linux/include/linux/slab.h
<<
>>
Prefs
   1/*
   2 * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
   3 *
   4 * (C) SGI 2006, Christoph Lameter <clameter@sgi.com>
   5 *      Cleaned up and restructured to ease the addition of alternative
   6 *      implementations of SLAB allocators.
   7 */
   8
   9#ifndef _LINUX_SLAB_H
  10#define _LINUX_SLAB_H
  11
  12#ifdef __KERNEL__
  13
  14#include <linux/gfp.h>
  15#include <linux/types.h>
  16
  17/*
  18 * Flags to pass to kmem_cache_create().
  19 * The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
  20 */
  21#define SLAB_DEBUG_FREE         0x00000100UL    /* DEBUG: Perform (expensive) checks on free */
  22#define SLAB_RED_ZONE           0x00000400UL    /* DEBUG: Red zone objs in a cache */
  23#define SLAB_POISON             0x00000800UL    /* DEBUG: Poison objects */
  24#define SLAB_HWCACHE_ALIGN      0x00002000UL    /* Align objs on cache lines */
  25#define SLAB_CACHE_DMA          0x00004000UL    /* Use GFP_DMA memory */
  26#define SLAB_STORE_USER         0x00010000UL    /* DEBUG: Store the last owner for bug hunting */
  27#define SLAB_PANIC              0x00040000UL    /* Panic if kmem_cache_create() fails */
  28#define SLAB_DESTROY_BY_RCU     0x00080000UL    /* Defer freeing slabs to RCU */
  29#define SLAB_MEM_SPREAD         0x00100000UL    /* Spread some memory over cpuset */
  30#define SLAB_TRACE              0x00200000UL    /* Trace allocations and frees */
  31
  32/* The following flags affect the page allocator grouping pages by mobility */
  33#define SLAB_RECLAIM_ACCOUNT    0x00020000UL            /* Objects are reclaimable */
  34#define SLAB_TEMPORARY          SLAB_RECLAIM_ACCOUNT    /* Objects are short-lived */
  35/*
  36 * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
  37 *
  38 * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
  39 *
  40 * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
  41 * Both make kfree a no-op.
  42 */
  43#define ZERO_SIZE_PTR ((void *)16)
  44
  45#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
  46                                (unsigned long)ZERO_SIZE_PTR)
  47
  48/*
  49 * struct kmem_cache related prototypes
  50 */
  51void __init kmem_cache_init(void);
  52int slab_is_available(void);
  53
  54struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
  55                        unsigned long,
  56                        void (*)(struct kmem_cache *, void *));
  57void kmem_cache_destroy(struct kmem_cache *);
  58int kmem_cache_shrink(struct kmem_cache *);
  59void kmem_cache_free(struct kmem_cache *, void *);
  60unsigned int kmem_cache_size(struct kmem_cache *);
  61const char *kmem_cache_name(struct kmem_cache *);
  62int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
  63
  64/*
  65 * Please use this macro to create slab caches. Simply specify the
  66 * name of the structure and maybe some flags that are listed above.
  67 *
  68 * The alignment of the struct determines object alignment. If you
  69 * f.e. add ____cacheline_aligned_in_smp to the struct declaration
  70 * then the objects will be properly aligned in SMP configurations.
  71 */
  72#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
  73                sizeof(struct __struct), __alignof__(struct __struct),\
  74                (__flags), NULL)
  75
  76/*
  77 * The largest kmalloc size supported by the slab allocators is
  78 * 32 megabyte (2^25) or the maximum allocatable page order if that is
  79 * less than 32 MB.
  80 *
  81 * WARNING: Its not easy to increase this value since the allocators have
  82 * to do various tricks to work around compiler limitations in order to
  83 * ensure proper constant folding.
  84 */
  85#define KMALLOC_SHIFT_HIGH      ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
  86                                (MAX_ORDER + PAGE_SHIFT - 1) : 25)
  87
  88#define KMALLOC_MAX_SIZE        (1UL << KMALLOC_SHIFT_HIGH)
  89#define KMALLOC_MAX_ORDER       (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
  90
  91/*
  92 * Common kmalloc functions provided by all allocators
  93 */
  94void * __must_check krealloc(const void *, size_t, gfp_t);
  95void kfree(const void *);
  96size_t ksize(const void *);
  97
  98/*
  99 * Allocator specific definitions. These are mainly used to establish optimized
 100 * ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
 101 * selecting the appropriate general cache at compile time.
 102 *
 103 * Allocators must define at least:
 104 *
 105 *      kmem_cache_alloc()
 106 *      __kmalloc()
 107 *      kmalloc()
 108 *
 109 * Those wishing to support NUMA must also define:
 110 *
 111 *      kmem_cache_alloc_node()
 112 *      kmalloc_node()
 113 *
 114 * See each allocator definition file for additional comments and
 115 * implementation notes.
 116 */
 117#ifdef CONFIG_SLUB
 118#include <linux/slub_def.h>
 119#elif defined(CONFIG_SLOB)
 120#include <linux/slob_def.h>
 121#else
 122#include <linux/slab_def.h>
 123#endif
 124
 125/**
 126 * kcalloc - allocate memory for an array. The memory is set to zero.
 127 * @n: number of elements.
 128 * @size: element size.
 129 * @flags: the type of memory to allocate.
 130 *
 131 * The @flags argument may be one of:
 132 *
 133 * %GFP_USER - Allocate memory on behalf of user.  May sleep.
 134 *
 135 * %GFP_KERNEL - Allocate normal kernel ram.  May sleep.
 136 *
 137 * %GFP_ATOMIC - Allocation will not sleep.  May use emergency pools.
 138 *   For example, use this inside interrupt handlers.
 139 *
 140 * %GFP_HIGHUSER - Allocate pages from high memory.
 141 *
 142 * %GFP_NOIO - Do not do any I/O at all while trying to get memory.
 143 *
 144 * %GFP_NOFS - Do not make any fs calls while trying to get memory.
 145 *
 146 * %GFP_NOWAIT - Allocation will not sleep.
 147 *
 148 * %GFP_THISNODE - Allocate node-local memory only.
 149 *
 150 * %GFP_DMA - Allocation suitable for DMA.
 151 *   Should only be used for kmalloc() caches. Otherwise, use a
 152 *   slab created with SLAB_DMA.
 153 *
 154 * Also it is possible to set different flags by OR'ing
 155 * in one or more of the following additional @flags:
 156 *
 157 * %__GFP_COLD - Request cache-cold pages instead of
 158 *   trying to return cache-warm pages.
 159 *
 160 * %__GFP_HIGH - This allocation has high priority and may use emergency pools.
 161 *
 162 * %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
 163 *   (think twice before using).
 164 *
 165 * %__GFP_NORETRY - If memory is not immediately available,
 166 *   then give up at once.
 167 *
 168 * %__GFP_NOWARN - If allocation fails, don't issue any warnings.
 169 *
 170 * %__GFP_REPEAT - If allocation fails initially, try once more before failing.
 171 *
 172 * There are other flags available as well, but these are not intended
 173 * for general use, and so are not documented here. For a full list of
 174 * potential flags, always refer to linux/gfp.h.
 175 */
 176static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
 177{
 178        if (n != 0 && size > ULONG_MAX / n)
 179                return NULL;
 180        return __kmalloc(n * size, flags | __GFP_ZERO);
 181}
 182
 183#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
 184/**
 185 * kmalloc_node - allocate memory from a specific node
 186 * @size: how many bytes of memory are required.
 187 * @flags: the type of memory to allocate (see kcalloc).
 188 * @node: node to allocate from.
 189 *
 190 * kmalloc() for non-local nodes, used to allocate from a specific node
 191 * if available. Equivalent to kmalloc() in the non-NUMA single-node
 192 * case.
 193 */
 194static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
 195{
 196        return kmalloc(size, flags);
 197}
 198
 199static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
 200{
 201        return __kmalloc(size, flags);
 202}
 203
 204void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
 205
 206static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
 207                                        gfp_t flags, int node)
 208{
 209        return kmem_cache_alloc(cachep, flags);
 210}
 211#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
 212
 213/*
 214 * kmalloc_track_caller is a special version of kmalloc that records the
 215 * calling function of the routine calling it for slab leak tracking instead
 216 * of just the calling function (confusing, eh?).
 217 * It's useful when the call to kmalloc comes from a widely-used standard
 218 * allocator where we care about the real place the memory allocation
 219 * request comes from.
 220 */
 221#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
 222extern void *__kmalloc_track_caller(size_t, gfp_t, void*);
 223#define kmalloc_track_caller(size, flags) \
 224        __kmalloc_track_caller(size, flags, __builtin_return_address(0))
 225#else
 226#define kmalloc_track_caller(size, flags) \
 227        __kmalloc(size, flags)
 228#endif /* DEBUG_SLAB */
 229
 230#ifdef CONFIG_NUMA
 231/*
 232 * kmalloc_node_track_caller is a special version of kmalloc_node that
 233 * records the calling function of the routine calling it for slab leak
 234 * tracking instead of just the calling function (confusing, eh?).
 235 * It's useful when the call to kmalloc_node comes from a widely-used
 236 * standard allocator where we care about the real place the memory
 237 * allocation request comes from.
 238 */
 239#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
 240extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *);
 241#define kmalloc_node_track_caller(size, flags, node) \
 242        __kmalloc_node_track_caller(size, flags, node, \
 243                        __builtin_return_address(0))
 244#else
 245#define kmalloc_node_track_caller(size, flags, node) \
 246        __kmalloc_node(size, flags, node)
 247#endif
 248
 249#else /* CONFIG_NUMA */
 250
 251#define kmalloc_node_track_caller(size, flags, node) \
 252        kmalloc_track_caller(size, flags)
 253
 254#endif /* DEBUG_SLAB */
 255
 256/*
 257 * Shortcuts
 258 */
 259static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
 260{
 261        return kmem_cache_alloc(k, flags | __GFP_ZERO);
 262}
 263
 264/**
 265 * kzalloc - allocate memory. The memory is set to zero.
 266 * @size: how many bytes of memory are required.
 267 * @flags: the type of memory to allocate (see kmalloc).
 268 */
 269static inline void *kzalloc(size_t size, gfp_t flags)
 270{
 271        return kmalloc(size, flags | __GFP_ZERO);
 272}
 273
 274#ifdef CONFIG_SLABINFO
 275extern const struct seq_operations slabinfo_op;
 276ssize_t slabinfo_write(struct file *, const char __user *, size_t, loff_t *);
 277#endif
 278
 279#endif  /* __KERNEL__ */
 280#endif  /* _LINUX_SLAB_H */
 281