linux/kernel/posix-cpu-timers.c
<<
>>
Prefs
   1/*
   2 * Implement CPU time clocks for the POSIX clock interface.
   3 */
   4
   5#include <linux/sched.h>
   6#include <linux/posix-timers.h>
   7#include <asm/uaccess.h>
   8#include <linux/errno.h>
   9
  10static int check_clock(const clockid_t which_clock)
  11{
  12        int error = 0;
  13        struct task_struct *p;
  14        const pid_t pid = CPUCLOCK_PID(which_clock);
  15
  16        if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
  17                return -EINVAL;
  18
  19        if (pid == 0)
  20                return 0;
  21
  22        read_lock(&tasklist_lock);
  23        p = find_task_by_pid(pid);
  24        if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
  25                   same_thread_group(p, current) : thread_group_leader(p))) {
  26                error = -EINVAL;
  27        }
  28        read_unlock(&tasklist_lock);
  29
  30        return error;
  31}
  32
  33static inline union cpu_time_count
  34timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
  35{
  36        union cpu_time_count ret;
  37        ret.sched = 0;          /* high half always zero when .cpu used */
  38        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  39                ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
  40        } else {
  41                ret.cpu = timespec_to_cputime(tp);
  42        }
  43        return ret;
  44}
  45
  46static void sample_to_timespec(const clockid_t which_clock,
  47                               union cpu_time_count cpu,
  48                               struct timespec *tp)
  49{
  50        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  51                tp->tv_sec = div_long_long_rem(cpu.sched,
  52                                               NSEC_PER_SEC, &tp->tv_nsec);
  53        } else {
  54                cputime_to_timespec(cpu.cpu, tp);
  55        }
  56}
  57
  58static inline int cpu_time_before(const clockid_t which_clock,
  59                                  union cpu_time_count now,
  60                                  union cpu_time_count then)
  61{
  62        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  63                return now.sched < then.sched;
  64        }  else {
  65                return cputime_lt(now.cpu, then.cpu);
  66        }
  67}
  68static inline void cpu_time_add(const clockid_t which_clock,
  69                                union cpu_time_count *acc,
  70                                union cpu_time_count val)
  71{
  72        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  73                acc->sched += val.sched;
  74        }  else {
  75                acc->cpu = cputime_add(acc->cpu, val.cpu);
  76        }
  77}
  78static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
  79                                                union cpu_time_count a,
  80                                                union cpu_time_count b)
  81{
  82        if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
  83                a.sched -= b.sched;
  84        }  else {
  85                a.cpu = cputime_sub(a.cpu, b.cpu);
  86        }
  87        return a;
  88}
  89
  90/*
  91 * Divide and limit the result to res >= 1
  92 *
  93 * This is necessary to prevent signal delivery starvation, when the result of
  94 * the division would be rounded down to 0.
  95 */
  96static inline cputime_t cputime_div_non_zero(cputime_t time, unsigned long div)
  97{
  98        cputime_t res = cputime_div(time, div);
  99
 100        return max_t(cputime_t, res, 1);
 101}
 102
 103/*
 104 * Update expiry time from increment, and increase overrun count,
 105 * given the current clock sample.
 106 */
 107static void bump_cpu_timer(struct k_itimer *timer,
 108                                  union cpu_time_count now)
 109{
 110        int i;
 111
 112        if (timer->it.cpu.incr.sched == 0)
 113                return;
 114
 115        if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 116                unsigned long long delta, incr;
 117
 118                if (now.sched < timer->it.cpu.expires.sched)
 119                        return;
 120                incr = timer->it.cpu.incr.sched;
 121                delta = now.sched + incr - timer->it.cpu.expires.sched;
 122                /* Don't use (incr*2 < delta), incr*2 might overflow. */
 123                for (i = 0; incr < delta - incr; i++)
 124                        incr = incr << 1;
 125                for (; i >= 0; incr >>= 1, i--) {
 126                        if (delta < incr)
 127                                continue;
 128                        timer->it.cpu.expires.sched += incr;
 129                        timer->it_overrun += 1 << i;
 130                        delta -= incr;
 131                }
 132        } else {
 133                cputime_t delta, incr;
 134
 135                if (cputime_lt(now.cpu, timer->it.cpu.expires.cpu))
 136                        return;
 137                incr = timer->it.cpu.incr.cpu;
 138                delta = cputime_sub(cputime_add(now.cpu, incr),
 139                                    timer->it.cpu.expires.cpu);
 140                /* Don't use (incr*2 < delta), incr*2 might overflow. */
 141                for (i = 0; cputime_lt(incr, cputime_sub(delta, incr)); i++)
 142                             incr = cputime_add(incr, incr);
 143                for (; i >= 0; incr = cputime_halve(incr), i--) {
 144                        if (cputime_lt(delta, incr))
 145                                continue;
 146                        timer->it.cpu.expires.cpu =
 147                                cputime_add(timer->it.cpu.expires.cpu, incr);
 148                        timer->it_overrun += 1 << i;
 149                        delta = cputime_sub(delta, incr);
 150                }
 151        }
 152}
 153
 154static inline cputime_t prof_ticks(struct task_struct *p)
 155{
 156        return cputime_add(p->utime, p->stime);
 157}
 158static inline cputime_t virt_ticks(struct task_struct *p)
 159{
 160        return p->utime;
 161}
 162static inline unsigned long long sched_ns(struct task_struct *p)
 163{
 164        return task_sched_runtime(p);
 165}
 166
 167int posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
 168{
 169        int error = check_clock(which_clock);
 170        if (!error) {
 171                tp->tv_sec = 0;
 172                tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 173                if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 174                        /*
 175                         * If sched_clock is using a cycle counter, we
 176                         * don't have any idea of its true resolution
 177                         * exported, but it is much more than 1s/HZ.
 178                         */
 179                        tp->tv_nsec = 1;
 180                }
 181        }
 182        return error;
 183}
 184
 185int posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
 186{
 187        /*
 188         * You can never reset a CPU clock, but we check for other errors
 189         * in the call before failing with EPERM.
 190         */
 191        int error = check_clock(which_clock);
 192        if (error == 0) {
 193                error = -EPERM;
 194        }
 195        return error;
 196}
 197
 198
 199/*
 200 * Sample a per-thread clock for the given task.
 201 */
 202static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
 203                            union cpu_time_count *cpu)
 204{
 205        switch (CPUCLOCK_WHICH(which_clock)) {
 206        default:
 207                return -EINVAL;
 208        case CPUCLOCK_PROF:
 209                cpu->cpu = prof_ticks(p);
 210                break;
 211        case CPUCLOCK_VIRT:
 212                cpu->cpu = virt_ticks(p);
 213                break;
 214        case CPUCLOCK_SCHED:
 215                cpu->sched = sched_ns(p);
 216                break;
 217        }
 218        return 0;
 219}
 220
 221/*
 222 * Sample a process (thread group) clock for the given group_leader task.
 223 * Must be called with tasklist_lock held for reading.
 224 * Must be called with tasklist_lock held for reading, and p->sighand->siglock.
 225 */
 226static int cpu_clock_sample_group_locked(unsigned int clock_idx,
 227                                         struct task_struct *p,
 228                                         union cpu_time_count *cpu)
 229{
 230        struct task_struct *t = p;
 231        switch (clock_idx) {
 232        default:
 233                return -EINVAL;
 234        case CPUCLOCK_PROF:
 235                cpu->cpu = cputime_add(p->signal->utime, p->signal->stime);
 236                do {
 237                        cpu->cpu = cputime_add(cpu->cpu, prof_ticks(t));
 238                        t = next_thread(t);
 239                } while (t != p);
 240                break;
 241        case CPUCLOCK_VIRT:
 242                cpu->cpu = p->signal->utime;
 243                do {
 244                        cpu->cpu = cputime_add(cpu->cpu, virt_ticks(t));
 245                        t = next_thread(t);
 246                } while (t != p);
 247                break;
 248        case CPUCLOCK_SCHED:
 249                cpu->sched = p->signal->sum_sched_runtime;
 250                /* Add in each other live thread.  */
 251                while ((t = next_thread(t)) != p) {
 252                        cpu->sched += t->se.sum_exec_runtime;
 253                }
 254                cpu->sched += sched_ns(p);
 255                break;
 256        }
 257        return 0;
 258}
 259
 260/*
 261 * Sample a process (thread group) clock for the given group_leader task.
 262 * Must be called with tasklist_lock held for reading.
 263 */
 264static int cpu_clock_sample_group(const clockid_t which_clock,
 265                                  struct task_struct *p,
 266                                  union cpu_time_count *cpu)
 267{
 268        int ret;
 269        unsigned long flags;
 270        spin_lock_irqsave(&p->sighand->siglock, flags);
 271        ret = cpu_clock_sample_group_locked(CPUCLOCK_WHICH(which_clock), p,
 272                                            cpu);
 273        spin_unlock_irqrestore(&p->sighand->siglock, flags);
 274        return ret;
 275}
 276
 277
 278int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
 279{
 280        const pid_t pid = CPUCLOCK_PID(which_clock);
 281        int error = -EINVAL;
 282        union cpu_time_count rtn;
 283
 284        if (pid == 0) {
 285                /*
 286                 * Special case constant value for our own clocks.
 287                 * We don't have to do any lookup to find ourselves.
 288                 */
 289                if (CPUCLOCK_PERTHREAD(which_clock)) {
 290                        /*
 291                         * Sampling just ourselves we can do with no locking.
 292                         */
 293                        error = cpu_clock_sample(which_clock,
 294                                                 current, &rtn);
 295                } else {
 296                        read_lock(&tasklist_lock);
 297                        error = cpu_clock_sample_group(which_clock,
 298                                                       current, &rtn);
 299                        read_unlock(&tasklist_lock);
 300                }
 301        } else {
 302                /*
 303                 * Find the given PID, and validate that the caller
 304                 * should be able to see it.
 305                 */
 306                struct task_struct *p;
 307                rcu_read_lock();
 308                p = find_task_by_pid(pid);
 309                if (p) {
 310                        if (CPUCLOCK_PERTHREAD(which_clock)) {
 311                                if (same_thread_group(p, current)) {
 312                                        error = cpu_clock_sample(which_clock,
 313                                                                 p, &rtn);
 314                                }
 315                        } else {
 316                                read_lock(&tasklist_lock);
 317                                if (thread_group_leader(p) && p->signal) {
 318                                        error =
 319                                            cpu_clock_sample_group(which_clock,
 320                                                                   p, &rtn);
 321                                }
 322                                read_unlock(&tasklist_lock);
 323                        }
 324                }
 325                rcu_read_unlock();
 326        }
 327
 328        if (error)
 329                return error;
 330        sample_to_timespec(which_clock, rtn, tp);
 331        return 0;
 332}
 333
 334
 335/*
 336 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 337 * This is called from sys_timer_create with the new timer already locked.
 338 */
 339int posix_cpu_timer_create(struct k_itimer *new_timer)
 340{
 341        int ret = 0;
 342        const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
 343        struct task_struct *p;
 344
 345        if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
 346                return -EINVAL;
 347
 348        INIT_LIST_HEAD(&new_timer->it.cpu.entry);
 349        new_timer->it.cpu.incr.sched = 0;
 350        new_timer->it.cpu.expires.sched = 0;
 351
 352        read_lock(&tasklist_lock);
 353        if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
 354                if (pid == 0) {
 355                        p = current;
 356                } else {
 357                        p = find_task_by_pid(pid);
 358                        if (p && !same_thread_group(p, current))
 359                                p = NULL;
 360                }
 361        } else {
 362                if (pid == 0) {
 363                        p = current->group_leader;
 364                } else {
 365                        p = find_task_by_pid(pid);
 366                        if (p && !thread_group_leader(p))
 367                                p = NULL;
 368                }
 369        }
 370        new_timer->it.cpu.task = p;
 371        if (p) {
 372                get_task_struct(p);
 373        } else {
 374                ret = -EINVAL;
 375        }
 376        read_unlock(&tasklist_lock);
 377
 378        return ret;
 379}
 380
 381/*
 382 * Clean up a CPU-clock timer that is about to be destroyed.
 383 * This is called from timer deletion with the timer already locked.
 384 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 385 * and try again.  (This happens when the timer is in the middle of firing.)
 386 */
 387int posix_cpu_timer_del(struct k_itimer *timer)
 388{
 389        struct task_struct *p = timer->it.cpu.task;
 390        int ret = 0;
 391
 392        if (likely(p != NULL)) {
 393                read_lock(&tasklist_lock);
 394                if (unlikely(p->signal == NULL)) {
 395                        /*
 396                         * We raced with the reaping of the task.
 397                         * The deletion should have cleared us off the list.
 398                         */
 399                        BUG_ON(!list_empty(&timer->it.cpu.entry));
 400                } else {
 401                        spin_lock(&p->sighand->siglock);
 402                        if (timer->it.cpu.firing)
 403                                ret = TIMER_RETRY;
 404                        else
 405                                list_del(&timer->it.cpu.entry);
 406                        spin_unlock(&p->sighand->siglock);
 407                }
 408                read_unlock(&tasklist_lock);
 409
 410                if (!ret)
 411                        put_task_struct(p);
 412        }
 413
 414        return ret;
 415}
 416
 417/*
 418 * Clean out CPU timers still ticking when a thread exited.  The task
 419 * pointer is cleared, and the expiry time is replaced with the residual
 420 * time for later timer_gettime calls to return.
 421 * This must be called with the siglock held.
 422 */
 423static void cleanup_timers(struct list_head *head,
 424                           cputime_t utime, cputime_t stime,
 425                           unsigned long long sum_exec_runtime)
 426{
 427        struct cpu_timer_list *timer, *next;
 428        cputime_t ptime = cputime_add(utime, stime);
 429
 430        list_for_each_entry_safe(timer, next, head, entry) {
 431                list_del_init(&timer->entry);
 432                if (cputime_lt(timer->expires.cpu, ptime)) {
 433                        timer->expires.cpu = cputime_zero;
 434                } else {
 435                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
 436                                                         ptime);
 437                }
 438        }
 439
 440        ++head;
 441        list_for_each_entry_safe(timer, next, head, entry) {
 442                list_del_init(&timer->entry);
 443                if (cputime_lt(timer->expires.cpu, utime)) {
 444                        timer->expires.cpu = cputime_zero;
 445                } else {
 446                        timer->expires.cpu = cputime_sub(timer->expires.cpu,
 447                                                         utime);
 448                }
 449        }
 450
 451        ++head;
 452        list_for_each_entry_safe(timer, next, head, entry) {
 453                list_del_init(&timer->entry);
 454                if (timer->expires.sched < sum_exec_runtime) {
 455                        timer->expires.sched = 0;
 456                } else {
 457                        timer->expires.sched -= sum_exec_runtime;
 458                }
 459        }
 460}
 461
 462/*
 463 * These are both called with the siglock held, when the current thread
 464 * is being reaped.  When the final (leader) thread in the group is reaped,
 465 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 466 */
 467void posix_cpu_timers_exit(struct task_struct *tsk)
 468{
 469        cleanup_timers(tsk->cpu_timers,
 470                       tsk->utime, tsk->stime, tsk->se.sum_exec_runtime);
 471
 472}
 473void posix_cpu_timers_exit_group(struct task_struct *tsk)
 474{
 475        cleanup_timers(tsk->signal->cpu_timers,
 476                       cputime_add(tsk->utime, tsk->signal->utime),
 477                       cputime_add(tsk->stime, tsk->signal->stime),
 478                     tsk->se.sum_exec_runtime + tsk->signal->sum_sched_runtime);
 479}
 480
 481
 482/*
 483 * Set the expiry times of all the threads in the process so one of them
 484 * will go off before the process cumulative expiry total is reached.
 485 */
 486static void process_timer_rebalance(struct task_struct *p,
 487                                    unsigned int clock_idx,
 488                                    union cpu_time_count expires,
 489                                    union cpu_time_count val)
 490{
 491        cputime_t ticks, left;
 492        unsigned long long ns, nsleft;
 493        struct task_struct *t = p;
 494        unsigned int nthreads = atomic_read(&p->signal->live);
 495
 496        if (!nthreads)
 497                return;
 498
 499        switch (clock_idx) {
 500        default:
 501                BUG();
 502                break;
 503        case CPUCLOCK_PROF:
 504                left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
 505                                       nthreads);
 506                do {
 507                        if (likely(!(t->flags & PF_EXITING))) {
 508                                ticks = cputime_add(prof_ticks(t), left);
 509                                if (cputime_eq(t->it_prof_expires,
 510                                               cputime_zero) ||
 511                                    cputime_gt(t->it_prof_expires, ticks)) {
 512                                        t->it_prof_expires = ticks;
 513                                }
 514                        }
 515                        t = next_thread(t);
 516                } while (t != p);
 517                break;
 518        case CPUCLOCK_VIRT:
 519                left = cputime_div_non_zero(cputime_sub(expires.cpu, val.cpu),
 520                                       nthreads);
 521                do {
 522                        if (likely(!(t->flags & PF_EXITING))) {
 523                                ticks = cputime_add(virt_ticks(t), left);
 524                                if (cputime_eq(t->it_virt_expires,
 525                                               cputime_zero) ||
 526                                    cputime_gt(t->it_virt_expires, ticks)) {
 527                                        t->it_virt_expires = ticks;
 528                                }
 529                        }
 530                        t = next_thread(t);
 531                } while (t != p);
 532                break;
 533        case CPUCLOCK_SCHED:
 534                nsleft = expires.sched - val.sched;
 535                do_div(nsleft, nthreads);
 536                nsleft = max_t(unsigned long long, nsleft, 1);
 537                do {
 538                        if (likely(!(t->flags & PF_EXITING))) {
 539                                ns = t->se.sum_exec_runtime + nsleft;
 540                                if (t->it_sched_expires == 0 ||
 541                                    t->it_sched_expires > ns) {
 542                                        t->it_sched_expires = ns;
 543                                }
 544                        }
 545                        t = next_thread(t);
 546                } while (t != p);
 547                break;
 548        }
 549}
 550
 551static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
 552{
 553        /*
 554         * That's all for this thread or process.
 555         * We leave our residual in expires to be reported.
 556         */
 557        put_task_struct(timer->it.cpu.task);
 558        timer->it.cpu.task = NULL;
 559        timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
 560                                             timer->it.cpu.expires,
 561                                             now);
 562}
 563
 564/*
 565 * Insert the timer on the appropriate list before any timers that
 566 * expire later.  This must be called with the tasklist_lock held
 567 * for reading, and interrupts disabled.
 568 */
 569static void arm_timer(struct k_itimer *timer, union cpu_time_count now)
 570{
 571        struct task_struct *p = timer->it.cpu.task;
 572        struct list_head *head, *listpos;
 573        struct cpu_timer_list *const nt = &timer->it.cpu;
 574        struct cpu_timer_list *next;
 575        unsigned long i;
 576
 577        head = (CPUCLOCK_PERTHREAD(timer->it_clock) ?
 578                p->cpu_timers : p->signal->cpu_timers);
 579        head += CPUCLOCK_WHICH(timer->it_clock);
 580
 581        BUG_ON(!irqs_disabled());
 582        spin_lock(&p->sighand->siglock);
 583
 584        listpos = head;
 585        if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
 586                list_for_each_entry(next, head, entry) {
 587                        if (next->expires.sched > nt->expires.sched)
 588                                break;
 589                        listpos = &next->entry;
 590                }
 591        } else {
 592                list_for_each_entry(next, head, entry) {
 593                        if (cputime_gt(next->expires.cpu, nt->expires.cpu))
 594                                break;
 595                        listpos = &next->entry;
 596                }
 597        }
 598        list_add(&nt->entry, listpos);
 599
 600        if (listpos == head) {
 601                /*
 602                 * We are the new earliest-expiring timer.
 603                 * If we are a thread timer, there can always
 604                 * be a process timer telling us to stop earlier.
 605                 */
 606
 607                if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 608                        switch (CPUCLOCK_WHICH(timer->it_clock)) {
 609                        default:
 610                                BUG();
 611                        case CPUCLOCK_PROF:
 612                                if (cputime_eq(p->it_prof_expires,
 613                                               cputime_zero) ||
 614                                    cputime_gt(p->it_prof_expires,
 615                                               nt->expires.cpu))
 616                                        p->it_prof_expires = nt->expires.cpu;
 617                                break;
 618                        case CPUCLOCK_VIRT:
 619                                if (cputime_eq(p->it_virt_expires,
 620                                               cputime_zero) ||
 621                                    cputime_gt(p->it_virt_expires,
 622                                               nt->expires.cpu))
 623                                        p->it_virt_expires = nt->expires.cpu;
 624                                break;
 625                        case CPUCLOCK_SCHED:
 626                                if (p->it_sched_expires == 0 ||
 627                                    p->it_sched_expires > nt->expires.sched)
 628                                        p->it_sched_expires = nt->expires.sched;
 629                                break;
 630                        }
 631                } else {
 632                        /*
 633                         * For a process timer, we must balance
 634                         * all the live threads' expirations.
 635                         */
 636                        switch (CPUCLOCK_WHICH(timer->it_clock)) {
 637                        default:
 638                                BUG();
 639                        case CPUCLOCK_VIRT:
 640                                if (!cputime_eq(p->signal->it_virt_expires,
 641                                                cputime_zero) &&
 642                                    cputime_lt(p->signal->it_virt_expires,
 643                                               timer->it.cpu.expires.cpu))
 644                                        break;
 645                                goto rebalance;
 646                        case CPUCLOCK_PROF:
 647                                if (!cputime_eq(p->signal->it_prof_expires,
 648                                                cputime_zero) &&
 649                                    cputime_lt(p->signal->it_prof_expires,
 650                                               timer->it.cpu.expires.cpu))
 651                                        break;
 652                                i = p->signal->rlim[RLIMIT_CPU].rlim_cur;
 653                                if (i != RLIM_INFINITY &&
 654                                    i <= cputime_to_secs(timer->it.cpu.expires.cpu))
 655                                        break;
 656                                goto rebalance;
 657                        case CPUCLOCK_SCHED:
 658                        rebalance:
 659                                process_timer_rebalance(
 660                                        timer->it.cpu.task,
 661                                        CPUCLOCK_WHICH(timer->it_clock),
 662                                        timer->it.cpu.expires, now);
 663                                break;
 664                        }
 665                }
 666        }
 667
 668        spin_unlock(&p->sighand->siglock);
 669}
 670
 671/*
 672 * The timer is locked, fire it and arrange for its reload.
 673 */
 674static void cpu_timer_fire(struct k_itimer *timer)
 675{
 676        if (unlikely(timer->sigq == NULL)) {
 677                /*
 678                 * This a special case for clock_nanosleep,
 679                 * not a normal timer from sys_timer_create.
 680                 */
 681                wake_up_process(timer->it_process);
 682                timer->it.cpu.expires.sched = 0;
 683        } else if (timer->it.cpu.incr.sched == 0) {
 684                /*
 685                 * One-shot timer.  Clear it as soon as it's fired.
 686                 */
 687                posix_timer_event(timer, 0);
 688                timer->it.cpu.expires.sched = 0;
 689        } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 690                /*
 691                 * The signal did not get queued because the signal
 692                 * was ignored, so we won't get any callback to
 693                 * reload the timer.  But we need to keep it
 694                 * ticking in case the signal is deliverable next time.
 695                 */
 696                posix_cpu_timer_schedule(timer);
 697        }
 698}
 699
 700/*
 701 * Guts of sys_timer_settime for CPU timers.
 702 * This is called with the timer locked and interrupts disabled.
 703 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 704 * and try again.  (This happens when the timer is in the middle of firing.)
 705 */
 706int posix_cpu_timer_set(struct k_itimer *timer, int flags,
 707                        struct itimerspec *new, struct itimerspec *old)
 708{
 709        struct task_struct *p = timer->it.cpu.task;
 710        union cpu_time_count old_expires, new_expires, val;
 711        int ret;
 712
 713        if (unlikely(p == NULL)) {
 714                /*
 715                 * Timer refers to a dead task's clock.
 716                 */
 717                return -ESRCH;
 718        }
 719
 720        new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
 721
 722        read_lock(&tasklist_lock);
 723        /*
 724         * We need the tasklist_lock to protect against reaping that
 725         * clears p->signal.  If p has just been reaped, we can no
 726         * longer get any information about it at all.
 727         */
 728        if (unlikely(p->signal == NULL)) {
 729                read_unlock(&tasklist_lock);
 730                put_task_struct(p);
 731                timer->it.cpu.task = NULL;
 732                return -ESRCH;
 733        }
 734
 735        /*
 736         * Disarm any old timer after extracting its expiry time.
 737         */
 738        BUG_ON(!irqs_disabled());
 739
 740        ret = 0;
 741        spin_lock(&p->sighand->siglock);
 742        old_expires = timer->it.cpu.expires;
 743        if (unlikely(timer->it.cpu.firing)) {
 744                timer->it.cpu.firing = -1;
 745                ret = TIMER_RETRY;
 746        } else
 747                list_del_init(&timer->it.cpu.entry);
 748        spin_unlock(&p->sighand->siglock);
 749
 750        /*
 751         * We need to sample the current value to convert the new
 752         * value from to relative and absolute, and to convert the
 753         * old value from absolute to relative.  To set a process
 754         * timer, we need a sample to balance the thread expiry
 755         * times (in arm_timer).  With an absolute time, we must
 756         * check if it's already passed.  In short, we need a sample.
 757         */
 758        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 759                cpu_clock_sample(timer->it_clock, p, &val);
 760        } else {
 761                cpu_clock_sample_group(timer->it_clock, p, &val);
 762        }
 763
 764        if (old) {
 765                if (old_expires.sched == 0) {
 766                        old->it_value.tv_sec = 0;
 767                        old->it_value.tv_nsec = 0;
 768                } else {
 769                        /*
 770                         * Update the timer in case it has
 771                         * overrun already.  If it has,
 772                         * we'll report it as having overrun
 773                         * and with the next reloaded timer
 774                         * already ticking, though we are
 775                         * swallowing that pending
 776                         * notification here to install the
 777                         * new setting.
 778                         */
 779                        bump_cpu_timer(timer, val);
 780                        if (cpu_time_before(timer->it_clock, val,
 781                                            timer->it.cpu.expires)) {
 782                                old_expires = cpu_time_sub(
 783                                        timer->it_clock,
 784                                        timer->it.cpu.expires, val);
 785                                sample_to_timespec(timer->it_clock,
 786                                                   old_expires,
 787                                                   &old->it_value);
 788                        } else {
 789                                old->it_value.tv_nsec = 1;
 790                                old->it_value.tv_sec = 0;
 791                        }
 792                }
 793        }
 794
 795        if (unlikely(ret)) {
 796                /*
 797                 * We are colliding with the timer actually firing.
 798                 * Punt after filling in the timer's old value, and
 799                 * disable this firing since we are already reporting
 800                 * it as an overrun (thanks to bump_cpu_timer above).
 801                 */
 802                read_unlock(&tasklist_lock);
 803                goto out;
 804        }
 805
 806        if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
 807                cpu_time_add(timer->it_clock, &new_expires, val);
 808        }
 809
 810        /*
 811         * Install the new expiry time (or zero).
 812         * For a timer with no notification action, we don't actually
 813         * arm the timer (we'll just fake it for timer_gettime).
 814         */
 815        timer->it.cpu.expires = new_expires;
 816        if (new_expires.sched != 0 &&
 817            (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
 818            cpu_time_before(timer->it_clock, val, new_expires)) {
 819                arm_timer(timer, val);
 820        }
 821
 822        read_unlock(&tasklist_lock);
 823
 824        /*
 825         * Install the new reload setting, and
 826         * set up the signal and overrun bookkeeping.
 827         */
 828        timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
 829                                                &new->it_interval);
 830
 831        /*
 832         * This acts as a modification timestamp for the timer,
 833         * so any automatic reload attempt will punt on seeing
 834         * that we have reset the timer manually.
 835         */
 836        timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 837                ~REQUEUE_PENDING;
 838        timer->it_overrun_last = 0;
 839        timer->it_overrun = -1;
 840
 841        if (new_expires.sched != 0 &&
 842            (timer->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE &&
 843            !cpu_time_before(timer->it_clock, val, new_expires)) {
 844                /*
 845                 * The designated time already passed, so we notify
 846                 * immediately, even if the thread never runs to
 847                 * accumulate more time on this clock.
 848                 */
 849                cpu_timer_fire(timer);
 850        }
 851
 852        ret = 0;
 853 out:
 854        if (old) {
 855                sample_to_timespec(timer->it_clock,
 856                                   timer->it.cpu.incr, &old->it_interval);
 857        }
 858        return ret;
 859}
 860
 861void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
 862{
 863        union cpu_time_count now;
 864        struct task_struct *p = timer->it.cpu.task;
 865        int clear_dead;
 866
 867        /*
 868         * Easy part: convert the reload time.
 869         */
 870        sample_to_timespec(timer->it_clock,
 871                           timer->it.cpu.incr, &itp->it_interval);
 872
 873        if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all.  */
 874                itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 875                return;
 876        }
 877
 878        if (unlikely(p == NULL)) {
 879                /*
 880                 * This task already died and the timer will never fire.
 881                 * In this case, expires is actually the dead value.
 882                 */
 883        dead:
 884                sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
 885                                   &itp->it_value);
 886                return;
 887        }
 888
 889        /*
 890         * Sample the clock to take the difference with the expiry time.
 891         */
 892        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
 893                cpu_clock_sample(timer->it_clock, p, &now);
 894                clear_dead = p->exit_state;
 895        } else {
 896                read_lock(&tasklist_lock);
 897                if (unlikely(p->signal == NULL)) {
 898                        /*
 899                         * The process has been reaped.
 900                         * We can't even collect a sample any more.
 901                         * Call the timer disarmed, nothing else to do.
 902                         */
 903                        put_task_struct(p);
 904                        timer->it.cpu.task = NULL;
 905                        timer->it.cpu.expires.sched = 0;
 906                        read_unlock(&tasklist_lock);
 907                        goto dead;
 908                } else {
 909                        cpu_clock_sample_group(timer->it_clock, p, &now);
 910                        clear_dead = (unlikely(p->exit_state) &&
 911                                      thread_group_empty(p));
 912                }
 913                read_unlock(&tasklist_lock);
 914        }
 915
 916        if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 917                if (timer->it.cpu.incr.sched == 0 &&
 918                    cpu_time_before(timer->it_clock,
 919                                    timer->it.cpu.expires, now)) {
 920                        /*
 921                         * Do-nothing timer expired and has no reload,
 922                         * so it's as if it was never set.
 923                         */
 924                        timer->it.cpu.expires.sched = 0;
 925                        itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
 926                        return;
 927                }
 928                /*
 929                 * Account for any expirations and reloads that should
 930                 * have happened.
 931                 */
 932                bump_cpu_timer(timer, now);
 933        }
 934
 935        if (unlikely(clear_dead)) {
 936                /*
 937                 * We've noticed that the thread is dead, but
 938                 * not yet reaped.  Take this opportunity to
 939                 * drop our task ref.
 940                 */
 941                clear_dead_task(timer, now);
 942                goto dead;
 943        }
 944
 945        if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
 946                sample_to_timespec(timer->it_clock,
 947                                   cpu_time_sub(timer->it_clock,
 948                                                timer->it.cpu.expires, now),
 949                                   &itp->it_value);
 950        } else {
 951                /*
 952                 * The timer should have expired already, but the firing
 953                 * hasn't taken place yet.  Say it's just about to expire.
 954                 */
 955                itp->it_value.tv_nsec = 1;
 956                itp->it_value.tv_sec = 0;
 957        }
 958}
 959
 960/*
 961 * Check for any per-thread CPU timers that have fired and move them off
 962 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 963 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 964 */
 965static void check_thread_timers(struct task_struct *tsk,
 966                                struct list_head *firing)
 967{
 968        int maxfire;
 969        struct list_head *timers = tsk->cpu_timers;
 970
 971        maxfire = 20;
 972        tsk->it_prof_expires = cputime_zero;
 973        while (!list_empty(timers)) {
 974                struct cpu_timer_list *t = list_first_entry(timers,
 975                                                      struct cpu_timer_list,
 976                                                      entry);
 977                if (!--maxfire || cputime_lt(prof_ticks(tsk), t->expires.cpu)) {
 978                        tsk->it_prof_expires = t->expires.cpu;
 979                        break;
 980                }
 981                t->firing = 1;
 982                list_move_tail(&t->entry, firing);
 983        }
 984
 985        ++timers;
 986        maxfire = 20;
 987        tsk->it_virt_expires = cputime_zero;
 988        while (!list_empty(timers)) {
 989                struct cpu_timer_list *t = list_first_entry(timers,
 990                                                      struct cpu_timer_list,
 991                                                      entry);
 992                if (!--maxfire || cputime_lt(virt_ticks(tsk), t->expires.cpu)) {
 993                        tsk->it_virt_expires = t->expires.cpu;
 994                        break;
 995                }
 996                t->firing = 1;
 997                list_move_tail(&t->entry, firing);
 998        }
 999
1000        ++timers;
1001        maxfire = 20;
1002        tsk->it_sched_expires = 0;
1003        while (!list_empty(timers)) {
1004                struct cpu_timer_list *t = list_first_entry(timers,
1005                                                      struct cpu_timer_list,
1006                                                      entry);
1007                if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
1008                        tsk->it_sched_expires = t->expires.sched;
1009                        break;
1010                }
1011                t->firing = 1;
1012                list_move_tail(&t->entry, firing);
1013        }
1014}
1015
1016/*
1017 * Check for any per-thread CPU timers that have fired and move them
1018 * off the tsk->*_timers list onto the firing list.  Per-thread timers
1019 * have already been taken off.
1020 */
1021static void check_process_timers(struct task_struct *tsk,
1022                                 struct list_head *firing)
1023{
1024        int maxfire;
1025        struct signal_struct *const sig = tsk->signal;
1026        cputime_t utime, stime, ptime, virt_expires, prof_expires;
1027        unsigned long long sum_sched_runtime, sched_expires;
1028        struct task_struct *t;
1029        struct list_head *timers = sig->cpu_timers;
1030
1031        /*
1032         * Don't sample the current process CPU clocks if there are no timers.
1033         */
1034        if (list_empty(&timers[CPUCLOCK_PROF]) &&
1035            cputime_eq(sig->it_prof_expires, cputime_zero) &&
1036            sig->rlim[RLIMIT_CPU].rlim_cur == RLIM_INFINITY &&
1037            list_empty(&timers[CPUCLOCK_VIRT]) &&
1038            cputime_eq(sig->it_virt_expires, cputime_zero) &&
1039            list_empty(&timers[CPUCLOCK_SCHED]))
1040                return;
1041
1042        /*
1043         * Collect the current process totals.
1044         */
1045        utime = sig->utime;
1046        stime = sig->stime;
1047        sum_sched_runtime = sig->sum_sched_runtime;
1048        t = tsk;
1049        do {
1050                utime = cputime_add(utime, t->utime);
1051                stime = cputime_add(stime, t->stime);
1052                sum_sched_runtime += t->se.sum_exec_runtime;
1053                t = next_thread(t);
1054        } while (t != tsk);
1055        ptime = cputime_add(utime, stime);
1056
1057        maxfire = 20;
1058        prof_expires = cputime_zero;
1059        while (!list_empty(timers)) {
1060                struct cpu_timer_list *t = list_first_entry(timers,
1061                                                      struct cpu_timer_list,
1062                                                      entry);
1063                if (!--maxfire || cputime_lt(ptime, t->expires.cpu)) {
1064                        prof_expires = t->expires.cpu;
1065                        break;
1066                }
1067                t->firing = 1;
1068                list_move_tail(&t->entry, firing);
1069        }
1070
1071        ++timers;
1072        maxfire = 20;
1073        virt_expires = cputime_zero;
1074        while (!list_empty(timers)) {
1075                struct cpu_timer_list *t = list_first_entry(timers,
1076                                                      struct cpu_timer_list,
1077                                                      entry);
1078                if (!--maxfire || cputime_lt(utime, t->expires.cpu)) {
1079                        virt_expires = t->expires.cpu;
1080                        break;
1081                }
1082                t->firing = 1;
1083                list_move_tail(&t->entry, firing);
1084        }
1085
1086        ++timers;
1087        maxfire = 20;
1088        sched_expires = 0;
1089        while (!list_empty(timers)) {
1090                struct cpu_timer_list *t = list_first_entry(timers,
1091                                                      struct cpu_timer_list,
1092                                                      entry);
1093                if (!--maxfire || sum_sched_runtime < t->expires.sched) {
1094                        sched_expires = t->expires.sched;
1095                        break;
1096                }
1097                t->firing = 1;
1098                list_move_tail(&t->entry, firing);
1099        }
1100
1101        /*
1102         * Check for the special case process timers.
1103         */
1104        if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1105                if (cputime_ge(ptime, sig->it_prof_expires)) {
1106                        /* ITIMER_PROF fires and reloads.  */
1107                        sig->it_prof_expires = sig->it_prof_incr;
1108                        if (!cputime_eq(sig->it_prof_expires, cputime_zero)) {
1109                                sig->it_prof_expires = cputime_add(
1110                                        sig->it_prof_expires, ptime);
1111                        }
1112                        __group_send_sig_info(SIGPROF, SEND_SIG_PRIV, tsk);
1113                }
1114                if (!cputime_eq(sig->it_prof_expires, cputime_zero) &&
1115                    (cputime_eq(prof_expires, cputime_zero) ||
1116                     cputime_lt(sig->it_prof_expires, prof_expires))) {
1117                        prof_expires = sig->it_prof_expires;
1118                }
1119        }
1120        if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1121                if (cputime_ge(utime, sig->it_virt_expires)) {
1122                        /* ITIMER_VIRTUAL fires and reloads.  */
1123                        sig->it_virt_expires = sig->it_virt_incr;
1124                        if (!cputime_eq(sig->it_virt_expires, cputime_zero)) {
1125                                sig->it_virt_expires = cputime_add(
1126                                        sig->it_virt_expires, utime);
1127                        }
1128                        __group_send_sig_info(SIGVTALRM, SEND_SIG_PRIV, tsk);
1129                }
1130                if (!cputime_eq(sig->it_virt_expires, cputime_zero) &&
1131                    (cputime_eq(virt_expires, cputime_zero) ||
1132                     cputime_lt(sig->it_virt_expires, virt_expires))) {
1133                        virt_expires = sig->it_virt_expires;
1134                }
1135        }
1136        if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
1137                unsigned long psecs = cputime_to_secs(ptime);
1138                cputime_t x;
1139                if (psecs >= sig->rlim[RLIMIT_CPU].rlim_max) {
1140                        /*
1141                         * At the hard limit, we just die.
1142                         * No need to calculate anything else now.
1143                         */
1144                        __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1145                        return;
1146                }
1147                if (psecs >= sig->rlim[RLIMIT_CPU].rlim_cur) {
1148                        /*
1149                         * At the soft limit, send a SIGXCPU every second.
1150                         */
1151                        __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
1152                        if (sig->rlim[RLIMIT_CPU].rlim_cur
1153                            < sig->rlim[RLIMIT_CPU].rlim_max) {
1154                                sig->rlim[RLIMIT_CPU].rlim_cur++;
1155                        }
1156                }
1157                x = secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
1158                if (cputime_eq(prof_expires, cputime_zero) ||
1159                    cputime_lt(x, prof_expires)) {
1160                        prof_expires = x;
1161                }
1162        }
1163
1164        if (!cputime_eq(prof_expires, cputime_zero) ||
1165            !cputime_eq(virt_expires, cputime_zero) ||
1166            sched_expires != 0) {
1167                /*
1168                 * Rebalance the threads' expiry times for the remaining
1169                 * process CPU timers.
1170                 */
1171
1172                cputime_t prof_left, virt_left, ticks;
1173                unsigned long long sched_left, sched;
1174                const unsigned int nthreads = atomic_read(&sig->live);
1175
1176                if (!nthreads)
1177                        return;
1178
1179                prof_left = cputime_sub(prof_expires, utime);
1180                prof_left = cputime_sub(prof_left, stime);
1181                prof_left = cputime_div_non_zero(prof_left, nthreads);
1182                virt_left = cputime_sub(virt_expires, utime);
1183                virt_left = cputime_div_non_zero(virt_left, nthreads);
1184                if (sched_expires) {
1185                        sched_left = sched_expires - sum_sched_runtime;
1186                        do_div(sched_left, nthreads);
1187                        sched_left = max_t(unsigned long long, sched_left, 1);
1188                } else {
1189                        sched_left = 0;
1190                }
1191                t = tsk;
1192                do {
1193                        if (unlikely(t->flags & PF_EXITING))
1194                                continue;
1195
1196                        ticks = cputime_add(cputime_add(t->utime, t->stime),
1197                                            prof_left);
1198                        if (!cputime_eq(prof_expires, cputime_zero) &&
1199                            (cputime_eq(t->it_prof_expires, cputime_zero) ||
1200                             cputime_gt(t->it_prof_expires, ticks))) {
1201                                t->it_prof_expires = ticks;
1202                        }
1203
1204                        ticks = cputime_add(t->utime, virt_left);
1205                        if (!cputime_eq(virt_expires, cputime_zero) &&
1206                            (cputime_eq(t->it_virt_expires, cputime_zero) ||
1207                             cputime_gt(t->it_virt_expires, ticks))) {
1208                                t->it_virt_expires = ticks;
1209                        }
1210
1211                        sched = t->se.sum_exec_runtime + sched_left;
1212                        if (sched_expires && (t->it_sched_expires == 0 ||
1213                                              t->it_sched_expires > sched)) {
1214                                t->it_sched_expires = sched;
1215                        }
1216                } while ((t = next_thread(t)) != tsk);
1217        }
1218}
1219
1220/*
1221 * This is called from the signal code (via do_schedule_next_timer)
1222 * when the last timer signal was delivered and we have to reload the timer.
1223 */
1224void posix_cpu_timer_schedule(struct k_itimer *timer)
1225{
1226        struct task_struct *p = timer->it.cpu.task;
1227        union cpu_time_count now;
1228
1229        if (unlikely(p == NULL))
1230                /*
1231                 * The task was cleaned up already, no future firings.
1232                 */
1233                goto out;
1234
1235        /*
1236         * Fetch the current sample and update the timer's expiry time.
1237         */
1238        if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1239                cpu_clock_sample(timer->it_clock, p, &now);
1240                bump_cpu_timer(timer, now);
1241                if (unlikely(p->exit_state)) {
1242                        clear_dead_task(timer, now);
1243                        goto out;
1244                }
1245                read_lock(&tasklist_lock); /* arm_timer needs it.  */
1246        } else {
1247                read_lock(&tasklist_lock);
1248                if (unlikely(p->signal == NULL)) {
1249                        /*
1250                         * The process has been reaped.
1251                         * We can't even collect a sample any more.
1252                         */
1253                        put_task_struct(p);
1254                        timer->it.cpu.task = p = NULL;
1255                        timer->it.cpu.expires.sched = 0;
1256                        goto out_unlock;
1257                } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1258                        /*
1259                         * We've noticed that the thread is dead, but
1260                         * not yet reaped.  Take this opportunity to
1261                         * drop our task ref.
1262                         */
1263                        clear_dead_task(timer, now);
1264                        goto out_unlock;
1265                }
1266                cpu_clock_sample_group(timer->it_clock, p, &now);
1267                bump_cpu_timer(timer, now);
1268                /* Leave the tasklist_lock locked for the call below.  */
1269        }
1270
1271        /*
1272         * Now re-arm for the new expiry time.
1273         */
1274        arm_timer(timer, now);
1275
1276out_unlock:
1277        read_unlock(&tasklist_lock);
1278
1279out:
1280        timer->it_overrun_last = timer->it_overrun;
1281        timer->it_overrun = -1;
1282        ++timer->it_requeue_pending;
1283}
1284
1285/*
1286 * This is called from the timer interrupt handler.  The irq handler has
1287 * already updated our counts.  We need to check if any timers fire now.
1288 * Interrupts are disabled.
1289 */
1290void run_posix_cpu_timers(struct task_struct *tsk)
1291{
1292        LIST_HEAD(firing);
1293        struct k_itimer *timer, *next;
1294
1295        BUG_ON(!irqs_disabled());
1296
1297#define UNEXPIRED(clock) \
1298                (cputime_eq(tsk->it_##clock##_expires, cputime_zero) || \
1299                 cputime_lt(clock##_ticks(tsk), tsk->it_##clock##_expires))
1300
1301        if (UNEXPIRED(prof) && UNEXPIRED(virt) &&
1302            (tsk->it_sched_expires == 0 ||
1303             tsk->se.sum_exec_runtime < tsk->it_sched_expires))
1304                return;
1305
1306#undef  UNEXPIRED
1307
1308        /*
1309         * Double-check with locks held.
1310         */
1311        read_lock(&tasklist_lock);
1312        if (likely(tsk->signal != NULL)) {
1313                spin_lock(&tsk->sighand->siglock);
1314
1315                /*
1316                 * Here we take off tsk->cpu_timers[N] and tsk->signal->cpu_timers[N]
1317                 * all the timers that are firing, and put them on the firing list.
1318                 */
1319                check_thread_timers(tsk, &firing);
1320                check_process_timers(tsk, &firing);
1321
1322                /*
1323                 * We must release these locks before taking any timer's lock.
1324                 * There is a potential race with timer deletion here, as the
1325                 * siglock now protects our private firing list.  We have set
1326                 * the firing flag in each timer, so that a deletion attempt
1327                 * that gets the timer lock before we do will give it up and
1328                 * spin until we've taken care of that timer below.
1329                 */
1330                spin_unlock(&tsk->sighand->siglock);
1331        }
1332        read_unlock(&tasklist_lock);
1333
1334        /*
1335         * Now that all the timers on our list have the firing flag,
1336         * noone will touch their list entries but us.  We'll take
1337         * each timer's lock before clearing its firing flag, so no
1338         * timer call will interfere.
1339         */
1340        list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1341                int firing;
1342                spin_lock(&timer->it_lock);
1343                list_del_init(&timer->it.cpu.entry);
1344                firing = timer->it.cpu.firing;
1345                timer->it.cpu.firing = 0;
1346                /*
1347                 * The firing flag is -1 if we collided with a reset
1348                 * of the timer, which already reported this
1349                 * almost-firing as an overrun.  So don't generate an event.
1350                 */
1351                if (likely(firing >= 0)) {
1352                        cpu_timer_fire(timer);
1353                }
1354                spin_unlock(&timer->it_lock);
1355        }
1356}
1357
1358/*
1359 * Set one of the process-wide special case CPU timers.
1360 * The tasklist_lock and tsk->sighand->siglock must be held by the caller.
1361 * The oldval argument is null for the RLIMIT_CPU timer, where *newval is
1362 * absolute; non-null for ITIMER_*, where *newval is relative and we update
1363 * it to be absolute, *oldval is absolute and we update it to be relative.
1364 */
1365void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1366                           cputime_t *newval, cputime_t *oldval)
1367{
1368        union cpu_time_count now;
1369        struct list_head *head;
1370
1371        BUG_ON(clock_idx == CPUCLOCK_SCHED);
1372        cpu_clock_sample_group_locked(clock_idx, tsk, &now);
1373
1374        if (oldval) {
1375                if (!cputime_eq(*oldval, cputime_zero)) {
1376                        if (cputime_le(*oldval, now.cpu)) {
1377                                /* Just about to fire. */
1378                                *oldval = jiffies_to_cputime(1);
1379                        } else {
1380                                *oldval = cputime_sub(*oldval, now.cpu);
1381                        }
1382                }
1383
1384                if (cputime_eq(*newval, cputime_zero))
1385                        return;
1386                *newval = cputime_add(*newval, now.cpu);
1387
1388                /*
1389                 * If the RLIMIT_CPU timer will expire before the
1390                 * ITIMER_PROF timer, we have nothing else to do.
1391                 */
1392                if (tsk->signal->rlim[RLIMIT_CPU].rlim_cur
1393                    < cputime_to_secs(*newval))
1394                        return;
1395        }
1396
1397        /*
1398         * Check whether there are any process timers already set to fire
1399         * before this one.  If so, we don't have anything more to do.
1400         */
1401        head = &tsk->signal->cpu_timers[clock_idx];
1402        if (list_empty(head) ||
1403            cputime_ge(list_first_entry(head,
1404                                  struct cpu_timer_list, entry)->expires.cpu,
1405                       *newval)) {
1406                /*
1407                 * Rejigger each thread's expiry time so that one will
1408                 * notice before we hit the process-cumulative expiry time.
1409                 */
1410                union cpu_time_count expires = { .sched = 0 };
1411                expires.cpu = *newval;
1412                process_timer_rebalance(tsk, clock_idx, expires, now);
1413        }
1414}
1415
1416static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1417                            struct timespec *rqtp, struct itimerspec *it)
1418{
1419        struct k_itimer timer;
1420        int error;
1421
1422        /*
1423         * Set up a temporary timer and then wait for it to go off.
1424         */
1425        memset(&timer, 0, sizeof timer);
1426        spin_lock_init(&timer.it_lock);
1427        timer.it_clock = which_clock;
1428        timer.it_overrun = -1;
1429        error = posix_cpu_timer_create(&timer);
1430        timer.it_process = current;
1431        if (!error) {
1432                static struct itimerspec zero_it;
1433
1434                memset(it, 0, sizeof *it);
1435                it->it_value = *rqtp;
1436
1437                spin_lock_irq(&timer.it_lock);
1438                error = posix_cpu_timer_set(&timer, flags, it, NULL);
1439                if (error) {
1440                        spin_unlock_irq(&timer.it_lock);
1441                        return error;
1442                }
1443
1444                while (!signal_pending(current)) {
1445                        if (timer.it.cpu.expires.sched == 0) {
1446                                /*
1447                                 * Our timer fired and was reset.
1448                                 */
1449                                spin_unlock_irq(&timer.it_lock);
1450                                return 0;
1451                        }
1452
1453                        /*
1454                         * Block until cpu_timer_fire (or a signal) wakes us.
1455                         */
1456                        __set_current_state(TASK_INTERRUPTIBLE);
1457                        spin_unlock_irq(&timer.it_lock);
1458                        schedule();
1459                        spin_lock_irq(&timer.it_lock);
1460                }
1461
1462                /*
1463                 * We were interrupted by a signal.
1464                 */
1465                sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1466                posix_cpu_timer_set(&timer, 0, &zero_it, it);
1467                spin_unlock_irq(&timer.it_lock);
1468
1469                if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1470                        /*
1471                         * It actually did fire already.
1472                         */
1473                        return 0;
1474                }
1475
1476                error = -ERESTART_RESTARTBLOCK;
1477        }
1478
1479        return error;
1480}
1481
1482int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1483                     struct timespec *rqtp, struct timespec __user *rmtp)
1484{
1485        struct restart_block *restart_block =
1486            &current_thread_info()->restart_block;
1487        struct itimerspec it;
1488        int error;
1489
1490        /*
1491         * Diagnose required errors first.
1492         */
1493        if (CPUCLOCK_PERTHREAD(which_clock) &&
1494            (CPUCLOCK_PID(which_clock) == 0 ||
1495             CPUCLOCK_PID(which_clock) == current->pid))
1496                return -EINVAL;
1497
1498        error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1499
1500        if (error == -ERESTART_RESTARTBLOCK) {
1501
1502                if (flags & TIMER_ABSTIME)
1503                        return -ERESTARTNOHAND;
1504                /*
1505                 * Report back to the user the time still remaining.
1506                 */
1507                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1508                        return -EFAULT;
1509
1510                restart_block->fn = posix_cpu_nsleep_restart;
1511                restart_block->arg0 = which_clock;
1512                restart_block->arg1 = (unsigned long) rmtp;
1513                restart_block->arg2 = rqtp->tv_sec;
1514                restart_block->arg3 = rqtp->tv_nsec;
1515        }
1516        return error;
1517}
1518
1519long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1520{
1521        clockid_t which_clock = restart_block->arg0;
1522        struct timespec __user *rmtp;
1523        struct timespec t;
1524        struct itimerspec it;
1525        int error;
1526
1527        rmtp = (struct timespec __user *) restart_block->arg1;
1528        t.tv_sec = restart_block->arg2;
1529        t.tv_nsec = restart_block->arg3;
1530
1531        restart_block->fn = do_no_restart_syscall;
1532        error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1533
1534        if (error == -ERESTART_RESTARTBLOCK) {
1535                /*
1536                 * Report back to the user the time still remaining.
1537                 */
1538                if (rmtp != NULL && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1539                        return -EFAULT;
1540
1541                restart_block->fn = posix_cpu_nsleep_restart;
1542                restart_block->arg0 = which_clock;
1543                restart_block->arg1 = (unsigned long) rmtp;
1544                restart_block->arg2 = t.tv_sec;
1545                restart_block->arg3 = t.tv_nsec;
1546        }
1547        return error;
1548
1549}
1550
1551
1552#define PROCESS_CLOCK   MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1553#define THREAD_CLOCK    MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1554
1555static int process_cpu_clock_getres(const clockid_t which_clock,
1556                                    struct timespec *tp)
1557{
1558        return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1559}
1560static int process_cpu_clock_get(const clockid_t which_clock,
1561                                 struct timespec *tp)
1562{
1563        return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1564}
1565static int process_cpu_timer_create(struct k_itimer *timer)
1566{
1567        timer->it_clock = PROCESS_CLOCK;
1568        return posix_cpu_timer_create(timer);
1569}
1570static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1571                              struct timespec *rqtp,
1572                              struct timespec __user *rmtp)
1573{
1574        return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1575}
1576static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1577{
1578        return -EINVAL;
1579}
1580static int thread_cpu_clock_getres(const clockid_t which_clock,
1581                                   struct timespec *tp)
1582{
1583        return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1584}
1585static int thread_cpu_clock_get(const clockid_t which_clock,
1586                                struct timespec *tp)
1587{
1588        return posix_cpu_clock_get(THREAD_CLOCK, tp);
1589}
1590static int thread_cpu_timer_create(struct k_itimer *timer)
1591{
1592        timer->it_clock = THREAD_CLOCK;
1593        return posix_cpu_timer_create(timer);
1594}
1595static int thread_cpu_nsleep(const clockid_t which_clock, int flags,
1596                              struct timespec *rqtp, struct timespec __user *rmtp)
1597{
1598        return -EINVAL;
1599}
1600static long thread_cpu_nsleep_restart(struct restart_block *restart_block)
1601{
1602        return -EINVAL;
1603}
1604
1605static __init int init_posix_cpu_timers(void)
1606{
1607        struct k_clock process = {
1608                .clock_getres = process_cpu_clock_getres,
1609                .clock_get = process_cpu_clock_get,
1610                .clock_set = do_posix_clock_nosettime,
1611                .timer_create = process_cpu_timer_create,
1612                .nsleep = process_cpu_nsleep,
1613                .nsleep_restart = process_cpu_nsleep_restart,
1614        };
1615        struct k_clock thread = {
1616                .clock_getres = thread_cpu_clock_getres,
1617                .clock_get = thread_cpu_clock_get,
1618                .clock_set = do_posix_clock_nosettime,
1619                .timer_create = thread_cpu_timer_create,
1620                .nsleep = thread_cpu_nsleep,
1621                .nsleep_restart = thread_cpu_nsleep_restart,
1622        };
1623
1624        register_posix_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1625        register_posix_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1626
1627        return 0;
1628}
1629__initcall(init_posix_cpu_timers);
1630