linux/kernel/panic.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/panic.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * This function is used through-out the kernel (including mm and fs)
   9 * to indicate a major problem.
  10 */
  11#include <linux/module.h>
  12#include <linux/sched.h>
  13#include <linux/delay.h>
  14#include <linux/reboot.h>
  15#include <linux/notifier.h>
  16#include <linux/init.h>
  17#include <linux/sysrq.h>
  18#include <linux/interrupt.h>
  19#include <linux/nmi.h>
  20#include <linux/kexec.h>
  21#include <linux/debug_locks.h>
  22#include <linux/random.h>
  23
  24int panic_on_oops;
  25int tainted;
  26static int pause_on_oops;
  27static int pause_on_oops_flag;
  28static DEFINE_SPINLOCK(pause_on_oops_lock);
  29
  30int panic_timeout;
  31
  32ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
  33
  34EXPORT_SYMBOL(panic_notifier_list);
  35
  36static int __init panic_setup(char *str)
  37{
  38        panic_timeout = simple_strtoul(str, NULL, 0);
  39        return 1;
  40}
  41__setup("panic=", panic_setup);
  42
  43static long no_blink(long time)
  44{
  45        return 0;
  46}
  47
  48/* Returns how long it waited in ms */
  49long (*panic_blink)(long time);
  50EXPORT_SYMBOL(panic_blink);
  51
  52/**
  53 *      panic - halt the system
  54 *      @fmt: The text string to print
  55 *
  56 *      Display a message, then perform cleanups.
  57 *
  58 *      This function never returns.
  59 */
  60
  61NORET_TYPE void panic(const char * fmt, ...)
  62{
  63        long i;
  64        static char buf[1024];
  65        va_list args;
  66#if defined(CONFIG_S390)
  67        unsigned long caller = (unsigned long) __builtin_return_address(0);
  68#endif
  69
  70        /*
  71         * It's possible to come here directly from a panic-assertion and not
  72         * have preempt disabled. Some functions called from here want
  73         * preempt to be disabled. No point enabling it later though...
  74         */
  75        preempt_disable();
  76
  77        bust_spinlocks(1);
  78        va_start(args, fmt);
  79        vsnprintf(buf, sizeof(buf), fmt, args);
  80        va_end(args);
  81        printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf);
  82        bust_spinlocks(0);
  83
  84        /*
  85         * If we have crashed and we have a crash kernel loaded let it handle
  86         * everything else.
  87         * Do we want to call this before we try to display a message?
  88         */
  89        crash_kexec(NULL);
  90
  91#ifdef CONFIG_SMP
  92        /*
  93         * Note smp_send_stop is the usual smp shutdown function, which
  94         * unfortunately means it may not be hardened to work in a panic
  95         * situation.
  96         */
  97        smp_send_stop();
  98#endif
  99
 100        atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
 101
 102        if (!panic_blink)
 103                panic_blink = no_blink;
 104
 105        if (panic_timeout > 0) {
 106                /*
 107                 * Delay timeout seconds before rebooting the machine. 
 108                 * We can't use the "normal" timers since we just panicked..
 109                 */
 110                printk(KERN_EMERG "Rebooting in %d seconds..",panic_timeout);
 111                for (i = 0; i < panic_timeout*1000; ) {
 112                        touch_nmi_watchdog();
 113                        i += panic_blink(i);
 114                        mdelay(1);
 115                        i++;
 116                }
 117                /*      This will not be a clean reboot, with everything
 118                 *      shutting down.  But if there is a chance of
 119                 *      rebooting the system it will be rebooted.
 120                 */
 121                emergency_restart();
 122        }
 123#ifdef __sparc__
 124        {
 125                extern int stop_a_enabled;
 126                /* Make sure the user can actually press Stop-A (L1-A) */
 127                stop_a_enabled = 1;
 128                printk(KERN_EMERG "Press Stop-A (L1-A) to return to the boot prom\n");
 129        }
 130#endif
 131#if defined(CONFIG_S390)
 132        disabled_wait(caller);
 133#endif
 134        local_irq_enable();
 135        for (i = 0;;) {
 136                touch_softlockup_watchdog();
 137                i += panic_blink(i);
 138                mdelay(1);
 139                i++;
 140        }
 141}
 142
 143EXPORT_SYMBOL(panic);
 144
 145/**
 146 *      print_tainted - return a string to represent the kernel taint state.
 147 *
 148 *  'P' - Proprietary module has been loaded.
 149 *  'F' - Module has been forcibly loaded.
 150 *  'S' - SMP with CPUs not designed for SMP.
 151 *  'R' - User forced a module unload.
 152 *  'M' - System experienced a machine check exception.
 153 *  'B' - System has hit bad_page.
 154 *  'U' - Userspace-defined naughtiness.
 155 *
 156 *      The string is overwritten by the next call to print_taint().
 157 */
 158
 159const char *print_tainted(void)
 160{
 161        static char buf[20];
 162        if (tainted) {
 163                snprintf(buf, sizeof(buf), "Tainted: %c%c%c%c%c%c%c%c",
 164                        tainted & TAINT_PROPRIETARY_MODULE ? 'P' : 'G',
 165                        tainted & TAINT_FORCED_MODULE ? 'F' : ' ',
 166                        tainted & TAINT_UNSAFE_SMP ? 'S' : ' ',
 167                        tainted & TAINT_FORCED_RMMOD ? 'R' : ' ',
 168                        tainted & TAINT_MACHINE_CHECK ? 'M' : ' ',
 169                        tainted & TAINT_BAD_PAGE ? 'B' : ' ',
 170                        tainted & TAINT_USER ? 'U' : ' ',
 171                        tainted & TAINT_DIE ? 'D' : ' ');
 172        }
 173        else
 174                snprintf(buf, sizeof(buf), "Not tainted");
 175        return(buf);
 176}
 177
 178void add_taint(unsigned flag)
 179{
 180        debug_locks = 0; /* can't trust the integrity of the kernel anymore */
 181        tainted |= flag;
 182}
 183EXPORT_SYMBOL(add_taint);
 184
 185static int __init pause_on_oops_setup(char *str)
 186{
 187        pause_on_oops = simple_strtoul(str, NULL, 0);
 188        return 1;
 189}
 190__setup("pause_on_oops=", pause_on_oops_setup);
 191
 192static void spin_msec(int msecs)
 193{
 194        int i;
 195
 196        for (i = 0; i < msecs; i++) {
 197                touch_nmi_watchdog();
 198                mdelay(1);
 199        }
 200}
 201
 202/*
 203 * It just happens that oops_enter() and oops_exit() are identically
 204 * implemented...
 205 */
 206static void do_oops_enter_exit(void)
 207{
 208        unsigned long flags;
 209        static int spin_counter;
 210
 211        if (!pause_on_oops)
 212                return;
 213
 214        spin_lock_irqsave(&pause_on_oops_lock, flags);
 215        if (pause_on_oops_flag == 0) {
 216                /* This CPU may now print the oops message */
 217                pause_on_oops_flag = 1;
 218        } else {
 219                /* We need to stall this CPU */
 220                if (!spin_counter) {
 221                        /* This CPU gets to do the counting */
 222                        spin_counter = pause_on_oops;
 223                        do {
 224                                spin_unlock(&pause_on_oops_lock);
 225                                spin_msec(MSEC_PER_SEC);
 226                                spin_lock(&pause_on_oops_lock);
 227                        } while (--spin_counter);
 228                        pause_on_oops_flag = 0;
 229                } else {
 230                        /* This CPU waits for a different one */
 231                        while (spin_counter) {
 232                                spin_unlock(&pause_on_oops_lock);
 233                                spin_msec(1);
 234                                spin_lock(&pause_on_oops_lock);
 235                        }
 236                }
 237        }
 238        spin_unlock_irqrestore(&pause_on_oops_lock, flags);
 239}
 240
 241/*
 242 * Return true if the calling CPU is allowed to print oops-related info.  This
 243 * is a bit racy..
 244 */
 245int oops_may_print(void)
 246{
 247        return pause_on_oops_flag == 0;
 248}
 249
 250/*
 251 * Called when the architecture enters its oops handler, before it prints
 252 * anything.  If this is the first CPU to oops, and it's oopsing the first time
 253 * then let it proceed.
 254 *
 255 * This is all enabled by the pause_on_oops kernel boot option.  We do all this
 256 * to ensure that oopses don't scroll off the screen.  It has the side-effect
 257 * of preventing later-oopsing CPUs from mucking up the display, too.
 258 *
 259 * It turns out that the CPU which is allowed to print ends up pausing for the
 260 * right duration, whereas all the other CPUs pause for twice as long: once in
 261 * oops_enter(), once in oops_exit().
 262 */
 263void oops_enter(void)
 264{
 265        debug_locks_off(); /* can't trust the integrity of the kernel anymore */
 266        do_oops_enter_exit();
 267}
 268
 269/*
 270 * 64-bit random ID for oopses:
 271 */
 272static u64 oops_id;
 273
 274static int init_oops_id(void)
 275{
 276        if (!oops_id)
 277                get_random_bytes(&oops_id, sizeof(oops_id));
 278
 279        return 0;
 280}
 281late_initcall(init_oops_id);
 282
 283/*
 284 * Called when the architecture exits its oops handler, after printing
 285 * everything.
 286 */
 287void oops_exit(void)
 288{
 289        do_oops_enter_exit();
 290        init_oops_id();
 291        printk(KERN_WARNING "---[ end trace %016llx ]---\n",
 292                (unsigned long long)oops_id);
 293}
 294
 295#ifdef CONFIG_CC_STACKPROTECTOR
 296/*
 297 * Called when gcc's -fstack-protector feature is used, and
 298 * gcc detects corruption of the on-stack canary value
 299 */
 300void __stack_chk_fail(void)
 301{
 302        panic("stack-protector: Kernel stack is corrupted");
 303}
 304EXPORT_SYMBOL(__stack_chk_fail);
 305#endif
 306