *th, struct inode *inode,
2113                                            b_blocknr_t * new_blocknrs,
2114                                            struct treepath *path,
2115                                            sector_t block)
2116{
2117        reiserfs_blocknr_hint_t hint = {
2118                .th = th,
2119                .path = path,
2120                .inode = inode,
2121                .block = block,
2122                .formatted_node = 0,
2123                .preallocate = 0
2124        };
2125        return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2126}
2127
2128#ifdef REISERFS_PREALLOCATE
2129static inline int reiserfs_new_unf_blocknrs2(struct reiserfs_transaction_handle
2130                                             *th, struct inode *inode,
2131                                             b_blocknr_t * new_blocknrs,
2132                                             struct treepath *path,
2133                                             sector_t block)
2134{
2135        reiserfs_blocknr_hint_t hint = {
2136                .th = th,
2137                .path = path,
2138                .inode = inode,
2139                .block = block,
2140                .formatted_node = 0,
2141                .preallocate = 1
2142        };
2143        return reiserfs_allocate_blocknrs(&hint, new_blocknrs, 1, 0);
2144}
2145
2146void reiserfs_discard_prealloc(struct reiserfs_transaction_handle *th,
2147                               struct inode *inode);
2148void reiserfs_discard_all_prealloc(struct reiserfs_transaction_handle *th);
2149#endif
2150
2151/* hashes.c */
2152__u32 keyed_hash(const signed char *msg, int len);
2153__u32 yura_hash(const signed char *msg, int len);
2154__u32 r5_hash(const signed char *msg, int len);
2155
2156/* the ext2 bit routines adjust for big or little endian as
2157** appropriate for the arch, so in our laziness we use them rather
2158** than using the bit routines they call more directly.  These
2159** routines must be used when changing on disk bitmaps.  */
2160#define reiserfs_test_and_set_le_bit   ext2_set_bit
2161#define reiserfs_test_and_clear_le_bit ext2_clear_bit
2162#define reiserfs_test_le_bit           ext2_test_bit
2163#define reiserfs_find_next_zero_le_bit ext2_find_next_zero_bit
2164
2165/* sometimes reiserfs_truncate may require to allocate few new blocks
2166   to perform indirect2direct conversion. People probably used to
2167   think, that truncate should work without problems on a filesystem
2168   without free disk space. They may complain that they can not
2169   truncate due to lack of free disk space. This spare space allows us
2170   to not worry about it. 500 is probably too much, but it should be
2171   absolutely safe */
2172#define SPARE_SPACE 500
2173
2174/* prototypes from ioctl.c */
2175int reiserfs_ioctl(struct inode *inode, struct file *filp,
2176                   unsigned int cmd, unsigned long arg);
2177long reiserfs_compat_ioctl(struct file *filp,
2178                   unsigned int cmd, unsigned long arg);
2179
2180/* ioctl's command */
2181#define REISERFS_IOC_UNPACK             _IOW(0xCD,1,long)
2182/* define following flags to be the same as in ext2, so that chattr(1),
2183   lsattr(1) will work with us. */
2184#define REISERFS_IOC_GETFLAGS           FS_IOC_GETFLAGS
2185#define REISERFS_IOC_SETFLAGS           FS_IOC_SETFLAGS
2186#define REISERFS_IOC_GETVERSION         FS_IOC_GETVERSION
2187#define REISERFS_IOC_SETVERSION         FS_IOC_SETVERSION
2188
2189/* the 32 bit compat definitions with int argument */
2190#define REISERFS_IOC32_UNPACK           _IOW(0xCD, 1, int)
2191#define REISERFS_IOC32_GETFLAGS         FS_IOC32_GETFLAGS
2192#define REISERFS_IOC32_SETFLAGS         FS_IOC32_SETFLAGS
2193#define REISERFS_IOC32_GETVERSION       FS_IOC32_GETVERSION
2194#define REISERFS_IOC32_SETVERSION       FS_IOC32_SETVERSION
2195
2196/* Locking primitives */
2197/* Right now we are still falling back to (un)lock_kernel, but eventually that
2198   would evolve into real per-fs locks */
2199#define reiserfs_write_lock( sb ) lock_kernel()
2200#define reiserfs_write_unlock( sb ) unlock_kernel()
2201
2202/* xattr stuff */
2203#define REISERFS_XATTR_DIR_SEM(s) (REISERFS_SB(s)->xattr_dir_sem)
2204
2205#endif                          /* _LINUX_REISER_FS_H */
2206