linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/compiler.h>
  19#include <linux/time.h>
  20#include <linux/cache.h>
  21
  22#include <asm/atomic.h>
  23#include <asm/types.h>
  24#include <linux/spinlock.h>
  25#include <linux/net.h>
  26#include <linux/textsearch.h>
  27#include <net/checksum.h>
  28#include <linux/rcupdate.h>
  29#include <linux/dmaengine.h>
  30#include <linux/hrtimer.h>
  31
  32#define HAVE_ALLOC_SKB          /* For the drivers to know */
  33#define HAVE_ALIGNABLE_SKB      /* Ditto 8)                */
  34
  35/* Don't change this without changing skb_csum_unnecessary! */
  36#define CHECKSUM_NONE 0
  37#define CHECKSUM_UNNECESSARY 1
  38#define CHECKSUM_COMPLETE 2
  39#define CHECKSUM_PARTIAL 3
  40
  41#define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
  42                                 ~(SMP_CACHE_BYTES - 1))
  43#define SKB_WITH_OVERHEAD(X)    \
  44        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  45#define SKB_MAX_ORDER(X, ORDER) \
  46        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  47#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
  48#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
  49
  50/* A. Checksumming of received packets by device.
  51 *
  52 *      NONE: device failed to checksum this packet.
  53 *              skb->csum is undefined.
  54 *
  55 *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
  56 *              skb->csum is undefined.
  57 *            It is bad option, but, unfortunately, many of vendors do this.
  58 *            Apparently with secret goal to sell you new device, when you
  59 *            will add new protocol to your host. F.e. IPv6. 8)
  60 *
  61 *      COMPLETE: the most generic way. Device supplied checksum of _all_
  62 *          the packet as seen by netif_rx in skb->csum.
  63 *          NOTE: Even if device supports only some protocols, but
  64 *          is able to produce some skb->csum, it MUST use COMPLETE,
  65 *          not UNNECESSARY.
  66 *
  67 *      PARTIAL: identical to the case for output below.  This may occur
  68 *          on a packet received directly from another Linux OS, e.g.,
  69 *          a virtualised Linux kernel on the same host.  The packet can
  70 *          be treated in the same way as UNNECESSARY except that on
  71 *          output (i.e., forwarding) the checksum must be filled in
  72 *          by the OS or the hardware.
  73 *
  74 * B. Checksumming on output.
  75 *
  76 *      NONE: skb is checksummed by protocol or csum is not required.
  77 *
  78 *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
  79 *      from skb->csum_start to the end and to record the checksum
  80 *      at skb->csum_start + skb->csum_offset.
  81 *
  82 *      Device must show its capabilities in dev->features, set
  83 *      at device setup time.
  84 *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  85 *                        everything.
  86 *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
  87 *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  88 *                        TCP/UDP over IPv4. Sigh. Vendors like this
  89 *                        way by an unknown reason. Though, see comment above
  90 *                        about CHECKSUM_UNNECESSARY. 8)
  91 *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  92 *
  93 *      Any questions? No questions, good.              --ANK
  94 */
  95
  96struct net_device;
  97struct scatterlist;
  98
  99#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 100struct nf_conntrack {
 101        atomic_t use;
 102};
 103#endif
 104
 105#ifdef CONFIG_BRIDGE_NETFILTER
 106struct nf_bridge_info {
 107        atomic_t use;
 108        struct net_device *physindev;
 109        struct net_device *physoutdev;
 110#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
 111        struct net_device *netoutdev;
 112#endif
 113        unsigned int mask;
 114        unsigned long data[32 / sizeof(unsigned long)];
 115};
 116#endif
 117
 118struct sk_buff_head {
 119        /* These two members must be first. */
 120        struct sk_buff  *next;
 121        struct sk_buff  *prev;
 122
 123        __u32           qlen;
 124        spinlock_t      lock;
 125};
 126
 127struct sk_buff;
 128
 129/* To allow 64K frame to be packed as single skb without frag_list */
 130#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
 131
 132typedef struct skb_frag_struct skb_frag_t;
 133
 134struct skb_frag_struct {
 135        struct page *page;
 136        __u32 page_offset;
 137        __u32 size;
 138};
 139
 140/* This data is invariant across clones and lives at
 141 * the end of the header data, ie. at skb->end.
 142 */
 143struct skb_shared_info {
 144        atomic_t        dataref;
 145        unsigned short  nr_frags;
 146        unsigned short  gso_size;
 147        /* Warning: this field is not always filled in (UFO)! */
 148        unsigned short  gso_segs;
 149        unsigned short  gso_type;
 150        __be32          ip6_frag_id;
 151        struct sk_buff  *frag_list;
 152        skb_frag_t      frags[MAX_SKB_FRAGS];
 153};
 154
 155/* We divide dataref into two halves.  The higher 16 bits hold references
 156 * to the payload part of skb->data.  The lower 16 bits hold references to
 157 * the entire skb->data.  A clone of a headerless skb holds the length of
 158 * the header in skb->hdr_len.
 159 *
 160 * All users must obey the rule that the skb->data reference count must be
 161 * greater than or equal to the payload reference count.
 162 *
 163 * Holding a reference to the payload part means that the user does not
 164 * care about modifications to the header part of skb->data.
 165 */
 166#define SKB_DATAREF_SHIFT 16
 167#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 168
 169
 170enum {
 171        SKB_FCLONE_UNAVAILABLE,
 172        SKB_FCLONE_ORIG,
 173        SKB_FCLONE_CLONE,
 174};
 175
 176enum {
 177        SKB_GSO_TCPV4 = 1 << 0,
 178        SKB_GSO_UDP = 1 << 1,
 179
 180        /* This indicates the skb is from an untrusted source. */
 181        SKB_GSO_DODGY = 1 << 2,
 182
 183        /* This indicates the tcp segment has CWR set. */
 184        SKB_GSO_TCP_ECN = 1 << 3,
 185
 186        SKB_GSO_TCPV6 = 1 << 4,
 187};
 188
 189#if BITS_PER_LONG > 32
 190#define NET_SKBUFF_DATA_USES_OFFSET 1
 191#endif
 192
 193#ifdef NET_SKBUFF_DATA_USES_OFFSET
 194typedef unsigned int sk_buff_data_t;
 195#else
 196typedef unsigned char *sk_buff_data_t;
 197#endif
 198
 199/** 
 200 *      struct sk_buff - socket buffer
 201 *      @next: Next buffer in list
 202 *      @prev: Previous buffer in list
 203 *      @sk: Socket we are owned by
 204 *      @tstamp: Time we arrived
 205 *      @dev: Device we arrived on/are leaving by
 206 *      @transport_header: Transport layer header
 207 *      @network_header: Network layer header
 208 *      @mac_header: Link layer header
 209 *      @dst: destination entry
 210 *      @sp: the security path, used for xfrm
 211 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 212 *      @len: Length of actual data
 213 *      @data_len: Data length
 214 *      @mac_len: Length of link layer header
 215 *      @hdr_len: writable header length of cloned skb
 216 *      @csum: Checksum (must include start/offset pair)
 217 *      @csum_start: Offset from skb->head where checksumming should start
 218 *      @csum_offset: Offset from csum_start where checksum should be stored
 219 *      @local_df: allow local fragmentation
 220 *      @cloned: Head may be cloned (check refcnt to be sure)
 221 *      @nohdr: Payload reference only, must not modify header
 222 *      @pkt_type: Packet class
 223 *      @fclone: skbuff clone status
 224 *      @ip_summed: Driver fed us an IP checksum
 225 *      @priority: Packet queueing priority
 226 *      @users: User count - see {datagram,tcp}.c
 227 *      @protocol: Packet protocol from driver
 228 *      @truesize: Buffer size 
 229 *      @head: Head of buffer
 230 *      @data: Data head pointer
 231 *      @tail: Tail pointer
 232 *      @end: End pointer
 233 *      @destructor: Destruct function
 234 *      @mark: Generic packet mark
 235 *      @nfct: Associated connection, if any
 236 *      @ipvs_property: skbuff is owned by ipvs
 237 *      @nf_trace: netfilter packet trace flag
 238 *      @nfctinfo: Relationship of this skb to the connection
 239 *      @nfct_reasm: netfilter conntrack re-assembly pointer
 240 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 241 *      @iif: ifindex of device we arrived on
 242 *      @queue_mapping: Queue mapping for multiqueue devices
 243 *      @tc_index: Traffic control index
 244 *      @tc_verd: traffic control verdict
 245 *      @dma_cookie: a cookie to one of several possible DMA operations
 246 *              done by skb DMA functions
 247 *      @secmark: security marking
 248 */
 249
 250struct sk_buff {
 251        /* These two members must be first. */
 252        struct sk_buff          *next;
 253        struct sk_buff          *prev;
 254
 255        struct sock             *sk;
 256        ktime_t                 tstamp;
 257        struct net_device       *dev;
 258
 259        struct  dst_entry       *dst;
 260        struct  sec_path        *sp;
 261
 262        /*
 263         * This is the control buffer. It is free to use for every
 264         * layer. Please put your private variables there. If you
 265         * want to keep them across layers you have to do a skb_clone()
 266         * first. This is owned by whoever has the skb queued ATM.
 267         */
 268        char                    cb[48];
 269
 270        unsigned int            len,
 271                                data_len;
 272        __u16                   mac_len,
 273                                hdr_len;
 274        union {
 275                __wsum          csum;
 276                struct {
 277                        __u16   csum_start;
 278                        __u16   csum_offset;
 279                };
 280        };
 281        __u32                   priority;
 282        __u8                    local_df:1,
 283                                cloned:1,
 284                                ip_summed:2,
 285                                nohdr:1,
 286                                nfctinfo:3;
 287        __u8                    pkt_type:3,
 288                                fclone:2,
 289                                ipvs_property:1,
 290                                nf_trace:1;
 291        __be16                  protocol;
 292
 293        void                    (*destructor)(struct sk_buff *skb);
 294#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 295        struct nf_conntrack     *nfct;
 296        struct sk_buff          *nfct_reasm;
 297#endif
 298#ifdef CONFIG_BRIDGE_NETFILTER
 299        struct nf_bridge_info   *nf_bridge;
 300#endif
 301
 302        int                     iif;
 303#ifdef CONFIG_NETDEVICES_MULTIQUEUE
 304        __u16                   queue_mapping;
 305#endif
 306#ifdef CONFIG_NET_SCHED
 307        __u16                   tc_index;       /* traffic control index */
 308#ifdef CONFIG_NET_CLS_ACT
 309        __u16                   tc_verd;        /* traffic control verdict */
 310#endif
 311#endif
 312        /* 2 byte hole */
 313
 314#ifdef CONFIG_NET_DMA
 315        dma_cookie_t            dma_cookie;
 316#endif
 317#ifdef CONFIG_NETWORK_SECMARK
 318        __u32                   secmark;
 319#endif
 320
 321        __u32                   mark;
 322
 323        sk_buff_data_t          transport_header;
 324        sk_buff_data_t          network_header;
 325        sk_buff_data_t          mac_header;
 326        /* These elements must be at the end, see alloc_skb() for details.  */
 327        sk_buff_data_t          tail;
 328        sk_buff_data_t          end;
 329        unsigned char           *head,
 330                                *data;
 331        unsigned int            truesize;
 332        atomic_t                users;
 333};
 334
 335#ifdef __KERNEL__
 336/*
 337 *      Handling routines are only of interest to the kernel
 338 */
 339#include <linux/slab.h>
 340
 341#include <asm/system.h>
 342
 343extern void kfree_skb(struct sk_buff *skb);
 344extern void            __kfree_skb(struct sk_buff *skb);
 345extern struct sk_buff *__alloc_skb(unsigned int size,
 346                                   gfp_t priority, int fclone, int node);
 347static inline struct sk_buff *alloc_skb(unsigned int size,
 348                                        gfp_t priority)
 349{
 350        return __alloc_skb(size, priority, 0, -1);
 351}
 352
 353static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 354                                               gfp_t priority)
 355{
 356        return __alloc_skb(size, priority, 1, -1);
 357}
 358
 359extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 360extern struct sk_buff *skb_clone(struct sk_buff *skb,
 361                                 gfp_t priority);
 362extern struct sk_buff *skb_copy(const struct sk_buff *skb,
 363                                gfp_t priority);
 364extern struct sk_buff *pskb_copy(struct sk_buff *skb,
 365                                 gfp_t gfp_mask);
 366extern int             pskb_expand_head(struct sk_buff *skb,
 367                                        int nhead, int ntail,
 368                                        gfp_t gfp_mask);
 369extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 370                                            unsigned int headroom);
 371extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
 372                                       int newheadroom, int newtailroom,
 373                                       gfp_t priority);
 374extern int             skb_to_sgvec(struct sk_buff *skb,
 375                                    struct scatterlist *sg, int offset,
 376                                    int len);
 377extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
 378                                    struct sk_buff **trailer);
 379extern int             skb_pad(struct sk_buff *skb, int pad);
 380#define dev_kfree_skb(a)        kfree_skb(a)
 381extern void           skb_over_panic(struct sk_buff *skb, int len,
 382                                     void *here);
 383extern void           skb_under_panic(struct sk_buff *skb, int len,
 384                                      void *here);
 385extern void           skb_truesize_bug(struct sk_buff *skb);
 386
 387static inline void skb_truesize_check(struct sk_buff *skb)
 388{
 389        int len = sizeof(struct sk_buff) + skb->len;
 390
 391        if (unlikely((int)skb->truesize < len))
 392                skb_truesize_bug(skb);
 393}
 394
 395extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 396                        int getfrag(void *from, char *to, int offset,
 397                        int len,int odd, struct sk_buff *skb),
 398                        void *from, int length);
 399
 400struct skb_seq_state
 401{
 402        __u32           lower_offset;
 403        __u32           upper_offset;
 404        __u32           frag_idx;
 405        __u32           stepped_offset;
 406        struct sk_buff  *root_skb;
 407        struct sk_buff  *cur_skb;
 408        __u8            *frag_data;
 409};
 410
 411extern void           skb_prepare_seq_read(struct sk_buff *skb,
 412                                           unsigned int from, unsigned int to,
 413                                           struct skb_seq_state *st);
 414extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
 415                                   struct skb_seq_state *st);
 416extern void           skb_abort_seq_read(struct skb_seq_state *st);
 417
 418extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
 419                                    unsigned int to, struct ts_config *config,
 420                                    struct ts_state *state);
 421
 422#ifdef NET_SKBUFF_DATA_USES_OFFSET
 423static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 424{
 425        return skb->head + skb->end;
 426}
 427#else
 428static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 429{
 430        return skb->end;
 431}
 432#endif
 433
 434/* Internal */
 435#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
 436
 437/**
 438 *      skb_queue_empty - check if a queue is empty
 439 *      @list: queue head
 440 *
 441 *      Returns true if the queue is empty, false otherwise.
 442 */
 443static inline int skb_queue_empty(const struct sk_buff_head *list)
 444{
 445        return list->next == (struct sk_buff *)list;
 446}
 447
 448/**
 449 *      skb_get - reference buffer
 450 *      @skb: buffer to reference
 451 *
 452 *      Makes another reference to a socket buffer and returns a pointer
 453 *      to the buffer.
 454 */
 455static inline struct sk_buff *skb_get(struct sk_buff *skb)
 456{
 457        atomic_inc(&skb->users);
 458        return skb;
 459}
 460
 461/*
 462 * If users == 1, we are the only owner and are can avoid redundant
 463 * atomic change.
 464 */
 465
 466/**
 467 *      skb_cloned - is the buffer a clone
 468 *      @skb: buffer to check
 469 *
 470 *      Returns true if the buffer was generated with skb_clone() and is
 471 *      one of multiple shared copies of the buffer. Cloned buffers are
 472 *      shared data so must not be written to under normal circumstances.
 473 */
 474static inline int skb_cloned(const struct sk_buff *skb)
 475{
 476        return skb->cloned &&
 477               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
 478}
 479
 480/**
 481 *      skb_header_cloned - is the header a clone
 482 *      @skb: buffer to check
 483 *
 484 *      Returns true if modifying the header part of the buffer requires
 485 *      the data to be copied.
 486 */
 487static inline int skb_header_cloned(const struct sk_buff *skb)
 488{
 489        int dataref;
 490
 491        if (!skb->cloned)
 492                return 0;
 493
 494        dataref = atomic_read(&skb_shinfo(skb)->dataref);
 495        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
 496        return dataref != 1;
 497}
 498
 499/**
 500 *      skb_header_release - release reference to header
 501 *      @skb: buffer to operate on
 502 *
 503 *      Drop a reference to the header part of the buffer.  This is done
 504 *      by acquiring a payload reference.  You must not read from the header
 505 *      part of skb->data after this.
 506 */
 507static inline void skb_header_release(struct sk_buff *skb)
 508{
 509        BUG_ON(skb->nohdr);
 510        skb->nohdr = 1;
 511        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
 512}
 513
 514/**
 515 *      skb_shared - is the buffer shared
 516 *      @skb: buffer to check
 517 *
 518 *      Returns true if more than one person has a reference to this
 519 *      buffer.
 520 */
 521static inline int skb_shared(const struct sk_buff *skb)
 522{
 523        return atomic_read(&skb->users) != 1;
 524}
 525
 526/**
 527 *      skb_share_check - check if buffer is shared and if so clone it
 528 *      @skb: buffer to check
 529 *      @pri: priority for memory allocation
 530 *
 531 *      If the buffer is shared the buffer is cloned and the old copy
 532 *      drops a reference. A new clone with a single reference is returned.
 533 *      If the buffer is not shared the original buffer is returned. When
 534 *      being called from interrupt status or with spinlocks held pri must
 535 *      be GFP_ATOMIC.
 536 *
 537 *      NULL is returned on a memory allocation failure.
 538 */
 539static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
 540                                              gfp_t pri)
 541{
 542        might_sleep_if(pri & __GFP_WAIT);
 543        if (skb_shared(skb)) {
 544                struct sk_buff *nskb = skb_clone(skb, pri);
 545                kfree_skb(skb);
 546                skb = nskb;
 547        }
 548        return skb;
 549}
 550
 551/*
 552 *      Copy shared buffers into a new sk_buff. We effectively do COW on
 553 *      packets to handle cases where we have a local reader and forward
 554 *      and a couple of other messy ones. The normal one is tcpdumping
 555 *      a packet thats being forwarded.
 556 */
 557
 558/**
 559 *      skb_unshare - make a copy of a shared buffer
 560 *      @skb: buffer to check
 561 *      @pri: priority for memory allocation
 562 *
 563 *      If the socket buffer is a clone then this function creates a new
 564 *      copy of the data, drops a reference count on the old copy and returns
 565 *      the new copy with the reference count at 1. If the buffer is not a clone
 566 *      the original buffer is returned. When called with a spinlock held or
 567 *      from interrupt state @pri must be %GFP_ATOMIC
 568 *
 569 *      %NULL is returned on a memory allocation failure.
 570 */
 571static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
 572                                          gfp_t pri)
 573{
 574        might_sleep_if(pri & __GFP_WAIT);
 575        if (skb_cloned(skb)) {
 576                struct sk_buff *nskb = skb_copy(skb, pri);
 577                kfree_skb(skb); /* Free our shared copy */
 578                skb = nskb;
 579        }
 580        return skb;
 581}
 582
 583/**
 584 *      skb_peek
 585 *      @list_: list to peek at
 586 *
 587 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 588 *      be careful with this one. A peek leaves the buffer on the
 589 *      list and someone else may run off with it. You must hold
 590 *      the appropriate locks or have a private queue to do this.
 591 *
 592 *      Returns %NULL for an empty list or a pointer to the head element.
 593 *      The reference count is not incremented and the reference is therefore
 594 *      volatile. Use with caution.
 595 */
 596static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
 597{
 598        struct sk_buff *list = ((struct sk_buff *)list_)->next;
 599        if (list == (struct sk_buff *)list_)
 600                list = NULL;
 601        return list;
 602}
 603
 604/**
 605 *      skb_peek_tail
 606 *      @list_: list to peek at
 607 *
 608 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 609 *      be careful with this one. A peek leaves the buffer on the
 610 *      list and someone else may run off with it. You must hold
 611 *      the appropriate locks or have a private queue to do this.
 612 *
 613 *      Returns %NULL for an empty list or a pointer to the tail element.
 614 *      The reference count is not incremented and the reference is therefore
 615 *      volatile. Use with caution.
 616 */
 617static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
 618{
 619        struct sk_buff *list = ((struct sk_buff *)list_)->prev;
 620        if (list == (struct sk_buff *)list_)
 621                list = NULL;
 622        return list;
 623}
 624
 625/**
 626 *      skb_queue_len   - get queue length
 627 *      @list_: list to measure
 628 *
 629 *      Return the length of an &sk_buff queue.
 630 */
 631static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
 632{
 633        return list_->qlen;
 634}
 635
 636/*
 637 * This function creates a split out lock class for each invocation;
 638 * this is needed for now since a whole lot of users of the skb-queue
 639 * infrastructure in drivers have different locking usage (in hardirq)
 640 * than the networking core (in softirq only). In the long run either the
 641 * network layer or drivers should need annotation to consolidate the
 642 * main types of usage into 3 classes.
 643 */
 644static inline void skb_queue_head_init(struct sk_buff_head *list)
 645{
 646        spin_lock_init(&list->lock);
 647        list->prev = list->next = (struct sk_buff *)list;
 648        list->qlen = 0;
 649}
 650
 651static inline void skb_queue_head_init_class(struct sk_buff_head *list,
 652                struct lock_class_key *class)
 653{
 654        skb_queue_head_init(list);
 655        lockdep_set_class(&list->lock, class);
 656}
 657
 658/*
 659 *      Insert an sk_buff at the start of a list.
 660 *
 661 *      The "__skb_xxxx()" functions are the non-atomic ones that
 662 *      can only be called with interrupts disabled.
 663 */
 664
 665/**
 666 *      __skb_queue_after - queue a buffer at the list head
 667 *      @list: list to use
 668 *      @prev: place after this buffer
 669 *      @newsk: buffer to queue
 670 *
 671 *      Queue a buffer int the middle of a list. This function takes no locks
 672 *      and you must therefore hold required locks before calling it.
 673 *
 674 *      A buffer cannot be placed on two lists at the same time.
 675 */
 676static inline void __skb_queue_after(struct sk_buff_head *list,
 677                                     struct sk_buff *prev,
 678                                     struct sk_buff *newsk)
 679{
 680        struct sk_buff *next;
 681        list->qlen++;
 682
 683        next = prev->next;
 684        newsk->next = next;
 685        newsk->prev = prev;
 686        next->prev  = prev->next = newsk;
 687}
 688
 689/**
 690 *      __skb_queue_head - queue a buffer at the list head
 691 *      @list: list to use
 692 *      @newsk: buffer to queue
 693 *
 694 *      Queue a buffer at the start of a list. This function takes no locks
 695 *      and you must therefore hold required locks before calling it.
 696 *
 697 *      A buffer cannot be placed on two lists at the same time.
 698 */
 699extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
 700static inline void __skb_queue_head(struct sk_buff_head *list,
 701                                    struct sk_buff *newsk)
 702{
 703        __skb_queue_after(list, (struct sk_buff *)list, newsk);
 704}
 705
 706/**
 707 *      __skb_queue_tail - queue a buffer at the list tail
 708 *      @list: list to use
 709 *      @newsk: buffer to queue
 710 *
 711 *      Queue a buffer at the end of a list. This function takes no locks
 712 *      and you must therefore hold required locks before calling it.
 713 *
 714 *      A buffer cannot be placed on two lists at the same time.
 715 */
 716extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
 717static inline void __skb_queue_tail(struct sk_buff_head *list,
 718                                   struct sk_buff *newsk)
 719{
 720        struct sk_buff *prev, *next;
 721
 722        list->qlen++;
 723        next = (struct sk_buff *)list;
 724        prev = next->prev;
 725        newsk->next = next;
 726        newsk->prev = prev;
 727        next->prev  = prev->next = newsk;
 728}
 729
 730
 731/**
 732 *      __skb_dequeue - remove from the head of the queue
 733 *      @list: list to dequeue from
 734 *
 735 *      Remove the head of the list. This function does not take any locks
 736 *      so must be used with appropriate locks held only. The head item is
 737 *      returned or %NULL if the list is empty.
 738 */
 739extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
 740static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
 741{
 742        struct sk_buff *next, *prev, *result;
 743
 744        prev = (struct sk_buff *) list;
 745        next = prev->next;
 746        result = NULL;
 747        if (next != prev) {
 748                result       = next;
 749                next         = next->next;
 750                list->qlen--;
 751                next->prev   = prev;
 752                prev->next   = next;
 753                result->next = result->prev = NULL;
 754        }
 755        return result;
 756}
 757
 758
 759/*
 760 *      Insert a packet on a list.
 761 */
 762extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
 763static inline void __skb_insert(struct sk_buff *newsk,
 764                                struct sk_buff *prev, struct sk_buff *next,
 765                                struct sk_buff_head *list)
 766{
 767        newsk->next = next;
 768        newsk->prev = prev;
 769        next->prev  = prev->next = newsk;
 770        list->qlen++;
 771}
 772
 773/*
 774 *      Place a packet after a given packet in a list.
 775 */
 776extern void        skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
 777static inline void __skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
 778{
 779        __skb_insert(newsk, old, old->next, list);
 780}
 781
 782/*
 783 * remove sk_buff from list. _Must_ be called atomically, and with
 784 * the list known..
 785 */
 786extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
 787static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
 788{
 789        struct sk_buff *next, *prev;
 790
 791        list->qlen--;
 792        next       = skb->next;
 793        prev       = skb->prev;
 794        skb->next  = skb->prev = NULL;
 795        next->prev = prev;
 796        prev->next = next;
 797}
 798
 799
 800/* XXX: more streamlined implementation */
 801
 802/**
 803 *      __skb_dequeue_tail - remove from the tail of the queue
 804 *      @list: list to dequeue from
 805 *
 806 *      Remove the tail of the list. This function does not take any locks
 807 *      so must be used with appropriate locks held only. The tail item is
 808 *      returned or %NULL if the list is empty.
 809 */
 810extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
 811static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
 812{
 813        struct sk_buff *skb = skb_peek_tail(list);
 814        if (skb)
 815                __skb_unlink(skb, list);
 816        return skb;
 817}
 818
 819
 820static inline int skb_is_nonlinear(const struct sk_buff *skb)
 821{
 822        return skb->data_len;
 823}
 824
 825static inline unsigned int skb_headlen(const struct sk_buff *skb)
 826{
 827        return skb->len - skb->data_len;
 828}
 829
 830static inline int skb_pagelen(const struct sk_buff *skb)
 831{
 832        int i, len = 0;
 833
 834        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
 835                len += skb_shinfo(skb)->frags[i].size;
 836        return len + skb_headlen(skb);
 837}
 838
 839static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
 840                                      struct page *page, int off, int size)
 841{
 842        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 843
 844        frag->page                = page;
 845        frag->page_offset         = off;
 846        frag->size                = size;
 847        skb_shinfo(skb)->nr_frags = i + 1;
 848}
 849
 850#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
 851#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->frag_list)
 852#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
 853
 854#ifdef NET_SKBUFF_DATA_USES_OFFSET
 855static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
 856{
 857        return skb->head + skb->tail;
 858}
 859
 860static inline void skb_reset_tail_pointer(struct sk_buff *skb)
 861{
 862        skb->tail = skb->data - skb->head;
 863}
 864
 865static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
 866{
 867        skb_reset_tail_pointer(skb);
 868        skb->tail += offset;
 869}
 870#else /* NET_SKBUFF_DATA_USES_OFFSET */
 871static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
 872{
 873        return skb->tail;
 874}
 875
 876static inline void skb_reset_tail_pointer(struct sk_buff *skb)
 877{
 878        skb->tail = skb->data;
 879}
 880
 881static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
 882{
 883        skb->tail = skb->data + offset;
 884}
 885
 886#endif /* NET_SKBUFF_DATA_USES_OFFSET */
 887
 888/*
 889 *      Add data to an sk_buff
 890 */
 891static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
 892{
 893        unsigned char *tmp = skb_tail_pointer(skb);
 894        SKB_LINEAR_ASSERT(skb);
 895        skb->tail += len;
 896        skb->len  += len;
 897        return tmp;
 898}
 899
 900/**
 901 *      skb_put - add data to a buffer
 902 *      @skb: buffer to use
 903 *      @len: amount of data to add
 904 *
 905 *      This function extends the used data area of the buffer. If this would
 906 *      exceed the total buffer size the kernel will panic. A pointer to the
 907 *      first byte of the extra data is returned.
 908 */
 909static inline unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
 910{
 911        unsigned char *tmp = skb_tail_pointer(skb);
 912        SKB_LINEAR_ASSERT(skb);
 913        skb->tail += len;
 914        skb->len  += len;
 915        if (unlikely(skb->tail > skb->end))
 916                skb_over_panic(skb, len, current_text_addr());
 917        return tmp;
 918}
 919
 920static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
 921{
 922        skb->data -= len;
 923        skb->len  += len;
 924        return skb->data;
 925}
 926
 927/**
 928 *      skb_push - add data to the start of a buffer
 929 *      @skb: buffer to use
 930 *      @len: amount of data to add
 931 *
 932 *      This function extends the used data area of the buffer at the buffer
 933 *      start. If this would exceed the total buffer headroom the kernel will
 934 *      panic. A pointer to the first byte of the extra data is returned.
 935 */
 936static inline unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
 937{
 938        skb->data -= len;
 939        skb->len  += len;
 940        if (unlikely(skb->data<skb->head))
 941                skb_under_panic(skb, len, current_text_addr());
 942        return skb->data;
 943}
 944
 945static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
 946{
 947        skb->len -= len;
 948        BUG_ON(skb->len < skb->data_len);
 949        return skb->data += len;
 950}
 951
 952/**
 953 *      skb_pull - remove data from the start of a buffer
 954 *      @skb: buffer to use
 955 *      @len: amount of data to remove
 956 *
 957 *      This function removes data from the start of a buffer, returning
 958 *      the memory to the headroom. A pointer to the next data in the buffer
 959 *      is returned. Once the data has been pulled future pushes will overwrite
 960 *      the old data.
 961 */
 962static inline unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
 963{
 964        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
 965}
 966
 967extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
 968
 969static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
 970{
 971        if (len > skb_headlen(skb) &&
 972            !__pskb_pull_tail(skb, len-skb_headlen(skb)))
 973                return NULL;
 974        skb->len -= len;
 975        return skb->data += len;
 976}
 977
 978static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
 979{
 980        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
 981}
 982
 983static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
 984{
 985        if (likely(len <= skb_headlen(skb)))
 986                return 1;
 987        if (unlikely(len > skb->len))
 988                return 0;
 989        return __pskb_pull_tail(skb, len-skb_headlen(skb)) != NULL;
 990}
 991
 992/**
 993 *      skb_headroom - bytes at buffer head
 994 *      @skb: buffer to check
 995 *
 996 *      Return the number of bytes of free space at the head of an &sk_buff.
 997 */
 998static inline unsigned int skb_headroom(const struct sk_buff *skb)
 999{
1000        return skb->data - skb->head;
1001}
1002
1003/**
1004 *      skb_tailroom - bytes at buffer end
1005 *      @skb: buffer to check
1006 *
1007 *      Return the number of bytes of free space at the tail of an sk_buff
1008 */
1009static inline int skb_tailroom(const struct sk_buff *skb)
1010{
1011        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1012}
1013
1014/**
1015 *      skb_reserve - adjust headroom
1016 *      @skb: buffer to alter
1017 *      @len: bytes to move
1018 *
1019 *      Increase the headroom of an empty &sk_buff by reducing the tail
1020 *      room. This is only allowed for an empty buffer.
1021 */
1022static inline void skb_reserve(struct sk_buff *skb, int len)
1023{
1024        skb->data += len;
1025        skb->tail += len;
1026}
1027
1028#ifdef NET_SKBUFF_DATA_USES_OFFSET
1029static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1030{
1031        return skb->head + skb->transport_header;
1032}
1033
1034static inline void skb_reset_transport_header(struct sk_buff *skb)
1035{
1036        skb->transport_header = skb->data - skb->head;
1037}
1038
1039static inline void skb_set_transport_header(struct sk_buff *skb,
1040                                            const int offset)
1041{
1042        skb_reset_transport_header(skb);
1043        skb->transport_header += offset;
1044}
1045
1046static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1047{
1048        return skb->head + skb->network_header;
1049}
1050
1051static inline void skb_reset_network_header(struct sk_buff *skb)
1052{
1053        skb->network_header = skb->data - skb->head;
1054}
1055
1056static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1057{
1058        skb_reset_network_header(skb);
1059        skb->network_header += offset;
1060}
1061
1062static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1063{
1064        return skb->head + skb->mac_header;
1065}
1066
1067static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1068{
1069        return skb->mac_header != ~0U;
1070}
1071
1072static inline void skb_reset_mac_header(struct sk_buff *skb)
1073{
1074        skb->mac_header = skb->data - skb->head;
1075}
1076
1077static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1078{
1079        skb_reset_mac_header(skb);
1080        skb->mac_header += offset;
1081}
1082
1083#else /* NET_SKBUFF_DATA_USES_OFFSET */
1084
1085static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1086{
1087        return skb->transport_header;
1088}
1089
1090static inline void skb_reset_transport_header(struct sk_buff *skb)
1091{
1092        skb->transport_header = skb->data;
1093}
1094
1095static inline void skb_set_transport_header(struct sk_buff *skb,
1096                                            const int offset)
1097{
1098        skb->transport_header = skb->data + offset;
1099}
1100
1101static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1102{
1103        return skb->network_header;
1104}
1105
1106static inline void skb_reset_network_header(struct sk_buff *skb)
1107{
1108        skb->network_header = skb->data;
1109}
1110
1111static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1112{
1113        skb->network_header = skb->data + offset;
1114}
1115
1116static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1117{
1118        return skb->mac_header;
1119}
1120
1121static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1122{
1123        return skb->mac_header != NULL;
1124}
1125
1126static inline void skb_reset_mac_header(struct sk_buff *skb)
1127{
1128        skb->mac_header = skb->data;
1129}
1130
1131static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1132{
1133        skb->mac_header = skb->data + offset;
1134}
1135#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1136
1137static inline int skb_transport_offset(const struct sk_buff *skb)
1138{
1139        return skb_transport_header(skb) - skb->data;
1140}
1141
1142static inline u32 skb_network_header_len(const struct sk_buff *skb)
1143{
1144        return skb->transport_header - skb->network_header;
1145}
1146
1147static inline int skb_network_offset(const struct sk_buff *skb)
1148{
1149        return skb_network_header(skb) - skb->data;
1150}
1151
1152/*
1153 * CPUs often take a performance hit when accessing unaligned memory
1154 * locations. The actual performance hit varies, it can be small if the
1155 * hardware handles it or large if we have to take an exception and fix it
1156 * in software.
1157 *
1158 * Since an ethernet header is 14 bytes network drivers often end up with
1159 * the IP header at an unaligned offset. The IP header can be aligned by
1160 * shifting the start of the packet by 2 bytes. Drivers should do this
1161 * with:
1162 *
1163 * skb_reserve(NET_IP_ALIGN);
1164 *
1165 * The downside to this alignment of the IP header is that the DMA is now
1166 * unaligned. On some architectures the cost of an unaligned DMA is high
1167 * and this cost outweighs the gains made by aligning the IP header.
1168 * 
1169 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1170 * to be overridden.
1171 */
1172#ifndef NET_IP_ALIGN
1173#define NET_IP_ALIGN    2
1174#endif
1175
1176/*
1177 * The networking layer reserves some headroom in skb data (via
1178 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1179 * the header has to grow. In the default case, if the header has to grow
1180 * 16 bytes or less we avoid the reallocation.
1181 *
1182 * Unfortunately this headroom changes the DMA alignment of the resulting
1183 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1184 * on some architectures. An architecture can override this value,
1185 * perhaps setting it to a cacheline in size (since that will maintain
1186 * cacheline alignment of the DMA). It must be a power of 2.
1187 *
1188 * Various parts of the networking layer expect at least 16 bytes of
1189 * headroom, you should not reduce this.
1190 */
1191#ifndef NET_SKB_PAD
1192#define NET_SKB_PAD     16
1193#endif
1194
1195extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1196
1197static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1198{
1199        if (unlikely(skb->data_len)) {
1200                WARN_ON(1);
1201                return;
1202        }
1203        skb->len = len;
1204        skb_set_tail_pointer(skb, len);
1205}
1206
1207/**
1208 *      skb_trim - remove end from a buffer
1209 *      @skb: buffer to alter
1210 *      @len: new length
1211 *
1212 *      Cut the length of a buffer down by removing data from the tail. If
1213 *      the buffer is already under the length specified it is not modified.
1214 *      The skb must be linear.
1215 */
1216static inline void skb_trim(struct sk_buff *skb, unsigned int len)
1217{
1218        if (skb->len > len)
1219                __skb_trim(skb, len);
1220}
1221
1222
1223static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1224{
1225        if (skb->data_len)
1226                return ___pskb_trim(skb, len);
1227        __skb_trim(skb, len);
1228        return 0;
1229}
1230
1231static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1232{
1233        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1234}
1235
1236/**
1237 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1238 *      @skb: buffer to alter
1239 *      @len: new length
1240 *
1241 *      This is identical to pskb_trim except that the caller knows that
1242 *      the skb is not cloned so we should never get an error due to out-
1243 *      of-memory.
1244 */
1245static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1246{
1247        int err = pskb_trim(skb, len);
1248        BUG_ON(err);
1249}
1250
1251/**
1252 *      skb_orphan - orphan a buffer
1253 *      @skb: buffer to orphan
1254 *
1255 *      If a buffer currently has an owner then we call the owner's
1256 *      destructor function and make the @skb unowned. The buffer continues
1257 *      to exist but is no longer charged to its former owner.
1258 */
1259static inline void skb_orphan(struct sk_buff *skb)
1260{
1261        if (skb->destructor)
1262                skb->destructor(skb);
1263        skb->destructor = NULL;
1264        skb->sk         = NULL;
1265}
1266
1267/**
1268 *      __skb_queue_purge - empty a list
1269 *      @list: list to empty
1270 *
1271 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1272 *      the list and one reference dropped. This function does not take the
1273 *      list lock and the caller must hold the relevant locks to use it.
1274 */
1275extern void skb_queue_purge(struct sk_buff_head *list);
1276static inline void __skb_queue_purge(struct sk_buff_head *list)
1277{
1278        struct sk_buff *skb;
1279        while ((skb = __skb_dequeue(list)) != NULL)
1280                kfree_skb(skb);
1281}
1282
1283/**
1284 *      __dev_alloc_skb - allocate an skbuff for receiving
1285 *      @length: length to allocate
1286 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1287 *
1288 *      Allocate a new &sk_buff and assign it a usage count of one. The
1289 *      buffer has unspecified headroom built in. Users should allocate
1290 *      the headroom they think they need without accounting for the
1291 *      built in space. The built in space is used for optimisations.
1292 *
1293 *      %NULL is returned if there is no free memory.
1294 */
1295static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1296                                              gfp_t gfp_mask)
1297{
1298        struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1299        if (likely(skb))
1300                skb_reserve(skb, NET_SKB_PAD);
1301        return skb;
1302}
1303
1304/**
1305 *      dev_alloc_skb - allocate an skbuff for receiving
1306 *      @length: length to allocate
1307 *
1308 *      Allocate a new &sk_buff and assign it a usage count of one. The
1309 *      buffer has unspecified headroom built in. Users should allocate
1310 *      the headroom they think they need without accounting for the
1311 *      built in space. The built in space is used for optimisations.
1312 *
1313 *      %NULL is returned if there is no free memory. Although this function
1314 *      allocates memory it can be called from an interrupt.
1315 */
1316static inline struct sk_buff *dev_alloc_skb(unsigned int length)
1317{
1318        return __dev_alloc_skb(length, GFP_ATOMIC);
1319}
1320
1321extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1322                unsigned int length, gfp_t gfp_mask);
1323
1324/**
1325 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1326 *      @dev: network device to receive on
1327 *      @length: length to allocate
1328 *
1329 *      Allocate a new &sk_buff and assign it a usage count of one. The
1330 *      buffer has unspecified headroom built in. Users should allocate
1331 *      the headroom they think they need without accounting for the
1332 *      built in space. The built in space is used for optimisations.
1333 *
1334 *      %NULL is returned if there is no free memory. Although this function
1335 *      allocates memory it can be called from an interrupt.
1336 */
1337static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1338                unsigned int length)
1339{
1340        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1341}
1342
1343/**
1344 *      skb_clone_writable - is the header of a clone writable
1345 *      @skb: buffer to check
1346 *      @len: length up to which to write
1347 *
1348 *      Returns true if modifying the header part of the cloned buffer
1349 *      does not requires the data to be copied.
1350 */
1351static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1352{
1353        return !skb_header_cloned(skb) &&
1354               skb_headroom(skb) + len <= skb->hdr_len;
1355}
1356
1357static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1358                            int cloned)
1359{
1360        int delta = 0;
1361
1362        if (headroom < NET_SKB_PAD)
1363                headroom = NET_SKB_PAD;
1364        if (headroom > skb_headroom(skb))
1365                delta = headroom - skb_headroom(skb);
1366
1367        if (delta || cloned)
1368                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1369                                        GFP_ATOMIC);
1370        return 0;
1371}
1372
1373/**
1374 *      skb_cow - copy header of skb when it is required
1375 *      @skb: buffer to cow
1376 *      @headroom: needed headroom
1377 *
1378 *      If the skb passed lacks sufficient headroom or its data part
1379 *      is shared, data is reallocated. If reallocation fails, an error
1380 *      is returned and original skb is not changed.
1381 *
1382 *      The result is skb with writable area skb->head...skb->tail
1383 *      and at least @headroom of space at head.
1384 */
1385static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1386{
1387        return __skb_cow(skb, headroom, skb_cloned(skb));
1388}
1389
1390/**
1391 *      skb_cow_head - skb_cow but only making the head writable
1392 *      @skb: buffer to cow
1393 *      @headroom: needed headroom
1394 *
1395 *      This function is identical to skb_cow except that we replace the
1396 *      skb_cloned check by skb_header_cloned.  It should be used when
1397 *      you only need to push on some header and do not need to modify
1398 *      the data.
1399 */
1400static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1401{
1402        return __skb_cow(skb, headroom, skb_header_cloned(skb));
1403}
1404
1405/**
1406 *      skb_padto       - pad an skbuff up to a minimal size
1407 *      @skb: buffer to pad
1408 *      @len: minimal length
1409 *
1410 *      Pads up a buffer to ensure the trailing bytes exist and are
1411 *      blanked. If the buffer already contains sufficient data it
1412 *      is untouched. Otherwise it is extended. Returns zero on
1413 *      success. The skb is freed on error.
1414 */
1415 
1416static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1417{
1418        unsigned int size = skb->len;
1419        if (likely(size >= len))
1420                return 0;
1421        return skb_pad(skb, len-size);
1422}
1423
1424static inline int skb_add_data(struct sk_buff *skb,
1425                               char __user *from, int copy)
1426{
1427        const int off = skb->len;
1428
1429        if (skb->ip_summed == CHECKSUM_NONE) {
1430                int err = 0;
1431                __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1432                                                            copy, 0, &err);
1433                if (!err) {
1434                        skb->csum = csum_block_add(skb->csum, csum, off);
1435                        return 0;
1436                }
1437        } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1438                return 0;
1439
1440        __skb_trim(skb, off);
1441        return -EFAULT;
1442}
1443
1444static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1445                                   struct page *page, int off)
1446{
1447        if (i) {
1448                struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1449
1450                return page == frag->page &&
1451                       off == frag->page_offset + frag->size;
1452        }
1453        return 0;
1454}
1455
1456static inline int __skb_linearize(struct sk_buff *skb)
1457{
1458        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1459}
1460
1461/**
1462 *      skb_linearize - convert paged skb to linear one
1463 *      @skb: buffer to linarize
1464 *
1465 *      If there is no free memory -ENOMEM is returned, otherwise zero
1466 *      is returned and the old skb data released.
1467 */
1468static inline int skb_linearize(struct sk_buff *skb)
1469{
1470        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1471}
1472
1473/**
1474 *      skb_linearize_cow - make sure skb is linear and writable
1475 *      @skb: buffer to process
1476 *
1477 *      If there is no free memory -ENOMEM is returned, otherwise zero
1478 *      is returned and the old skb data released.
1479 */
1480static inline int skb_linearize_cow(struct sk_buff *skb)
1481{
1482        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1483               __skb_linearize(skb) : 0;
1484}
1485
1486/**
1487 *      skb_postpull_rcsum - update checksum for received skb after pull
1488 *      @skb: buffer to update
1489 *      @start: start of data before pull
1490 *      @len: length of data pulled
1491 *
1492 *      After doing a pull on a received packet, you need to call this to
1493 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1494 *      CHECKSUM_NONE so that it can be recomputed from scratch.
1495 */
1496
1497static inline void skb_postpull_rcsum(struct sk_buff *skb,
1498                                      const void *start, unsigned int len)
1499{
1500        if (skb->ip_summed == CHECKSUM_COMPLETE)
1501                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1502}
1503
1504unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1505
1506/**
1507 *      pskb_trim_rcsum - trim received skb and update checksum
1508 *      @skb: buffer to trim
1509 *      @len: new length
1510 *
1511 *      This is exactly the same as pskb_trim except that it ensures the
1512 *      checksum of received packets are still valid after the operation.
1513 */
1514
1515static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1516{
1517        if (likely(len >= skb->len))
1518                return 0;
1519        if (skb->ip_summed == CHECKSUM_COMPLETE)
1520                skb->ip_summed = CHECKSUM_NONE;
1521        return __pskb_trim(skb, len);
1522}
1523
1524#define skb_queue_walk(queue, skb) \
1525                for (skb = (queue)->next;                                       \
1526                     prefetch(skb->next), (skb != (struct sk_buff *)(queue));   \
1527                     skb = skb->next)
1528
1529#define skb_queue_walk_safe(queue, skb, tmp)                                    \
1530                for (skb = (queue)->next, tmp = skb->next;                      \
1531                     skb != (struct sk_buff *)(queue);                          \
1532                     skb = tmp, tmp = skb->next)
1533
1534#define skb_queue_reverse_walk(queue, skb) \
1535                for (skb = (queue)->prev;                                       \
1536                     prefetch(skb->prev), (skb != (struct sk_buff *)(queue));   \
1537                     skb = skb->prev)
1538
1539
1540extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1541                                         int noblock, int *err);
1542extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1543                                     struct poll_table_struct *wait);
1544extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
1545                                               int offset, struct iovec *to,
1546                                               int size);
1547extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1548                                                        int hlen,
1549                                                        struct iovec *iov);
1550extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1551extern void            skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1552                                         unsigned int flags);
1553extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
1554                                    int len, __wsum csum);
1555extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
1556                                     void *to, int len);
1557extern int             skb_store_bits(struct sk_buff *skb, int offset,
1558                                      const void *from, int len);
1559extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
1560                                              int offset, u8 *to, int len,
1561                                              __wsum csum);
1562extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1563extern void            skb_split(struct sk_buff *skb,
1564                                 struct sk_buff *skb1, const u32 len);
1565
1566extern struct sk_buff *skb_segment(struct sk_buff *skb, int features);
1567
1568static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1569                                       int len, void *buffer)
1570{
1571        int hlen = skb_headlen(skb);
1572
1573        if (hlen - offset >= len)
1574                return skb->data + offset;
1575
1576        if (skb_copy_bits(skb, offset, buffer, len) < 0)
1577                return NULL;
1578
1579        return buffer;
1580}
1581
1582static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1583                                             void *to,
1584                                             const unsigned int len)
1585{
1586        memcpy(to, skb->data, len);
1587}
1588
1589static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1590                                                    const int offset, void *to,
1591                                                    const unsigned int len)
1592{
1593        memcpy(to, skb->data + offset, len);
1594}
1595
1596static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1597                                           const void *from,
1598                                           const unsigned int len)
1599{
1600        memcpy(skb->data, from, len);
1601}
1602
1603static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1604                                                  const int offset,
1605                                                  const void *from,
1606                                                  const unsigned int len)
1607{
1608        memcpy(skb->data + offset, from, len);
1609}
1610
1611extern void skb_init(void);
1612
1613/**
1614 *      skb_get_timestamp - get timestamp from a skb
1615 *      @skb: skb to get stamp from
1616 *      @stamp: pointer to struct timeval to store stamp in
1617 *
1618 *      Timestamps are stored in the skb as offsets to a base timestamp.
1619 *      This function converts the offset back to a struct timeval and stores
1620 *      it in stamp.
1621 */
1622static inline void skb_get_timestamp(const struct sk_buff *skb, struct timeval *stamp)
1623{
1624        *stamp = ktime_to_timeval(skb->tstamp);
1625}
1626
1627static inline void __net_timestamp(struct sk_buff *skb)
1628{
1629        skb->tstamp = ktime_get_real();
1630}
1631
1632static inline ktime_t net_timedelta(ktime_t t)
1633{
1634        return ktime_sub(ktime_get_real(), t);
1635}
1636
1637static inline ktime_t net_invalid_timestamp(void)
1638{
1639        return ktime_set(0, 0);
1640}
1641
1642extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
1643extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
1644
1645static inline int skb_csum_unnecessary(const struct sk_buff *skb)
1646{
1647        return skb->ip_summed & CHECKSUM_UNNECESSARY;
1648}
1649
1650/**
1651 *      skb_checksum_complete - Calculate checksum of an entire packet
1652 *      @skb: packet to process
1653 *
1654 *      This function calculates the checksum over the entire packet plus
1655 *      the value of skb->csum.  The latter can be used to supply the
1656 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
1657 *      checksum.
1658 *
1659 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
1660 *      this function can be used to verify that checksum on received
1661 *      packets.  In that case the function should return zero if the
1662 *      checksum is correct.  In particular, this function will return zero
1663 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
1664 *      hardware has already verified the correctness of the checksum.
1665 */
1666static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
1667{
1668        return skb_csum_unnecessary(skb) ?
1669               0 : __skb_checksum_complete(skb);
1670}
1671
1672#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1673extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
1674static inline void nf_conntrack_put(struct nf_conntrack *nfct)
1675{
1676        if (nfct && atomic_dec_and_test(&nfct->use))
1677                nf_conntrack_destroy(nfct);
1678}
1679static inline void nf_conntrack_get(struct nf_conntrack *nfct)
1680{
1681        if (nfct)
1682                atomic_inc(&nfct->use);
1683}
1684static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
1685{
1686        if (skb)
1687                atomic_inc(&skb->users);
1688}
1689static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
1690{
1691        if (skb)
1692                kfree_skb(skb);
1693}
1694#endif
1695#ifdef CONFIG_BRIDGE_NETFILTER
1696static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
1697{
1698        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
1699                kfree(nf_bridge);
1700}
1701static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
1702{
1703        if (nf_bridge)
1704                atomic_inc(&nf_bridge->use);
1705}
1706#endif /* CONFIG_BRIDGE_NETFILTER */
1707static inline void nf_reset(struct sk_buff *skb)
1708{
1709#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1710        nf_conntrack_put(skb->nfct);
1711        skb->nfct = NULL;
1712        nf_conntrack_put_reasm(skb->nfct_reasm);
1713        skb->nfct_reasm = NULL;
1714#endif
1715#ifdef CONFIG_BRIDGE_NETFILTER
1716        nf_bridge_put(skb->nf_bridge);
1717        skb->nf_bridge = NULL;
1718#endif
1719}
1720
1721/* Note: This doesn't put any conntrack and bridge info in dst. */
1722static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1723{
1724#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1725        dst->nfct = src->nfct;
1726        nf_conntrack_get(src->nfct);
1727        dst->nfctinfo = src->nfctinfo;
1728        dst->nfct_reasm = src->nfct_reasm;
1729        nf_conntrack_get_reasm(src->nfct_reasm);
1730#endif
1731#ifdef CONFIG_BRIDGE_NETFILTER
1732        dst->nf_bridge  = src->nf_bridge;
1733        nf_bridge_get(src->nf_bridge);
1734#endif
1735}
1736
1737static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
1738{
1739#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
1740        nf_conntrack_put(dst->nfct);
1741        nf_conntrack_put_reasm(dst->nfct_reasm);
1742#endif
1743#ifdef CONFIG_BRIDGE_NETFILTER
1744        nf_bridge_put(dst->nf_bridge);
1745#endif
1746        __nf_copy(dst, src);
1747}
1748
1749#ifdef CONFIG_NETWORK_SECMARK
1750static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1751{
1752        to->secmark = from->secmark;
1753}
1754
1755static inline void skb_init_secmark(struct sk_buff *skb)
1756{
1757        skb->secmark = 0;
1758}
1759#else
1760static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
1761{ }
1762
1763static inline void skb_init_secmark(struct sk_buff *skb)
1764{ }
1765#endif
1766
1767static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
1768{
1769#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1770        skb->queue_mapping = queue_mapping;
1771#endif
1772}
1773
1774static inline u16 skb_get_queue_mapping(struct sk_buff *skb)
1775{
1776#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1777        return skb->queue_mapping;
1778#else
1779        return 0;
1780#endif
1781}
1782
1783static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
1784{
1785#ifdef CONFIG_NETDEVICES_MULTIQUEUE
1786        to->queue_mapping = from->queue_mapping;
1787#endif
1788}
1789
1790static inline int skb_is_gso(const struct sk_buff *skb)
1791{
1792        return skb_shinfo(skb)->gso_size;
1793}
1794
1795static inline int skb_is_gso_v6(const struct sk_buff *skb)
1796{
1797        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
1798}
1799
1800static inline void skb_forward_csum(struct sk_buff *skb)
1801{
1802        /* Unfortunately we don't support this one.  Any brave souls? */
1803        if (skb->ip_summed == CHECKSUM_COMPLETE)
1804                skb->ip_summed = CHECKSUM_NONE;
1805}
1806
1807#endif  /* __KERNEL__ */
1808#endif  /* _LINUX_SKBUFF_H */
1809