linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/unistd.h>
  17#include <linux/module.h>
  18#include <linux/vmalloc.h>
  19#include <linux/completion.h>
  20#include <linux/mnt_namespace.h>
  21#include <linux/personality.h>
  22#include <linux/mempolicy.h>
  23#include <linux/sem.h>
  24#include <linux/file.h>
  25#include <linux/key.h>
  26#include <linux/binfmts.h>
  27#include <linux/mman.h>
  28#include <linux/fs.h>
  29#include <linux/nsproxy.h>
  30#include <linux/capability.h>
  31#include <linux/cpu.h>
  32#include <linux/cgroup.h>
  33#include <linux/security.h>
  34#include <linux/swap.h>
  35#include <linux/syscalls.h>
  36#include <linux/jiffies.h>
  37#include <linux/futex.h>
  38#include <linux/task_io_accounting_ops.h>
  39#include <linux/rcupdate.h>
  40#include <linux/ptrace.h>
  41#include <linux/mount.h>
  42#include <linux/audit.h>
  43#include <linux/profile.h>
  44#include <linux/rmap.h>
  45#include <linux/acct.h>
  46#include <linux/tsacct_kern.h>
  47#include <linux/cn_proc.h>
  48#include <linux/freezer.h>
  49#include <linux/delayacct.h>
  50#include <linux/taskstats_kern.h>
  51#include <linux/random.h>
  52#include <linux/tty.h>
  53#include <linux/proc_fs.h>
  54
  55#include <asm/pgtable.h>
  56#include <asm/pgalloc.h>
  57#include <asm/uaccess.h>
  58#include <asm/mmu_context.h>
  59#include <asm/cacheflush.h>
  60#include <asm/tlbflush.h>
  61
  62/*
  63 * Protected counters by write_lock_irq(&tasklist_lock)
  64 */
  65unsigned long total_forks;      /* Handle normal Linux uptimes. */
  66int nr_threads;                 /* The idle threads do not count.. */
  67
  68int max_threads;                /* tunable limit on nr_threads */
  69
  70DEFINE_PER_CPU(unsigned long, process_counts) = 0;
  71
  72__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
  73
  74int nr_processes(void)
  75{
  76        int cpu;
  77        int total = 0;
  78
  79        for_each_online_cpu(cpu)
  80                total += per_cpu(process_counts, cpu);
  81
  82        return total;
  83}
  84
  85#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
  86# define alloc_task_struct()    kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
  87# define free_task_struct(tsk)  kmem_cache_free(task_struct_cachep, (tsk))
  88static struct kmem_cache *task_struct_cachep;
  89#endif
  90
  91/* SLAB cache for signal_struct structures (tsk->signal) */
  92static struct kmem_cache *signal_cachep;
  93
  94/* SLAB cache for sighand_struct structures (tsk->sighand) */
  95struct kmem_cache *sighand_cachep;
  96
  97/* SLAB cache for files_struct structures (tsk->files) */
  98struct kmem_cache *files_cachep;
  99
 100/* SLAB cache for fs_struct structures (tsk->fs) */
 101struct kmem_cache *fs_cachep;
 102
 103/* SLAB cache for vm_area_struct structures */
 104struct kmem_cache *vm_area_cachep;
 105
 106/* SLAB cache for mm_struct structures (tsk->mm) */
 107static struct kmem_cache *mm_cachep;
 108
 109void free_task(struct task_struct *tsk)
 110{
 111        prop_local_destroy_single(&tsk->dirties);
 112        free_thread_info(tsk->stack);
 113        rt_mutex_debug_task_free(tsk);
 114        free_task_struct(tsk);
 115}
 116EXPORT_SYMBOL(free_task);
 117
 118void __put_task_struct(struct task_struct *tsk)
 119{
 120        WARN_ON(!tsk->exit_state);
 121        WARN_ON(atomic_read(&tsk->usage));
 122        WARN_ON(tsk == current);
 123
 124        security_task_free(tsk);
 125        free_uid(tsk->user);
 126        put_group_info(tsk->group_info);
 127        delayacct_tsk_free(tsk);
 128
 129        if (!profile_handoff_task(tsk))
 130                free_task(tsk);
 131}
 132
 133void __init fork_init(unsigned long mempages)
 134{
 135#ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
 136#ifndef ARCH_MIN_TASKALIGN
 137#define ARCH_MIN_TASKALIGN      L1_CACHE_BYTES
 138#endif
 139        /* create a slab on which task_structs can be allocated */
 140        task_struct_cachep =
 141                kmem_cache_create("task_struct", sizeof(struct task_struct),
 142                        ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
 143#endif
 144
 145        /*
 146         * The default maximum number of threads is set to a safe
 147         * value: the thread structures can take up at most half
 148         * of memory.
 149         */
 150        max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
 151
 152        /*
 153         * we need to allow at least 20 threads to boot a system
 154         */
 155        if(max_threads < 20)
 156                max_threads = 20;
 157
 158        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 159        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 160        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 161                init_task.signal->rlim[RLIMIT_NPROC];
 162}
 163
 164static struct task_struct *dup_task_struct(struct task_struct *orig)
 165{
 166        struct task_struct *tsk;
 167        struct thread_info *ti;
 168        int err;
 169
 170        prepare_to_copy(orig);
 171
 172        tsk = alloc_task_struct();
 173        if (!tsk)
 174                return NULL;
 175
 176        ti = alloc_thread_info(tsk);
 177        if (!ti) {
 178                free_task_struct(tsk);
 179                return NULL;
 180        }
 181
 182        *tsk = *orig;
 183        tsk->stack = ti;
 184
 185        err = prop_local_init_single(&tsk->dirties);
 186        if (err) {
 187                free_thread_info(ti);
 188                free_task_struct(tsk);
 189                return NULL;
 190        }
 191
 192        setup_thread_stack(tsk, orig);
 193
 194#ifdef CONFIG_CC_STACKPROTECTOR
 195        tsk->stack_canary = get_random_int();
 196#endif
 197
 198        /* One for us, one for whoever does the "release_task()" (usually parent) */
 199        atomic_set(&tsk->usage,2);
 200        atomic_set(&tsk->fs_excl, 0);
 201#ifdef CONFIG_BLK_DEV_IO_TRACE
 202        tsk->btrace_seq = 0;
 203#endif
 204        tsk->splice_pipe = NULL;
 205        return tsk;
 206}
 207
 208#ifdef CONFIG_MMU
 209static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 210{
 211        struct vm_area_struct *mpnt, *tmp, **pprev;
 212        struct rb_node **rb_link, *rb_parent;
 213        int retval;
 214        unsigned long charge;
 215        struct mempolicy *pol;
 216
 217        down_write(&oldmm->mmap_sem);
 218        flush_cache_dup_mm(oldmm);
 219        /*
 220         * Not linked in yet - no deadlock potential:
 221         */
 222        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 223
 224        mm->locked_vm = 0;
 225        mm->mmap = NULL;
 226        mm->mmap_cache = NULL;
 227        mm->free_area_cache = oldmm->mmap_base;
 228        mm->cached_hole_size = ~0UL;
 229        mm->map_count = 0;
 230        cpus_clear(mm->cpu_vm_mask);
 231        mm->mm_rb = RB_ROOT;
 232        rb_link = &mm->mm_rb.rb_node;
 233        rb_parent = NULL;
 234        pprev = &mm->mmap;
 235
 236        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 237                struct file *file;
 238
 239                if (mpnt->vm_flags & VM_DONTCOPY) {
 240                        long pages = vma_pages(mpnt);
 241                        mm->total_vm -= pages;
 242                        vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
 243                                                                -pages);
 244                        continue;
 245                }
 246                charge = 0;
 247                if (mpnt->vm_flags & VM_ACCOUNT) {
 248                        unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
 249                        if (security_vm_enough_memory(len))
 250                                goto fail_nomem;
 251                        charge = len;
 252                }
 253                tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 254                if (!tmp)
 255                        goto fail_nomem;
 256                *tmp = *mpnt;
 257                pol = mpol_copy(vma_policy(mpnt));
 258                retval = PTR_ERR(pol);
 259                if (IS_ERR(pol))
 260                        goto fail_nomem_policy;
 261                vma_set_policy(tmp, pol);
 262                tmp->vm_flags &= ~VM_LOCKED;
 263                tmp->vm_mm = mm;
 264                tmp->vm_next = NULL;
 265                anon_vma_link(tmp);
 266                file = tmp->vm_file;
 267                if (file) {
 268                        struct inode *inode = file->f_path.dentry->d_inode;
 269                        get_file(file);
 270                        if (tmp->vm_flags & VM_DENYWRITE)
 271                                atomic_dec(&inode->i_writecount);
 272
 273                        /* insert tmp into the share list, just after mpnt */
 274                        spin_lock(&file->f_mapping->i_mmap_lock);
 275                        tmp->vm_truncate_count = mpnt->vm_truncate_count;
 276                        flush_dcache_mmap_lock(file->f_mapping);
 277                        vma_prio_tree_add(tmp, mpnt);
 278                        flush_dcache_mmap_unlock(file->f_mapping);
 279                        spin_unlock(&file->f_mapping->i_mmap_lock);
 280                }
 281
 282                /*
 283                 * Link in the new vma and copy the page table entries.
 284                 */
 285                *pprev = tmp;
 286                pprev = &tmp->vm_next;
 287
 288                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 289                rb_link = &tmp->vm_rb.rb_right;
 290                rb_parent = &tmp->vm_rb;
 291
 292                mm->map_count++;
 293                retval = copy_page_range(mm, oldmm, mpnt);
 294
 295                if (tmp->vm_ops && tmp->vm_ops->open)
 296                        tmp->vm_ops->open(tmp);
 297
 298                if (retval)
 299                        goto out;
 300        }
 301        /* a new mm has just been created */
 302        arch_dup_mmap(oldmm, mm);
 303        retval = 0;
 304out:
 305        up_write(&mm->mmap_sem);
 306        flush_tlb_mm(oldmm);
 307        up_write(&oldmm->mmap_sem);
 308        return retval;
 309fail_nomem_policy:
 310        kmem_cache_free(vm_area_cachep, tmp);
 311fail_nomem:
 312        retval = -ENOMEM;
 313        vm_unacct_memory(charge);
 314        goto out;
 315}
 316
 317static inline int mm_alloc_pgd(struct mm_struct * mm)
 318{
 319        mm->pgd = pgd_alloc(mm);
 320        if (unlikely(!mm->pgd))
 321                return -ENOMEM;
 322        return 0;
 323}
 324
 325static inline void mm_free_pgd(struct mm_struct * mm)
 326{
 327        pgd_free(mm->pgd);
 328}
 329#else
 330#define dup_mmap(mm, oldmm)     (0)
 331#define mm_alloc_pgd(mm)        (0)
 332#define mm_free_pgd(mm)
 333#endif /* CONFIG_MMU */
 334
 335__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 336
 337#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 338#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 339
 340#include <linux/init_task.h>
 341
 342static struct mm_struct * mm_init(struct mm_struct * mm)
 343{
 344        atomic_set(&mm->mm_users, 1);
 345        atomic_set(&mm->mm_count, 1);
 346        init_rwsem(&mm->mmap_sem);
 347        INIT_LIST_HEAD(&mm->mmlist);
 348        mm->flags = (current->mm) ? current->mm->flags
 349                                  : MMF_DUMP_FILTER_DEFAULT;
 350        mm->core_waiters = 0;
 351        mm->nr_ptes = 0;
 352        set_mm_counter(mm, file_rss, 0);
 353        set_mm_counter(mm, anon_rss, 0);
 354        spin_lock_init(&mm->page_table_lock);
 355        rwlock_init(&mm->ioctx_list_lock);
 356        mm->ioctx_list = NULL;
 357        mm->free_area_cache = TASK_UNMAPPED_BASE;
 358        mm->cached_hole_size = ~0UL;
 359
 360        if (likely(!mm_alloc_pgd(mm))) {
 361                mm->def_flags = 0;
 362                return mm;
 363        }
 364        free_mm(mm);
 365        return NULL;
 366}
 367
 368/*
 369 * Allocate and initialize an mm_struct.
 370 */
 371struct mm_struct * mm_alloc(void)
 372{
 373        struct mm_struct * mm;
 374
 375        mm = allocate_mm();
 376        if (mm) {
 377                memset(mm, 0, sizeof(*mm));
 378                mm = mm_init(mm);
 379        }
 380        return mm;
 381}
 382
 383/*
 384 * Called when the last reference to the mm
 385 * is dropped: either by a lazy thread or by
 386 * mmput. Free the page directory and the mm.
 387 */
 388void fastcall __mmdrop(struct mm_struct *mm)
 389{
 390        BUG_ON(mm == &init_mm);
 391        mm_free_pgd(mm);
 392        destroy_context(mm);
 393        free_mm(mm);
 394}
 395
 396/*
 397 * Decrement the use count and release all resources for an mm.
 398 */
 399void mmput(struct mm_struct *mm)
 400{
 401        might_sleep();
 402
 403        if (atomic_dec_and_test(&mm->mm_users)) {
 404                exit_aio(mm);
 405                exit_mmap(mm);
 406                if (!list_empty(&mm->mmlist)) {
 407                        spin_lock(&mmlist_lock);
 408                        list_del(&mm->mmlist);
 409                        spin_unlock(&mmlist_lock);
 410                }
 411                put_swap_token(mm);
 412                mmdrop(mm);
 413        }
 414}
 415EXPORT_SYMBOL_GPL(mmput);
 416
 417/**
 418 * get_task_mm - acquire a reference to the task's mm
 419 *
 420 * Returns %NULL if the task has no mm.  Checks PF_BORROWED_MM (meaning
 421 * this kernel workthread has transiently adopted a user mm with use_mm,
 422 * to do its AIO) is not set and if so returns a reference to it, after
 423 * bumping up the use count.  User must release the mm via mmput()
 424 * after use.  Typically used by /proc and ptrace.
 425 */
 426struct mm_struct *get_task_mm(struct task_struct *task)
 427{
 428        struct mm_struct *mm;
 429
 430        task_lock(task);
 431        mm = task->mm;
 432        if (mm) {
 433                if (task->flags & PF_BORROWED_MM)
 434                        mm = NULL;
 435                else
 436                        atomic_inc(&mm->mm_users);
 437        }
 438        task_unlock(task);
 439        return mm;
 440}
 441EXPORT_SYMBOL_GPL(get_task_mm);
 442
 443/* Please note the differences between mmput and mm_release.
 444 * mmput is called whenever we stop holding onto a mm_struct,
 445 * error success whatever.
 446 *
 447 * mm_release is called after a mm_struct has been removed
 448 * from the current process.
 449 *
 450 * This difference is important for error handling, when we
 451 * only half set up a mm_struct for a new process and need to restore
 452 * the old one.  Because we mmput the new mm_struct before
 453 * restoring the old one. . .
 454 * Eric Biederman 10 January 1998
 455 */
 456void mm_release(struct task_struct *tsk, struct mm_struct *mm)
 457{
 458        struct completion *vfork_done = tsk->vfork_done;
 459
 460        /* Get rid of any cached register state */
 461        deactivate_mm(tsk, mm);
 462
 463        /* notify parent sleeping on vfork() */
 464        if (vfork_done) {
 465                tsk->vfork_done = NULL;
 466                complete(vfork_done);
 467        }
 468
 469        /*
 470         * If we're exiting normally, clear a user-space tid field if
 471         * requested.  We leave this alone when dying by signal, to leave
 472         * the value intact in a core dump, and to save the unnecessary
 473         * trouble otherwise.  Userland only wants this done for a sys_exit.
 474         */
 475        if (tsk->clear_child_tid
 476            && !(tsk->flags & PF_SIGNALED)
 477            && atomic_read(&mm->mm_users) > 1) {
 478                u32 __user * tidptr = tsk->clear_child_tid;
 479                tsk->clear_child_tid = NULL;
 480
 481                /*
 482                 * We don't check the error code - if userspace has
 483                 * not set up a proper pointer then tough luck.
 484                 */
 485                put_user(0, tidptr);
 486                sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
 487        }
 488}
 489
 490/*
 491 * Allocate a new mm structure and copy contents from the
 492 * mm structure of the passed in task structure.
 493 */
 494static struct mm_struct *dup_mm(struct task_struct *tsk)
 495{
 496        struct mm_struct *mm, *oldmm = current->mm;
 497        int err;
 498
 499        if (!oldmm)
 500                return NULL;
 501
 502        mm = allocate_mm();
 503        if (!mm)
 504                goto fail_nomem;
 505
 506        memcpy(mm, oldmm, sizeof(*mm));
 507
 508        /* Initializing for Swap token stuff */
 509        mm->token_priority = 0;
 510        mm->last_interval = 0;
 511
 512        if (!mm_init(mm))
 513                goto fail_nomem;
 514
 515        if (init_new_context(tsk, mm))
 516                goto fail_nocontext;
 517
 518        err = dup_mmap(mm, oldmm);
 519        if (err)
 520                goto free_pt;
 521
 522        mm->hiwater_rss = get_mm_rss(mm);
 523        mm->hiwater_vm = mm->total_vm;
 524
 525        return mm;
 526
 527free_pt:
 528        mmput(mm);
 529
 530fail_nomem:
 531        return NULL;
 532
 533fail_nocontext:
 534        /*
 535         * If init_new_context() failed, we cannot use mmput() to free the mm
 536         * because it calls destroy_context()
 537         */
 538        mm_free_pgd(mm);
 539        free_mm(mm);
 540        return NULL;
 541}
 542
 543static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
 544{
 545        struct mm_struct * mm, *oldmm;
 546        int retval;
 547
 548        tsk->min_flt = tsk->maj_flt = 0;
 549        tsk->nvcsw = tsk->nivcsw = 0;
 550
 551        tsk->mm = NULL;
 552        tsk->active_mm = NULL;
 553
 554        /*
 555         * Are we cloning a kernel thread?
 556         *
 557         * We need to steal a active VM for that..
 558         */
 559        oldmm = current->mm;
 560        if (!oldmm)
 561                return 0;
 562
 563        if (clone_flags & CLONE_VM) {
 564                atomic_inc(&oldmm->mm_users);
 565                mm = oldmm;
 566                goto good_mm;
 567        }
 568
 569        retval = -ENOMEM;
 570        mm = dup_mm(tsk);
 571        if (!mm)
 572                goto fail_nomem;
 573
 574good_mm:
 575        /* Initializing for Swap token stuff */
 576        mm->token_priority = 0;
 577        mm->last_interval = 0;
 578
 579        tsk->mm = mm;
 580        tsk->active_mm = mm;
 581        return 0;
 582
 583fail_nomem:
 584        return retval;
 585}
 586
 587static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
 588{
 589        struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
 590        /* We don't need to lock fs - think why ;-) */
 591        if (fs) {
 592                atomic_set(&fs->count, 1);
 593                rwlock_init(&fs->lock);
 594                fs->umask = old->umask;
 595                read_lock(&old->lock);
 596                fs->rootmnt = mntget(old->rootmnt);
 597                fs->root = dget(old->root);
 598                fs->pwdmnt = mntget(old->pwdmnt);
 599                fs->pwd = dget(old->pwd);
 600                if (old->altroot) {
 601                        fs->altrootmnt = mntget(old->altrootmnt);
 602                        fs->altroot = dget(old->altroot);
 603                } else {
 604                        fs->altrootmnt = NULL;
 605                        fs->altroot = NULL;
 606                }
 607                read_unlock(&old->lock);
 608        }
 609        return fs;
 610}
 611
 612struct fs_struct *copy_fs_struct(struct fs_struct *old)
 613{
 614        return __copy_fs_struct(old);
 615}
 616
 617EXPORT_SYMBOL_GPL(copy_fs_struct);
 618
 619static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
 620{
 621        if (clone_flags & CLONE_FS) {
 622                atomic_inc(&current->fs->count);
 623                return 0;
 624        }
 625        tsk->fs = __copy_fs_struct(current->fs);
 626        if (!tsk->fs)
 627                return -ENOMEM;
 628        return 0;
 629}
 630
 631static int count_open_files(struct fdtable *fdt)
 632{
 633        int size = fdt->max_fds;
 634        int i;
 635
 636        /* Find the last open fd */
 637        for (i = size/(8*sizeof(long)); i > 0; ) {
 638                if (fdt->open_fds->fds_bits[--i])
 639                        break;
 640        }
 641        i = (i+1) * 8 * sizeof(long);
 642        return i;
 643}
 644
 645static struct files_struct *alloc_files(void)
 646{
 647        struct files_struct *newf;
 648        struct fdtable *fdt;
 649
 650        newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
 651        if (!newf)
 652                goto out;
 653
 654        atomic_set(&newf->count, 1);
 655
 656        spin_lock_init(&newf->file_lock);
 657        newf->next_fd = 0;
 658        fdt = &newf->fdtab;
 659        fdt->max_fds = NR_OPEN_DEFAULT;
 660        fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
 661        fdt->open_fds = (fd_set *)&newf->open_fds_init;
 662        fdt->fd = &newf->fd_array[0];
 663        INIT_RCU_HEAD(&fdt->rcu);
 664        fdt->next = NULL;
 665        rcu_assign_pointer(newf->fdt, fdt);
 666out:
 667        return newf;
 668}
 669
 670/*
 671 * Allocate a new files structure and copy contents from the
 672 * passed in files structure.
 673 * errorp will be valid only when the returned files_struct is NULL.
 674 */
 675static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
 676{
 677        struct files_struct *newf;
 678        struct file **old_fds, **new_fds;
 679        int open_files, size, i;
 680        struct fdtable *old_fdt, *new_fdt;
 681
 682        *errorp = -ENOMEM;
 683        newf = alloc_files();
 684        if (!newf)
 685                goto out;
 686
 687        spin_lock(&oldf->file_lock);
 688        old_fdt = files_fdtable(oldf);
 689        new_fdt = files_fdtable(newf);
 690        open_files = count_open_files(old_fdt);
 691
 692        /*
 693         * Check whether we need to allocate a larger fd array and fd set.
 694         * Note: we're not a clone task, so the open count won't change.
 695         */
 696        if (open_files > new_fdt->max_fds) {
 697                new_fdt->max_fds = 0;
 698                spin_unlock(&oldf->file_lock);
 699                spin_lock(&newf->file_lock);
 700                *errorp = expand_files(newf, open_files-1);
 701                spin_unlock(&newf->file_lock);
 702                if (*errorp < 0)
 703                        goto out_release;
 704                new_fdt = files_fdtable(newf);
 705                /*
 706                 * Reacquire the oldf lock and a pointer to its fd table
 707                 * who knows it may have a new bigger fd table. We need
 708                 * the latest pointer.
 709                 */
 710                spin_lock(&oldf->file_lock);
 711                old_fdt = files_fdtable(oldf);
 712        }
 713
 714        old_fds = old_fdt->fd;
 715        new_fds = new_fdt->fd;
 716
 717        memcpy(new_fdt->open_fds->fds_bits,
 718                old_fdt->open_fds->fds_bits, open_files/8);
 719        memcpy(new_fdt->close_on_exec->fds_bits,
 720                old_fdt->close_on_exec->fds_bits, open_files/8);
 721
 722        for (i = open_files; i != 0; i--) {
 723                struct file *f = *old_fds++;
 724                if (f) {
 725                        get_file(f);
 726                } else {
 727                        /*
 728                         * The fd may be claimed in the fd bitmap but not yet
 729                         * instantiated in the files array if a sibling thread
 730                         * is partway through open().  So make sure that this
 731                         * fd is available to the new process.
 732                         */
 733                        FD_CLR(open_files - i, new_fdt->open_fds);
 734                }
 735                rcu_assign_pointer(*new_fds++, f);
 736        }
 737        spin_unlock(&oldf->file_lock);
 738
 739        /* compute the remainder to be cleared */
 740        size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
 741
 742        /* This is long word aligned thus could use a optimized version */
 743        memset(new_fds, 0, size);
 744
 745        if (new_fdt->max_fds > open_files) {
 746                int left = (new_fdt->max_fds-open_files)/8;
 747                int start = open_files / (8 * sizeof(unsigned long));
 748
 749                memset(&new_fdt->open_fds->fds_bits[start], 0, left);
 750                memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
 751        }
 752
 753        return newf;
 754
 755out_release:
 756        kmem_cache_free(files_cachep, newf);
 757out:
 758        return NULL;
 759}
 760
 761static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
 762{
 763        struct files_struct *oldf, *newf;
 764        int error = 0;
 765
 766        /*
 767         * A background process may not have any files ...
 768         */
 769        oldf = current->files;
 770        if (!oldf)
 771                goto out;
 772
 773        if (clone_flags & CLONE_FILES) {
 774                atomic_inc(&oldf->count);
 775                goto out;
 776        }
 777
 778        /*
 779         * Note: we may be using current for both targets (See exec.c)
 780         * This works because we cache current->files (old) as oldf. Don't
 781         * break this.
 782         */
 783        tsk->files = NULL;
 784        newf = dup_fd(oldf, &error);
 785        if (!newf)
 786                goto out;
 787
 788        tsk->files = newf;
 789        error = 0;
 790out:
 791        return error;
 792}
 793
 794/*
 795 *      Helper to unshare the files of the current task.
 796 *      We don't want to expose copy_files internals to
 797 *      the exec layer of the kernel.
 798 */
 799
 800int unshare_files(void)
 801{
 802        struct files_struct *files  = current->files;
 803        int rc;
 804
 805        BUG_ON(!files);
 806
 807        /* This can race but the race causes us to copy when we don't
 808           need to and drop the copy */
 809        if(atomic_read(&files->count) == 1)
 810        {
 811                atomic_inc(&files->count);
 812                return 0;
 813        }
 814        rc = copy_files(0, current);
 815        if(rc)
 816                current->files = files;
 817        return rc;
 818}
 819
 820EXPORT_SYMBOL(unshare_files);
 821
 822static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
 823{
 824        struct sighand_struct *sig;
 825
 826        if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
 827                atomic_inc(&current->sighand->count);
 828                return 0;
 829        }
 830        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
 831        rcu_assign_pointer(tsk->sighand, sig);
 832        if (!sig)
 833                return -ENOMEM;
 834        atomic_set(&sig->count, 1);
 835        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
 836        return 0;
 837}
 838
 839void __cleanup_sighand(struct sighand_struct *sighand)
 840{
 841        if (atomic_dec_and_test(&sighand->count))
 842                kmem_cache_free(sighand_cachep, sighand);
 843}
 844
 845static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
 846{
 847        struct signal_struct *sig;
 848        int ret;
 849
 850        if (clone_flags & CLONE_THREAD) {
 851                atomic_inc(&current->signal->count);
 852                atomic_inc(&current->signal->live);
 853                return 0;
 854        }
 855        sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
 856        tsk->signal = sig;
 857        if (!sig)
 858                return -ENOMEM;
 859
 860        ret = copy_thread_group_keys(tsk);
 861        if (ret < 0) {
 862                kmem_cache_free(signal_cachep, sig);
 863                return ret;
 864        }
 865
 866        atomic_set(&sig->count, 1);
 867        atomic_set(&sig->live, 1);
 868        init_waitqueue_head(&sig->wait_chldexit);
 869        sig->flags = 0;
 870        sig->group_exit_code = 0;
 871        sig->group_exit_task = NULL;
 872        sig->group_stop_count = 0;
 873        sig->curr_target = NULL;
 874        init_sigpending(&sig->shared_pending);
 875        INIT_LIST_HEAD(&sig->posix_timers);
 876
 877        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
 878        sig->it_real_incr.tv64 = 0;
 879        sig->real_timer.function = it_real_fn;
 880        sig->tsk = tsk;
 881
 882        sig->it_virt_expires = cputime_zero;
 883        sig->it_virt_incr = cputime_zero;
 884        sig->it_prof_expires = cputime_zero;
 885        sig->it_prof_incr = cputime_zero;
 886
 887        sig->leader = 0;        /* session leadership doesn't inherit */
 888        sig->tty_old_pgrp = NULL;
 889
 890        sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
 891        sig->gtime = cputime_zero;
 892        sig->cgtime = cputime_zero;
 893        sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
 894        sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
 895        sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
 896        sig->sum_sched_runtime = 0;
 897        INIT_LIST_HEAD(&sig->cpu_timers[0]);
 898        INIT_LIST_HEAD(&sig->cpu_timers[1]);
 899        INIT_LIST_HEAD(&sig->cpu_timers[2]);
 900        taskstats_tgid_init(sig);
 901
 902        task_lock(current->group_leader);
 903        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
 904        task_unlock(current->group_leader);
 905
 906        if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
 907                /*
 908                 * New sole thread in the process gets an expiry time
 909                 * of the whole CPU time limit.
 910                 */
 911                tsk->it_prof_expires =
 912                        secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
 913        }
 914        acct_init_pacct(&sig->pacct);
 915
 916        tty_audit_fork(sig);
 917
 918        return 0;
 919}
 920
 921void __cleanup_signal(struct signal_struct *sig)
 922{
 923        exit_thread_group_keys(sig);
 924        kmem_cache_free(signal_cachep, sig);
 925}
 926
 927static void cleanup_signal(struct task_struct *tsk)
 928{
 929        struct signal_struct *sig = tsk->signal;
 930
 931        atomic_dec(&sig->live);
 932
 933        if (atomic_dec_and_test(&sig->count))
 934                __cleanup_signal(sig);
 935}
 936
 937static void copy_flags(unsigned long clone_flags, struct task_struct *p)
 938{
 939        unsigned long new_flags = p->flags;
 940
 941        new_flags &= ~PF_SUPERPRIV;
 942        new_flags |= PF_FORKNOEXEC;
 943        if (!(clone_flags & CLONE_PTRACE))
 944                p->ptrace = 0;
 945        p->flags = new_flags;
 946        clear_freeze_flag(p);
 947}
 948
 949asmlinkage long sys_set_tid_address(int __user *tidptr)
 950{
 951        current->clear_child_tid = tidptr;
 952
 953        return task_pid_vnr(current);
 954}
 955
 956static void rt_mutex_init_task(struct task_struct *p)
 957{
 958        spin_lock_init(&p->pi_lock);
 959#ifdef CONFIG_RT_MUTEXES
 960        plist_head_init(&p->pi_waiters, &p->pi_lock);
 961        p->pi_blocked_on = NULL;
 962#endif
 963}
 964
 965/*
 966 * This creates a new process as a copy of the old one,
 967 * but does not actually start it yet.
 968 *
 969 * It copies the registers, and all the appropriate
 970 * parts of the process environment (as per the clone
 971 * flags). The actual kick-off is left to the caller.
 972 */
 973static struct task_struct *copy_process(unsigned long clone_flags,
 974                                        unsigned long stack_start,
 975                                        struct pt_regs *regs,
 976                                        unsigned long stack_size,
 977                                        int __user *child_tidptr,
 978                                        struct pid *pid)
 979{
 980        int retval;
 981        struct task_struct *p;
 982        int cgroup_callbacks_done = 0;
 983
 984        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
 985                return ERR_PTR(-EINVAL);
 986
 987        /*
 988         * Thread groups must share signals as well, and detached threads
 989         * can only be started up within the thread group.
 990         */
 991        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
 992                return ERR_PTR(-EINVAL);
 993
 994        /*
 995         * Shared signal handlers imply shared VM. By way of the above,
 996         * thread groups also imply shared VM. Blocking this case allows
 997         * for various simplifications in other code.
 998         */
 999        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1000                return ERR_PTR(-EINVAL);
1001
1002        retval = security_task_create(clone_flags);
1003        if (retval)
1004                goto fork_out;
1005
1006        retval = -ENOMEM;
1007        p = dup_task_struct(current);
1008        if (!p)
1009                goto fork_out;
1010
1011        rt_mutex_init_task(p);
1012
1013#ifdef CONFIG_TRACE_IRQFLAGS
1014        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1015        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1016#endif
1017        retval = -EAGAIN;
1018        if (atomic_read(&p->user->processes) >=
1019                        p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1020                if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1021                    p->user != current->nsproxy->user_ns->root_user)
1022                        goto bad_fork_free;
1023        }
1024
1025        atomic_inc(&p->user->__count);
1026        atomic_inc(&p->user->processes);
1027        get_group_info(p->group_info);
1028
1029        /*
1030         * If multiple threads are within copy_process(), then this check
1031         * triggers too late. This doesn't hurt, the check is only there
1032         * to stop root fork bombs.
1033         */
1034        if (nr_threads >= max_threads)
1035                goto bad_fork_cleanup_count;
1036
1037        if (!try_module_get(task_thread_info(p)->exec_domain->module))
1038                goto bad_fork_cleanup_count;
1039
1040        if (p->binfmt && !try_module_get(p->binfmt->module))
1041                goto bad_fork_cleanup_put_domain;
1042
1043        p->did_exec = 0;
1044        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1045        copy_flags(clone_flags, p);
1046        INIT_LIST_HEAD(&p->children);
1047        INIT_LIST_HEAD(&p->sibling);
1048        p->vfork_done = NULL;
1049        spin_lock_init(&p->alloc_lock);
1050
1051        clear_tsk_thread_flag(p, TIF_SIGPENDING);
1052        init_sigpending(&p->pending);
1053
1054        p->utime = cputime_zero;
1055        p->stime = cputime_zero;
1056        p->gtime = cputime_zero;
1057        p->utimescaled = cputime_zero;
1058        p->stimescaled = cputime_zero;
1059        p->prev_utime = cputime_zero;
1060        p->prev_stime = cputime_zero;
1061
1062#ifdef CONFIG_TASK_XACCT
1063        p->rchar = 0;           /* I/O counter: bytes read */
1064        p->wchar = 0;           /* I/O counter: bytes written */
1065        p->syscr = 0;           /* I/O counter: read syscalls */
1066        p->syscw = 0;           /* I/O counter: write syscalls */
1067#endif
1068        task_io_accounting_init(p);
1069        acct_clear_integrals(p);
1070
1071        p->it_virt_expires = cputime_zero;
1072        p->it_prof_expires = cputime_zero;
1073        p->it_sched_expires = 0;
1074        INIT_LIST_HEAD(&p->cpu_timers[0]);
1075        INIT_LIST_HEAD(&p->cpu_timers[1]);
1076        INIT_LIST_HEAD(&p->cpu_timers[2]);
1077
1078        p->lock_depth = -1;             /* -1 = no lock */
1079        do_posix_clock_monotonic_gettime(&p->start_time);
1080        p->real_start_time = p->start_time;
1081        monotonic_to_bootbased(&p->real_start_time);
1082#ifdef CONFIG_SECURITY
1083        p->security = NULL;
1084#endif
1085        p->io_context = NULL;
1086        p->audit_context = NULL;
1087        cgroup_fork(p);
1088#ifdef CONFIG_NUMA
1089        p->mempolicy = mpol_copy(p->mempolicy);
1090        if (IS_ERR(p->mempolicy)) {
1091                retval = PTR_ERR(p->mempolicy);
1092                p->mempolicy = NULL;
1093                goto bad_fork_cleanup_cgroup;
1094        }
1095        mpol_fix_fork_child_flag(p);
1096#endif
1097#ifdef CONFIG_TRACE_IRQFLAGS
1098        p->irq_events = 0;
1099#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1100        p->hardirqs_enabled = 1;
1101#else
1102        p->hardirqs_enabled = 0;
1103#endif
1104        p->hardirq_enable_ip = 0;
1105        p->hardirq_enable_event = 0;
1106        p->hardirq_disable_ip = _THIS_IP_;
1107        p->hardirq_disable_event = 0;
1108        p->softirqs_enabled = 1;
1109        p->softirq_enable_ip = _THIS_IP_;
1110        p->softirq_enable_event = 0;
1111        p->softirq_disable_ip = 0;
1112        p->softirq_disable_event = 0;
1113        p->hardirq_context = 0;
1114        p->softirq_context = 0;
1115#endif
1116#ifdef CONFIG_LOCKDEP
1117        p->lockdep_depth = 0; /* no locks held yet */
1118        p->curr_chain_key = 0;
1119        p->lockdep_recursion = 0;
1120#endif
1121
1122#ifdef CONFIG_DEBUG_MUTEXES
1123        p->blocked_on = NULL; /* not blocked yet */
1124#endif
1125
1126        /* Perform scheduler related setup. Assign this task to a CPU. */
1127        sched_fork(p, clone_flags);
1128
1129        if ((retval = security_task_alloc(p)))
1130                goto bad_fork_cleanup_policy;
1131        if ((retval = audit_alloc(p)))
1132                goto bad_fork_cleanup_security;
1133        /* copy all the process information */
1134        if ((retval = copy_semundo(clone_flags, p)))
1135                goto bad_fork_cleanup_audit;
1136        if ((retval = copy_files(clone_flags, p)))
1137                goto bad_fork_cleanup_semundo;
1138        if ((retval = copy_fs(clone_flags, p)))
1139                goto bad_fork_cleanup_files;
1140        if ((retval = copy_sighand(clone_flags, p)))
1141                goto bad_fork_cleanup_fs;
1142        if ((retval = copy_signal(clone_flags, p)))
1143                goto bad_fork_cleanup_sighand;
1144        if ((retval = copy_mm(clone_flags, p)))
1145                goto bad_fork_cleanup_signal;
1146        if ((retval = copy_keys(clone_flags, p)))
1147                goto bad_fork_cleanup_mm;
1148        if ((retval = copy_namespaces(clone_flags, p)))
1149                goto bad_fork_cleanup_keys;
1150        retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1151        if (retval)
1152                goto bad_fork_cleanup_namespaces;
1153
1154        if (pid != &init_struct_pid) {
1155                retval = -ENOMEM;
1156                pid = alloc_pid(task_active_pid_ns(p));
1157                if (!pid)
1158                        goto bad_fork_cleanup_namespaces;
1159
1160                if (clone_flags & CLONE_NEWPID) {
1161                        retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1162                        if (retval < 0)
1163                                goto bad_fork_free_pid;
1164                }
1165        }
1166
1167        p->pid = pid_nr(pid);
1168        p->tgid = p->pid;
1169        if (clone_flags & CLONE_THREAD)
1170                p->tgid = current->tgid;
1171
1172        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1173        /*
1174         * Clear TID on mm_release()?
1175         */
1176        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1177#ifdef CONFIG_FUTEX
1178        p->robust_list = NULL;
1179#ifdef CONFIG_COMPAT
1180        p->compat_robust_list = NULL;
1181#endif
1182        INIT_LIST_HEAD(&p->pi_state_list);
1183        p->pi_state_cache = NULL;
1184#endif
1185        /*
1186         * sigaltstack should be cleared when sharing the same VM
1187         */
1188        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1189                p->sas_ss_sp = p->sas_ss_size = 0;
1190
1191        /*
1192         * Syscall tracing should be turned off in the child regardless
1193         * of CLONE_PTRACE.
1194         */
1195        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1196#ifdef TIF_SYSCALL_EMU
1197        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1198#endif
1199
1200        /* Our parent execution domain becomes current domain
1201           These must match for thread signalling to apply */
1202        p->parent_exec_id = p->self_exec_id;
1203
1204        /* ok, now we should be set up.. */
1205        p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1206        p->pdeath_signal = 0;
1207        p->exit_state = 0;
1208
1209        /*
1210         * Ok, make it visible to the rest of the system.
1211         * We dont wake it up yet.
1212         */
1213        p->group_leader = p;
1214        INIT_LIST_HEAD(&p->thread_group);
1215        INIT_LIST_HEAD(&p->ptrace_children);
1216        INIT_LIST_HEAD(&p->ptrace_list);
1217
1218        /* Now that the task is set up, run cgroup callbacks if
1219         * necessary. We need to run them before the task is visible
1220         * on the tasklist. */
1221        cgroup_fork_callbacks(p);
1222        cgroup_callbacks_done = 1;
1223
1224        /* Need tasklist lock for parent etc handling! */
1225        write_lock_irq(&tasklist_lock);
1226
1227        /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1228        p->ioprio = current->ioprio;
1229
1230        /*
1231         * The task hasn't been attached yet, so its cpus_allowed mask will
1232         * not be changed, nor will its assigned CPU.
1233         *
1234         * The cpus_allowed mask of the parent may have changed after it was
1235         * copied first time - so re-copy it here, then check the child's CPU
1236         * to ensure it is on a valid CPU (and if not, just force it back to
1237         * parent's CPU). This avoids alot of nasty races.
1238         */
1239        p->cpus_allowed = current->cpus_allowed;
1240        if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1241                        !cpu_online(task_cpu(p))))
1242                set_task_cpu(p, smp_processor_id());
1243
1244        /* CLONE_PARENT re-uses the old parent */
1245        if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1246                p->real_parent = current->real_parent;
1247        else
1248                p->real_parent = current;
1249        p->parent = p->real_parent;
1250
1251        spin_lock(&current->sighand->siglock);
1252
1253        /*
1254         * Process group and session signals need to be delivered to just the
1255         * parent before the fork or both the parent and the child after the
1256         * fork. Restart if a signal comes in before we add the new process to
1257         * it's process group.
1258         * A fatal signal pending means that current will exit, so the new
1259         * thread can't slip out of an OOM kill (or normal SIGKILL).
1260         */
1261        recalc_sigpending();
1262        if (signal_pending(current)) {
1263                spin_unlock(&current->sighand->siglock);
1264                write_unlock_irq(&tasklist_lock);
1265                retval = -ERESTARTNOINTR;
1266                goto bad_fork_free_pid;
1267        }
1268
1269        if (clone_flags & CLONE_THREAD) {
1270                p->group_leader = current->group_leader;
1271                list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1272
1273                if (!cputime_eq(current->signal->it_virt_expires,
1274                                cputime_zero) ||
1275                    !cputime_eq(current->signal->it_prof_expires,
1276                                cputime_zero) ||
1277                    current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1278                    !list_empty(&current->signal->cpu_timers[0]) ||
1279                    !list_empty(&current->signal->cpu_timers[1]) ||
1280                    !list_empty(&current->signal->cpu_timers[2])) {
1281                        /*
1282                         * Have child wake up on its first tick to check
1283                         * for process CPU timers.
1284                         */
1285                        p->it_prof_expires = jiffies_to_cputime(1);
1286                }
1287        }
1288
1289        if (likely(p->pid)) {
1290                add_parent(p);
1291                if (unlikely(p->ptrace & PT_PTRACED))
1292                        __ptrace_link(p, current->parent);
1293
1294                if (thread_group_leader(p)) {
1295                        if (clone_flags & CLONE_NEWPID)
1296                                p->nsproxy->pid_ns->child_reaper = p;
1297
1298                        p->signal->tty = current->signal->tty;
1299                        set_task_pgrp(p, task_pgrp_nr(current));
1300                        set_task_session(p, task_session_nr(current));
1301                        attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1302                        attach_pid(p, PIDTYPE_SID, task_session(current));
1303                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
1304                        __get_cpu_var(process_counts)++;
1305                }
1306                attach_pid(p, PIDTYPE_PID, pid);
1307                nr_threads++;
1308        }
1309
1310        total_forks++;
1311        spin_unlock(&current->sighand->siglock);
1312        write_unlock_irq(&tasklist_lock);
1313        proc_fork_connector(p);
1314        cgroup_post_fork(p);
1315        return p;
1316
1317bad_fork_free_pid:
1318        if (pid != &init_struct_pid)
1319                free_pid(pid);
1320bad_fork_cleanup_namespaces:
1321        exit_task_namespaces(p);
1322bad_fork_cleanup_keys:
1323        exit_keys(p);
1324bad_fork_cleanup_mm:
1325        if (p->mm)
1326                mmput(p->mm);
1327bad_fork_cleanup_signal:
1328        cleanup_signal(p);
1329bad_fork_cleanup_sighand:
1330        __cleanup_sighand(p->sighand);
1331bad_fork_cleanup_fs:
1332        exit_fs(p); /* blocking */
1333bad_fork_cleanup_files:
1334        exit_files(p); /* blocking */
1335bad_fork_cleanup_semundo:
1336        exit_sem(p);
1337bad_fork_cleanup_audit:
1338        audit_free(p);
1339bad_fork_cleanup_security:
1340        security_task_free(p);
1341bad_fork_cleanup_policy:
1342#ifdef CONFIG_NUMA
1343        mpol_free(p->mempolicy);
1344bad_fork_cleanup_cgroup:
1345#endif
1346        cgroup_exit(p, cgroup_callbacks_done);
1347        delayacct_tsk_free(p);
1348        if (p->binfmt)
1349                module_put(p->binfmt->module);
1350bad_fork_cleanup_put_domain:
1351        module_put(task_thread_info(p)->exec_domain->module);
1352bad_fork_cleanup_count:
1353        put_group_info(p->group_info);
1354        atomic_dec(&p->user->processes);
1355        free_uid(p->user);
1356bad_fork_free:
1357        free_task(p);
1358fork_out:
1359        return ERR_PTR(retval);
1360}
1361
1362noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1363{
1364        memset(regs, 0, sizeof(struct pt_regs));
1365        return regs;
1366}
1367
1368struct task_struct * __cpuinit fork_idle(int cpu)
1369{
1370        struct task_struct *task;
1371        struct pt_regs regs;
1372
1373        task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1374                                &init_struct_pid);
1375        if (!IS_ERR(task))
1376                init_idle(task, cpu);
1377
1378        return task;
1379}
1380
1381static int fork_traceflag(unsigned clone_flags)
1382{
1383        if (clone_flags & CLONE_UNTRACED)
1384                return 0;
1385        else if (clone_flags & CLONE_VFORK) {
1386                if (current->ptrace & PT_TRACE_VFORK)
1387                        return PTRACE_EVENT_VFORK;
1388        } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1389                if (current->ptrace & PT_TRACE_CLONE)
1390                        return PTRACE_EVENT_CLONE;
1391        } else if (current->ptrace & PT_TRACE_FORK)
1392                return PTRACE_EVENT_FORK;
1393
1394        return 0;
1395}
1396
1397/*
1398 *  Ok, this is the main fork-routine.
1399 *
1400 * It copies the process, and if successful kick-starts
1401 * it and waits for it to finish using the VM if required.
1402 */
1403long do_fork(unsigned long clone_flags,
1404              unsigned long stack_start,
1405              struct pt_regs *regs,
1406              unsigned long stack_size,
1407              int __user *parent_tidptr,
1408              int __user *child_tidptr)
1409{
1410        struct task_struct *p;
1411        int trace = 0;
1412        long nr;
1413
1414        if (unlikely(current->ptrace)) {
1415                trace = fork_traceflag (clone_flags);
1416                if (trace)
1417                        clone_flags |= CLONE_PTRACE;
1418        }
1419
1420        p = copy_process(clone_flags, stack_start, regs, stack_size,
1421                        child_tidptr, NULL);
1422        /*
1423         * Do this prior waking up the new thread - the thread pointer
1424         * might get invalid after that point, if the thread exits quickly.
1425         */
1426        if (!IS_ERR(p)) {
1427                struct completion vfork;
1428
1429                /*
1430                 * this is enough to call pid_nr_ns here, but this if
1431                 * improves optimisation of regular fork()
1432                 */
1433                nr = (clone_flags & CLONE_NEWPID) ?
1434                        task_pid_nr_ns(p, current->nsproxy->pid_ns) :
1435                                task_pid_vnr(p);
1436
1437                if (clone_flags & CLONE_PARENT_SETTID)
1438                        put_user(nr, parent_tidptr);
1439
1440                if (clone_flags & CLONE_VFORK) {
1441                        p->vfork_done = &vfork;
1442                        init_completion(&vfork);
1443                }
1444
1445                if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1446                        /*
1447                         * We'll start up with an immediate SIGSTOP.
1448                         */
1449                        sigaddset(&p->pending.signal, SIGSTOP);
1450                        set_tsk_thread_flag(p, TIF_SIGPENDING);
1451                }
1452
1453                if (!(clone_flags & CLONE_STOPPED))
1454                        wake_up_new_task(p, clone_flags);
1455                else
1456                        p->state = TASK_STOPPED;
1457
1458                if (unlikely (trace)) {
1459                        current->ptrace_message = nr;
1460                        ptrace_notify ((trace << 8) | SIGTRAP);
1461                }
1462
1463                if (clone_flags & CLONE_VFORK) {
1464                        freezer_do_not_count();
1465                        wait_for_completion(&vfork);
1466                        freezer_count();
1467                        if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1468                                current->ptrace_message = nr;
1469                                ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1470                        }
1471                }
1472        } else {
1473                nr = PTR_ERR(p);
1474        }
1475        return nr;
1476}
1477
1478#ifndef ARCH_MIN_MMSTRUCT_ALIGN
1479#define ARCH_MIN_MMSTRUCT_ALIGN 0
1480#endif
1481
1482static void sighand_ctor(struct kmem_cache *cachep, void *data)
1483{
1484        struct sighand_struct *sighand = data;
1485
1486        spin_lock_init(&sighand->siglock);
1487        init_waitqueue_head(&sighand->signalfd_wqh);
1488}
1489
1490void __init proc_caches_init(void)
1491{
1492        sighand_cachep = kmem_cache_create("sighand_cache",
1493                        sizeof(struct sighand_struct), 0,
1494                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1495                        sighand_ctor);
1496        signal_cachep = kmem_cache_create("signal_cache",
1497                        sizeof(struct signal_struct), 0,
1498                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1499        files_cachep = kmem_cache_create("files_cache",
1500                        sizeof(struct files_struct), 0,
1501                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1502        fs_cachep = kmem_cache_create("fs_cache",
1503                        sizeof(struct fs_struct), 0,
1504                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1505        vm_area_cachep = kmem_cache_create("vm_area_struct",
1506                        sizeof(struct vm_area_struct), 0,
1507                        SLAB_PANIC, NULL);
1508        mm_cachep = kmem_cache_create("mm_struct",
1509                        sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1510                        SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1511}
1512
1513/*
1514 * Check constraints on flags passed to the unshare system call and
1515 * force unsharing of additional process context as appropriate.
1516 */
1517static void check_unshare_flags(unsigned long *flags_ptr)
1518{
1519        /*
1520         * If unsharing a thread from a thread group, must also
1521         * unshare vm.
1522         */
1523        if (*flags_ptr & CLONE_THREAD)
1524                *flags_ptr |= CLONE_VM;
1525
1526        /*
1527         * If unsharing vm, must also unshare signal handlers.
1528         */
1529        if (*flags_ptr & CLONE_VM)
1530                *flags_ptr |= CLONE_SIGHAND;
1531
1532        /*
1533         * If unsharing signal handlers and the task was created
1534         * using CLONE_THREAD, then must unshare the thread
1535         */
1536        if ((*flags_ptr & CLONE_SIGHAND) &&
1537            (atomic_read(&current->signal->count) > 1))
1538                *flags_ptr |= CLONE_THREAD;
1539
1540        /*
1541         * If unsharing namespace, must also unshare filesystem information.
1542         */
1543        if (*flags_ptr & CLONE_NEWNS)
1544                *flags_ptr |= CLONE_FS;
1545}
1546
1547/*
1548 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1549 */
1550static int unshare_thread(unsigned long unshare_flags)
1551{
1552        if (unshare_flags & CLONE_THREAD)
1553                return -EINVAL;
1554
1555        return 0;
1556}
1557
1558/*
1559 * Unshare the filesystem structure if it is being shared
1560 */
1561static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1562{
1563        struct fs_struct *fs = current->fs;
1564
1565        if ((unshare_flags & CLONE_FS) &&
1566            (fs && atomic_read(&fs->count) > 1)) {
1567                *new_fsp = __copy_fs_struct(current->fs);
1568                if (!*new_fsp)
1569                        return -ENOMEM;
1570        }
1571
1572        return 0;
1573}
1574
1575/*
1576 * Unsharing of sighand is not supported yet
1577 */
1578static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1579{
1580        struct sighand_struct *sigh = current->sighand;
1581
1582        if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1583                return -EINVAL;
1584        else
1585                return 0;
1586}
1587
1588/*
1589 * Unshare vm if it is being shared
1590 */
1591static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1592{
1593        struct mm_struct *mm = current->mm;
1594
1595        if ((unshare_flags & CLONE_VM) &&
1596            (mm && atomic_read(&mm->mm_users) > 1)) {
1597                return -EINVAL;
1598        }
1599
1600        return 0;
1601}
1602
1603/*
1604 * Unshare file descriptor table if it is being shared
1605 */
1606static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1607{
1608        struct files_struct *fd = current->files;
1609        int error = 0;
1610
1611        if ((unshare_flags & CLONE_FILES) &&
1612            (fd && atomic_read(&fd->count) > 1)) {
1613                *new_fdp = dup_fd(fd, &error);
1614                if (!*new_fdp)
1615                        return error;
1616        }
1617
1618        return 0;
1619}
1620
1621/*
1622 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1623 * supported yet
1624 */
1625static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1626{
1627        if (unshare_flags & CLONE_SYSVSEM)
1628                return -EINVAL;
1629
1630        return 0;
1631}
1632
1633/*
1634 * unshare allows a process to 'unshare' part of the process
1635 * context which was originally shared using clone.  copy_*
1636 * functions used by do_fork() cannot be used here directly
1637 * because they modify an inactive task_struct that is being
1638 * constructed. Here we are modifying the current, active,
1639 * task_struct.
1640 */
1641asmlinkage long sys_unshare(unsigned long unshare_flags)
1642{
1643        int err = 0;
1644        struct fs_struct *fs, *new_fs = NULL;
1645        struct sighand_struct *new_sigh = NULL;
1646        struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1647        struct files_struct *fd, *new_fd = NULL;
1648        struct sem_undo_list *new_ulist = NULL;
1649        struct nsproxy *new_nsproxy = NULL;
1650
1651        check_unshare_flags(&unshare_flags);
1652
1653        /* Return -EINVAL for all unsupported flags */
1654        err = -EINVAL;
1655        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1656                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1657                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1658                                CLONE_NEWNET))
1659                goto bad_unshare_out;
1660
1661        if ((err = unshare_thread(unshare_flags)))
1662                goto bad_unshare_out;
1663        if ((err = unshare_fs(unshare_flags, &new_fs)))
1664                goto bad_unshare_cleanup_thread;
1665        if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1666                goto bad_unshare_cleanup_fs;
1667        if ((err = unshare_vm(unshare_flags, &new_mm)))
1668                goto bad_unshare_cleanup_sigh;
1669        if ((err = unshare_fd(unshare_flags, &new_fd)))
1670                goto bad_unshare_cleanup_vm;
1671        if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1672                goto bad_unshare_cleanup_fd;
1673        if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1674                        new_fs)))
1675                goto bad_unshare_cleanup_semundo;
1676
1677        if (new_fs ||  new_mm || new_fd || new_ulist || new_nsproxy) {
1678
1679                if (new_nsproxy) {
1680                        switch_task_namespaces(current, new_nsproxy);
1681                        new_nsproxy = NULL;
1682                }
1683
1684                task_lock(current);
1685
1686                if (new_fs) {
1687                        fs = current->fs;
1688                        current->fs = new_fs;
1689                        new_fs = fs;
1690                }
1691
1692                if (new_mm) {
1693                        mm = current->mm;
1694                        active_mm = current->active_mm;
1695                        current->mm = new_mm;
1696                        current->active_mm = new_mm;
1697                        activate_mm(active_mm, new_mm);
1698                        new_mm = mm;
1699                }
1700
1701                if (new_fd) {
1702                        fd = current->files;
1703                        current->files = new_fd;
1704                        new_fd = fd;
1705                }
1706
1707                task_unlock(current);
1708        }
1709
1710        if (new_nsproxy)
1711                put_nsproxy(new_nsproxy);
1712
1713bad_unshare_cleanup_semundo:
1714bad_unshare_cleanup_fd:
1715        if (new_fd)
1716                put_files_struct(new_fd);
1717
1718bad_unshare_cleanup_vm:
1719        if (new_mm)
1720                mmput(new_mm);
1721
1722bad_unshare_cleanup_sigh:
1723        if (new_sigh)
1724                if (atomic_dec_and_test(&new_sigh->count))
1725                        kmem_cache_free(sighand_cachep, new_sigh);
1726
1727bad_unshare_cleanup_fs:
1728        if (new_fs)
1729                put_fs_struct(new_fs);
1730
1731bad_unshare_cleanup_thread:
1732bad_unshare_out:
1733        return err;
1734}
1735