linux/kernel/kmod.c
<<
>>
Prefs
   1/*
   2        kmod, the new module loader (replaces kerneld)
   3        Kirk Petersen
   4
   5        Reorganized not to be a daemon by Adam Richter, with guidance
   6        from Greg Zornetzer.
   7
   8        Modified to avoid chroot and file sharing problems.
   9        Mikael Pettersson
  10
  11        Limit the concurrent number of kmod modprobes to catch loops from
  12        "modprobe needs a service that is in a module".
  13        Keith Owens <kaos@ocs.com.au> December 1999
  14
  15        Unblock all signals when we exec a usermode process.
  16        Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
  17
  18        call_usermodehelper wait flag, and remove exec_usermodehelper.
  19        Rusty Russell <rusty@rustcorp.com.au>  Jan 2003
  20*/
  21#include <linux/module.h>
  22#include <linux/sched.h>
  23#include <linux/syscalls.h>
  24#include <linux/unistd.h>
  25#include <linux/kmod.h>
  26#include <linux/slab.h>
  27#include <linux/mnt_namespace.h>
  28#include <linux/completion.h>
  29#include <linux/file.h>
  30#include <linux/workqueue.h>
  31#include <linux/security.h>
  32#include <linux/mount.h>
  33#include <linux/kernel.h>
  34#include <linux/init.h>
  35#include <linux/resource.h>
  36#include <linux/notifier.h>
  37#include <linux/suspend.h>
  38#include <asm/uaccess.h>
  39
  40extern int max_threads;
  41
  42static struct workqueue_struct *khelper_wq;
  43
  44#ifdef CONFIG_KMOD
  45
  46/*
  47        modprobe_path is set via /proc/sys.
  48*/
  49char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
  50
  51/**
  52 * request_module - try to load a kernel module
  53 * @fmt:     printf style format string for the name of the module
  54 * @varargs: arguements as specified in the format string
  55 *
  56 * Load a module using the user mode module loader. The function returns
  57 * zero on success or a negative errno code on failure. Note that a
  58 * successful module load does not mean the module did not then unload
  59 * and exit on an error of its own. Callers must check that the service
  60 * they requested is now available not blindly invoke it.
  61 *
  62 * If module auto-loading support is disabled then this function
  63 * becomes a no-operation.
  64 */
  65int request_module(const char *fmt, ...)
  66{
  67        va_list args;
  68        char module_name[MODULE_NAME_LEN];
  69        unsigned int max_modprobes;
  70        int ret;
  71        char *argv[] = { modprobe_path, "-q", "--", module_name, NULL };
  72        static char *envp[] = { "HOME=/",
  73                                "TERM=linux",
  74                                "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
  75                                NULL };
  76        static atomic_t kmod_concurrent = ATOMIC_INIT(0);
  77#define MAX_KMOD_CONCURRENT 50  /* Completely arbitrary value - KAO */
  78        static int kmod_loop_msg;
  79
  80        va_start(args, fmt);
  81        ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
  82        va_end(args);
  83        if (ret >= MODULE_NAME_LEN)
  84                return -ENAMETOOLONG;
  85
  86        /* If modprobe needs a service that is in a module, we get a recursive
  87         * loop.  Limit the number of running kmod threads to max_threads/2 or
  88         * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method
  89         * would be to run the parents of this process, counting how many times
  90         * kmod was invoked.  That would mean accessing the internals of the
  91         * process tables to get the command line, proc_pid_cmdline is static
  92         * and it is not worth changing the proc code just to handle this case. 
  93         * KAO.
  94         *
  95         * "trace the ppid" is simple, but will fail if someone's
  96         * parent exits.  I think this is as good as it gets. --RR
  97         */
  98        max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
  99        atomic_inc(&kmod_concurrent);
 100        if (atomic_read(&kmod_concurrent) > max_modprobes) {
 101                /* We may be blaming an innocent here, but unlikely */
 102                if (kmod_loop_msg++ < 5)
 103                        printk(KERN_ERR
 104                               "request_module: runaway loop modprobe %s\n",
 105                               module_name);
 106                atomic_dec(&kmod_concurrent);
 107                return -ENOMEM;
 108        }
 109
 110        ret = call_usermodehelper(modprobe_path, argv, envp, 1);
 111        atomic_dec(&kmod_concurrent);
 112        return ret;
 113}
 114EXPORT_SYMBOL(request_module);
 115#endif /* CONFIG_KMOD */
 116
 117struct subprocess_info {
 118        struct work_struct work;
 119        struct completion *complete;
 120        char *path;
 121        char **argv;
 122        char **envp;
 123        struct key *ring;
 124        enum umh_wait wait;
 125        int retval;
 126        struct file *stdin;
 127        void (*cleanup)(char **argv, char **envp);
 128};
 129
 130/*
 131 * This is the task which runs the usermode application
 132 */
 133static int ____call_usermodehelper(void *data)
 134{
 135        struct subprocess_info *sub_info = data;
 136        struct key *new_session, *old_session;
 137        int retval;
 138
 139        /* Unblock all signals and set the session keyring. */
 140        new_session = key_get(sub_info->ring);
 141        spin_lock_irq(&current->sighand->siglock);
 142        old_session = __install_session_keyring(current, new_session);
 143        flush_signal_handlers(current, 1);
 144        sigemptyset(&current->blocked);
 145        recalc_sigpending();
 146        spin_unlock_irq(&current->sighand->siglock);
 147
 148        key_put(old_session);
 149
 150        /* Install input pipe when needed */
 151        if (sub_info->stdin) {
 152                struct files_struct *f = current->files;
 153                struct fdtable *fdt;
 154                /* no races because files should be private here */
 155                sys_close(0);
 156                fd_install(0, sub_info->stdin);
 157                spin_lock(&f->file_lock);
 158                fdt = files_fdtable(f);
 159                FD_SET(0, fdt->open_fds);
 160                FD_CLR(0, fdt->close_on_exec);
 161                spin_unlock(&f->file_lock);
 162
 163                /* and disallow core files too */
 164                current->signal->rlim[RLIMIT_CORE] = (struct rlimit){0, 0};
 165        }
 166
 167        /* We can run anywhere, unlike our parent keventd(). */
 168        set_cpus_allowed(current, CPU_MASK_ALL);
 169
 170        /*
 171         * Our parent is keventd, which runs with elevated scheduling priority.
 172         * Avoid propagating that into the userspace child.
 173         */
 174        set_user_nice(current, 0);
 175
 176        retval = -EPERM;
 177        if (current->fs->root)
 178                retval = kernel_execve(sub_info->path,
 179                                sub_info->argv, sub_info->envp);
 180
 181        /* Exec failed? */
 182        sub_info->retval = retval;
 183        do_exit(0);
 184}
 185
 186void call_usermodehelper_freeinfo(struct subprocess_info *info)
 187{
 188        if (info->cleanup)
 189                (*info->cleanup)(info->argv, info->envp);
 190        kfree(info);
 191}
 192EXPORT_SYMBOL(call_usermodehelper_freeinfo);
 193
 194/* Keventd can't block, but this (a child) can. */
 195static int wait_for_helper(void *data)
 196{
 197        struct subprocess_info *sub_info = data;
 198        pid_t pid;
 199
 200        /* Install a handler: if SIGCLD isn't handled sys_wait4 won't
 201         * populate the status, but will return -ECHILD. */
 202        allow_signal(SIGCHLD);
 203
 204        pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
 205        if (pid < 0) {
 206                sub_info->retval = pid;
 207        } else {
 208                int ret;
 209
 210                /*
 211                 * Normally it is bogus to call wait4() from in-kernel because
 212                 * wait4() wants to write the exit code to a userspace address.
 213                 * But wait_for_helper() always runs as keventd, and put_user()
 214                 * to a kernel address works OK for kernel threads, due to their
 215                 * having an mm_segment_t which spans the entire address space.
 216                 *
 217                 * Thus the __user pointer cast is valid here.
 218                 */
 219                sys_wait4(pid, (int __user *)&ret, 0, NULL);
 220
 221                /*
 222                 * If ret is 0, either ____call_usermodehelper failed and the
 223                 * real error code is already in sub_info->retval or
 224                 * sub_info->retval is 0 anyway, so don't mess with it then.
 225                 */
 226                if (ret)
 227                        sub_info->retval = ret;
 228        }
 229
 230        if (sub_info->wait == UMH_NO_WAIT)
 231                call_usermodehelper_freeinfo(sub_info);
 232        else
 233                complete(sub_info->complete);
 234        return 0;
 235}
 236
 237/* This is run by khelper thread  */
 238static void __call_usermodehelper(struct work_struct *work)
 239{
 240        struct subprocess_info *sub_info =
 241                container_of(work, struct subprocess_info, work);
 242        pid_t pid;
 243        enum umh_wait wait = sub_info->wait;
 244
 245        /* CLONE_VFORK: wait until the usermode helper has execve'd
 246         * successfully We need the data structures to stay around
 247         * until that is done.  */
 248        if (wait == UMH_WAIT_PROC || wait == UMH_NO_WAIT)
 249                pid = kernel_thread(wait_for_helper, sub_info,
 250                                    CLONE_FS | CLONE_FILES | SIGCHLD);
 251        else
 252                pid = kernel_thread(____call_usermodehelper, sub_info,
 253                                    CLONE_VFORK | SIGCHLD);
 254
 255        switch (wait) {
 256        case UMH_NO_WAIT:
 257                break;
 258
 259        case UMH_WAIT_PROC:
 260                if (pid > 0)
 261                        break;
 262                sub_info->retval = pid;
 263                /* FALLTHROUGH */
 264
 265        case UMH_WAIT_EXEC:
 266                complete(sub_info->complete);
 267        }
 268}
 269
 270#ifdef CONFIG_PM
 271/*
 272 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
 273 * (used for preventing user land processes from being created after the user
 274 * land has been frozen during a system-wide hibernation or suspend operation).
 275 */
 276static int usermodehelper_disabled;
 277
 278/* Number of helpers running */
 279static atomic_t running_helpers = ATOMIC_INIT(0);
 280
 281/*
 282 * Wait queue head used by usermodehelper_pm_callback() to wait for all running
 283 * helpers to finish.
 284 */
 285static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
 286
 287/*
 288 * Time to wait for running_helpers to become zero before the setting of
 289 * usermodehelper_disabled in usermodehelper_pm_callback() fails
 290 */
 291#define RUNNING_HELPERS_TIMEOUT (5 * HZ)
 292
 293static int usermodehelper_pm_callback(struct notifier_block *nfb,
 294                                        unsigned long action,
 295                                        void *ignored)
 296{
 297        long retval;
 298
 299        switch (action) {
 300        case PM_HIBERNATION_PREPARE:
 301        case PM_SUSPEND_PREPARE:
 302                usermodehelper_disabled = 1;
 303                smp_mb();
 304                /*
 305                 * From now on call_usermodehelper_exec() won't start any new
 306                 * helpers, so it is sufficient if running_helpers turns out to
 307                 * be zero at one point (it may be increased later, but that
 308                 * doesn't matter).
 309                 */
 310                retval = wait_event_timeout(running_helpers_waitq,
 311                                        atomic_read(&running_helpers) == 0,
 312                                        RUNNING_HELPERS_TIMEOUT);
 313                if (retval) {
 314                        return NOTIFY_OK;
 315                } else {
 316                        usermodehelper_disabled = 0;
 317                        return NOTIFY_BAD;
 318                }
 319        case PM_POST_HIBERNATION:
 320        case PM_POST_SUSPEND:
 321                usermodehelper_disabled = 0;
 322                return NOTIFY_OK;
 323        }
 324
 325        return NOTIFY_DONE;
 326}
 327
 328static void helper_lock(void)
 329{
 330        atomic_inc(&running_helpers);
 331        smp_mb__after_atomic_inc();
 332}
 333
 334static void helper_unlock(void)
 335{
 336        if (atomic_dec_and_test(&running_helpers))
 337                wake_up(&running_helpers_waitq);
 338}
 339
 340static void register_pm_notifier_callback(void)
 341{
 342        pm_notifier(usermodehelper_pm_callback, 0);
 343}
 344#else /* CONFIG_PM */
 345#define usermodehelper_disabled 0
 346
 347static inline void helper_lock(void) {}
 348static inline void helper_unlock(void) {}
 349static inline void register_pm_notifier_callback(void) {}
 350#endif /* CONFIG_PM */
 351
 352/**
 353 * call_usermodehelper_setup - prepare to call a usermode helper
 354 * @path: path to usermode executable
 355 * @argv: arg vector for process
 356 * @envp: environment for process
 357 *
 358 * Returns either %NULL on allocation failure, or a subprocess_info
 359 * structure.  This should be passed to call_usermodehelper_exec to
 360 * exec the process and free the structure.
 361 */
 362struct subprocess_info *call_usermodehelper_setup(char *path,
 363                                                  char **argv, char **envp)
 364{
 365        struct subprocess_info *sub_info;
 366        sub_info = kzalloc(sizeof(struct subprocess_info),  GFP_ATOMIC);
 367        if (!sub_info)
 368                goto out;
 369
 370        INIT_WORK(&sub_info->work, __call_usermodehelper);
 371        sub_info->path = path;
 372        sub_info->argv = argv;
 373        sub_info->envp = envp;
 374
 375  out:
 376        return sub_info;
 377}
 378EXPORT_SYMBOL(call_usermodehelper_setup);
 379
 380/**
 381 * call_usermodehelper_setkeys - set the session keys for usermode helper
 382 * @info: a subprocess_info returned by call_usermodehelper_setup
 383 * @session_keyring: the session keyring for the process
 384 */
 385void call_usermodehelper_setkeys(struct subprocess_info *info,
 386                                 struct key *session_keyring)
 387{
 388        info->ring = session_keyring;
 389}
 390EXPORT_SYMBOL(call_usermodehelper_setkeys);
 391
 392/**
 393 * call_usermodehelper_setcleanup - set a cleanup function
 394 * @info: a subprocess_info returned by call_usermodehelper_setup
 395 * @cleanup: a cleanup function
 396 *
 397 * The cleanup function is just befor ethe subprocess_info is about to
 398 * be freed.  This can be used for freeing the argv and envp.  The
 399 * Function must be runnable in either a process context or the
 400 * context in which call_usermodehelper_exec is called.
 401 */
 402void call_usermodehelper_setcleanup(struct subprocess_info *info,
 403                                    void (*cleanup)(char **argv, char **envp))
 404{
 405        info->cleanup = cleanup;
 406}
 407EXPORT_SYMBOL(call_usermodehelper_setcleanup);
 408
 409/**
 410 * call_usermodehelper_stdinpipe - set up a pipe to be used for stdin
 411 * @sub_info: a subprocess_info returned by call_usermodehelper_setup
 412 * @filp: set to the write-end of a pipe
 413 *
 414 * This constructs a pipe, and sets the read end to be the stdin of the
 415 * subprocess, and returns the write-end in *@filp.
 416 */
 417int call_usermodehelper_stdinpipe(struct subprocess_info *sub_info,
 418                                  struct file **filp)
 419{
 420        struct file *f;
 421
 422        f = create_write_pipe();
 423        if (IS_ERR(f))
 424                return PTR_ERR(f);
 425        *filp = f;
 426
 427        f = create_read_pipe(f);
 428        if (IS_ERR(f)) {
 429                free_write_pipe(*filp);
 430                return PTR_ERR(f);
 431        }
 432        sub_info->stdin = f;
 433
 434        return 0;
 435}
 436EXPORT_SYMBOL(call_usermodehelper_stdinpipe);
 437
 438/**
 439 * call_usermodehelper_exec - start a usermode application
 440 * @sub_info: information about the subprocessa
 441 * @wait: wait for the application to finish and return status.
 442 *        when -1 don't wait at all, but you get no useful error back when
 443 *        the program couldn't be exec'ed. This makes it safe to call
 444 *        from interrupt context.
 445 *
 446 * Runs a user-space application.  The application is started
 447 * asynchronously if wait is not set, and runs as a child of keventd.
 448 * (ie. it runs with full root capabilities).
 449 */
 450int call_usermodehelper_exec(struct subprocess_info *sub_info,
 451                             enum umh_wait wait)
 452{
 453        DECLARE_COMPLETION_ONSTACK(done);
 454        int retval = 0;
 455
 456        helper_lock();
 457        if (sub_info->path[0] == '\0')
 458                goto out;
 459
 460        if (!khelper_wq || usermodehelper_disabled) {
 461                retval = -EBUSY;
 462                goto out;
 463        }
 464
 465        sub_info->complete = &done;
 466        sub_info->wait = wait;
 467
 468        queue_work(khelper_wq, &sub_info->work);
 469        if (wait == UMH_NO_WAIT)        /* task has freed sub_info */
 470                goto unlock;
 471        wait_for_completion(&done);
 472        retval = sub_info->retval;
 473
 474out:
 475        call_usermodehelper_freeinfo(sub_info);
 476unlock:
 477        helper_unlock();
 478        return retval;
 479}
 480EXPORT_SYMBOL(call_usermodehelper_exec);
 481
 482/**
 483 * call_usermodehelper_pipe - call a usermode helper process with a pipe stdin
 484 * @path: path to usermode executable
 485 * @argv: arg vector for process
 486 * @envp: environment for process
 487 * @filp: set to the write-end of a pipe
 488 *
 489 * This is a simple wrapper which executes a usermode-helper function
 490 * with a pipe as stdin.  It is implemented entirely in terms of
 491 * lower-level call_usermodehelper_* functions.
 492 */
 493int call_usermodehelper_pipe(char *path, char **argv, char **envp,
 494                             struct file **filp)
 495{
 496        struct subprocess_info *sub_info;
 497        int ret;
 498
 499        sub_info = call_usermodehelper_setup(path, argv, envp);
 500        if (sub_info == NULL)
 501                return -ENOMEM;
 502
 503        ret = call_usermodehelper_stdinpipe(sub_info, filp);
 504        if (ret < 0)
 505                goto out;
 506
 507        return call_usermodehelper_exec(sub_info, UMH_WAIT_EXEC);
 508
 509  out:
 510        call_usermodehelper_freeinfo(sub_info);
 511        return ret;
 512}
 513EXPORT_SYMBOL(call_usermodehelper_pipe);
 514
 515void __init usermodehelper_init(void)
 516{
 517        khelper_wq = create_singlethread_workqueue("khelper");
 518        BUG_ON(!khelper_wq);
 519        register_pm_notifier_callback();
 520}
 521