linux/kernel/hrtimer.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/hrtimer.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  High-resolution kernel timers
   9 *
  10 *  In contrast to the low-resolution timeout API implemented in
  11 *  kernel/timer.c, hrtimers provide finer resolution and accuracy
  12 *  depending on system configuration and capabilities.
  13 *
  14 *  These timers are currently used for:
  15 *   - itimers
  16 *   - POSIX timers
  17 *   - nanosleep
  18 *   - precise in-kernel timing
  19 *
  20 *  Started by: Thomas Gleixner and Ingo Molnar
  21 *
  22 *  Credits:
  23 *      based on kernel/timer.c
  24 *
  25 *      Help, testing, suggestions, bugfixes, improvements were
  26 *      provided by:
  27 *
  28 *      George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29 *      et. al.
  30 *
  31 *  For licencing details see kernel-base/COPYING
  32 */
  33
  34#include <linux/cpu.h>
  35#include <linux/irq.h>
  36#include <linux/module.h>
  37#include <linux/percpu.h>
  38#include <linux/hrtimer.h>
  39#include <linux/notifier.h>
  40#include <linux/syscalls.h>
  41#include <linux/kallsyms.h>
  42#include <linux/interrupt.h>
  43#include <linux/tick.h>
  44#include <linux/seq_file.h>
  45#include <linux/err.h>
  46
  47#include <asm/uaccess.h>
  48
  49/**
  50 * ktime_get - get the monotonic time in ktime_t format
  51 *
  52 * returns the time in ktime_t format
  53 */
  54ktime_t ktime_get(void)
  55{
  56        struct timespec now;
  57
  58        ktime_get_ts(&now);
  59
  60        return timespec_to_ktime(now);
  61}
  62EXPORT_SYMBOL_GPL(ktime_get);
  63
  64/**
  65 * ktime_get_real - get the real (wall-) time in ktime_t format
  66 *
  67 * returns the time in ktime_t format
  68 */
  69ktime_t ktime_get_real(void)
  70{
  71        struct timespec now;
  72
  73        getnstimeofday(&now);
  74
  75        return timespec_to_ktime(now);
  76}
  77
  78EXPORT_SYMBOL_GPL(ktime_get_real);
  79
  80/*
  81 * The timer bases:
  82 *
  83 * Note: If we want to add new timer bases, we have to skip the two
  84 * clock ids captured by the cpu-timers. We do this by holding empty
  85 * entries rather than doing math adjustment of the clock ids.
  86 * This ensures that we capture erroneous accesses to these clock ids
  87 * rather than moving them into the range of valid clock id's.
  88 */
  89DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  90{
  91
  92        .clock_base =
  93        {
  94                {
  95                        .index = CLOCK_REALTIME,
  96                        .get_time = &ktime_get_real,
  97                        .resolution = KTIME_LOW_RES,
  98                },
  99                {
 100                        .index = CLOCK_MONOTONIC,
 101                        .get_time = &ktime_get,
 102                        .resolution = KTIME_LOW_RES,
 103                },
 104        }
 105};
 106
 107/**
 108 * ktime_get_ts - get the monotonic clock in timespec format
 109 * @ts:         pointer to timespec variable
 110 *
 111 * The function calculates the monotonic clock from the realtime
 112 * clock and the wall_to_monotonic offset and stores the result
 113 * in normalized timespec format in the variable pointed to by @ts.
 114 */
 115void ktime_get_ts(struct timespec *ts)
 116{
 117        struct timespec tomono;
 118        unsigned long seq;
 119
 120        do {
 121                seq = read_seqbegin(&xtime_lock);
 122                getnstimeofday(ts);
 123                tomono = wall_to_monotonic;
 124
 125        } while (read_seqretry(&xtime_lock, seq));
 126
 127        set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
 128                                ts->tv_nsec + tomono.tv_nsec);
 129}
 130EXPORT_SYMBOL_GPL(ktime_get_ts);
 131
 132/*
 133 * Get the coarse grained time at the softirq based on xtime and
 134 * wall_to_monotonic.
 135 */
 136static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
 137{
 138        ktime_t xtim, tomono;
 139        struct timespec xts, tom;
 140        unsigned long seq;
 141
 142        do {
 143                seq = read_seqbegin(&xtime_lock);
 144                xts = current_kernel_time();
 145                tom = wall_to_monotonic;
 146        } while (read_seqretry(&xtime_lock, seq));
 147
 148        xtim = timespec_to_ktime(xts);
 149        tomono = timespec_to_ktime(tom);
 150        base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
 151        base->clock_base[CLOCK_MONOTONIC].softirq_time =
 152                ktime_add(xtim, tomono);
 153}
 154
 155/*
 156 * Helper function to check, whether the timer is running the callback
 157 * function
 158 */
 159static inline int hrtimer_callback_running(struct hrtimer *timer)
 160{
 161        return timer->state & HRTIMER_STATE_CALLBACK;
 162}
 163
 164/*
 165 * Functions and macros which are different for UP/SMP systems are kept in a
 166 * single place
 167 */
 168#ifdef CONFIG_SMP
 169
 170/*
 171 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
 172 * means that all timers which are tied to this base via timer->base are
 173 * locked, and the base itself is locked too.
 174 *
 175 * So __run_timers/migrate_timers can safely modify all timers which could
 176 * be found on the lists/queues.
 177 *
 178 * When the timer's base is locked, and the timer removed from list, it is
 179 * possible to set timer->base = NULL and drop the lock: the timer remains
 180 * locked.
 181 */
 182static
 183struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
 184                                             unsigned long *flags)
 185{
 186        struct hrtimer_clock_base *base;
 187
 188        for (;;) {
 189                base = timer->base;
 190                if (likely(base != NULL)) {
 191                        spin_lock_irqsave(&base->cpu_base->lock, *flags);
 192                        if (likely(base == timer->base))
 193                                return base;
 194                        /* The timer has migrated to another CPU: */
 195                        spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
 196                }
 197                cpu_relax();
 198        }
 199}
 200
 201/*
 202 * Switch the timer base to the current CPU when possible.
 203 */
 204static inline struct hrtimer_clock_base *
 205switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
 206{
 207        struct hrtimer_clock_base *new_base;
 208        struct hrtimer_cpu_base *new_cpu_base;
 209
 210        new_cpu_base = &__get_cpu_var(hrtimer_bases);
 211        new_base = &new_cpu_base->clock_base[base->index];
 212
 213        if (base != new_base) {
 214                /*
 215                 * We are trying to schedule the timer on the local CPU.
 216                 * However we can't change timer's base while it is running,
 217                 * so we keep it on the same CPU. No hassle vs. reprogramming
 218                 * the event source in the high resolution case. The softirq
 219                 * code will take care of this when the timer function has
 220                 * completed. There is no conflict as we hold the lock until
 221                 * the timer is enqueued.
 222                 */
 223                if (unlikely(hrtimer_callback_running(timer)))
 224                        return base;
 225
 226                /* See the comment in lock_timer_base() */
 227                timer->base = NULL;
 228                spin_unlock(&base->cpu_base->lock);
 229                spin_lock(&new_base->cpu_base->lock);
 230                timer->base = new_base;
 231        }
 232        return new_base;
 233}
 234
 235#else /* CONFIG_SMP */
 236
 237static inline struct hrtimer_clock_base *
 238lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 239{
 240        struct hrtimer_clock_base *base = timer->base;
 241
 242        spin_lock_irqsave(&base->cpu_base->lock, *flags);
 243
 244        return base;
 245}
 246
 247# define switch_hrtimer_base(t, b)      (b)
 248
 249#endif  /* !CONFIG_SMP */
 250
 251/*
 252 * Functions for the union type storage format of ktime_t which are
 253 * too large for inlining:
 254 */
 255#if BITS_PER_LONG < 64
 256# ifndef CONFIG_KTIME_SCALAR
 257/**
 258 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
 259 * @kt:         addend
 260 * @nsec:       the scalar nsec value to add
 261 *
 262 * Returns the sum of kt and nsec in ktime_t format
 263 */
 264ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
 265{
 266        ktime_t tmp;
 267
 268        if (likely(nsec < NSEC_PER_SEC)) {
 269                tmp.tv64 = nsec;
 270        } else {
 271                unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 272
 273                tmp = ktime_set((long)nsec, rem);
 274        }
 275
 276        return ktime_add(kt, tmp);
 277}
 278
 279EXPORT_SYMBOL_GPL(ktime_add_ns);
 280
 281/**
 282 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
 283 * @kt:         minuend
 284 * @nsec:       the scalar nsec value to subtract
 285 *
 286 * Returns the subtraction of @nsec from @kt in ktime_t format
 287 */
 288ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
 289{
 290        ktime_t tmp;
 291
 292        if (likely(nsec < NSEC_PER_SEC)) {
 293                tmp.tv64 = nsec;
 294        } else {
 295                unsigned long rem = do_div(nsec, NSEC_PER_SEC);
 296
 297                tmp = ktime_set((long)nsec, rem);
 298        }
 299
 300        return ktime_sub(kt, tmp);
 301}
 302
 303EXPORT_SYMBOL_GPL(ktime_sub_ns);
 304# endif /* !CONFIG_KTIME_SCALAR */
 305
 306/*
 307 * Divide a ktime value by a nanosecond value
 308 */
 309unsigned long ktime_divns(const ktime_t kt, s64 div)
 310{
 311        u64 dclc, inc, dns;
 312        int sft = 0;
 313
 314        dclc = dns = ktime_to_ns(kt);
 315        inc = div;
 316        /* Make sure the divisor is less than 2^32: */
 317        while (div >> 32) {
 318                sft++;
 319                div >>= 1;
 320        }
 321        dclc >>= sft;
 322        do_div(dclc, (unsigned long) div);
 323
 324        return (unsigned long) dclc;
 325}
 326#endif /* BITS_PER_LONG >= 64 */
 327
 328/* High resolution timer related functions */
 329#ifdef CONFIG_HIGH_RES_TIMERS
 330
 331/*
 332 * High resolution timer enabled ?
 333 */
 334static int hrtimer_hres_enabled __read_mostly  = 1;
 335
 336/*
 337 * Enable / Disable high resolution mode
 338 */
 339static int __init setup_hrtimer_hres(char *str)
 340{
 341        if (!strcmp(str, "off"))
 342                hrtimer_hres_enabled = 0;
 343        else if (!strcmp(str, "on"))
 344                hrtimer_hres_enabled = 1;
 345        else
 346                return 0;
 347        return 1;
 348}
 349
 350__setup("highres=", setup_hrtimer_hres);
 351
 352/*
 353 * hrtimer_high_res_enabled - query, if the highres mode is enabled
 354 */
 355static inline int hrtimer_is_hres_enabled(void)
 356{
 357        return hrtimer_hres_enabled;
 358}
 359
 360/*
 361 * Is the high resolution mode active ?
 362 */
 363static inline int hrtimer_hres_active(void)
 364{
 365        return __get_cpu_var(hrtimer_bases).hres_active;
 366}
 367
 368/*
 369 * Reprogram the event source with checking both queues for the
 370 * next event
 371 * Called with interrupts disabled and base->lock held
 372 */
 373static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
 374{
 375        int i;
 376        struct hrtimer_clock_base *base = cpu_base->clock_base;
 377        ktime_t expires;
 378
 379        cpu_base->expires_next.tv64 = KTIME_MAX;
 380
 381        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 382                struct hrtimer *timer;
 383
 384                if (!base->first)
 385                        continue;
 386                timer = rb_entry(base->first, struct hrtimer, node);
 387                expires = ktime_sub(timer->expires, base->offset);
 388                if (expires.tv64 < cpu_base->expires_next.tv64)
 389                        cpu_base->expires_next = expires;
 390        }
 391
 392        if (cpu_base->expires_next.tv64 != KTIME_MAX)
 393                tick_program_event(cpu_base->expires_next, 1);
 394}
 395
 396/*
 397 * Shared reprogramming for clock_realtime and clock_monotonic
 398 *
 399 * When a timer is enqueued and expires earlier than the already enqueued
 400 * timers, we have to check, whether it expires earlier than the timer for
 401 * which the clock event device was armed.
 402 *
 403 * Called with interrupts disabled and base->cpu_base.lock held
 404 */
 405static int hrtimer_reprogram(struct hrtimer *timer,
 406                             struct hrtimer_clock_base *base)
 407{
 408        ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
 409        ktime_t expires = ktime_sub(timer->expires, base->offset);
 410        int res;
 411
 412        /*
 413         * When the callback is running, we do not reprogram the clock event
 414         * device. The timer callback is either running on a different CPU or
 415         * the callback is executed in the hrtimer_interrupt context. The
 416         * reprogramming is handled either by the softirq, which called the
 417         * callback or at the end of the hrtimer_interrupt.
 418         */
 419        if (hrtimer_callback_running(timer))
 420                return 0;
 421
 422        if (expires.tv64 >= expires_next->tv64)
 423                return 0;
 424
 425        /*
 426         * Clockevents returns -ETIME, when the event was in the past.
 427         */
 428        res = tick_program_event(expires, 0);
 429        if (!IS_ERR_VALUE(res))
 430                *expires_next = expires;
 431        return res;
 432}
 433
 434
 435/*
 436 * Retrigger next event is called after clock was set
 437 *
 438 * Called with interrupts disabled via on_each_cpu()
 439 */
 440static void retrigger_next_event(void *arg)
 441{
 442        struct hrtimer_cpu_base *base;
 443        struct timespec realtime_offset;
 444        unsigned long seq;
 445
 446        if (!hrtimer_hres_active())
 447                return;
 448
 449        do {
 450                seq = read_seqbegin(&xtime_lock);
 451                set_normalized_timespec(&realtime_offset,
 452                                        -wall_to_monotonic.tv_sec,
 453                                        -wall_to_monotonic.tv_nsec);
 454        } while (read_seqretry(&xtime_lock, seq));
 455
 456        base = &__get_cpu_var(hrtimer_bases);
 457
 458        /* Adjust CLOCK_REALTIME offset */
 459        spin_lock(&base->lock);
 460        base->clock_base[CLOCK_REALTIME].offset =
 461                timespec_to_ktime(realtime_offset);
 462
 463        hrtimer_force_reprogram(base);
 464        spin_unlock(&base->lock);
 465}
 466
 467/*
 468 * Clock realtime was set
 469 *
 470 * Change the offset of the realtime clock vs. the monotonic
 471 * clock.
 472 *
 473 * We might have to reprogram the high resolution timer interrupt. On
 474 * SMP we call the architecture specific code to retrigger _all_ high
 475 * resolution timer interrupts. On UP we just disable interrupts and
 476 * call the high resolution interrupt code.
 477 */
 478void clock_was_set(void)
 479{
 480        /* Retrigger the CPU local events everywhere */
 481        on_each_cpu(retrigger_next_event, NULL, 0, 1);
 482}
 483
 484/*
 485 * During resume we might have to reprogram the high resolution timer
 486 * interrupt (on the local CPU):
 487 */
 488void hres_timers_resume(void)
 489{
 490        WARN_ON_ONCE(num_online_cpus() > 1);
 491
 492        /* Retrigger the CPU local events: */
 493        retrigger_next_event(NULL);
 494}
 495
 496/*
 497 * Check, whether the timer is on the callback pending list
 498 */
 499static inline int hrtimer_cb_pending(const struct hrtimer *timer)
 500{
 501        return timer->state & HRTIMER_STATE_PENDING;
 502}
 503
 504/*
 505 * Remove a timer from the callback pending list
 506 */
 507static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
 508{
 509        list_del_init(&timer->cb_entry);
 510}
 511
 512/*
 513 * Initialize the high resolution related parts of cpu_base
 514 */
 515static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
 516{
 517        base->expires_next.tv64 = KTIME_MAX;
 518        base->hres_active = 0;
 519        INIT_LIST_HEAD(&base->cb_pending);
 520}
 521
 522/*
 523 * Initialize the high resolution related parts of a hrtimer
 524 */
 525static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
 526{
 527        INIT_LIST_HEAD(&timer->cb_entry);
 528}
 529
 530/*
 531 * When High resolution timers are active, try to reprogram. Note, that in case
 532 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
 533 * check happens. The timer gets enqueued into the rbtree. The reprogramming
 534 * and expiry check is done in the hrtimer_interrupt or in the softirq.
 535 */
 536static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 537                                            struct hrtimer_clock_base *base)
 538{
 539        if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
 540
 541                /* Timer is expired, act upon the callback mode */
 542                switch(timer->cb_mode) {
 543                case HRTIMER_CB_IRQSAFE_NO_RESTART:
 544                        /*
 545                         * We can call the callback from here. No restart
 546                         * happens, so no danger of recursion
 547                         */
 548                        BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
 549                        return 1;
 550                case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
 551                        /*
 552                         * This is solely for the sched tick emulation with
 553                         * dynamic tick support to ensure that we do not
 554                         * restart the tick right on the edge and end up with
 555                         * the tick timer in the softirq ! The calling site
 556                         * takes care of this.
 557                         */
 558                        return 1;
 559                case HRTIMER_CB_IRQSAFE:
 560                case HRTIMER_CB_SOFTIRQ:
 561                        /*
 562                         * Move everything else into the softirq pending list !
 563                         */
 564                        list_add_tail(&timer->cb_entry,
 565                                      &base->cpu_base->cb_pending);
 566                        timer->state = HRTIMER_STATE_PENDING;
 567                        raise_softirq(HRTIMER_SOFTIRQ);
 568                        return 1;
 569                default:
 570                        BUG();
 571                }
 572        }
 573        return 0;
 574}
 575
 576/*
 577 * Switch to high resolution mode
 578 */
 579static int hrtimer_switch_to_hres(void)
 580{
 581        int cpu = smp_processor_id();
 582        struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
 583        unsigned long flags;
 584
 585        if (base->hres_active)
 586                return 1;
 587
 588        local_irq_save(flags);
 589
 590        if (tick_init_highres()) {
 591                local_irq_restore(flags);
 592                printk(KERN_WARNING "Could not switch to high resolution "
 593                                    "mode on CPU %d\n", cpu);
 594                return 0;
 595        }
 596        base->hres_active = 1;
 597        base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
 598        base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
 599
 600        tick_setup_sched_timer();
 601
 602        /* "Retrigger" the interrupt to get things going */
 603        retrigger_next_event(NULL);
 604        local_irq_restore(flags);
 605        printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
 606               smp_processor_id());
 607        return 1;
 608}
 609
 610#else
 611
 612static inline int hrtimer_hres_active(void) { return 0; }
 613static inline int hrtimer_is_hres_enabled(void) { return 0; }
 614static inline int hrtimer_switch_to_hres(void) { return 0; }
 615static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
 616static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
 617                                            struct hrtimer_clock_base *base)
 618{
 619        return 0;
 620}
 621static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
 622static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
 623static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
 624static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
 625
 626#endif /* CONFIG_HIGH_RES_TIMERS */
 627
 628#ifdef CONFIG_TIMER_STATS
 629void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
 630{
 631        if (timer->start_site)
 632                return;
 633
 634        timer->start_site = addr;
 635        memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
 636        timer->start_pid = current->pid;
 637}
 638#endif
 639
 640/*
 641 * Counterpart to lock_hrtimer_base above:
 642 */
 643static inline
 644void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
 645{
 646        spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
 647}
 648
 649/**
 650 * hrtimer_forward - forward the timer expiry
 651 * @timer:      hrtimer to forward
 652 * @now:        forward past this time
 653 * @interval:   the interval to forward
 654 *
 655 * Forward the timer expiry so it will expire in the future.
 656 * Returns the number of overruns.
 657 */
 658unsigned long
 659hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
 660{
 661        unsigned long orun = 1;
 662        ktime_t delta;
 663
 664        delta = ktime_sub(now, timer->expires);
 665
 666        if (delta.tv64 < 0)
 667                return 0;
 668
 669        if (interval.tv64 < timer->base->resolution.tv64)
 670                interval.tv64 = timer->base->resolution.tv64;
 671
 672        if (unlikely(delta.tv64 >= interval.tv64)) {
 673                s64 incr = ktime_to_ns(interval);
 674
 675                orun = ktime_divns(delta, incr);
 676                timer->expires = ktime_add_ns(timer->expires, incr * orun);
 677                if (timer->expires.tv64 > now.tv64)
 678                        return orun;
 679                /*
 680                 * This (and the ktime_add() below) is the
 681                 * correction for exact:
 682                 */
 683                orun++;
 684        }
 685        timer->expires = ktime_add(timer->expires, interval);
 686        /*
 687         * Make sure, that the result did not wrap with a very large
 688         * interval.
 689         */
 690        if (timer->expires.tv64 < 0)
 691                timer->expires = ktime_set(KTIME_SEC_MAX, 0);
 692
 693        return orun;
 694}
 695EXPORT_SYMBOL_GPL(hrtimer_forward);
 696
 697/*
 698 * enqueue_hrtimer - internal function to (re)start a timer
 699 *
 700 * The timer is inserted in expiry order. Insertion into the
 701 * red black tree is O(log(n)). Must hold the base lock.
 702 */
 703static void enqueue_hrtimer(struct hrtimer *timer,
 704                            struct hrtimer_clock_base *base, int reprogram)
 705{
 706        struct rb_node **link = &base->active.rb_node;
 707        struct rb_node *parent = NULL;
 708        struct hrtimer *entry;
 709        int leftmost = 1;
 710
 711        /*
 712         * Find the right place in the rbtree:
 713         */
 714        while (*link) {
 715                parent = *link;
 716                entry = rb_entry(parent, struct hrtimer, node);
 717                /*
 718                 * We dont care about collisions. Nodes with
 719                 * the same expiry time stay together.
 720                 */
 721                if (timer->expires.tv64 < entry->expires.tv64) {
 722                        link = &(*link)->rb_left;
 723                } else {
 724                        link = &(*link)->rb_right;
 725                        leftmost = 0;
 726                }
 727        }
 728
 729        /*
 730         * Insert the timer to the rbtree and check whether it
 731         * replaces the first pending timer
 732         */
 733        if (leftmost) {
 734                /*
 735                 * Reprogram the clock event device. When the timer is already
 736                 * expired hrtimer_enqueue_reprogram has either called the
 737                 * callback or added it to the pending list and raised the
 738                 * softirq.
 739                 *
 740                 * This is a NOP for !HIGHRES
 741                 */
 742                if (reprogram && hrtimer_enqueue_reprogram(timer, base))
 743                        return;
 744
 745                base->first = &timer->node;
 746        }
 747
 748        rb_link_node(&timer->node, parent, link);
 749        rb_insert_color(&timer->node, &base->active);
 750        /*
 751         * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
 752         * state of a possibly running callback.
 753         */
 754        timer->state |= HRTIMER_STATE_ENQUEUED;
 755}
 756
 757/*
 758 * __remove_hrtimer - internal function to remove a timer
 759 *
 760 * Caller must hold the base lock.
 761 *
 762 * High resolution timer mode reprograms the clock event device when the
 763 * timer is the one which expires next. The caller can disable this by setting
 764 * reprogram to zero. This is useful, when the context does a reprogramming
 765 * anyway (e.g. timer interrupt)
 766 */
 767static void __remove_hrtimer(struct hrtimer *timer,
 768                             struct hrtimer_clock_base *base,
 769                             unsigned long newstate, int reprogram)
 770{
 771        /* High res. callback list. NOP for !HIGHRES */
 772        if (hrtimer_cb_pending(timer))
 773                hrtimer_remove_cb_pending(timer);
 774        else {
 775                /*
 776                 * Remove the timer from the rbtree and replace the
 777                 * first entry pointer if necessary.
 778                 */
 779                if (base->first == &timer->node) {
 780                        base->first = rb_next(&timer->node);
 781                        /* Reprogram the clock event device. if enabled */
 782                        if (reprogram && hrtimer_hres_active())
 783                                hrtimer_force_reprogram(base->cpu_base);
 784                }
 785                rb_erase(&timer->node, &base->active);
 786        }
 787        timer->state = newstate;
 788}
 789
 790/*
 791 * remove hrtimer, called with base lock held
 792 */
 793static inline int
 794remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
 795{
 796        if (hrtimer_is_queued(timer)) {
 797                int reprogram;
 798
 799                /*
 800                 * Remove the timer and force reprogramming when high
 801                 * resolution mode is active and the timer is on the current
 802                 * CPU. If we remove a timer on another CPU, reprogramming is
 803                 * skipped. The interrupt event on this CPU is fired and
 804                 * reprogramming happens in the interrupt handler. This is a
 805                 * rare case and less expensive than a smp call.
 806                 */
 807                timer_stats_hrtimer_clear_start_info(timer);
 808                reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
 809                __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
 810                                 reprogram);
 811                return 1;
 812        }
 813        return 0;
 814}
 815
 816/**
 817 * hrtimer_start - (re)start an relative timer on the current CPU
 818 * @timer:      the timer to be added
 819 * @tim:        expiry time
 820 * @mode:       expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
 821 *
 822 * Returns:
 823 *  0 on success
 824 *  1 when the timer was active
 825 */
 826int
 827hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
 828{
 829        struct hrtimer_clock_base *base, *new_base;
 830        unsigned long flags;
 831        int ret;
 832
 833        base = lock_hrtimer_base(timer, &flags);
 834
 835        /* Remove an active timer from the queue: */
 836        ret = remove_hrtimer(timer, base);
 837
 838        /* Switch the timer base, if necessary: */
 839        new_base = switch_hrtimer_base(timer, base);
 840
 841        if (mode == HRTIMER_MODE_REL) {
 842                tim = ktime_add(tim, new_base->get_time());
 843                /*
 844                 * CONFIG_TIME_LOW_RES is a temporary way for architectures
 845                 * to signal that they simply return xtime in
 846                 * do_gettimeoffset(). In this case we want to round up by
 847                 * resolution when starting a relative timer, to avoid short
 848                 * timeouts. This will go away with the GTOD framework.
 849                 */
 850#ifdef CONFIG_TIME_LOW_RES
 851                tim = ktime_add(tim, base->resolution);
 852#endif
 853                /*
 854                 * Careful here: User space might have asked for a
 855                 * very long sleep, so the add above might result in a
 856                 * negative number, which enqueues the timer in front
 857                 * of the queue.
 858                 */
 859                if (tim.tv64 < 0)
 860                        tim.tv64 = KTIME_MAX;
 861        }
 862        timer->expires = tim;
 863
 864        timer_stats_hrtimer_set_start_info(timer);
 865
 866        /*
 867         * Only allow reprogramming if the new base is on this CPU.
 868         * (it might still be on another CPU if the timer was pending)
 869         */
 870        enqueue_hrtimer(timer, new_base,
 871                        new_base->cpu_base == &__get_cpu_var(hrtimer_bases));
 872
 873        unlock_hrtimer_base(timer, &flags);
 874
 875        return ret;
 876}
 877EXPORT_SYMBOL_GPL(hrtimer_start);
 878
 879/**
 880 * hrtimer_try_to_cancel - try to deactivate a timer
 881 * @timer:      hrtimer to stop
 882 *
 883 * Returns:
 884 *  0 when the timer was not active
 885 *  1 when the timer was active
 886 * -1 when the timer is currently excuting the callback function and
 887 *    cannot be stopped
 888 */
 889int hrtimer_try_to_cancel(struct hrtimer *timer)
 890{
 891        struct hrtimer_clock_base *base;
 892        unsigned long flags;
 893        int ret = -1;
 894
 895        base = lock_hrtimer_base(timer, &flags);
 896
 897        if (!hrtimer_callback_running(timer))
 898                ret = remove_hrtimer(timer, base);
 899
 900        unlock_hrtimer_base(timer, &flags);
 901
 902        return ret;
 903
 904}
 905EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
 906
 907/**
 908 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
 909 * @timer:      the timer to be cancelled
 910 *
 911 * Returns:
 912 *  0 when the timer was not active
 913 *  1 when the timer was active
 914 */
 915int hrtimer_cancel(struct hrtimer *timer)
 916{
 917        for (;;) {
 918                int ret = hrtimer_try_to_cancel(timer);
 919
 920                if (ret >= 0)
 921                        return ret;
 922                cpu_relax();
 923        }
 924}
 925EXPORT_SYMBOL_GPL(hrtimer_cancel);
 926
 927/**
 928 * hrtimer_get_remaining - get remaining time for the timer
 929 * @timer:      the timer to read
 930 */
 931ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
 932{
 933        struct hrtimer_clock_base *base;
 934        unsigned long flags;
 935        ktime_t rem;
 936
 937        base = lock_hrtimer_base(timer, &flags);
 938        rem = ktime_sub(timer->expires, base->get_time());
 939        unlock_hrtimer_base(timer, &flags);
 940
 941        return rem;
 942}
 943EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
 944
 945#if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
 946/**
 947 * hrtimer_get_next_event - get the time until next expiry event
 948 *
 949 * Returns the delta to the next expiry event or KTIME_MAX if no timer
 950 * is pending.
 951 */
 952ktime_t hrtimer_get_next_event(void)
 953{
 954        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
 955        struct hrtimer_clock_base *base = cpu_base->clock_base;
 956        ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
 957        unsigned long flags;
 958        int i;
 959
 960        spin_lock_irqsave(&cpu_base->lock, flags);
 961
 962        if (!hrtimer_hres_active()) {
 963                for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
 964                        struct hrtimer *timer;
 965
 966                        if (!base->first)
 967                                continue;
 968
 969                        timer = rb_entry(base->first, struct hrtimer, node);
 970                        delta.tv64 = timer->expires.tv64;
 971                        delta = ktime_sub(delta, base->get_time());
 972                        if (delta.tv64 < mindelta.tv64)
 973                                mindelta.tv64 = delta.tv64;
 974                }
 975        }
 976
 977        spin_unlock_irqrestore(&cpu_base->lock, flags);
 978
 979        if (mindelta.tv64 < 0)
 980                mindelta.tv64 = 0;
 981        return mindelta;
 982}
 983#endif
 984
 985/**
 986 * hrtimer_init - initialize a timer to the given clock
 987 * @timer:      the timer to be initialized
 988 * @clock_id:   the clock to be used
 989 * @mode:       timer mode abs/rel
 990 */
 991void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
 992                  enum hrtimer_mode mode)
 993{
 994        struct hrtimer_cpu_base *cpu_base;
 995
 996        memset(timer, 0, sizeof(struct hrtimer));
 997
 998        cpu_base = &__raw_get_cpu_var(hrtimer_bases);
 999
1000        if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1001                clock_id = CLOCK_MONOTONIC;
1002
1003        timer->base = &cpu_base->clock_base[clock_id];
1004        hrtimer_init_timer_hres(timer);
1005
1006#ifdef CONFIG_TIMER_STATS
1007        timer->start_site = NULL;
1008        timer->start_pid = -1;
1009        memset(timer->start_comm, 0, TASK_COMM_LEN);
1010#endif
1011}
1012EXPORT_SYMBOL_GPL(hrtimer_init);
1013
1014/**
1015 * hrtimer_get_res - get the timer resolution for a clock
1016 * @which_clock: which clock to query
1017 * @tp:          pointer to timespec variable to store the resolution
1018 *
1019 * Store the resolution of the clock selected by @which_clock in the
1020 * variable pointed to by @tp.
1021 */
1022int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1023{
1024        struct hrtimer_cpu_base *cpu_base;
1025
1026        cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1027        *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1028
1029        return 0;
1030}
1031EXPORT_SYMBOL_GPL(hrtimer_get_res);
1032
1033#ifdef CONFIG_HIGH_RES_TIMERS
1034
1035/*
1036 * High resolution timer interrupt
1037 * Called with interrupts disabled
1038 */
1039void hrtimer_interrupt(struct clock_event_device *dev)
1040{
1041        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1042        struct hrtimer_clock_base *base;
1043        ktime_t expires_next, now;
1044        int i, raise = 0;
1045
1046        BUG_ON(!cpu_base->hres_active);
1047        cpu_base->nr_events++;
1048        dev->next_event.tv64 = KTIME_MAX;
1049
1050 retry:
1051        now = ktime_get();
1052
1053        expires_next.tv64 = KTIME_MAX;
1054
1055        base = cpu_base->clock_base;
1056
1057        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1058                ktime_t basenow;
1059                struct rb_node *node;
1060
1061                spin_lock(&cpu_base->lock);
1062
1063                basenow = ktime_add(now, base->offset);
1064
1065                while ((node = base->first)) {
1066                        struct hrtimer *timer;
1067
1068                        timer = rb_entry(node, struct hrtimer, node);
1069
1070                        if (basenow.tv64 < timer->expires.tv64) {
1071                                ktime_t expires;
1072
1073                                expires = ktime_sub(timer->expires,
1074                                                    base->offset);
1075                                if (expires.tv64 < expires_next.tv64)
1076                                        expires_next = expires;
1077                                break;
1078                        }
1079
1080                        /* Move softirq callbacks to the pending list */
1081                        if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1082                                __remove_hrtimer(timer, base,
1083                                                 HRTIMER_STATE_PENDING, 0);
1084                                list_add_tail(&timer->cb_entry,
1085                                              &base->cpu_base->cb_pending);
1086                                raise = 1;
1087                                continue;
1088                        }
1089
1090                        __remove_hrtimer(timer, base,
1091                                         HRTIMER_STATE_CALLBACK, 0);
1092                        timer_stats_account_hrtimer(timer);
1093
1094                        /*
1095                         * Note: We clear the CALLBACK bit after
1096                         * enqueue_hrtimer to avoid reprogramming of
1097                         * the event hardware. This happens at the end
1098                         * of this function anyway.
1099                         */
1100                        if (timer->function(timer) != HRTIMER_NORESTART) {
1101                                BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1102                                enqueue_hrtimer(timer, base, 0);
1103                        }
1104                        timer->state &= ~HRTIMER_STATE_CALLBACK;
1105                }
1106                spin_unlock(&cpu_base->lock);
1107                base++;
1108        }
1109
1110        cpu_base->expires_next = expires_next;
1111
1112        /* Reprogramming necessary ? */
1113        if (expires_next.tv64 != KTIME_MAX) {
1114                if (tick_program_event(expires_next, 0))
1115                        goto retry;
1116        }
1117
1118        /* Raise softirq ? */
1119        if (raise)
1120                raise_softirq(HRTIMER_SOFTIRQ);
1121}
1122
1123static void run_hrtimer_softirq(struct softirq_action *h)
1124{
1125        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1126
1127        spin_lock_irq(&cpu_base->lock);
1128
1129        while (!list_empty(&cpu_base->cb_pending)) {
1130                enum hrtimer_restart (*fn)(struct hrtimer *);
1131                struct hrtimer *timer;
1132                int restart;
1133
1134                timer = list_entry(cpu_base->cb_pending.next,
1135                                   struct hrtimer, cb_entry);
1136
1137                timer_stats_account_hrtimer(timer);
1138
1139                fn = timer->function;
1140                __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1141                spin_unlock_irq(&cpu_base->lock);
1142
1143                restart = fn(timer);
1144
1145                spin_lock_irq(&cpu_base->lock);
1146
1147                timer->state &= ~HRTIMER_STATE_CALLBACK;
1148                if (restart == HRTIMER_RESTART) {
1149                        BUG_ON(hrtimer_active(timer));
1150                        /*
1151                         * Enqueue the timer, allow reprogramming of the event
1152                         * device
1153                         */
1154                        enqueue_hrtimer(timer, timer->base, 1);
1155                } else if (hrtimer_active(timer)) {
1156                        /*
1157                         * If the timer was rearmed on another CPU, reprogram
1158                         * the event device.
1159                         */
1160                        if (timer->base->first == &timer->node)
1161                                hrtimer_reprogram(timer, timer->base);
1162                }
1163        }
1164        spin_unlock_irq(&cpu_base->lock);
1165}
1166
1167#endif  /* CONFIG_HIGH_RES_TIMERS */
1168
1169/*
1170 * Expire the per base hrtimer-queue:
1171 */
1172static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1173                                     int index)
1174{
1175        struct rb_node *node;
1176        struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1177
1178        if (!base->first)
1179                return;
1180
1181        if (base->get_softirq_time)
1182                base->softirq_time = base->get_softirq_time();
1183
1184        spin_lock_irq(&cpu_base->lock);
1185
1186        while ((node = base->first)) {
1187                struct hrtimer *timer;
1188                enum hrtimer_restart (*fn)(struct hrtimer *);
1189                int restart;
1190
1191                timer = rb_entry(node, struct hrtimer, node);
1192                if (base->softirq_time.tv64 <= timer->expires.tv64)
1193                        break;
1194
1195#ifdef CONFIG_HIGH_RES_TIMERS
1196                WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1197#endif
1198                timer_stats_account_hrtimer(timer);
1199
1200                fn = timer->function;
1201                __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1202                spin_unlock_irq(&cpu_base->lock);
1203
1204                restart = fn(timer);
1205
1206                spin_lock_irq(&cpu_base->lock);
1207
1208                timer->state &= ~HRTIMER_STATE_CALLBACK;
1209                if (restart != HRTIMER_NORESTART) {
1210                        BUG_ON(hrtimer_active(timer));
1211                        enqueue_hrtimer(timer, base, 0);
1212                }
1213        }
1214        spin_unlock_irq(&cpu_base->lock);
1215}
1216
1217/*
1218 * Called from timer softirq every jiffy, expire hrtimers:
1219 *
1220 * For HRT its the fall back code to run the softirq in the timer
1221 * softirq context in case the hrtimer initialization failed or has
1222 * not been done yet.
1223 */
1224void hrtimer_run_queues(void)
1225{
1226        struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1227        int i;
1228
1229        if (hrtimer_hres_active())
1230                return;
1231
1232        /*
1233         * This _is_ ugly: We have to check in the softirq context,
1234         * whether we can switch to highres and / or nohz mode. The
1235         * clocksource switch happens in the timer interrupt with
1236         * xtime_lock held. Notification from there only sets the
1237         * check bit in the tick_oneshot code, otherwise we might
1238         * deadlock vs. xtime_lock.
1239         */
1240        if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1241                if (hrtimer_switch_to_hres())
1242                        return;
1243
1244        hrtimer_get_softirq_time(cpu_base);
1245
1246        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1247                run_hrtimer_queue(cpu_base, i);
1248}
1249
1250/*
1251 * Sleep related functions:
1252 */
1253static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1254{
1255        struct hrtimer_sleeper *t =
1256                container_of(timer, struct hrtimer_sleeper, timer);
1257        struct task_struct *task = t->task;
1258
1259        t->task = NULL;
1260        if (task)
1261                wake_up_process(task);
1262
1263        return HRTIMER_NORESTART;
1264}
1265
1266void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1267{
1268        sl->timer.function = hrtimer_wakeup;
1269        sl->task = task;
1270#ifdef CONFIG_HIGH_RES_TIMERS
1271        sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1272#endif
1273}
1274
1275static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1276{
1277        hrtimer_init_sleeper(t, current);
1278
1279        do {
1280                set_current_state(TASK_INTERRUPTIBLE);
1281                hrtimer_start(&t->timer, t->timer.expires, mode);
1282
1283                if (likely(t->task))
1284                        schedule();
1285
1286                hrtimer_cancel(&t->timer);
1287                mode = HRTIMER_MODE_ABS;
1288
1289        } while (t->task && !signal_pending(current));
1290
1291        return t->task == NULL;
1292}
1293
1294long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1295{
1296        struct hrtimer_sleeper t;
1297        struct timespec *rmtp;
1298        ktime_t time;
1299
1300        restart->fn = do_no_restart_syscall;
1301
1302        hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1303        t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1304
1305        if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1306                return 0;
1307
1308        rmtp = (struct timespec *)restart->arg1;
1309        if (rmtp) {
1310                time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1311                if (time.tv64 <= 0)
1312                        return 0;
1313                *rmtp = ktime_to_timespec(time);
1314        }
1315
1316        restart->fn = hrtimer_nanosleep_restart;
1317
1318        /* The other values in restart are already filled in */
1319        return -ERESTART_RESTARTBLOCK;
1320}
1321
1322long hrtimer_nanosleep(struct timespec *rqtp, struct timespec *rmtp,
1323                       const enum hrtimer_mode mode, const clockid_t clockid)
1324{
1325        struct restart_block *restart;
1326        struct hrtimer_sleeper t;
1327        ktime_t rem;
1328
1329        hrtimer_init(&t.timer, clockid, mode);
1330        t.timer.expires = timespec_to_ktime(*rqtp);
1331        if (do_nanosleep(&t, mode))
1332                return 0;
1333
1334        /* Absolute timers do not update the rmtp value and restart: */
1335        if (mode == HRTIMER_MODE_ABS)
1336                return -ERESTARTNOHAND;
1337
1338        if (rmtp) {
1339                rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1340                if (rem.tv64 <= 0)
1341                        return 0;
1342                *rmtp = ktime_to_timespec(rem);
1343        }
1344
1345        restart = &current_thread_info()->restart_block;
1346        restart->fn = hrtimer_nanosleep_restart;
1347        restart->arg0 = (unsigned long) t.timer.base->index;
1348        restart->arg1 = (unsigned long) rmtp;
1349        restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1350        restart->arg3 = t.timer.expires.tv64 >> 32;
1351
1352        return -ERESTART_RESTARTBLOCK;
1353}
1354
1355asmlinkage long
1356sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1357{
1358        struct timespec tu, rmt;
1359        int ret;
1360
1361        if (copy_from_user(&tu, rqtp, sizeof(tu)))
1362                return -EFAULT;
1363
1364        if (!timespec_valid(&tu))
1365                return -EINVAL;
1366
1367        ret = hrtimer_nanosleep(&tu, rmtp ? &rmt : NULL, HRTIMER_MODE_REL,
1368                                CLOCK_MONOTONIC);
1369
1370        if (ret && rmtp) {
1371                if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1372                        return -EFAULT;
1373        }
1374
1375        return ret;
1376}
1377
1378/*
1379 * Functions related to boot-time initialization:
1380 */
1381static void __cpuinit init_hrtimers_cpu(int cpu)
1382{
1383        struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1384        int i;
1385
1386        spin_lock_init(&cpu_base->lock);
1387        lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1388
1389        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1390                cpu_base->clock_base[i].cpu_base = cpu_base;
1391
1392        hrtimer_init_hres(cpu_base);
1393}
1394
1395#ifdef CONFIG_HOTPLUG_CPU
1396
1397static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1398                                struct hrtimer_clock_base *new_base)
1399{
1400        struct hrtimer *timer;
1401        struct rb_node *node;
1402
1403        while ((node = rb_first(&old_base->active))) {
1404                timer = rb_entry(node, struct hrtimer, node);
1405                BUG_ON(hrtimer_callback_running(timer));
1406                __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1407                timer->base = new_base;
1408                /*
1409                 * Enqueue the timer. Allow reprogramming of the event device
1410                 */
1411                enqueue_hrtimer(timer, new_base, 1);
1412        }
1413}
1414
1415static void migrate_hrtimers(int cpu)
1416{
1417        struct hrtimer_cpu_base *old_base, *new_base;
1418        int i;
1419
1420        BUG_ON(cpu_online(cpu));
1421        old_base = &per_cpu(hrtimer_bases, cpu);
1422        new_base = &get_cpu_var(hrtimer_bases);
1423
1424        tick_cancel_sched_timer(cpu);
1425
1426        local_irq_disable();
1427        double_spin_lock(&new_base->lock, &old_base->lock,
1428                         smp_processor_id() < cpu);
1429
1430        for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1431                migrate_hrtimer_list(&old_base->clock_base[i],
1432                                     &new_base->clock_base[i]);
1433        }
1434
1435        double_spin_unlock(&new_base->lock, &old_base->lock,
1436                           smp_processor_id() < cpu);
1437        local_irq_enable();
1438        put_cpu_var(hrtimer_bases);
1439}
1440#endif /* CONFIG_HOTPLUG_CPU */
1441
1442static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1443                                        unsigned long action, void *hcpu)
1444{
1445        unsigned int cpu = (long)hcpu;
1446
1447        switch (action) {
1448
1449        case CPU_UP_PREPARE:
1450        case CPU_UP_PREPARE_FROZEN:
1451                init_hrtimers_cpu(cpu);
1452                break;
1453
1454#ifdef CONFIG_HOTPLUG_CPU
1455        case CPU_DEAD:
1456        case CPU_DEAD_FROZEN:
1457                clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1458                migrate_hrtimers(cpu);
1459                break;
1460#endif
1461
1462        default:
1463                break;
1464        }
1465
1466        return NOTIFY_OK;
1467}
1468
1469static struct notifier_block __cpuinitdata hrtimers_nb = {
1470        .notifier_call = hrtimer_cpu_notify,
1471};
1472
1473void __init hrtimers_init(void)
1474{
1475        hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1476                          (void *)(long)smp_processor_id());
1477        register_cpu_notifier(&hrtimers_nb);
1478#ifdef CONFIG_HIGH_RES_TIMERS
1479        open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1480#endif
1481}
1482
1483