linux/kernel/cgroup.c
<<
>>
Prefs
   1/*
   2 *  Generic process-grouping system.
   3 *
   4 *  Based originally on the cpuset system, extracted by Paul Menage
   5 *  Copyright (C) 2006 Google, Inc
   6 *
   7 *  Copyright notices from the original cpuset code:
   8 *  --------------------------------------------------
   9 *  Copyright (C) 2003 BULL SA.
  10 *  Copyright (C) 2004-2006 Silicon Graphics, Inc.
  11 *
  12 *  Portions derived from Patrick Mochel's sysfs code.
  13 *  sysfs is Copyright (c) 2001-3 Patrick Mochel
  14 *
  15 *  2003-10-10 Written by Simon Derr.
  16 *  2003-10-22 Updates by Stephen Hemminger.
  17 *  2004 May-July Rework by Paul Jackson.
  18 *  ---------------------------------------------------
  19 *
  20 *  This file is subject to the terms and conditions of the GNU General Public
  21 *  License.  See the file COPYING in the main directory of the Linux
  22 *  distribution for more details.
  23 */
  24
  25#include <linux/cgroup.h>
  26#include <linux/errno.h>
  27#include <linux/fs.h>
  28#include <linux/kernel.h>
  29#include <linux/list.h>
  30#include <linux/mm.h>
  31#include <linux/mutex.h>
  32#include <linux/mount.h>
  33#include <linux/pagemap.h>
  34#include <linux/proc_fs.h>
  35#include <linux/rcupdate.h>
  36#include <linux/sched.h>
  37#include <linux/backing-dev.h>
  38#include <linux/seq_file.h>
  39#include <linux/slab.h>
  40#include <linux/magic.h>
  41#include <linux/spinlock.h>
  42#include <linux/string.h>
  43#include <linux/sort.h>
  44#include <linux/kmod.h>
  45#include <linux/delayacct.h>
  46#include <linux/cgroupstats.h>
  47
  48#include <asm/atomic.h>
  49
  50static DEFINE_MUTEX(cgroup_mutex);
  51
  52/* Generate an array of cgroup subsystem pointers */
  53#define SUBSYS(_x) &_x ## _subsys,
  54
  55static struct cgroup_subsys *subsys[] = {
  56#include <linux/cgroup_subsys.h>
  57};
  58
  59/*
  60 * A cgroupfs_root represents the root of a cgroup hierarchy,
  61 * and may be associated with a superblock to form an active
  62 * hierarchy
  63 */
  64struct cgroupfs_root {
  65        struct super_block *sb;
  66
  67        /*
  68         * The bitmask of subsystems intended to be attached to this
  69         * hierarchy
  70         */
  71        unsigned long subsys_bits;
  72
  73        /* The bitmask of subsystems currently attached to this hierarchy */
  74        unsigned long actual_subsys_bits;
  75
  76        /* A list running through the attached subsystems */
  77        struct list_head subsys_list;
  78
  79        /* The root cgroup for this hierarchy */
  80        struct cgroup top_cgroup;
  81
  82        /* Tracks how many cgroups are currently defined in hierarchy.*/
  83        int number_of_cgroups;
  84
  85        /* A list running through the mounted hierarchies */
  86        struct list_head root_list;
  87
  88        /* Hierarchy-specific flags */
  89        unsigned long flags;
  90
  91        /* The path to use for release notifications. No locking
  92         * between setting and use - so if userspace updates this
  93         * while child cgroups exist, you could miss a
  94         * notification. We ensure that it's always a valid
  95         * NUL-terminated string */
  96        char release_agent_path[PATH_MAX];
  97};
  98
  99
 100/*
 101 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
 102 * subsystems that are otherwise unattached - it never has more than a
 103 * single cgroup, and all tasks are part of that cgroup.
 104 */
 105static struct cgroupfs_root rootnode;
 106
 107/* The list of hierarchy roots */
 108
 109static LIST_HEAD(roots);
 110static int root_count;
 111
 112/* dummytop is a shorthand for the dummy hierarchy's top cgroup */
 113#define dummytop (&rootnode.top_cgroup)
 114
 115/* This flag indicates whether tasks in the fork and exit paths should
 116 * take callback_mutex and check for fork/exit handlers to call. This
 117 * avoids us having to do extra work in the fork/exit path if none of the
 118 * subsystems need to be called.
 119 */
 120static int need_forkexit_callback;
 121
 122/* bits in struct cgroup flags field */
 123enum {
 124        /* Control Group is dead */
 125        CGRP_REMOVED,
 126        /* Control Group has previously had a child cgroup or a task,
 127         * but no longer (only if CGRP_NOTIFY_ON_RELEASE is set) */
 128        CGRP_RELEASABLE,
 129        /* Control Group requires release notifications to userspace */
 130        CGRP_NOTIFY_ON_RELEASE,
 131};
 132
 133/* convenient tests for these bits */
 134inline int cgroup_is_removed(const struct cgroup *cgrp)
 135{
 136        return test_bit(CGRP_REMOVED, &cgrp->flags);
 137}
 138
 139/* bits in struct cgroupfs_root flags field */
 140enum {
 141        ROOT_NOPREFIX, /* mounted subsystems have no named prefix */
 142};
 143
 144inline int cgroup_is_releasable(const struct cgroup *cgrp)
 145{
 146        const int bits =
 147                (1 << CGRP_RELEASABLE) |
 148                (1 << CGRP_NOTIFY_ON_RELEASE);
 149        return (cgrp->flags & bits) == bits;
 150}
 151
 152inline int notify_on_release(const struct cgroup *cgrp)
 153{
 154        return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
 155}
 156
 157/*
 158 * for_each_subsys() allows you to iterate on each subsystem attached to
 159 * an active hierarchy
 160 */
 161#define for_each_subsys(_root, _ss) \
 162list_for_each_entry(_ss, &_root->subsys_list, sibling)
 163
 164/* for_each_root() allows you to iterate across the active hierarchies */
 165#define for_each_root(_root) \
 166list_for_each_entry(_root, &roots, root_list)
 167
 168/* the list of cgroups eligible for automatic release. Protected by
 169 * release_list_lock */
 170static LIST_HEAD(release_list);
 171static DEFINE_SPINLOCK(release_list_lock);
 172static void cgroup_release_agent(struct work_struct *work);
 173static DECLARE_WORK(release_agent_work, cgroup_release_agent);
 174static void check_for_release(struct cgroup *cgrp);
 175
 176/* Link structure for associating css_set objects with cgroups */
 177struct cg_cgroup_link {
 178        /*
 179         * List running through cg_cgroup_links associated with a
 180         * cgroup, anchored on cgroup->css_sets
 181         */
 182        struct list_head cgrp_link_list;
 183        /*
 184         * List running through cg_cgroup_links pointing at a
 185         * single css_set object, anchored on css_set->cg_links
 186         */
 187        struct list_head cg_link_list;
 188        struct css_set *cg;
 189};
 190
 191/* The default css_set - used by init and its children prior to any
 192 * hierarchies being mounted. It contains a pointer to the root state
 193 * for each subsystem. Also used to anchor the list of css_sets. Not
 194 * reference-counted, to improve performance when child cgroups
 195 * haven't been created.
 196 */
 197
 198static struct css_set init_css_set;
 199static struct cg_cgroup_link init_css_set_link;
 200
 201/* css_set_lock protects the list of css_set objects, and the
 202 * chain of tasks off each css_set.  Nests outside task->alloc_lock
 203 * due to cgroup_iter_start() */
 204static DEFINE_RWLOCK(css_set_lock);
 205static int css_set_count;
 206
 207/* We don't maintain the lists running through each css_set to its
 208 * task until after the first call to cgroup_iter_start(). This
 209 * reduces the fork()/exit() overhead for people who have cgroups
 210 * compiled into their kernel but not actually in use */
 211static int use_task_css_set_links;
 212
 213/* When we create or destroy a css_set, the operation simply
 214 * takes/releases a reference count on all the cgroups referenced
 215 * by subsystems in this css_set. This can end up multiple-counting
 216 * some cgroups, but that's OK - the ref-count is just a
 217 * busy/not-busy indicator; ensuring that we only count each cgroup
 218 * once would require taking a global lock to ensure that no
 219 * subsystems moved between hierarchies while we were doing so.
 220 *
 221 * Possible TODO: decide at boot time based on the number of
 222 * registered subsystems and the number of CPUs or NUMA nodes whether
 223 * it's better for performance to ref-count every subsystem, or to
 224 * take a global lock and only add one ref count to each hierarchy.
 225 */
 226
 227/*
 228 * unlink a css_set from the list and free it
 229 */
 230static void unlink_css_set(struct css_set *cg)
 231{
 232        write_lock(&css_set_lock);
 233        list_del(&cg->list);
 234        css_set_count--;
 235        while (!list_empty(&cg->cg_links)) {
 236                struct cg_cgroup_link *link;
 237                link = list_entry(cg->cg_links.next,
 238                                  struct cg_cgroup_link, cg_link_list);
 239                list_del(&link->cg_link_list);
 240                list_del(&link->cgrp_link_list);
 241                kfree(link);
 242        }
 243        write_unlock(&css_set_lock);
 244}
 245
 246static void __release_css_set(struct kref *k, int taskexit)
 247{
 248        int i;
 249        struct css_set *cg = container_of(k, struct css_set, ref);
 250
 251        unlink_css_set(cg);
 252
 253        rcu_read_lock();
 254        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 255                struct cgroup *cgrp = cg->subsys[i]->cgroup;
 256                if (atomic_dec_and_test(&cgrp->count) &&
 257                    notify_on_release(cgrp)) {
 258                        if (taskexit)
 259                                set_bit(CGRP_RELEASABLE, &cgrp->flags);
 260                        check_for_release(cgrp);
 261                }
 262        }
 263        rcu_read_unlock();
 264        kfree(cg);
 265}
 266
 267static void release_css_set(struct kref *k)
 268{
 269        __release_css_set(k, 0);
 270}
 271
 272static void release_css_set_taskexit(struct kref *k)
 273{
 274        __release_css_set(k, 1);
 275}
 276
 277/*
 278 * refcounted get/put for css_set objects
 279 */
 280static inline void get_css_set(struct css_set *cg)
 281{
 282        kref_get(&cg->ref);
 283}
 284
 285static inline void put_css_set(struct css_set *cg)
 286{
 287        kref_put(&cg->ref, release_css_set);
 288}
 289
 290static inline void put_css_set_taskexit(struct css_set *cg)
 291{
 292        kref_put(&cg->ref, release_css_set_taskexit);
 293}
 294
 295/*
 296 * find_existing_css_set() is a helper for
 297 * find_css_set(), and checks to see whether an existing
 298 * css_set is suitable. This currently walks a linked-list for
 299 * simplicity; a later patch will use a hash table for better
 300 * performance
 301 *
 302 * oldcg: the cgroup group that we're using before the cgroup
 303 * transition
 304 *
 305 * cgrp: the cgroup that we're moving into
 306 *
 307 * template: location in which to build the desired set of subsystem
 308 * state objects for the new cgroup group
 309 */
 310
 311static struct css_set *find_existing_css_set(
 312        struct css_set *oldcg,
 313        struct cgroup *cgrp,
 314        struct cgroup_subsys_state *template[])
 315{
 316        int i;
 317        struct cgroupfs_root *root = cgrp->root;
 318        struct list_head *l = &init_css_set.list;
 319
 320        /* Built the set of subsystem state objects that we want to
 321         * see in the new css_set */
 322        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 323                if (root->subsys_bits & (1ull << i)) {
 324                        /* Subsystem is in this hierarchy. So we want
 325                         * the subsystem state from the new
 326                         * cgroup */
 327                        template[i] = cgrp->subsys[i];
 328                } else {
 329                        /* Subsystem is not in this hierarchy, so we
 330                         * don't want to change the subsystem state */
 331                        template[i] = oldcg->subsys[i];
 332                }
 333        }
 334
 335        /* Look through existing cgroup groups to find one to reuse */
 336        do {
 337                struct css_set *cg =
 338                        list_entry(l, struct css_set, list);
 339
 340                if (!memcmp(template, cg->subsys, sizeof(cg->subsys))) {
 341                        /* All subsystems matched */
 342                        return cg;
 343                }
 344                /* Try the next cgroup group */
 345                l = l->next;
 346        } while (l != &init_css_set.list);
 347
 348        /* No existing cgroup group matched */
 349        return NULL;
 350}
 351
 352/*
 353 * allocate_cg_links() allocates "count" cg_cgroup_link structures
 354 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
 355 * success or a negative error
 356 */
 357
 358static int allocate_cg_links(int count, struct list_head *tmp)
 359{
 360        struct cg_cgroup_link *link;
 361        int i;
 362        INIT_LIST_HEAD(tmp);
 363        for (i = 0; i < count; i++) {
 364                link = kmalloc(sizeof(*link), GFP_KERNEL);
 365                if (!link) {
 366                        while (!list_empty(tmp)) {
 367                                link = list_entry(tmp->next,
 368                                                  struct cg_cgroup_link,
 369                                                  cgrp_link_list);
 370                                list_del(&link->cgrp_link_list);
 371                                kfree(link);
 372                        }
 373                        return -ENOMEM;
 374                }
 375                list_add(&link->cgrp_link_list, tmp);
 376        }
 377        return 0;
 378}
 379
 380static void free_cg_links(struct list_head *tmp)
 381{
 382        while (!list_empty(tmp)) {
 383                struct cg_cgroup_link *link;
 384                link = list_entry(tmp->next,
 385                                  struct cg_cgroup_link,
 386                                  cgrp_link_list);
 387                list_del(&link->cgrp_link_list);
 388                kfree(link);
 389        }
 390}
 391
 392/*
 393 * find_css_set() takes an existing cgroup group and a
 394 * cgroup object, and returns a css_set object that's
 395 * equivalent to the old group, but with the given cgroup
 396 * substituted into the appropriate hierarchy. Must be called with
 397 * cgroup_mutex held
 398 */
 399
 400static struct css_set *find_css_set(
 401        struct css_set *oldcg, struct cgroup *cgrp)
 402{
 403        struct css_set *res;
 404        struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT];
 405        int i;
 406
 407        struct list_head tmp_cg_links;
 408        struct cg_cgroup_link *link;
 409
 410        /* First see if we already have a cgroup group that matches
 411         * the desired set */
 412        write_lock(&css_set_lock);
 413        res = find_existing_css_set(oldcg, cgrp, template);
 414        if (res)
 415                get_css_set(res);
 416        write_unlock(&css_set_lock);
 417
 418        if (res)
 419                return res;
 420
 421        res = kmalloc(sizeof(*res), GFP_KERNEL);
 422        if (!res)
 423                return NULL;
 424
 425        /* Allocate all the cg_cgroup_link objects that we'll need */
 426        if (allocate_cg_links(root_count, &tmp_cg_links) < 0) {
 427                kfree(res);
 428                return NULL;
 429        }
 430
 431        kref_init(&res->ref);
 432        INIT_LIST_HEAD(&res->cg_links);
 433        INIT_LIST_HEAD(&res->tasks);
 434
 435        /* Copy the set of subsystem state objects generated in
 436         * find_existing_css_set() */
 437        memcpy(res->subsys, template, sizeof(res->subsys));
 438
 439        write_lock(&css_set_lock);
 440        /* Add reference counts and links from the new css_set. */
 441        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 442                struct cgroup *cgrp = res->subsys[i]->cgroup;
 443                struct cgroup_subsys *ss = subsys[i];
 444                atomic_inc(&cgrp->count);
 445                /*
 446                 * We want to add a link once per cgroup, so we
 447                 * only do it for the first subsystem in each
 448                 * hierarchy
 449                 */
 450                if (ss->root->subsys_list.next == &ss->sibling) {
 451                        BUG_ON(list_empty(&tmp_cg_links));
 452                        link = list_entry(tmp_cg_links.next,
 453                                          struct cg_cgroup_link,
 454                                          cgrp_link_list);
 455                        list_del(&link->cgrp_link_list);
 456                        list_add(&link->cgrp_link_list, &cgrp->css_sets);
 457                        link->cg = res;
 458                        list_add(&link->cg_link_list, &res->cg_links);
 459                }
 460        }
 461        if (list_empty(&rootnode.subsys_list)) {
 462                link = list_entry(tmp_cg_links.next,
 463                                  struct cg_cgroup_link,
 464                                  cgrp_link_list);
 465                list_del(&link->cgrp_link_list);
 466                list_add(&link->cgrp_link_list, &dummytop->css_sets);
 467                link->cg = res;
 468                list_add(&link->cg_link_list, &res->cg_links);
 469        }
 470
 471        BUG_ON(!list_empty(&tmp_cg_links));
 472
 473        /* Link this cgroup group into the list */
 474        list_add(&res->list, &init_css_set.list);
 475        css_set_count++;
 476        INIT_LIST_HEAD(&res->tasks);
 477        write_unlock(&css_set_lock);
 478
 479        return res;
 480}
 481
 482/*
 483 * There is one global cgroup mutex. We also require taking
 484 * task_lock() when dereferencing a task's cgroup subsys pointers.
 485 * See "The task_lock() exception", at the end of this comment.
 486 *
 487 * A task must hold cgroup_mutex to modify cgroups.
 488 *
 489 * Any task can increment and decrement the count field without lock.
 490 * So in general, code holding cgroup_mutex can't rely on the count
 491 * field not changing.  However, if the count goes to zero, then only
 492 * attach_task() can increment it again.  Because a count of zero
 493 * means that no tasks are currently attached, therefore there is no
 494 * way a task attached to that cgroup can fork (the other way to
 495 * increment the count).  So code holding cgroup_mutex can safely
 496 * assume that if the count is zero, it will stay zero. Similarly, if
 497 * a task holds cgroup_mutex on a cgroup with zero count, it
 498 * knows that the cgroup won't be removed, as cgroup_rmdir()
 499 * needs that mutex.
 500 *
 501 * The cgroup_common_file_write handler for operations that modify
 502 * the cgroup hierarchy holds cgroup_mutex across the entire operation,
 503 * single threading all such cgroup modifications across the system.
 504 *
 505 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
 506 * (usually) take cgroup_mutex.  These are the two most performance
 507 * critical pieces of code here.  The exception occurs on cgroup_exit(),
 508 * when a task in a notify_on_release cgroup exits.  Then cgroup_mutex
 509 * is taken, and if the cgroup count is zero, a usermode call made
 510 * to /sbin/cgroup_release_agent with the name of the cgroup (path
 511 * relative to the root of cgroup file system) as the argument.
 512 *
 513 * A cgroup can only be deleted if both its 'count' of using tasks
 514 * is zero, and its list of 'children' cgroups is empty.  Since all
 515 * tasks in the system use _some_ cgroup, and since there is always at
 516 * least one task in the system (init, pid == 1), therefore, top_cgroup
 517 * always has either children cgroups and/or using tasks.  So we don't
 518 * need a special hack to ensure that top_cgroup cannot be deleted.
 519 *
 520 *      The task_lock() exception
 521 *
 522 * The need for this exception arises from the action of
 523 * attach_task(), which overwrites one tasks cgroup pointer with
 524 * another.  It does so using cgroup_mutexe, however there are
 525 * several performance critical places that need to reference
 526 * task->cgroup without the expense of grabbing a system global
 527 * mutex.  Therefore except as noted below, when dereferencing or, as
 528 * in attach_task(), modifying a task'ss cgroup pointer we use
 529 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
 530 * the task_struct routinely used for such matters.
 531 *
 532 * P.S.  One more locking exception.  RCU is used to guard the
 533 * update of a tasks cgroup pointer by attach_task()
 534 */
 535
 536/**
 537 * cgroup_lock - lock out any changes to cgroup structures
 538 *
 539 */
 540
 541void cgroup_lock(void)
 542{
 543        mutex_lock(&cgroup_mutex);
 544}
 545
 546/**
 547 * cgroup_unlock - release lock on cgroup changes
 548 *
 549 * Undo the lock taken in a previous cgroup_lock() call.
 550 */
 551
 552void cgroup_unlock(void)
 553{
 554        mutex_unlock(&cgroup_mutex);
 555}
 556
 557/*
 558 * A couple of forward declarations required, due to cyclic reference loop:
 559 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
 560 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
 561 * -> cgroup_mkdir.
 562 */
 563
 564static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode);
 565static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry);
 566static int cgroup_populate_dir(struct cgroup *cgrp);
 567static struct inode_operations cgroup_dir_inode_operations;
 568static struct file_operations proc_cgroupstats_operations;
 569
 570static struct backing_dev_info cgroup_backing_dev_info = {
 571        .capabilities   = BDI_CAP_NO_ACCT_DIRTY | BDI_CAP_NO_WRITEBACK,
 572};
 573
 574static struct inode *cgroup_new_inode(mode_t mode, struct super_block *sb)
 575{
 576        struct inode *inode = new_inode(sb);
 577
 578        if (inode) {
 579                inode->i_mode = mode;
 580                inode->i_uid = current->fsuid;
 581                inode->i_gid = current->fsgid;
 582                inode->i_blocks = 0;
 583                inode->i_atime = inode->i_mtime = inode->i_ctime = CURRENT_TIME;
 584                inode->i_mapping->backing_dev_info = &cgroup_backing_dev_info;
 585        }
 586        return inode;
 587}
 588
 589static void cgroup_diput(struct dentry *dentry, struct inode *inode)
 590{
 591        /* is dentry a directory ? if so, kfree() associated cgroup */
 592        if (S_ISDIR(inode->i_mode)) {
 593                struct cgroup *cgrp = dentry->d_fsdata;
 594                BUG_ON(!(cgroup_is_removed(cgrp)));
 595                /* It's possible for external users to be holding css
 596                 * reference counts on a cgroup; css_put() needs to
 597                 * be able to access the cgroup after decrementing
 598                 * the reference count in order to know if it needs to
 599                 * queue the cgroup to be handled by the release
 600                 * agent */
 601                synchronize_rcu();
 602                kfree(cgrp);
 603        }
 604        iput(inode);
 605}
 606
 607static void remove_dir(struct dentry *d)
 608{
 609        struct dentry *parent = dget(d->d_parent);
 610
 611        d_delete(d);
 612        simple_rmdir(parent->d_inode, d);
 613        dput(parent);
 614}
 615
 616static void cgroup_clear_directory(struct dentry *dentry)
 617{
 618        struct list_head *node;
 619
 620        BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
 621        spin_lock(&dcache_lock);
 622        node = dentry->d_subdirs.next;
 623        while (node != &dentry->d_subdirs) {
 624                struct dentry *d = list_entry(node, struct dentry, d_u.d_child);
 625                list_del_init(node);
 626                if (d->d_inode) {
 627                        /* This should never be called on a cgroup
 628                         * directory with child cgroups */
 629                        BUG_ON(d->d_inode->i_mode & S_IFDIR);
 630                        d = dget_locked(d);
 631                        spin_unlock(&dcache_lock);
 632                        d_delete(d);
 633                        simple_unlink(dentry->d_inode, d);
 634                        dput(d);
 635                        spin_lock(&dcache_lock);
 636                }
 637                node = dentry->d_subdirs.next;
 638        }
 639        spin_unlock(&dcache_lock);
 640}
 641
 642/*
 643 * NOTE : the dentry must have been dget()'ed
 644 */
 645static void cgroup_d_remove_dir(struct dentry *dentry)
 646{
 647        cgroup_clear_directory(dentry);
 648
 649        spin_lock(&dcache_lock);
 650        list_del_init(&dentry->d_u.d_child);
 651        spin_unlock(&dcache_lock);
 652        remove_dir(dentry);
 653}
 654
 655static int rebind_subsystems(struct cgroupfs_root *root,
 656                              unsigned long final_bits)
 657{
 658        unsigned long added_bits, removed_bits;
 659        struct cgroup *cgrp = &root->top_cgroup;
 660        int i;
 661
 662        removed_bits = root->actual_subsys_bits & ~final_bits;
 663        added_bits = final_bits & ~root->actual_subsys_bits;
 664        /* Check that any added subsystems are currently free */
 665        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 666                unsigned long long bit = 1ull << i;
 667                struct cgroup_subsys *ss = subsys[i];
 668                if (!(bit & added_bits))
 669                        continue;
 670                if (ss->root != &rootnode) {
 671                        /* Subsystem isn't free */
 672                        return -EBUSY;
 673                }
 674        }
 675
 676        /* Currently we don't handle adding/removing subsystems when
 677         * any child cgroups exist. This is theoretically supportable
 678         * but involves complex error handling, so it's being left until
 679         * later */
 680        if (!list_empty(&cgrp->children))
 681                return -EBUSY;
 682
 683        /* Process each subsystem */
 684        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 685                struct cgroup_subsys *ss = subsys[i];
 686                unsigned long bit = 1UL << i;
 687                if (bit & added_bits) {
 688                        /* We're binding this subsystem to this hierarchy */
 689                        BUG_ON(cgrp->subsys[i]);
 690                        BUG_ON(!dummytop->subsys[i]);
 691                        BUG_ON(dummytop->subsys[i]->cgroup != dummytop);
 692                        cgrp->subsys[i] = dummytop->subsys[i];
 693                        cgrp->subsys[i]->cgroup = cgrp;
 694                        list_add(&ss->sibling, &root->subsys_list);
 695                        rcu_assign_pointer(ss->root, root);
 696                        if (ss->bind)
 697                                ss->bind(ss, cgrp);
 698
 699                } else if (bit & removed_bits) {
 700                        /* We're removing this subsystem */
 701                        BUG_ON(cgrp->subsys[i] != dummytop->subsys[i]);
 702                        BUG_ON(cgrp->subsys[i]->cgroup != cgrp);
 703                        if (ss->bind)
 704                                ss->bind(ss, dummytop);
 705                        dummytop->subsys[i]->cgroup = dummytop;
 706                        cgrp->subsys[i] = NULL;
 707                        rcu_assign_pointer(subsys[i]->root, &rootnode);
 708                        list_del(&ss->sibling);
 709                } else if (bit & final_bits) {
 710                        /* Subsystem state should already exist */
 711                        BUG_ON(!cgrp->subsys[i]);
 712                } else {
 713                        /* Subsystem state shouldn't exist */
 714                        BUG_ON(cgrp->subsys[i]);
 715                }
 716        }
 717        root->subsys_bits = root->actual_subsys_bits = final_bits;
 718        synchronize_rcu();
 719
 720        return 0;
 721}
 722
 723static int cgroup_show_options(struct seq_file *seq, struct vfsmount *vfs)
 724{
 725        struct cgroupfs_root *root = vfs->mnt_sb->s_fs_info;
 726        struct cgroup_subsys *ss;
 727
 728        mutex_lock(&cgroup_mutex);
 729        for_each_subsys(root, ss)
 730                seq_printf(seq, ",%s", ss->name);
 731        if (test_bit(ROOT_NOPREFIX, &root->flags))
 732                seq_puts(seq, ",noprefix");
 733        if (strlen(root->release_agent_path))
 734                seq_printf(seq, ",release_agent=%s", root->release_agent_path);
 735        mutex_unlock(&cgroup_mutex);
 736        return 0;
 737}
 738
 739struct cgroup_sb_opts {
 740        unsigned long subsys_bits;
 741        unsigned long flags;
 742        char *release_agent;
 743};
 744
 745/* Convert a hierarchy specifier into a bitmask of subsystems and
 746 * flags. */
 747static int parse_cgroupfs_options(char *data,
 748                                     struct cgroup_sb_opts *opts)
 749{
 750        char *token, *o = data ?: "all";
 751
 752        opts->subsys_bits = 0;
 753        opts->flags = 0;
 754        opts->release_agent = NULL;
 755
 756        while ((token = strsep(&o, ",")) != NULL) {
 757                if (!*token)
 758                        return -EINVAL;
 759                if (!strcmp(token, "all")) {
 760                        opts->subsys_bits = (1 << CGROUP_SUBSYS_COUNT) - 1;
 761                } else if (!strcmp(token, "noprefix")) {
 762                        set_bit(ROOT_NOPREFIX, &opts->flags);
 763                } else if (!strncmp(token, "release_agent=", 14)) {
 764                        /* Specifying two release agents is forbidden */
 765                        if (opts->release_agent)
 766                                return -EINVAL;
 767                        opts->release_agent = kzalloc(PATH_MAX, GFP_KERNEL);
 768                        if (!opts->release_agent)
 769                                return -ENOMEM;
 770                        strncpy(opts->release_agent, token + 14, PATH_MAX - 1);
 771                        opts->release_agent[PATH_MAX - 1] = 0;
 772                } else {
 773                        struct cgroup_subsys *ss;
 774                        int i;
 775                        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
 776                                ss = subsys[i];
 777                                if (!strcmp(token, ss->name)) {
 778                                        set_bit(i, &opts->subsys_bits);
 779                                        break;
 780                                }
 781                        }
 782                        if (i == CGROUP_SUBSYS_COUNT)
 783                                return -ENOENT;
 784                }
 785        }
 786
 787        /* We can't have an empty hierarchy */
 788        if (!opts->subsys_bits)
 789                return -EINVAL;
 790
 791        return 0;
 792}
 793
 794static int cgroup_remount(struct super_block *sb, int *flags, char *data)
 795{
 796        int ret = 0;
 797        struct cgroupfs_root *root = sb->s_fs_info;
 798        struct cgroup *cgrp = &root->top_cgroup;
 799        struct cgroup_sb_opts opts;
 800
 801        mutex_lock(&cgrp->dentry->d_inode->i_mutex);
 802        mutex_lock(&cgroup_mutex);
 803
 804        /* See what subsystems are wanted */
 805        ret = parse_cgroupfs_options(data, &opts);
 806        if (ret)
 807                goto out_unlock;
 808
 809        /* Don't allow flags to change at remount */
 810        if (opts.flags != root->flags) {
 811                ret = -EINVAL;
 812                goto out_unlock;
 813        }
 814
 815        ret = rebind_subsystems(root, opts.subsys_bits);
 816
 817        /* (re)populate subsystem files */
 818        if (!ret)
 819                cgroup_populate_dir(cgrp);
 820
 821        if (opts.release_agent)
 822                strcpy(root->release_agent_path, opts.release_agent);
 823 out_unlock:
 824        if (opts.release_agent)
 825                kfree(opts.release_agent);
 826        mutex_unlock(&cgroup_mutex);
 827        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
 828        return ret;
 829}
 830
 831static struct super_operations cgroup_ops = {
 832        .statfs = simple_statfs,
 833        .drop_inode = generic_delete_inode,
 834        .show_options = cgroup_show_options,
 835        .remount_fs = cgroup_remount,
 836};
 837
 838static void init_cgroup_root(struct cgroupfs_root *root)
 839{
 840        struct cgroup *cgrp = &root->top_cgroup;
 841        INIT_LIST_HEAD(&root->subsys_list);
 842        INIT_LIST_HEAD(&root->root_list);
 843        root->number_of_cgroups = 1;
 844        cgrp->root = root;
 845        cgrp->top_cgroup = cgrp;
 846        INIT_LIST_HEAD(&cgrp->sibling);
 847        INIT_LIST_HEAD(&cgrp->children);
 848        INIT_LIST_HEAD(&cgrp->css_sets);
 849        INIT_LIST_HEAD(&cgrp->release_list);
 850}
 851
 852static int cgroup_test_super(struct super_block *sb, void *data)
 853{
 854        struct cgroupfs_root *new = data;
 855        struct cgroupfs_root *root = sb->s_fs_info;
 856
 857        /* First check subsystems */
 858        if (new->subsys_bits != root->subsys_bits)
 859            return 0;
 860
 861        /* Next check flags */
 862        if (new->flags != root->flags)
 863                return 0;
 864
 865        return 1;
 866}
 867
 868static int cgroup_set_super(struct super_block *sb, void *data)
 869{
 870        int ret;
 871        struct cgroupfs_root *root = data;
 872
 873        ret = set_anon_super(sb, NULL);
 874        if (ret)
 875                return ret;
 876
 877        sb->s_fs_info = root;
 878        root->sb = sb;
 879
 880        sb->s_blocksize = PAGE_CACHE_SIZE;
 881        sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
 882        sb->s_magic = CGROUP_SUPER_MAGIC;
 883        sb->s_op = &cgroup_ops;
 884
 885        return 0;
 886}
 887
 888static int cgroup_get_rootdir(struct super_block *sb)
 889{
 890        struct inode *inode =
 891                cgroup_new_inode(S_IFDIR | S_IRUGO | S_IXUGO | S_IWUSR, sb);
 892        struct dentry *dentry;
 893
 894        if (!inode)
 895                return -ENOMEM;
 896
 897        inode->i_op = &simple_dir_inode_operations;
 898        inode->i_fop = &simple_dir_operations;
 899        inode->i_op = &cgroup_dir_inode_operations;
 900        /* directories start off with i_nlink == 2 (for "." entry) */
 901        inc_nlink(inode);
 902        dentry = d_alloc_root(inode);
 903        if (!dentry) {
 904                iput(inode);
 905                return -ENOMEM;
 906        }
 907        sb->s_root = dentry;
 908        return 0;
 909}
 910
 911static int cgroup_get_sb(struct file_system_type *fs_type,
 912                         int flags, const char *unused_dev_name,
 913                         void *data, struct vfsmount *mnt)
 914{
 915        struct cgroup_sb_opts opts;
 916        int ret = 0;
 917        struct super_block *sb;
 918        struct cgroupfs_root *root;
 919        struct list_head tmp_cg_links, *l;
 920        INIT_LIST_HEAD(&tmp_cg_links);
 921
 922        /* First find the desired set of subsystems */
 923        ret = parse_cgroupfs_options(data, &opts);
 924        if (ret) {
 925                if (opts.release_agent)
 926                        kfree(opts.release_agent);
 927                return ret;
 928        }
 929
 930        root = kzalloc(sizeof(*root), GFP_KERNEL);
 931        if (!root)
 932                return -ENOMEM;
 933
 934        init_cgroup_root(root);
 935        root->subsys_bits = opts.subsys_bits;
 936        root->flags = opts.flags;
 937        if (opts.release_agent) {
 938                strcpy(root->release_agent_path, opts.release_agent);
 939                kfree(opts.release_agent);
 940        }
 941
 942        sb = sget(fs_type, cgroup_test_super, cgroup_set_super, root);
 943
 944        if (IS_ERR(sb)) {
 945                kfree(root);
 946                return PTR_ERR(sb);
 947        }
 948
 949        if (sb->s_fs_info != root) {
 950                /* Reusing an existing superblock */
 951                BUG_ON(sb->s_root == NULL);
 952                kfree(root);
 953                root = NULL;
 954        } else {
 955                /* New superblock */
 956                struct cgroup *cgrp = &root->top_cgroup;
 957                struct inode *inode;
 958
 959                BUG_ON(sb->s_root != NULL);
 960
 961                ret = cgroup_get_rootdir(sb);
 962                if (ret)
 963                        goto drop_new_super;
 964                inode = sb->s_root->d_inode;
 965
 966                mutex_lock(&inode->i_mutex);
 967                mutex_lock(&cgroup_mutex);
 968
 969                /*
 970                 * We're accessing css_set_count without locking
 971                 * css_set_lock here, but that's OK - it can only be
 972                 * increased by someone holding cgroup_lock, and
 973                 * that's us. The worst that can happen is that we
 974                 * have some link structures left over
 975                 */
 976                ret = allocate_cg_links(css_set_count, &tmp_cg_links);
 977                if (ret) {
 978                        mutex_unlock(&cgroup_mutex);
 979                        mutex_unlock(&inode->i_mutex);
 980                        goto drop_new_super;
 981                }
 982
 983                ret = rebind_subsystems(root, root->subsys_bits);
 984                if (ret == -EBUSY) {
 985                        mutex_unlock(&cgroup_mutex);
 986                        mutex_unlock(&inode->i_mutex);
 987                        goto drop_new_super;
 988                }
 989
 990                /* EBUSY should be the only error here */
 991                BUG_ON(ret);
 992
 993                list_add(&root->root_list, &roots);
 994                root_count++;
 995
 996                sb->s_root->d_fsdata = &root->top_cgroup;
 997                root->top_cgroup.dentry = sb->s_root;
 998
 999                /* Link the top cgroup in this hierarchy into all
1000                 * the css_set objects */
1001                write_lock(&css_set_lock);
1002                l = &init_css_set.list;
1003                do {
1004                        struct css_set *cg;
1005                        struct cg_cgroup_link *link;
1006                        cg = list_entry(l, struct css_set, list);
1007                        BUG_ON(list_empty(&tmp_cg_links));
1008                        link = list_entry(tmp_cg_links.next,
1009                                          struct cg_cgroup_link,
1010                                          cgrp_link_list);
1011                        list_del(&link->cgrp_link_list);
1012                        link->cg = cg;
1013                        list_add(&link->cgrp_link_list,
1014                                 &root->top_cgroup.css_sets);
1015                        list_add(&link->cg_link_list, &cg->cg_links);
1016                        l = l->next;
1017                } while (l != &init_css_set.list);
1018                write_unlock(&css_set_lock);
1019
1020                free_cg_links(&tmp_cg_links);
1021
1022                BUG_ON(!list_empty(&cgrp->sibling));
1023                BUG_ON(!list_empty(&cgrp->children));
1024                BUG_ON(root->number_of_cgroups != 1);
1025
1026                cgroup_populate_dir(cgrp);
1027                mutex_unlock(&inode->i_mutex);
1028                mutex_unlock(&cgroup_mutex);
1029        }
1030
1031        return simple_set_mnt(mnt, sb);
1032
1033 drop_new_super:
1034        up_write(&sb->s_umount);
1035        deactivate_super(sb);
1036        free_cg_links(&tmp_cg_links);
1037        return ret;
1038}
1039
1040static void cgroup_kill_sb(struct super_block *sb) {
1041        struct cgroupfs_root *root = sb->s_fs_info;
1042        struct cgroup *cgrp = &root->top_cgroup;
1043        int ret;
1044
1045        BUG_ON(!root);
1046
1047        BUG_ON(root->number_of_cgroups != 1);
1048        BUG_ON(!list_empty(&cgrp->children));
1049        BUG_ON(!list_empty(&cgrp->sibling));
1050
1051        mutex_lock(&cgroup_mutex);
1052
1053        /* Rebind all subsystems back to the default hierarchy */
1054        ret = rebind_subsystems(root, 0);
1055        /* Shouldn't be able to fail ... */
1056        BUG_ON(ret);
1057
1058        /*
1059         * Release all the links from css_sets to this hierarchy's
1060         * root cgroup
1061         */
1062        write_lock(&css_set_lock);
1063        while (!list_empty(&cgrp->css_sets)) {
1064                struct cg_cgroup_link *link;
1065                link = list_entry(cgrp->css_sets.next,
1066                                  struct cg_cgroup_link, cgrp_link_list);
1067                list_del(&link->cg_link_list);
1068                list_del(&link->cgrp_link_list);
1069                kfree(link);
1070        }
1071        write_unlock(&css_set_lock);
1072
1073        if (!list_empty(&root->root_list)) {
1074                list_del(&root->root_list);
1075                root_count--;
1076        }
1077        mutex_unlock(&cgroup_mutex);
1078
1079        kfree(root);
1080        kill_litter_super(sb);
1081}
1082
1083static struct file_system_type cgroup_fs_type = {
1084        .name = "cgroup",
1085        .get_sb = cgroup_get_sb,
1086        .kill_sb = cgroup_kill_sb,
1087};
1088
1089static inline struct cgroup *__d_cgrp(struct dentry *dentry)
1090{
1091        return dentry->d_fsdata;
1092}
1093
1094static inline struct cftype *__d_cft(struct dentry *dentry)
1095{
1096        return dentry->d_fsdata;
1097}
1098
1099/*
1100 * Called with cgroup_mutex held.  Writes path of cgroup into buf.
1101 * Returns 0 on success, -errno on error.
1102 */
1103int cgroup_path(const struct cgroup *cgrp, char *buf, int buflen)
1104{
1105        char *start;
1106
1107        if (cgrp == dummytop) {
1108                /*
1109                 * Inactive subsystems have no dentry for their root
1110                 * cgroup
1111                 */
1112                strcpy(buf, "/");
1113                return 0;
1114        }
1115
1116        start = buf + buflen;
1117
1118        *--start = '\0';
1119        for (;;) {
1120                int len = cgrp->dentry->d_name.len;
1121                if ((start -= len) < buf)
1122                        return -ENAMETOOLONG;
1123                memcpy(start, cgrp->dentry->d_name.name, len);
1124                cgrp = cgrp->parent;
1125                if (!cgrp)
1126                        break;
1127                if (!cgrp->parent)
1128                        continue;
1129                if (--start < buf)
1130                        return -ENAMETOOLONG;
1131                *start = '/';
1132        }
1133        memmove(buf, start, buf + buflen - start);
1134        return 0;
1135}
1136
1137/*
1138 * Return the first subsystem attached to a cgroup's hierarchy, and
1139 * its subsystem id.
1140 */
1141
1142static void get_first_subsys(const struct cgroup *cgrp,
1143                        struct cgroup_subsys_state **css, int *subsys_id)
1144{
1145        const struct cgroupfs_root *root = cgrp->root;
1146        const struct cgroup_subsys *test_ss;
1147        BUG_ON(list_empty(&root->subsys_list));
1148        test_ss = list_entry(root->subsys_list.next,
1149                             struct cgroup_subsys, sibling);
1150        if (css) {
1151                *css = cgrp->subsys[test_ss->subsys_id];
1152                BUG_ON(!*css);
1153        }
1154        if (subsys_id)
1155                *subsys_id = test_ss->subsys_id;
1156}
1157
1158/*
1159 * Attach task 'tsk' to cgroup 'cgrp'
1160 *
1161 * Call holding cgroup_mutex.  May take task_lock of
1162 * the task 'pid' during call.
1163 */
1164static int attach_task(struct cgroup *cgrp, struct task_struct *tsk)
1165{
1166        int retval = 0;
1167        struct cgroup_subsys *ss;
1168        struct cgroup *oldcgrp;
1169        struct css_set *cg = tsk->cgroups;
1170        struct css_set *newcg;
1171        struct cgroupfs_root *root = cgrp->root;
1172        int subsys_id;
1173
1174        get_first_subsys(cgrp, NULL, &subsys_id);
1175
1176        /* Nothing to do if the task is already in that cgroup */
1177        oldcgrp = task_cgroup(tsk, subsys_id);
1178        if (cgrp == oldcgrp)
1179                return 0;
1180
1181        for_each_subsys(root, ss) {
1182                if (ss->can_attach) {
1183                        retval = ss->can_attach(ss, cgrp, tsk);
1184                        if (retval) {
1185                                return retval;
1186                        }
1187                }
1188        }
1189
1190        /*
1191         * Locate or allocate a new css_set for this task,
1192         * based on its final set of cgroups
1193         */
1194        newcg = find_css_set(cg, cgrp);
1195        if (!newcg) {
1196                return -ENOMEM;
1197        }
1198
1199        task_lock(tsk);
1200        if (tsk->flags & PF_EXITING) {
1201                task_unlock(tsk);
1202                put_css_set(newcg);
1203                return -ESRCH;
1204        }
1205        rcu_assign_pointer(tsk->cgroups, newcg);
1206        task_unlock(tsk);
1207
1208        /* Update the css_set linked lists if we're using them */
1209        write_lock(&css_set_lock);
1210        if (!list_empty(&tsk->cg_list)) {
1211                list_del(&tsk->cg_list);
1212                list_add(&tsk->cg_list, &newcg->tasks);
1213        }
1214        write_unlock(&css_set_lock);
1215
1216        for_each_subsys(root, ss) {
1217                if (ss->attach) {
1218                        ss->attach(ss, cgrp, oldcgrp, tsk);
1219                }
1220        }
1221        set_bit(CGRP_RELEASABLE, &oldcgrp->flags);
1222        synchronize_rcu();
1223        put_css_set(cg);
1224        return 0;
1225}
1226
1227/*
1228 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with
1229 * cgroup_mutex, may take task_lock of task
1230 */
1231static int attach_task_by_pid(struct cgroup *cgrp, char *pidbuf)
1232{
1233        pid_t pid;
1234        struct task_struct *tsk;
1235        int ret;
1236
1237        if (sscanf(pidbuf, "%d", &pid) != 1)
1238                return -EIO;
1239
1240        if (pid) {
1241                rcu_read_lock();
1242                tsk = find_task_by_pid(pid);
1243                if (!tsk || tsk->flags & PF_EXITING) {
1244                        rcu_read_unlock();
1245                        return -ESRCH;
1246                }
1247                get_task_struct(tsk);
1248                rcu_read_unlock();
1249
1250                if ((current->euid) && (current->euid != tsk->uid)
1251                    && (current->euid != tsk->suid)) {
1252                        put_task_struct(tsk);
1253                        return -EACCES;
1254                }
1255        } else {
1256                tsk = current;
1257                get_task_struct(tsk);
1258        }
1259
1260        ret = attach_task(cgrp, tsk);
1261        put_task_struct(tsk);
1262        return ret;
1263}
1264
1265/* The various types of files and directories in a cgroup file system */
1266
1267enum cgroup_filetype {
1268        FILE_ROOT,
1269        FILE_DIR,
1270        FILE_TASKLIST,
1271        FILE_NOTIFY_ON_RELEASE,
1272        FILE_RELEASABLE,
1273        FILE_RELEASE_AGENT,
1274};
1275
1276static ssize_t cgroup_write_uint(struct cgroup *cgrp, struct cftype *cft,
1277                                 struct file *file,
1278                                 const char __user *userbuf,
1279                                 size_t nbytes, loff_t *unused_ppos)
1280{
1281        char buffer[64];
1282        int retval = 0;
1283        u64 val;
1284        char *end;
1285
1286        if (!nbytes)
1287                return -EINVAL;
1288        if (nbytes >= sizeof(buffer))
1289                return -E2BIG;
1290        if (copy_from_user(buffer, userbuf, nbytes))
1291                return -EFAULT;
1292
1293        buffer[nbytes] = 0;     /* nul-terminate */
1294
1295        /* strip newline if necessary */
1296        if (nbytes && (buffer[nbytes-1] == '\n'))
1297                buffer[nbytes-1] = 0;
1298        val = simple_strtoull(buffer, &end, 0);
1299        if (*end)
1300                return -EINVAL;
1301
1302        /* Pass to subsystem */
1303        retval = cft->write_uint(cgrp, cft, val);
1304        if (!retval)
1305                retval = nbytes;
1306        return retval;
1307}
1308
1309static ssize_t cgroup_common_file_write(struct cgroup *cgrp,
1310                                           struct cftype *cft,
1311                                           struct file *file,
1312                                           const char __user *userbuf,
1313                                           size_t nbytes, loff_t *unused_ppos)
1314{
1315        enum cgroup_filetype type = cft->private;
1316        char *buffer;
1317        int retval = 0;
1318
1319        if (nbytes >= PATH_MAX)
1320                return -E2BIG;
1321
1322        /* +1 for nul-terminator */
1323        buffer = kmalloc(nbytes + 1, GFP_KERNEL);
1324        if (buffer == NULL)
1325                return -ENOMEM;
1326
1327        if (copy_from_user(buffer, userbuf, nbytes)) {
1328                retval = -EFAULT;
1329                goto out1;
1330        }
1331        buffer[nbytes] = 0;     /* nul-terminate */
1332
1333        mutex_lock(&cgroup_mutex);
1334
1335        if (cgroup_is_removed(cgrp)) {
1336                retval = -ENODEV;
1337                goto out2;
1338        }
1339
1340        switch (type) {
1341        case FILE_TASKLIST:
1342                retval = attach_task_by_pid(cgrp, buffer);
1343                break;
1344        case FILE_NOTIFY_ON_RELEASE:
1345                clear_bit(CGRP_RELEASABLE, &cgrp->flags);
1346                if (simple_strtoul(buffer, NULL, 10) != 0)
1347                        set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1348                else
1349                        clear_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
1350                break;
1351        case FILE_RELEASE_AGENT:
1352        {
1353                struct cgroupfs_root *root = cgrp->root;
1354                /* Strip trailing newline */
1355                if (nbytes && (buffer[nbytes-1] == '\n')) {
1356                        buffer[nbytes-1] = 0;
1357                }
1358                if (nbytes < sizeof(root->release_agent_path)) {
1359                        /* We never write anything other than '\0'
1360                         * into the last char of release_agent_path,
1361                         * so it always remains a NUL-terminated
1362                         * string */
1363                        strncpy(root->release_agent_path, buffer, nbytes);
1364                        root->release_agent_path[nbytes] = 0;
1365                } else {
1366                        retval = -ENOSPC;
1367                }
1368                break;
1369        }
1370        default:
1371                retval = -EINVAL;
1372                goto out2;
1373        }
1374
1375        if (retval == 0)
1376                retval = nbytes;
1377out2:
1378        mutex_unlock(&cgroup_mutex);
1379out1:
1380        kfree(buffer);
1381        return retval;
1382}
1383
1384static ssize_t cgroup_file_write(struct file *file, const char __user *buf,
1385                                                size_t nbytes, loff_t *ppos)
1386{
1387        struct cftype *cft = __d_cft(file->f_dentry);
1388        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1389
1390        if (!cft)
1391                return -ENODEV;
1392        if (cft->write)
1393                return cft->write(cgrp, cft, file, buf, nbytes, ppos);
1394        if (cft->write_uint)
1395                return cgroup_write_uint(cgrp, cft, file, buf, nbytes, ppos);
1396        return -EINVAL;
1397}
1398
1399static ssize_t cgroup_read_uint(struct cgroup *cgrp, struct cftype *cft,
1400                                   struct file *file,
1401                                   char __user *buf, size_t nbytes,
1402                                   loff_t *ppos)
1403{
1404        char tmp[64];
1405        u64 val = cft->read_uint(cgrp, cft);
1406        int len = sprintf(tmp, "%llu\n", (unsigned long long) val);
1407
1408        return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
1409}
1410
1411static ssize_t cgroup_common_file_read(struct cgroup *cgrp,
1412                                          struct cftype *cft,
1413                                          struct file *file,
1414                                          char __user *buf,
1415                                          size_t nbytes, loff_t *ppos)
1416{
1417        enum cgroup_filetype type = cft->private;
1418        char *page;
1419        ssize_t retval = 0;
1420        char *s;
1421
1422        if (!(page = (char *)__get_free_page(GFP_KERNEL)))
1423                return -ENOMEM;
1424
1425        s = page;
1426
1427        switch (type) {
1428        case FILE_RELEASE_AGENT:
1429        {
1430                struct cgroupfs_root *root;
1431                size_t n;
1432                mutex_lock(&cgroup_mutex);
1433                root = cgrp->root;
1434                n = strnlen(root->release_agent_path,
1435                            sizeof(root->release_agent_path));
1436                n = min(n, (size_t) PAGE_SIZE);
1437                strncpy(s, root->release_agent_path, n);
1438                mutex_unlock(&cgroup_mutex);
1439                s += n;
1440                break;
1441        }
1442        default:
1443                retval = -EINVAL;
1444                goto out;
1445        }
1446        *s++ = '\n';
1447
1448        retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1449out:
1450        free_page((unsigned long)page);
1451        return retval;
1452}
1453
1454static ssize_t cgroup_file_read(struct file *file, char __user *buf,
1455                                   size_t nbytes, loff_t *ppos)
1456{
1457        struct cftype *cft = __d_cft(file->f_dentry);
1458        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1459
1460        if (!cft)
1461                return -ENODEV;
1462
1463        if (cft->read)
1464                return cft->read(cgrp, cft, file, buf, nbytes, ppos);
1465        if (cft->read_uint)
1466                return cgroup_read_uint(cgrp, cft, file, buf, nbytes, ppos);
1467        return -EINVAL;
1468}
1469
1470static int cgroup_file_open(struct inode *inode, struct file *file)
1471{
1472        int err;
1473        struct cftype *cft;
1474
1475        err = generic_file_open(inode, file);
1476        if (err)
1477                return err;
1478
1479        cft = __d_cft(file->f_dentry);
1480        if (!cft)
1481                return -ENODEV;
1482        if (cft->open)
1483                err = cft->open(inode, file);
1484        else
1485                err = 0;
1486
1487        return err;
1488}
1489
1490static int cgroup_file_release(struct inode *inode, struct file *file)
1491{
1492        struct cftype *cft = __d_cft(file->f_dentry);
1493        if (cft->release)
1494                return cft->release(inode, file);
1495        return 0;
1496}
1497
1498/*
1499 * cgroup_rename - Only allow simple rename of directories in place.
1500 */
1501static int cgroup_rename(struct inode *old_dir, struct dentry *old_dentry,
1502                            struct inode *new_dir, struct dentry *new_dentry)
1503{
1504        if (!S_ISDIR(old_dentry->d_inode->i_mode))
1505                return -ENOTDIR;
1506        if (new_dentry->d_inode)
1507                return -EEXIST;
1508        if (old_dir != new_dir)
1509                return -EIO;
1510        return simple_rename(old_dir, old_dentry, new_dir, new_dentry);
1511}
1512
1513static struct file_operations cgroup_file_operations = {
1514        .read = cgroup_file_read,
1515        .write = cgroup_file_write,
1516        .llseek = generic_file_llseek,
1517        .open = cgroup_file_open,
1518        .release = cgroup_file_release,
1519};
1520
1521static struct inode_operations cgroup_dir_inode_operations = {
1522        .lookup = simple_lookup,
1523        .mkdir = cgroup_mkdir,
1524        .rmdir = cgroup_rmdir,
1525        .rename = cgroup_rename,
1526};
1527
1528static int cgroup_create_file(struct dentry *dentry, int mode,
1529                                struct super_block *sb)
1530{
1531        static struct dentry_operations cgroup_dops = {
1532                .d_iput = cgroup_diput,
1533        };
1534
1535        struct inode *inode;
1536
1537        if (!dentry)
1538                return -ENOENT;
1539        if (dentry->d_inode)
1540                return -EEXIST;
1541
1542        inode = cgroup_new_inode(mode, sb);
1543        if (!inode)
1544                return -ENOMEM;
1545
1546        if (S_ISDIR(mode)) {
1547                inode->i_op = &cgroup_dir_inode_operations;
1548                inode->i_fop = &simple_dir_operations;
1549
1550                /* start off with i_nlink == 2 (for "." entry) */
1551                inc_nlink(inode);
1552
1553                /* start with the directory inode held, so that we can
1554                 * populate it without racing with another mkdir */
1555                mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
1556        } else if (S_ISREG(mode)) {
1557                inode->i_size = 0;
1558                inode->i_fop = &cgroup_file_operations;
1559        }
1560        dentry->d_op = &cgroup_dops;
1561        d_instantiate(dentry, inode);
1562        dget(dentry);   /* Extra count - pin the dentry in core */
1563        return 0;
1564}
1565
1566/*
1567 *      cgroup_create_dir - create a directory for an object.
1568 *      cgrp:   the cgroup we create the directory for.
1569 *              It must have a valid ->parent field
1570 *              And we are going to fill its ->dentry field.
1571 *      dentry: dentry of the new cgroup
1572 *      mode:   mode to set on new directory.
1573 */
1574static int cgroup_create_dir(struct cgroup *cgrp, struct dentry *dentry,
1575                                int mode)
1576{
1577        struct dentry *parent;
1578        int error = 0;
1579
1580        parent = cgrp->parent->dentry;
1581        error = cgroup_create_file(dentry, S_IFDIR | mode, cgrp->root->sb);
1582        if (!error) {
1583                dentry->d_fsdata = cgrp;
1584                inc_nlink(parent->d_inode);
1585                cgrp->dentry = dentry;
1586                dget(dentry);
1587        }
1588        dput(dentry);
1589
1590        return error;
1591}
1592
1593int cgroup_add_file(struct cgroup *cgrp,
1594                       struct cgroup_subsys *subsys,
1595                       const struct cftype *cft)
1596{
1597        struct dentry *dir = cgrp->dentry;
1598        struct dentry *dentry;
1599        int error;
1600
1601        char name[MAX_CGROUP_TYPE_NAMELEN + MAX_CFTYPE_NAME + 2] = { 0 };
1602        if (subsys && !test_bit(ROOT_NOPREFIX, &cgrp->root->flags)) {
1603                strcpy(name, subsys->name);
1604                strcat(name, ".");
1605        }
1606        strcat(name, cft->name);
1607        BUG_ON(!mutex_is_locked(&dir->d_inode->i_mutex));
1608        dentry = lookup_one_len(name, dir, strlen(name));
1609        if (!IS_ERR(dentry)) {
1610                error = cgroup_create_file(dentry, 0644 | S_IFREG,
1611                                                cgrp->root->sb);
1612                if (!error)
1613                        dentry->d_fsdata = (void *)cft;
1614                dput(dentry);
1615        } else
1616                error = PTR_ERR(dentry);
1617        return error;
1618}
1619
1620int cgroup_add_files(struct cgroup *cgrp,
1621                        struct cgroup_subsys *subsys,
1622                        const struct cftype cft[],
1623                        int count)
1624{
1625        int i, err;
1626        for (i = 0; i < count; i++) {
1627                err = cgroup_add_file(cgrp, subsys, &cft[i]);
1628                if (err)
1629                        return err;
1630        }
1631        return 0;
1632}
1633
1634/* Count the number of tasks in a cgroup. */
1635
1636int cgroup_task_count(const struct cgroup *cgrp)
1637{
1638        int count = 0;
1639        struct list_head *l;
1640
1641        read_lock(&css_set_lock);
1642        l = cgrp->css_sets.next;
1643        while (l != &cgrp->css_sets) {
1644                struct cg_cgroup_link *link =
1645                        list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1646                count += atomic_read(&link->cg->ref.refcount);
1647                l = l->next;
1648        }
1649        read_unlock(&css_set_lock);
1650        return count;
1651}
1652
1653/*
1654 * Advance a list_head iterator.  The iterator should be positioned at
1655 * the start of a css_set
1656 */
1657static void cgroup_advance_iter(struct cgroup *cgrp,
1658                                          struct cgroup_iter *it)
1659{
1660        struct list_head *l = it->cg_link;
1661        struct cg_cgroup_link *link;
1662        struct css_set *cg;
1663
1664        /* Advance to the next non-empty css_set */
1665        do {
1666                l = l->next;
1667                if (l == &cgrp->css_sets) {
1668                        it->cg_link = NULL;
1669                        return;
1670                }
1671                link = list_entry(l, struct cg_cgroup_link, cgrp_link_list);
1672                cg = link->cg;
1673        } while (list_empty(&cg->tasks));
1674        it->cg_link = l;
1675        it->task = cg->tasks.next;
1676}
1677
1678void cgroup_iter_start(struct cgroup *cgrp, struct cgroup_iter *it)
1679{
1680        /*
1681         * The first time anyone tries to iterate across a cgroup,
1682         * we need to enable the list linking each css_set to its
1683         * tasks, and fix up all existing tasks.
1684         */
1685        if (!use_task_css_set_links) {
1686                struct task_struct *p, *g;
1687                write_lock(&css_set_lock);
1688                use_task_css_set_links = 1;
1689                do_each_thread(g, p) {
1690                        task_lock(p);
1691                        if (list_empty(&p->cg_list))
1692                                list_add(&p->cg_list, &p->cgroups->tasks);
1693                        task_unlock(p);
1694                } while_each_thread(g, p);
1695                write_unlock(&css_set_lock);
1696        }
1697        read_lock(&css_set_lock);
1698        it->cg_link = &cgrp->css_sets;
1699        cgroup_advance_iter(cgrp, it);
1700}
1701
1702struct task_struct *cgroup_iter_next(struct cgroup *cgrp,
1703                                        struct cgroup_iter *it)
1704{
1705        struct task_struct *res;
1706        struct list_head *l = it->task;
1707
1708        /* If the iterator cg is NULL, we have no tasks */
1709        if (!it->cg_link)
1710                return NULL;
1711        res = list_entry(l, struct task_struct, cg_list);
1712        /* Advance iterator to find next entry */
1713        l = l->next;
1714        if (l == &res->cgroups->tasks) {
1715                /* We reached the end of this task list - move on to
1716                 * the next cg_cgroup_link */
1717                cgroup_advance_iter(cgrp, it);
1718        } else {
1719                it->task = l;
1720        }
1721        return res;
1722}
1723
1724void cgroup_iter_end(struct cgroup *cgrp, struct cgroup_iter *it)
1725{
1726        read_unlock(&css_set_lock);
1727}
1728
1729/*
1730 * Stuff for reading the 'tasks' file.
1731 *
1732 * Reading this file can return large amounts of data if a cgroup has
1733 * *lots* of attached tasks. So it may need several calls to read(),
1734 * but we cannot guarantee that the information we produce is correct
1735 * unless we produce it entirely atomically.
1736 *
1737 * Upon tasks file open(), a struct ctr_struct is allocated, that
1738 * will have a pointer to an array (also allocated here).  The struct
1739 * ctr_struct * is stored in file->private_data.  Its resources will
1740 * be freed by release() when the file is closed.  The array is used
1741 * to sprintf the PIDs and then used by read().
1742 */
1743struct ctr_struct {
1744        char *buf;
1745        int bufsz;
1746};
1747
1748/*
1749 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
1750 * 'cgrp'.  Return actual number of pids loaded.  No need to
1751 * task_lock(p) when reading out p->cgroup, since we're in an RCU
1752 * read section, so the css_set can't go away, and is
1753 * immutable after creation.
1754 */
1755static int pid_array_load(pid_t *pidarray, int npids, struct cgroup *cgrp)
1756{
1757        int n = 0;
1758        struct cgroup_iter it;
1759        struct task_struct *tsk;
1760        cgroup_iter_start(cgrp, &it);
1761        while ((tsk = cgroup_iter_next(cgrp, &it))) {
1762                if (unlikely(n == npids))
1763                        break;
1764                pidarray[n++] = task_pid_nr(tsk);
1765        }
1766        cgroup_iter_end(cgrp, &it);
1767        return n;
1768}
1769
1770/**
1771 * Build and fill cgroupstats so that taskstats can export it to user
1772 * space.
1773 *
1774 * @stats: cgroupstats to fill information into
1775 * @dentry: A dentry entry belonging to the cgroup for which stats have
1776 * been requested.
1777 */
1778int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
1779{
1780        int ret = -EINVAL;
1781        struct cgroup *cgrp;
1782        struct cgroup_iter it;
1783        struct task_struct *tsk;
1784        /*
1785         * Validate dentry by checking the superblock operations
1786         */
1787        if (dentry->d_sb->s_op != &cgroup_ops)
1788                 goto err;
1789
1790        ret = 0;
1791        cgrp = dentry->d_fsdata;
1792        rcu_read_lock();
1793
1794        cgroup_iter_start(cgrp, &it);
1795        while ((tsk = cgroup_iter_next(cgrp, &it))) {
1796                switch (tsk->state) {
1797                case TASK_RUNNING:
1798                        stats->nr_running++;
1799                        break;
1800                case TASK_INTERRUPTIBLE:
1801                        stats->nr_sleeping++;
1802                        break;
1803                case TASK_UNINTERRUPTIBLE:
1804                        stats->nr_uninterruptible++;
1805                        break;
1806                case TASK_STOPPED:
1807                        stats->nr_stopped++;
1808                        break;
1809                default:
1810                        if (delayacct_is_task_waiting_on_io(tsk))
1811                                stats->nr_io_wait++;
1812                        break;
1813                }
1814        }
1815        cgroup_iter_end(cgrp, &it);
1816
1817        rcu_read_unlock();
1818err:
1819        return ret;
1820}
1821
1822static int cmppid(const void *a, const void *b)
1823{
1824        return *(pid_t *)a - *(pid_t *)b;
1825}
1826
1827/*
1828 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
1829 * decimal pids in 'buf'.  Don't write more than 'sz' chars, but return
1830 * count 'cnt' of how many chars would be written if buf were large enough.
1831 */
1832static int pid_array_to_buf(char *buf, int sz, pid_t *a, int npids)
1833{
1834        int cnt = 0;
1835        int i;
1836
1837        for (i = 0; i < npids; i++)
1838                cnt += snprintf(buf + cnt, max(sz - cnt, 0), "%d\n", a[i]);
1839        return cnt;
1840}
1841
1842/*
1843 * Handle an open on 'tasks' file.  Prepare a buffer listing the
1844 * process id's of tasks currently attached to the cgroup being opened.
1845 *
1846 * Does not require any specific cgroup mutexes, and does not take any.
1847 */
1848static int cgroup_tasks_open(struct inode *unused, struct file *file)
1849{
1850        struct cgroup *cgrp = __d_cgrp(file->f_dentry->d_parent);
1851        struct ctr_struct *ctr;
1852        pid_t *pidarray;
1853        int npids;
1854        char c;
1855
1856        if (!(file->f_mode & FMODE_READ))
1857                return 0;
1858
1859        ctr = kmalloc(sizeof(*ctr), GFP_KERNEL);
1860        if (!ctr)
1861                goto err0;
1862
1863        /*
1864         * If cgroup gets more users after we read count, we won't have
1865         * enough space - tough.  This race is indistinguishable to the
1866         * caller from the case that the additional cgroup users didn't
1867         * show up until sometime later on.
1868         */
1869        npids = cgroup_task_count(cgrp);
1870        if (npids) {
1871                pidarray = kmalloc(npids * sizeof(pid_t), GFP_KERNEL);
1872                if (!pidarray)
1873                        goto err1;
1874
1875                npids = pid_array_load(pidarray, npids, cgrp);
1876                sort(pidarray, npids, sizeof(pid_t), cmppid, NULL);
1877
1878                /* Call pid_array_to_buf() twice, first just to get bufsz */
1879                ctr->bufsz = pid_array_to_buf(&c, sizeof(c), pidarray, npids) + 1;
1880                ctr->buf = kmalloc(ctr->bufsz, GFP_KERNEL);
1881                if (!ctr->buf)
1882                        goto err2;
1883                ctr->bufsz = pid_array_to_buf(ctr->buf, ctr->bufsz, pidarray, npids);
1884
1885                kfree(pidarray);
1886        } else {
1887                ctr->buf = 0;
1888                ctr->bufsz = 0;
1889        }
1890        file->private_data = ctr;
1891        return 0;
1892
1893err2:
1894        kfree(pidarray);
1895err1:
1896        kfree(ctr);
1897err0:
1898        return -ENOMEM;
1899}
1900
1901static ssize_t cgroup_tasks_read(struct cgroup *cgrp,
1902                                    struct cftype *cft,
1903                                    struct file *file, char __user *buf,
1904                                    size_t nbytes, loff_t *ppos)
1905{
1906        struct ctr_struct *ctr = file->private_data;
1907
1908        return simple_read_from_buffer(buf, nbytes, ppos, ctr->buf, ctr->bufsz);
1909}
1910
1911static int cgroup_tasks_release(struct inode *unused_inode,
1912                                        struct file *file)
1913{
1914        struct ctr_struct *ctr;
1915
1916        if (file->f_mode & FMODE_READ) {
1917                ctr = file->private_data;
1918                kfree(ctr->buf);
1919                kfree(ctr);
1920        }
1921        return 0;
1922}
1923
1924static u64 cgroup_read_notify_on_release(struct cgroup *cgrp,
1925                                            struct cftype *cft)
1926{
1927        return notify_on_release(cgrp);
1928}
1929
1930static u64 cgroup_read_releasable(struct cgroup *cgrp, struct cftype *cft)
1931{
1932        return test_bit(CGRP_RELEASABLE, &cgrp->flags);
1933}
1934
1935/*
1936 * for the common functions, 'private' gives the type of file
1937 */
1938static struct cftype files[] = {
1939        {
1940                .name = "tasks",
1941                .open = cgroup_tasks_open,
1942                .read = cgroup_tasks_read,
1943                .write = cgroup_common_file_write,
1944                .release = cgroup_tasks_release,
1945                .private = FILE_TASKLIST,
1946        },
1947
1948        {
1949                .name = "notify_on_release",
1950                .read_uint = cgroup_read_notify_on_release,
1951                .write = cgroup_common_file_write,
1952                .private = FILE_NOTIFY_ON_RELEASE,
1953        },
1954
1955        {
1956                .name = "releasable",
1957                .read_uint = cgroup_read_releasable,
1958                .private = FILE_RELEASABLE,
1959        }
1960};
1961
1962static struct cftype cft_release_agent = {
1963        .name = "release_agent",
1964        .read = cgroup_common_file_read,
1965        .write = cgroup_common_file_write,
1966        .private = FILE_RELEASE_AGENT,
1967};
1968
1969static int cgroup_populate_dir(struct cgroup *cgrp)
1970{
1971        int err;
1972        struct cgroup_subsys *ss;
1973
1974        /* First clear out any existing files */
1975        cgroup_clear_directory(cgrp->dentry);
1976
1977        err = cgroup_add_files(cgrp, NULL, files, ARRAY_SIZE(files));
1978        if (err < 0)
1979                return err;
1980
1981        if (cgrp == cgrp->top_cgroup) {
1982                if ((err = cgroup_add_file(cgrp, NULL, &cft_release_agent)) < 0)
1983                        return err;
1984        }
1985
1986        for_each_subsys(cgrp->root, ss) {
1987                if (ss->populate && (err = ss->populate(ss, cgrp)) < 0)
1988                        return err;
1989        }
1990
1991        return 0;
1992}
1993
1994static void init_cgroup_css(struct cgroup_subsys_state *css,
1995                               struct cgroup_subsys *ss,
1996                               struct cgroup *cgrp)
1997{
1998        css->cgroup = cgrp;
1999        atomic_set(&css->refcnt, 0);
2000        css->flags = 0;
2001        if (cgrp == dummytop)
2002                set_bit(CSS_ROOT, &css->flags);
2003        BUG_ON(cgrp->subsys[ss->subsys_id]);
2004        cgrp->subsys[ss->subsys_id] = css;
2005}
2006
2007/*
2008 *      cgroup_create - create a cgroup
2009 *      parent: cgroup that will be parent of the new cgroup.
2010 *      name:           name of the new cgroup. Will be strcpy'ed.
2011 *      mode:           mode to set on new inode
2012 *
2013 *      Must be called with the mutex on the parent inode held
2014 */
2015
2016static long cgroup_create(struct cgroup *parent, struct dentry *dentry,
2017                             int mode)
2018{
2019        struct cgroup *cgrp;
2020        struct cgroupfs_root *root = parent->root;
2021        int err = 0;
2022        struct cgroup_subsys *ss;
2023        struct super_block *sb = root->sb;
2024
2025        cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
2026        if (!cgrp)
2027                return -ENOMEM;
2028
2029        /* Grab a reference on the superblock so the hierarchy doesn't
2030         * get deleted on unmount if there are child cgroups.  This
2031         * can be done outside cgroup_mutex, since the sb can't
2032         * disappear while someone has an open control file on the
2033         * fs */
2034        atomic_inc(&sb->s_active);
2035
2036        mutex_lock(&cgroup_mutex);
2037
2038        cgrp->flags = 0;
2039        INIT_LIST_HEAD(&cgrp->sibling);
2040        INIT_LIST_HEAD(&cgrp->children);
2041        INIT_LIST_HEAD(&cgrp->css_sets);
2042        INIT_LIST_HEAD(&cgrp->release_list);
2043
2044        cgrp->parent = parent;
2045        cgrp->root = parent->root;
2046        cgrp->top_cgroup = parent->top_cgroup;
2047
2048        for_each_subsys(root, ss) {
2049                struct cgroup_subsys_state *css = ss->create(ss, cgrp);
2050                if (IS_ERR(css)) {
2051                        err = PTR_ERR(css);
2052                        goto err_destroy;
2053                }
2054                init_cgroup_css(css, ss, cgrp);
2055        }
2056
2057        list_add(&cgrp->sibling, &cgrp->parent->children);
2058        root->number_of_cgroups++;
2059
2060        err = cgroup_create_dir(cgrp, dentry, mode);
2061        if (err < 0)
2062                goto err_remove;
2063
2064        /* The cgroup directory was pre-locked for us */
2065        BUG_ON(!mutex_is_locked(&cgrp->dentry->d_inode->i_mutex));
2066
2067        err = cgroup_populate_dir(cgrp);
2068        /* If err < 0, we have a half-filled directory - oh well ;) */
2069
2070        mutex_unlock(&cgroup_mutex);
2071        mutex_unlock(&cgrp->dentry->d_inode->i_mutex);
2072
2073        return 0;
2074
2075 err_remove:
2076
2077        list_del(&cgrp->sibling);
2078        root->number_of_cgroups--;
2079
2080 err_destroy:
2081
2082        for_each_subsys(root, ss) {
2083                if (cgrp->subsys[ss->subsys_id])
2084                        ss->destroy(ss, cgrp);
2085        }
2086
2087        mutex_unlock(&cgroup_mutex);
2088
2089        /* Release the reference count that we took on the superblock */
2090        deactivate_super(sb);
2091
2092        kfree(cgrp);
2093        return err;
2094}
2095
2096static int cgroup_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2097{
2098        struct cgroup *c_parent = dentry->d_parent->d_fsdata;
2099
2100        /* the vfs holds inode->i_mutex already */
2101        return cgroup_create(c_parent, dentry, mode | S_IFDIR);
2102}
2103
2104static inline int cgroup_has_css_refs(struct cgroup *cgrp)
2105{
2106        /* Check the reference count on each subsystem. Since we
2107         * already established that there are no tasks in the
2108         * cgroup, if the css refcount is also 0, then there should
2109         * be no outstanding references, so the subsystem is safe to
2110         * destroy. We scan across all subsystems rather than using
2111         * the per-hierarchy linked list of mounted subsystems since
2112         * we can be called via check_for_release() with no
2113         * synchronization other than RCU, and the subsystem linked
2114         * list isn't RCU-safe */
2115        int i;
2116        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2117                struct cgroup_subsys *ss = subsys[i];
2118                struct cgroup_subsys_state *css;
2119                /* Skip subsystems not in this hierarchy */
2120                if (ss->root != cgrp->root)
2121                        continue;
2122                css = cgrp->subsys[ss->subsys_id];
2123                /* When called from check_for_release() it's possible
2124                 * that by this point the cgroup has been removed
2125                 * and the css deleted. But a false-positive doesn't
2126                 * matter, since it can only happen if the cgroup
2127                 * has been deleted and hence no longer needs the
2128                 * release agent to be called anyway. */
2129                if (css && atomic_read(&css->refcnt)) {
2130                        return 1;
2131                }
2132        }
2133        return 0;
2134}
2135
2136static int cgroup_rmdir(struct inode *unused_dir, struct dentry *dentry)
2137{
2138        struct cgroup *cgrp = dentry->d_fsdata;
2139        struct dentry *d;
2140        struct cgroup *parent;
2141        struct cgroup_subsys *ss;
2142        struct super_block *sb;
2143        struct cgroupfs_root *root;
2144
2145        /* the vfs holds both inode->i_mutex already */
2146
2147        mutex_lock(&cgroup_mutex);
2148        if (atomic_read(&cgrp->count) != 0) {
2149                mutex_unlock(&cgroup_mutex);
2150                return -EBUSY;
2151        }
2152        if (!list_empty(&cgrp->children)) {
2153                mutex_unlock(&cgroup_mutex);
2154                return -EBUSY;
2155        }
2156
2157        parent = cgrp->parent;
2158        root = cgrp->root;
2159        sb = root->sb;
2160
2161        if (cgroup_has_css_refs(cgrp)) {
2162                mutex_unlock(&cgroup_mutex);
2163                return -EBUSY;
2164        }
2165
2166        for_each_subsys(root, ss) {
2167                if (cgrp->subsys[ss->subsys_id])
2168                        ss->destroy(ss, cgrp);
2169        }
2170
2171        spin_lock(&release_list_lock);
2172        set_bit(CGRP_REMOVED, &cgrp->flags);
2173        if (!list_empty(&cgrp->release_list))
2174                list_del(&cgrp->release_list);
2175        spin_unlock(&release_list_lock);
2176        /* delete my sibling from parent->children */
2177        list_del(&cgrp->sibling);
2178        spin_lock(&cgrp->dentry->d_lock);
2179        d = dget(cgrp->dentry);
2180        cgrp->dentry = NULL;
2181        spin_unlock(&d->d_lock);
2182
2183        cgroup_d_remove_dir(d);
2184        dput(d);
2185        root->number_of_cgroups--;
2186
2187        set_bit(CGRP_RELEASABLE, &parent->flags);
2188        check_for_release(parent);
2189
2190        mutex_unlock(&cgroup_mutex);
2191        /* Drop the active superblock reference that we took when we
2192         * created the cgroup */
2193        deactivate_super(sb);
2194        return 0;
2195}
2196
2197static void cgroup_init_subsys(struct cgroup_subsys *ss)
2198{
2199        struct cgroup_subsys_state *css;
2200        struct list_head *l;
2201
2202        printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
2203
2204        /* Create the top cgroup state for this subsystem */
2205        ss->root = &rootnode;
2206        css = ss->create(ss, dummytop);
2207        /* We don't handle early failures gracefully */
2208        BUG_ON(IS_ERR(css));
2209        init_cgroup_css(css, ss, dummytop);
2210
2211        /* Update all cgroup groups to contain a subsys
2212         * pointer to this state - since the subsystem is
2213         * newly registered, all tasks and hence all cgroup
2214         * groups are in the subsystem's top cgroup. */
2215        write_lock(&css_set_lock);
2216        l = &init_css_set.list;
2217        do {
2218                struct css_set *cg =
2219                        list_entry(l, struct css_set, list);
2220                cg->subsys[ss->subsys_id] = dummytop->subsys[ss->subsys_id];
2221                l = l->next;
2222        } while (l != &init_css_set.list);
2223        write_unlock(&css_set_lock);
2224
2225        /* If this subsystem requested that it be notified with fork
2226         * events, we should send it one now for every process in the
2227         * system */
2228        if (ss->fork) {
2229                struct task_struct *g, *p;
2230
2231                read_lock(&tasklist_lock);
2232                do_each_thread(g, p) {
2233                        ss->fork(ss, p);
2234                } while_each_thread(g, p);
2235                read_unlock(&tasklist_lock);
2236        }
2237
2238        need_forkexit_callback |= ss->fork || ss->exit;
2239
2240        ss->active = 1;
2241}
2242
2243/**
2244 * cgroup_init_early - initialize cgroups at system boot, and
2245 * initialize any subsystems that request early init.
2246 */
2247int __init cgroup_init_early(void)
2248{
2249        int i;
2250        kref_init(&init_css_set.ref);
2251        kref_get(&init_css_set.ref);
2252        INIT_LIST_HEAD(&init_css_set.list);
2253        INIT_LIST_HEAD(&init_css_set.cg_links);
2254        INIT_LIST_HEAD(&init_css_set.tasks);
2255        css_set_count = 1;
2256        init_cgroup_root(&rootnode);
2257        list_add(&rootnode.root_list, &roots);
2258        root_count = 1;
2259        init_task.cgroups = &init_css_set;
2260
2261        init_css_set_link.cg = &init_css_set;
2262        list_add(&init_css_set_link.cgrp_link_list,
2263                 &rootnode.top_cgroup.css_sets);
2264        list_add(&init_css_set_link.cg_link_list,
2265                 &init_css_set.cg_links);
2266
2267        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2268                struct cgroup_subsys *ss = subsys[i];
2269
2270                BUG_ON(!ss->name);
2271                BUG_ON(strlen(ss->name) > MAX_CGROUP_TYPE_NAMELEN);
2272                BUG_ON(!ss->create);
2273                BUG_ON(!ss->destroy);
2274                if (ss->subsys_id != i) {
2275                        printk(KERN_ERR "cgroup: Subsys %s id == %d\n",
2276                               ss->name, ss->subsys_id);
2277                        BUG();
2278                }
2279
2280                if (ss->early_init)
2281                        cgroup_init_subsys(ss);
2282        }
2283        return 0;
2284}
2285
2286/**
2287 * cgroup_init - register cgroup filesystem and /proc file, and
2288 * initialize any subsystems that didn't request early init.
2289 */
2290int __init cgroup_init(void)
2291{
2292        int err;
2293        int i;
2294        struct proc_dir_entry *entry;
2295
2296        err = bdi_init(&cgroup_backing_dev_info);
2297        if (err)
2298                return err;
2299
2300        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2301                struct cgroup_subsys *ss = subsys[i];
2302                if (!ss->early_init)
2303                        cgroup_init_subsys(ss);
2304        }
2305
2306        err = register_filesystem(&cgroup_fs_type);
2307        if (err < 0)
2308                goto out;
2309
2310        entry = create_proc_entry("cgroups", 0, NULL);
2311        if (entry)
2312                entry->proc_fops = &proc_cgroupstats_operations;
2313
2314out:
2315        if (err)
2316                bdi_destroy(&cgroup_backing_dev_info);
2317
2318        return err;
2319}
2320
2321/*
2322 * proc_cgroup_show()
2323 *  - Print task's cgroup paths into seq_file, one line for each hierarchy
2324 *  - Used for /proc/<pid>/cgroup.
2325 *  - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2326 *    doesn't really matter if tsk->cgroup changes after we read it,
2327 *    and we take cgroup_mutex, keeping attach_task() from changing it
2328 *    anyway.  No need to check that tsk->cgroup != NULL, thanks to
2329 *    the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2330 *    cgroup to top_cgroup.
2331 */
2332
2333/* TODO: Use a proper seq_file iterator */
2334static int proc_cgroup_show(struct seq_file *m, void *v)
2335{
2336        struct pid *pid;
2337        struct task_struct *tsk;
2338        char *buf;
2339        int retval;
2340        struct cgroupfs_root *root;
2341
2342        retval = -ENOMEM;
2343        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2344        if (!buf)
2345                goto out;
2346
2347        retval = -ESRCH;
2348        pid = m->private;
2349        tsk = get_pid_task(pid, PIDTYPE_PID);
2350        if (!tsk)
2351                goto out_free;
2352
2353        retval = 0;
2354
2355        mutex_lock(&cgroup_mutex);
2356
2357        for_each_root(root) {
2358                struct cgroup_subsys *ss;
2359                struct cgroup *cgrp;
2360                int subsys_id;
2361                int count = 0;
2362
2363                /* Skip this hierarchy if it has no active subsystems */
2364                if (!root->actual_subsys_bits)
2365                        continue;
2366                for_each_subsys(root, ss)
2367                        seq_printf(m, "%s%s", count++ ? "," : "", ss->name);
2368                seq_putc(m, ':');
2369                get_first_subsys(&root->top_cgroup, NULL, &subsys_id);
2370                cgrp = task_cgroup(tsk, subsys_id);
2371                retval = cgroup_path(cgrp, buf, PAGE_SIZE);
2372                if (retval < 0)
2373                        goto out_unlock;
2374                seq_puts(m, buf);
2375                seq_putc(m, '\n');
2376        }
2377
2378out_unlock:
2379        mutex_unlock(&cgroup_mutex);
2380        put_task_struct(tsk);
2381out_free:
2382        kfree(buf);
2383out:
2384        return retval;
2385}
2386
2387static int cgroup_open(struct inode *inode, struct file *file)
2388{
2389        struct pid *pid = PROC_I(inode)->pid;
2390        return single_open(file, proc_cgroup_show, pid);
2391}
2392
2393struct file_operations proc_cgroup_operations = {
2394        .open           = cgroup_open,
2395        .read           = seq_read,
2396        .llseek         = seq_lseek,
2397        .release        = single_release,
2398};
2399
2400/* Display information about each subsystem and each hierarchy */
2401static int proc_cgroupstats_show(struct seq_file *m, void *v)
2402{
2403        int i;
2404
2405        seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\n");
2406        mutex_lock(&cgroup_mutex);
2407        for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2408                struct cgroup_subsys *ss = subsys[i];
2409                seq_printf(m, "%s\t%lu\t%d\n",
2410                           ss->name, ss->root->subsys_bits,
2411                           ss->root->number_of_cgroups);
2412        }
2413        mutex_unlock(&cgroup_mutex);
2414        return 0;
2415}
2416
2417static int cgroupstats_open(struct inode *inode, struct file *file)
2418{
2419        return single_open(file, proc_cgroupstats_show, 0);
2420}
2421
2422static struct file_operations proc_cgroupstats_operations = {
2423        .open = cgroupstats_open,
2424        .read = seq_read,
2425        .llseek = seq_lseek,
2426        .release = single_release,
2427};
2428
2429/**
2430 * cgroup_fork - attach newly forked task to its parents cgroup.
2431 * @tsk: pointer to task_struct of forking parent process.
2432 *
2433 * Description: A task inherits its parent's cgroup at fork().
2434 *
2435 * A pointer to the shared css_set was automatically copied in
2436 * fork.c by dup_task_struct().  However, we ignore that copy, since
2437 * it was not made under the protection of RCU or cgroup_mutex, so
2438 * might no longer be a valid cgroup pointer.  attach_task() might
2439 * have already changed current->cgroups, allowing the previously
2440 * referenced cgroup group to be removed and freed.
2441 *
2442 * At the point that cgroup_fork() is called, 'current' is the parent
2443 * task, and the passed argument 'child' points to the child task.
2444 */
2445void cgroup_fork(struct task_struct *child)
2446{
2447        task_lock(current);
2448        child->cgroups = current->cgroups;
2449        get_css_set(child->cgroups);
2450        task_unlock(current);
2451        INIT_LIST_HEAD(&child->cg_list);
2452}
2453
2454/**
2455 * cgroup_fork_callbacks - called on a new task very soon before
2456 * adding it to the tasklist. No need to take any locks since no-one
2457 * can be operating on this task
2458 */
2459void cgroup_fork_callbacks(struct task_struct *child)
2460{
2461        if (need_forkexit_callback) {
2462                int i;
2463                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2464                        struct cgroup_subsys *ss = subsys[i];
2465                        if (ss->fork)
2466                                ss->fork(ss, child);
2467                }
2468        }
2469}
2470
2471/**
2472 * cgroup_post_fork - called on a new task after adding it to the
2473 * task list. Adds the task to the list running through its css_set
2474 * if necessary. Has to be after the task is visible on the task list
2475 * in case we race with the first call to cgroup_iter_start() - to
2476 * guarantee that the new task ends up on its list. */
2477void cgroup_post_fork(struct task_struct *child)
2478{
2479        if (use_task_css_set_links) {
2480                write_lock(&css_set_lock);
2481                if (list_empty(&child->cg_list))
2482                        list_add(&child->cg_list, &child->cgroups->tasks);
2483                write_unlock(&css_set_lock);
2484        }
2485}
2486/**
2487 * cgroup_exit - detach cgroup from exiting task
2488 * @tsk: pointer to task_struct of exiting process
2489 *
2490 * Description: Detach cgroup from @tsk and release it.
2491 *
2492 * Note that cgroups marked notify_on_release force every task in
2493 * them to take the global cgroup_mutex mutex when exiting.
2494 * This could impact scaling on very large systems.  Be reluctant to
2495 * use notify_on_release cgroups where very high task exit scaling
2496 * is required on large systems.
2497 *
2498 * the_top_cgroup_hack:
2499 *
2500 *    Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2501 *
2502 *    We call cgroup_exit() while the task is still competent to
2503 *    handle notify_on_release(), then leave the task attached to the
2504 *    root cgroup in each hierarchy for the remainder of its exit.
2505 *
2506 *    To do this properly, we would increment the reference count on
2507 *    top_cgroup, and near the very end of the kernel/exit.c do_exit()
2508 *    code we would add a second cgroup function call, to drop that
2509 *    reference.  This would just create an unnecessary hot spot on
2510 *    the top_cgroup reference count, to no avail.
2511 *
2512 *    Normally, holding a reference to a cgroup without bumping its
2513 *    count is unsafe.   The cgroup could go away, or someone could
2514 *    attach us to a different cgroup, decrementing the count on
2515 *    the first cgroup that we never incremented.  But in this case,
2516 *    top_cgroup isn't going away, and either task has PF_EXITING set,
2517 *    which wards off any attach_task() attempts, or task is a failed
2518 *    fork, never visible to attach_task.
2519 *
2520 */
2521void cgroup_exit(struct task_struct *tsk, int run_callbacks)
2522{
2523        int i;
2524        struct css_set *cg;
2525
2526        if (run_callbacks && need_forkexit_callback) {
2527                for (i = 0; i < CGROUP_SUBSYS_COUNT; i++) {
2528                        struct cgroup_subsys *ss = subsys[i];
2529                        if (ss->exit)
2530                                ss->exit(ss, tsk);
2531                }
2532        }
2533
2534        /*
2535         * Unlink from the css_set task list if necessary.
2536         * Optimistically check cg_list before taking
2537         * css_set_lock
2538         */
2539        if (!list_empty(&tsk->cg_list)) {
2540                write_lock(&css_set_lock);
2541                if (!list_empty(&tsk->cg_list))
2542                        list_del(&tsk->cg_list);
2543                write_unlock(&css_set_lock);
2544        }
2545
2546        /* Reassign the task to the init_css_set. */
2547        task_lock(tsk);
2548        cg = tsk->cgroups;
2549        tsk->cgroups = &init_css_set;
2550        task_unlock(tsk);
2551        if (cg)
2552                put_css_set_taskexit(cg);
2553}
2554
2555/**
2556 * cgroup_clone - duplicate the current cgroup in the hierarchy
2557 * that the given subsystem is attached to, and move this task into
2558 * the new child
2559 */
2560int cgroup_clone(struct task_struct *tsk, struct cgroup_subsys *subsys)
2561{
2562        struct dentry *dentry;
2563        int ret = 0;
2564        char nodename[MAX_CGROUP_TYPE_NAMELEN];
2565        struct cgroup *parent, *child;
2566        struct inode *inode;
2567        struct css_set *cg;
2568        struct cgroupfs_root *root;
2569        struct cgroup_subsys *ss;
2570
2571        /* We shouldn't be called by an unregistered subsystem */
2572        BUG_ON(!subsys->active);
2573
2574        /* First figure out what hierarchy and cgroup we're dealing
2575         * with, and pin them so we can drop cgroup_mutex */
2576        mutex_lock(&cgroup_mutex);
2577 again:
2578        root = subsys->root;
2579        if (root == &rootnode) {
2580                printk(KERN_INFO
2581                       "Not cloning cgroup for unused subsystem %s\n",
2582                       subsys->name);
2583                mutex_unlock(&cgroup_mutex);
2584                return 0;
2585        }
2586        cg = tsk->cgroups;
2587        parent = task_cgroup(tsk, subsys->subsys_id);
2588
2589        snprintf(nodename, MAX_CGROUP_TYPE_NAMELEN, "node_%d", tsk->pid);
2590
2591        /* Pin the hierarchy */
2592        atomic_inc(&parent->root->sb->s_active);
2593
2594        /* Keep the cgroup alive */
2595        get_css_set(cg);
2596        mutex_unlock(&cgroup_mutex);
2597
2598        /* Now do the VFS work to create a cgroup */
2599        inode = parent->dentry->d_inode;
2600
2601        /* Hold the parent directory mutex across this operation to
2602         * stop anyone else deleting the new cgroup */
2603        mutex_lock(&inode->i_mutex);
2604        dentry = lookup_one_len(nodename, parent->dentry, strlen(nodename));
2605        if (IS_ERR(dentry)) {
2606                printk(KERN_INFO
2607                       "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename,
2608                       PTR_ERR(dentry));
2609                ret = PTR_ERR(dentry);
2610                goto out_release;
2611        }
2612
2613        /* Create the cgroup directory, which also creates the cgroup */
2614        ret = vfs_mkdir(inode, dentry, S_IFDIR | 0755);
2615        child = __d_cgrp(dentry);
2616        dput(dentry);
2617        if (ret) {
2618                printk(KERN_INFO
2619                       "Failed to create cgroup %s: %d\n", nodename,
2620                       ret);
2621                goto out_release;
2622        }
2623
2624        if (!child) {
2625                printk(KERN_INFO
2626                       "Couldn't find new cgroup %s\n", nodename);
2627                ret = -ENOMEM;
2628                goto out_release;
2629        }
2630
2631        /* The cgroup now exists. Retake cgroup_mutex and check
2632         * that we're still in the same state that we thought we
2633         * were. */
2634        mutex_lock(&cgroup_mutex);
2635        if ((root != subsys->root) ||
2636            (parent != task_cgroup(tsk, subsys->subsys_id))) {
2637                /* Aargh, we raced ... */
2638                mutex_unlock(&inode->i_mutex);
2639                put_css_set(cg);
2640
2641                deactivate_super(parent->root->sb);
2642                /* The cgroup is still accessible in the VFS, but
2643                 * we're not going to try to rmdir() it at this
2644                 * point. */
2645                printk(KERN_INFO
2646                       "Race in cgroup_clone() - leaking cgroup %s\n",
2647                       nodename);
2648                goto again;
2649        }
2650
2651        /* do any required auto-setup */
2652        for_each_subsys(root, ss) {
2653                if (ss->post_clone)
2654                        ss->post_clone(ss, child);
2655        }
2656
2657        /* All seems fine. Finish by moving the task into the new cgroup */
2658        ret = attach_task(child, tsk);
2659        mutex_unlock(&cgroup_mutex);
2660
2661 out_release:
2662        mutex_unlock(&inode->i_mutex);
2663
2664        mutex_lock(&cgroup_mutex);
2665        put_css_set(cg);
2666        mutex_unlock(&cgroup_mutex);
2667        deactivate_super(parent->root->sb);
2668        return ret;
2669}
2670
2671/*
2672 * See if "cgrp" is a descendant of the current task's cgroup in
2673 * the appropriate hierarchy
2674 *
2675 * If we are sending in dummytop, then presumably we are creating
2676 * the top cgroup in the subsystem.
2677 *
2678 * Called only by the ns (nsproxy) cgroup.
2679 */
2680int cgroup_is_descendant(const struct cgroup *cgrp)
2681{
2682        int ret;
2683        struct cgroup *target;
2684        int subsys_id;
2685
2686        if (cgrp == dummytop)
2687                return 1;
2688
2689        get_first_subsys(cgrp, NULL, &subsys_id);
2690        target = task_cgroup(current, subsys_id);
2691        while (cgrp != target && cgrp!= cgrp->top_cgroup)
2692                cgrp = cgrp->parent;
2693        ret = (cgrp == target);
2694        return ret;
2695}
2696
2697static void check_for_release(struct cgroup *cgrp)
2698{
2699        /* All of these checks rely on RCU to keep the cgroup
2700         * structure alive */
2701        if (cgroup_is_releasable(cgrp) && !atomic_read(&cgrp->count)
2702            && list_empty(&cgrp->children) && !cgroup_has_css_refs(cgrp)) {
2703                /* Control Group is currently removeable. If it's not
2704                 * already queued for a userspace notification, queue
2705                 * it now */
2706                int need_schedule_work = 0;
2707                spin_lock(&release_list_lock);
2708                if (!cgroup_is_removed(cgrp) &&
2709                    list_empty(&cgrp->release_list)) {
2710                        list_add(&cgrp->release_list, &release_list);
2711                        need_schedule_work = 1;
2712                }
2713                spin_unlock(&release_list_lock);
2714                if (need_schedule_work)
2715                        schedule_work(&release_agent_work);
2716        }
2717}
2718
2719void __css_put(struct cgroup_subsys_state *css)
2720{
2721        struct cgroup *cgrp = css->cgroup;
2722        rcu_read_lock();
2723        if (atomic_dec_and_test(&css->refcnt) && notify_on_release(cgrp)) {
2724                set_bit(CGRP_RELEASABLE, &cgrp->flags);
2725                check_for_release(cgrp);
2726        }
2727        rcu_read_unlock();
2728}
2729
2730/*
2731 * Notify userspace when a cgroup is released, by running the
2732 * configured release agent with the name of the cgroup (path
2733 * relative to the root of cgroup file system) as the argument.
2734 *
2735 * Most likely, this user command will try to rmdir this cgroup.
2736 *
2737 * This races with the possibility that some other task will be
2738 * attached to this cgroup before it is removed, or that some other
2739 * user task will 'mkdir' a child cgroup of this cgroup.  That's ok.
2740 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
2741 * unused, and this cgroup will be reprieved from its death sentence,
2742 * to continue to serve a useful existence.  Next time it's released,
2743 * we will get notified again, if it still has 'notify_on_release' set.
2744 *
2745 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
2746 * means only wait until the task is successfully execve()'d.  The
2747 * separate release agent task is forked by call_usermodehelper(),
2748 * then control in this thread returns here, without waiting for the
2749 * release agent task.  We don't bother to wait because the caller of
2750 * this routine has no use for the exit status of the release agent
2751 * task, so no sense holding our caller up for that.
2752 *
2753 */
2754
2755static void cgroup_release_agent(struct work_struct *work)
2756{
2757        BUG_ON(work != &release_agent_work);
2758        mutex_lock(&cgroup_mutex);
2759        spin_lock(&release_list_lock);
2760        while (!list_empty(&release_list)) {
2761                char *argv[3], *envp[3];
2762                int i;
2763                char *pathbuf;
2764                struct cgroup *cgrp = list_entry(release_list.next,
2765                                                    struct cgroup,
2766                                                    release_list);
2767                list_del_init(&cgrp->release_list);
2768                spin_unlock(&release_list_lock);
2769                pathbuf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2770                if (!pathbuf) {
2771                        spin_lock(&release_list_lock);
2772                        continue;
2773                }
2774
2775                if (cgroup_path(cgrp, pathbuf, PAGE_SIZE) < 0) {
2776                        kfree(pathbuf);
2777                        spin_lock(&release_list_lock);
2778                        continue;
2779                }
2780
2781                i = 0;
2782                argv[i++] = cgrp->root->release_agent_path;
2783                argv[i++] = (char *)pathbuf;
2784                argv[i] = NULL;
2785
2786                i = 0;
2787                /* minimal command environment */
2788                envp[i++] = "HOME=/";
2789                envp[i++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
2790                envp[i] = NULL;
2791
2792                /* Drop the lock while we invoke the usermode helper,
2793                 * since the exec could involve hitting disk and hence
2794                 * be a slow process */
2795                mutex_unlock(&cgroup_mutex);
2796                call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
2797                kfree(pathbuf);
2798                mutex_lock(&cgroup_mutex);
2799                spin_lock(&release_list_lock);
2800        }
2801        spin_unlock(&release_list_lock);
2802        mutex_unlock(&cgroup_mutex);
2803}
2804