linux/kernel/posix-timers.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/posix-timers.c
   3 *
   4 *
   5 * 2002-10-15  Posix Clocks & timers
   6 *                           by George Anzinger george@mvista.com
   7 *
   8 *                           Copyright (C) 2002 2003 by MontaVista Software.
   9 *
  10 * 2004-06-01  Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
  11 *                           Copyright (C) 2004 Boris Hu
  12 *
  13 * This program is free software; you can redistribute it and/or modify
  14 * it under the terms of the GNU General Public License as published by
  15 * the Free Software Foundation; either version 2 of the License, or (at
  16 * your option) any later version.
  17 *
  18 * This program is distributed in the hope that it will be useful, but
  19 * WITHOUT ANY WARRANTY; without even the implied warranty of
  20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  21 * General Public License for more details.
  22
  23 * You should have received a copy of the GNU General Public License
  24 * along with this program; if not, write to the Free Software
  25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  26 *
  27 * MontaVista Software | 1237 East Arques Avenue | Sunnyvale | CA 94085 | USA
  28 */
  29
  30/* These are all the functions necessary to implement
  31 * POSIX clocks & timers
  32 */
  33#include <linux/mm.h>
  34#include <linux/interrupt.h>
  35#include <linux/slab.h>
  36#include <linux/time.h>
  37#include <linux/mutex.h>
  38
  39#include <asm/uaccess.h>
  40#include <asm/semaphore.h>
  41#include <linux/list.h>
  42#include <linux/init.h>
  43#include <linux/compiler.h>
  44#include <linux/idr.h>
  45#include <linux/posix-timers.h>
  46#include <linux/syscalls.h>
  47#include <linux/wait.h>
  48#include <linux/workqueue.h>
  49#include <linux/module.h>
  50
  51/*
  52 * Management arrays for POSIX timers.   Timers are kept in slab memory
  53 * Timer ids are allocated by an external routine that keeps track of the
  54 * id and the timer.  The external interface is:
  55 *
  56 * void *idr_find(struct idr *idp, int id);           to find timer_id <id>
  57 * int idr_get_new(struct idr *idp, void *ptr);       to get a new id and
  58 *                                                    related it to <ptr>
  59 * void idr_remove(struct idr *idp, int id);          to release <id>
  60 * void idr_init(struct idr *idp);                    to initialize <idp>
  61 *                                                    which we supply.
  62 * The idr_get_new *may* call slab for more memory so it must not be
  63 * called under a spin lock.  Likewise idr_remore may release memory
  64 * (but it may be ok to do this under a lock...).
  65 * idr_find is just a memory look up and is quite fast.  A -1 return
  66 * indicates that the requested id does not exist.
  67 */
  68
  69/*
  70 * Lets keep our timers in a slab cache :-)
  71 */
  72static struct kmem_cache *posix_timers_cache;
  73static struct idr posix_timers_id;
  74static DEFINE_SPINLOCK(idr_lock);
  75
  76/*
  77 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
  78 * SIGEV values.  Here we put out an error if this assumption fails.
  79 */
  80#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
  81                       ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
  82#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
  83#endif
  84
  85
  86/*
  87 * The timer ID is turned into a timer address by idr_find().
  88 * Verifying a valid ID consists of:
  89 *
  90 * a) checking that idr_find() returns other than -1.
  91 * b) checking that the timer id matches the one in the timer itself.
  92 * c) that the timer owner is in the callers thread group.
  93 */
  94
  95/*
  96 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
  97 *          to implement others.  This structure defines the various
  98 *          clocks and allows the possibility of adding others.  We
  99 *          provide an interface to add clocks to the table and expect
 100 *          the "arch" code to add at least one clock that is high
 101 *          resolution.  Here we define the standard CLOCK_REALTIME as a
 102 *          1/HZ resolution clock.
 103 *
 104 * RESOLUTION: Clock resolution is used to round up timer and interval
 105 *          times, NOT to report clock times, which are reported with as
 106 *          much resolution as the system can muster.  In some cases this
 107 *          resolution may depend on the underlying clock hardware and
 108 *          may not be quantifiable until run time, and only then is the
 109 *          necessary code is written.  The standard says we should say
 110 *          something about this issue in the documentation...
 111 *
 112 * FUNCTIONS: The CLOCKs structure defines possible functions to handle
 113 *          various clock functions.  For clocks that use the standard
 114 *          system timer code these entries should be NULL.  This will
 115 *          allow dispatch without the overhead of indirect function
 116 *          calls.  CLOCKS that depend on other sources (e.g. WWV or GPS)
 117 *          must supply functions here, even if the function just returns
 118 *          ENOSYS.  The standard POSIX timer management code assumes the
 119 *          following: 1.) The k_itimer struct (sched.h) is used for the
 120 *          timer.  2.) The list, it_lock, it_clock, it_id and it_process
 121 *          fields are not modified by timer code.
 122 *
 123 *          At this time all functions EXCEPT clock_nanosleep can be
 124 *          redirected by the CLOCKS structure.  Clock_nanosleep is in
 125 *          there, but the code ignores it.
 126 *
 127 * Permissions: It is assumed that the clock_settime() function defined
 128 *          for each clock will take care of permission checks.  Some
 129 *          clocks may be set able by any user (i.e. local process
 130 *          clocks) others not.  Currently the only set able clock we
 131 *          have is CLOCK_REALTIME and its high res counter part, both of
 132 *          which we beg off on and pass to do_sys_settimeofday().
 133 */
 134
 135static struct k_clock posix_clocks[MAX_CLOCKS];
 136
 137/*
 138 * These ones are defined below.
 139 */
 140static int common_nsleep(const clockid_t, int flags, struct timespec *t,
 141                         struct timespec __user *rmtp);
 142static void common_timer_get(struct k_itimer *, struct itimerspec *);
 143static int common_timer_set(struct k_itimer *, int,
 144                            struct itimerspec *, struct itimerspec *);
 145static int common_timer_del(struct k_itimer *timer);
 146
 147static enum hrtimer_restart posix_timer_fn(struct hrtimer *data);
 148
 149static struct k_itimer *lock_timer(timer_t timer_id, unsigned long *flags);
 150
 151static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
 152{
 153        spin_unlock_irqrestore(&timr->it_lock, flags);
 154}
 155
 156/*
 157 * Call the k_clock hook function if non-null, or the default function.
 158 */
 159#define CLOCK_DISPATCH(clock, call, arglist) \
 160        ((clock) < 0 ? posix_cpu_##call arglist : \
 161         (posix_clocks[clock].call != NULL \
 162          ? (*posix_clocks[clock].call) arglist : common_##call arglist))
 163
 164/*
 165 * Default clock hook functions when the struct k_clock passed
 166 * to register_posix_clock leaves a function pointer null.
 167 *
 168 * The function common_CALL is the default implementation for
 169 * the function pointer CALL in struct k_clock.
 170 */
 171
 172static inline int common_clock_getres(const clockid_t which_clock,
 173                                      struct timespec *tp)
 174{
 175        tp->tv_sec = 0;
 176        tp->tv_nsec = posix_clocks[which_clock].res;
 177        return 0;
 178}
 179
 180/*
 181 * Get real time for posix timers
 182 */
 183static int common_clock_get(clockid_t which_clock, struct timespec *tp)
 184{
 185        ktime_get_real_ts(tp);
 186        return 0;
 187}
 188
 189static inline int common_clock_set(const clockid_t which_clock,
 190                                   struct timespec *tp)
 191{
 192        return do_sys_settimeofday(tp, NULL);
 193}
 194
 195static int common_timer_create(struct k_itimer *new_timer)
 196{
 197        hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
 198        return 0;
 199}
 200
 201/*
 202 * Return nonzero if we know a priori this clockid_t value is bogus.
 203 */
 204static inline int invalid_clockid(const clockid_t which_clock)
 205{
 206        if (which_clock < 0)    /* CPU clock, posix_cpu_* will check it */
 207                return 0;
 208        if ((unsigned) which_clock >= MAX_CLOCKS)
 209                return 1;
 210        if (posix_clocks[which_clock].clock_getres != NULL)
 211                return 0;
 212        if (posix_clocks[which_clock].res != 0)
 213                return 0;
 214        return 1;
 215}
 216
 217/*
 218 * Get monotonic time for posix timers
 219 */
 220static int posix_ktime_get_ts(clockid_t which_clock, struct timespec *tp)
 221{
 222        ktime_get_ts(tp);
 223        return 0;
 224}
 225
 226/*
 227 * Initialize everything, well, just everything in Posix clocks/timers ;)
 228 */
 229static __init int init_posix_timers(void)
 230{
 231        struct k_clock clock_realtime = {
 232                .clock_getres = hrtimer_get_res,
 233        };
 234        struct k_clock clock_monotonic = {
 235                .clock_getres = hrtimer_get_res,
 236                .clock_get = posix_ktime_get_ts,
 237                .clock_set = do_posix_clock_nosettime,
 238        };
 239
 240        register_posix_clock(CLOCK_REALTIME, &clock_realtime);
 241        register_posix_clock(CLOCK_MONOTONIC, &clock_monotonic);
 242
 243        posix_timers_cache = kmem_cache_create("posix_timers_cache",
 244                                        sizeof (struct k_itimer), 0, SLAB_PANIC,
 245                                        NULL);
 246        idr_init(&posix_timers_id);
 247        return 0;
 248}
 249
 250__initcall(init_posix_timers);
 251
 252static void schedule_next_timer(struct k_itimer *timr)
 253{
 254        struct hrtimer *timer = &timr->it.real.timer;
 255
 256        if (timr->it.real.interval.tv64 == 0)
 257                return;
 258
 259        timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
 260                                            timr->it.real.interval);
 261
 262        timr->it_overrun_last = timr->it_overrun;
 263        timr->it_overrun = -1;
 264        ++timr->it_requeue_pending;
 265        hrtimer_restart(timer);
 266}
 267
 268/*
 269 * This function is exported for use by the signal deliver code.  It is
 270 * called just prior to the info block being released and passes that
 271 * block to us.  It's function is to update the overrun entry AND to
 272 * restart the timer.  It should only be called if the timer is to be
 273 * restarted (i.e. we have flagged this in the sys_private entry of the
 274 * info block).
 275 *
 276 * To protect aginst the timer going away while the interrupt is queued,
 277 * we require that the it_requeue_pending flag be set.
 278 */
 279void do_schedule_next_timer(struct siginfo *info)
 280{
 281        struct k_itimer *timr;
 282        unsigned long flags;
 283
 284        timr = lock_timer(info->si_tid, &flags);
 285
 286        if (timr && timr->it_requeue_pending == info->si_sys_private) {
 287                if (timr->it_clock < 0)
 288                        posix_cpu_timer_schedule(timr);
 289                else
 290                        schedule_next_timer(timr);
 291
 292                info->si_overrun = timr->it_overrun_last;
 293        }
 294
 295        if (timr)
 296                unlock_timer(timr, flags);
 297}
 298
 299int posix_timer_event(struct k_itimer *timr,int si_private)
 300{
 301        memset(&timr->sigq->info, 0, sizeof(siginfo_t));
 302        timr->sigq->info.si_sys_private = si_private;
 303        /* Send signal to the process that owns this timer.*/
 304
 305        timr->sigq->info.si_signo = timr->it_sigev_signo;
 306        timr->sigq->info.si_errno = 0;
 307        timr->sigq->info.si_code = SI_TIMER;
 308        timr->sigq->info.si_tid = timr->it_id;
 309        timr->sigq->info.si_value = timr->it_sigev_value;
 310
 311        if (timr->it_sigev_notify & SIGEV_THREAD_ID) {
 312                struct task_struct *leader;
 313                int ret = send_sigqueue(timr->it_sigev_signo, timr->sigq,
 314                                        timr->it_process);
 315
 316                if (likely(ret >= 0))
 317                        return ret;
 318
 319                timr->it_sigev_notify = SIGEV_SIGNAL;
 320                leader = timr->it_process->group_leader;
 321                put_task_struct(timr->it_process);
 322                timr->it_process = leader;
 323        }
 324
 325        return send_group_sigqueue(timr->it_sigev_signo, timr->sigq,
 326                                   timr->it_process);
 327}
 328EXPORT_SYMBOL_GPL(posix_timer_event);
 329
 330/*
 331 * This function gets called when a POSIX.1b interval timer expires.  It
 332 * is used as a callback from the kernel internal timer.  The
 333 * run_timer_list code ALWAYS calls with interrupts on.
 334
 335 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
 336 */
 337static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
 338{
 339        struct k_itimer *timr;
 340        unsigned long flags;
 341        int si_private = 0;
 342        enum hrtimer_restart ret = HRTIMER_NORESTART;
 343
 344        timr = container_of(timer, struct k_itimer, it.real.timer);
 345        spin_lock_irqsave(&timr->it_lock, flags);
 346
 347        if (timr->it.real.interval.tv64 != 0)
 348                si_private = ++timr->it_requeue_pending;
 349
 350        if (posix_timer_event(timr, si_private)) {
 351                /*
 352                 * signal was not sent because of sig_ignor
 353                 * we will not get a call back to restart it AND
 354                 * it should be restarted.
 355                 */
 356                if (timr->it.real.interval.tv64 != 0) {
 357                        ktime_t now = hrtimer_cb_get_time(timer);
 358
 359                        /*
 360                         * FIXME: What we really want, is to stop this
 361                         * timer completely and restart it in case the
 362                         * SIG_IGN is removed. This is a non trivial
 363                         * change which involves sighand locking
 364                         * (sigh !), which we don't want to do late in
 365                         * the release cycle.
 366                         *
 367                         * For now we just let timers with an interval
 368                         * less than a jiffie expire every jiffie to
 369                         * avoid softirq starvation in case of SIG_IGN
 370                         * and a very small interval, which would put
 371                         * the timer right back on the softirq pending
 372                         * list. By moving now ahead of time we trick
 373                         * hrtimer_forward() to expire the timer
 374                         * later, while we still maintain the overrun
 375                         * accuracy, but have some inconsistency in
 376                         * the timer_gettime() case. This is at least
 377                         * better than a starved softirq. A more
 378                         * complex fix which solves also another related
 379                         * inconsistency is already in the pipeline.
 380                         */
 381#ifdef CONFIG_HIGH_RES_TIMERS
 382                        {
 383                                ktime_t kj = ktime_set(0, NSEC_PER_SEC / HZ);
 384
 385                                if (timr->it.real.interval.tv64 < kj.tv64)
 386                                        now = ktime_add(now, kj);
 387                        }
 388#endif
 389                        timr->it_overrun +=
 390                                hrtimer_forward(timer, now,
 391                                                timr->it.real.interval);
 392                        ret = HRTIMER_RESTART;
 393                        ++timr->it_requeue_pending;
 394                }
 395        }
 396
 397        unlock_timer(timr, flags);
 398        return ret;
 399}
 400
 401static struct task_struct * good_sigevent(sigevent_t * event)
 402{
 403        struct task_struct *rtn = current->group_leader;
 404
 405        if ((event->sigev_notify & SIGEV_THREAD_ID ) &&
 406                (!(rtn = find_task_by_pid(event->sigev_notify_thread_id)) ||
 407                 !same_thread_group(rtn, current) ||
 408                 (event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_SIGNAL))
 409                return NULL;
 410
 411        if (((event->sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) &&
 412            ((event->sigev_signo <= 0) || (event->sigev_signo > SIGRTMAX)))
 413                return NULL;
 414
 415        return rtn;
 416}
 417
 418void register_posix_clock(const clockid_t clock_id, struct k_clock *new_clock)
 419{
 420        if ((unsigned) clock_id >= MAX_CLOCKS) {
 421                printk("POSIX clock register failed for clock_id %d\n",
 422                       clock_id);
 423                return;
 424        }
 425
 426        posix_clocks[clock_id] = *new_clock;
 427}
 428EXPORT_SYMBOL_GPL(register_posix_clock);
 429
 430static struct k_itimer * alloc_posix_timer(void)
 431{
 432        struct k_itimer *tmr;
 433        tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
 434        if (!tmr)
 435                return tmr;
 436        if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
 437                kmem_cache_free(posix_timers_cache, tmr);
 438                tmr = NULL;
 439        }
 440        return tmr;
 441}
 442
 443#define IT_ID_SET       1
 444#define IT_ID_NOT_SET   0
 445static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
 446{
 447        if (it_id_set) {
 448                unsigned long flags;
 449                spin_lock_irqsave(&idr_lock, flags);
 450                idr_remove(&posix_timers_id, tmr->it_id);
 451                spin_unlock_irqrestore(&idr_lock, flags);
 452        }
 453        sigqueue_free(tmr->sigq);
 454        if (unlikely(tmr->it_process) &&
 455            tmr->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 456                put_task_struct(tmr->it_process);
 457        kmem_cache_free(posix_timers_cache, tmr);
 458}
 459
 460/* Create a POSIX.1b interval timer. */
 461
 462asmlinkage long
 463sys_timer_create(const clockid_t which_clock,
 464                 struct sigevent __user *timer_event_spec,
 465                 timer_t __user * created_timer_id)
 466{
 467        int error = 0;
 468        struct k_itimer *new_timer = NULL;
 469        int new_timer_id;
 470        struct task_struct *process = NULL;
 471        unsigned long flags;
 472        sigevent_t event;
 473        int it_id_set = IT_ID_NOT_SET;
 474
 475        if (invalid_clockid(which_clock))
 476                return -EINVAL;
 477
 478        new_timer = alloc_posix_timer();
 479        if (unlikely(!new_timer))
 480                return -EAGAIN;
 481
 482        spin_lock_init(&new_timer->it_lock);
 483 retry:
 484        if (unlikely(!idr_pre_get(&posix_timers_id, GFP_KERNEL))) {
 485                error = -EAGAIN;
 486                goto out;
 487        }
 488        spin_lock_irq(&idr_lock);
 489        error = idr_get_new(&posix_timers_id, (void *) new_timer,
 490                            &new_timer_id);
 491        spin_unlock_irq(&idr_lock);
 492        if (error == -EAGAIN)
 493                goto retry;
 494        else if (error) {
 495                /*
 496                 * Wierd looking, but we return EAGAIN if the IDR is
 497                 * full (proper POSIX return value for this)
 498                 */
 499                error = -EAGAIN;
 500                goto out;
 501        }
 502
 503        it_id_set = IT_ID_SET;
 504        new_timer->it_id = (timer_t) new_timer_id;
 505        new_timer->it_clock = which_clock;
 506        new_timer->it_overrun = -1;
 507        error = CLOCK_DISPATCH(which_clock, timer_create, (new_timer));
 508        if (error)
 509                goto out;
 510
 511        /*
 512         * return the timer_id now.  The next step is hard to
 513         * back out if there is an error.
 514         */
 515        if (copy_to_user(created_timer_id,
 516                         &new_timer_id, sizeof (new_timer_id))) {
 517                error = -EFAULT;
 518                goto out;
 519        }
 520        if (timer_event_spec) {
 521                if (copy_from_user(&event, timer_event_spec, sizeof (event))) {
 522                        error = -EFAULT;
 523                        goto out;
 524                }
 525                new_timer->it_sigev_notify = event.sigev_notify;
 526                new_timer->it_sigev_signo = event.sigev_signo;
 527                new_timer->it_sigev_value = event.sigev_value;
 528
 529                read_lock(&tasklist_lock);
 530                if ((process = good_sigevent(&event))) {
 531                        /*
 532                         * We may be setting up this process for another
 533                         * thread.  It may be exiting.  To catch this
 534                         * case the we check the PF_EXITING flag.  If
 535                         * the flag is not set, the siglock will catch
 536                         * him before it is too late (in exit_itimers).
 537                         *
 538                         * The exec case is a bit more invloved but easy
 539                         * to code.  If the process is in our thread
 540                         * group (and it must be or we would not allow
 541                         * it here) and is doing an exec, it will cause
 542                         * us to be killed.  In this case it will wait
 543                         * for us to die which means we can finish this
 544                         * linkage with our last gasp. I.e. no code :)
 545                         */
 546                        spin_lock_irqsave(&process->sighand->siglock, flags);
 547                        if (!(process->flags & PF_EXITING)) {
 548                                new_timer->it_process = process;
 549                                list_add(&new_timer->list,
 550                                         &process->signal->posix_timers);
 551                                if (new_timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 552                                        get_task_struct(process);
 553                                spin_unlock_irqrestore(&process->sighand->siglock, flags);
 554                        } else {
 555                                spin_unlock_irqrestore(&process->sighand->siglock, flags);
 556                                process = NULL;
 557                        }
 558                }
 559                read_unlock(&tasklist_lock);
 560                if (!process) {
 561                        error = -EINVAL;
 562                        goto out;
 563                }
 564        } else {
 565                new_timer->it_sigev_notify = SIGEV_SIGNAL;
 566                new_timer->it_sigev_signo = SIGALRM;
 567                new_timer->it_sigev_value.sival_int = new_timer->it_id;
 568                process = current->group_leader;
 569                spin_lock_irqsave(&process->sighand->siglock, flags);
 570                new_timer->it_process = process;
 571                list_add(&new_timer->list, &process->signal->posix_timers);
 572                spin_unlock_irqrestore(&process->sighand->siglock, flags);
 573        }
 574
 575        /*
 576         * In the case of the timer belonging to another task, after
 577         * the task is unlocked, the timer is owned by the other task
 578         * and may cease to exist at any time.  Don't use or modify
 579         * new_timer after the unlock call.
 580         */
 581
 582out:
 583        if (error)
 584                release_posix_timer(new_timer, it_id_set);
 585
 586        return error;
 587}
 588
 589/*
 590 * Locking issues: We need to protect the result of the id look up until
 591 * we get the timer locked down so it is not deleted under us.  The
 592 * removal is done under the idr spinlock so we use that here to bridge
 593 * the find to the timer lock.  To avoid a dead lock, the timer id MUST
 594 * be release with out holding the timer lock.
 595 */
 596static struct k_itimer * lock_timer(timer_t timer_id, unsigned long *flags)
 597{
 598        struct k_itimer *timr;
 599        /*
 600         * Watch out here.  We do a irqsave on the idr_lock and pass the
 601         * flags part over to the timer lock.  Must not let interrupts in
 602         * while we are moving the lock.
 603         */
 604
 605        spin_lock_irqsave(&idr_lock, *flags);
 606        timr = (struct k_itimer *) idr_find(&posix_timers_id, (int) timer_id);
 607        if (timr) {
 608                spin_lock(&timr->it_lock);
 609
 610                if ((timr->it_id != timer_id) || !(timr->it_process) ||
 611                                !same_thread_group(timr->it_process, current)) {
 612                        spin_unlock(&timr->it_lock);
 613                        spin_unlock_irqrestore(&idr_lock, *flags);
 614                        timr = NULL;
 615                } else
 616                        spin_unlock(&idr_lock);
 617        } else
 618                spin_unlock_irqrestore(&idr_lock, *flags);
 619
 620        return timr;
 621}
 622
 623/*
 624 * Get the time remaining on a POSIX.1b interval timer.  This function
 625 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
 626 * mess with irq.
 627 *
 628 * We have a couple of messes to clean up here.  First there is the case
 629 * of a timer that has a requeue pending.  These timers should appear to
 630 * be in the timer list with an expiry as if we were to requeue them
 631 * now.
 632 *
 633 * The second issue is the SIGEV_NONE timer which may be active but is
 634 * not really ever put in the timer list (to save system resources).
 635 * This timer may be expired, and if so, we will do it here.  Otherwise
 636 * it is the same as a requeue pending timer WRT to what we should
 637 * report.
 638 */
 639static void
 640common_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
 641{
 642        ktime_t now, remaining, iv;
 643        struct hrtimer *timer = &timr->it.real.timer;
 644
 645        memset(cur_setting, 0, sizeof(struct itimerspec));
 646
 647        iv = timr->it.real.interval;
 648
 649        /* interval timer ? */
 650        if (iv.tv64)
 651                cur_setting->it_interval = ktime_to_timespec(iv);
 652        else if (!hrtimer_active(timer) &&
 653                 (timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 654                return;
 655
 656        now = timer->base->get_time();
 657
 658        /*
 659         * When a requeue is pending or this is a SIGEV_NONE
 660         * timer move the expiry time forward by intervals, so
 661         * expiry is > now.
 662         */
 663        if (iv.tv64 && (timr->it_requeue_pending & REQUEUE_PENDING ||
 664            (timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE))
 665                timr->it_overrun += hrtimer_forward(timer, now, iv);
 666
 667        remaining = ktime_sub(timer->expires, now);
 668        /* Return 0 only, when the timer is expired and not pending */
 669        if (remaining.tv64 <= 0) {
 670                /*
 671                 * A single shot SIGEV_NONE timer must return 0, when
 672                 * it is expired !
 673                 */
 674                if ((timr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE)
 675                        cur_setting->it_value.tv_nsec = 1;
 676        } else
 677                cur_setting->it_value = ktime_to_timespec(remaining);
 678}
 679
 680/* Get the time remaining on a POSIX.1b interval timer. */
 681asmlinkage long
 682sys_timer_gettime(timer_t timer_id, struct itimerspec __user *setting)
 683{
 684        struct k_itimer *timr;
 685        struct itimerspec cur_setting;
 686        unsigned long flags;
 687
 688        timr = lock_timer(timer_id, &flags);
 689        if (!timr)
 690                return -EINVAL;
 691
 692        CLOCK_DISPATCH(timr->it_clock, timer_get, (timr, &cur_setting));
 693
 694        unlock_timer(timr, flags);
 695
 696        if (copy_to_user(setting, &cur_setting, sizeof (cur_setting)))
 697                return -EFAULT;
 698
 699        return 0;
 700}
 701
 702/*
 703 * Get the number of overruns of a POSIX.1b interval timer.  This is to
 704 * be the overrun of the timer last delivered.  At the same time we are
 705 * accumulating overruns on the next timer.  The overrun is frozen when
 706 * the signal is delivered, either at the notify time (if the info block
 707 * is not queued) or at the actual delivery time (as we are informed by
 708 * the call back to do_schedule_next_timer().  So all we need to do is
 709 * to pick up the frozen overrun.
 710 */
 711asmlinkage long
 712sys_timer_getoverrun(timer_t timer_id)
 713{
 714        struct k_itimer *timr;
 715        int overrun;
 716        unsigned long flags;
 717
 718        timr = lock_timer(timer_id, &flags);
 719        if (!timr)
 720                return -EINVAL;
 721
 722        overrun = timr->it_overrun_last;
 723        unlock_timer(timr, flags);
 724
 725        return overrun;
 726}
 727
 728/* Set a POSIX.1b interval timer. */
 729/* timr->it_lock is taken. */
 730static int
 731common_timer_set(struct k_itimer *timr, int flags,
 732                 struct itimerspec *new_setting, struct itimerspec *old_setting)
 733{
 734        struct hrtimer *timer = &timr->it.real.timer;
 735        enum hrtimer_mode mode;
 736
 737        if (old_setting)
 738                common_timer_get(timr, old_setting);
 739
 740        /* disable the timer */
 741        timr->it.real.interval.tv64 = 0;
 742        /*
 743         * careful here.  If smp we could be in the "fire" routine which will
 744         * be spinning as we hold the lock.  But this is ONLY an SMP issue.
 745         */
 746        if (hrtimer_try_to_cancel(timer) < 0)
 747                return TIMER_RETRY;
 748
 749        timr->it_requeue_pending = (timr->it_requeue_pending + 2) & 
 750                ~REQUEUE_PENDING;
 751        timr->it_overrun_last = 0;
 752
 753        /* switch off the timer when it_value is zero */
 754        if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
 755                return 0;
 756
 757        mode = flags & TIMER_ABSTIME ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
 758        hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
 759        timr->it.real.timer.function = posix_timer_fn;
 760
 761        timer->expires = timespec_to_ktime(new_setting->it_value);
 762
 763        /* Convert interval */
 764        timr->it.real.interval = timespec_to_ktime(new_setting->it_interval);
 765
 766        /* SIGEV_NONE timers are not queued ! See common_timer_get */
 767        if (((timr->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE)) {
 768                /* Setup correct expiry time for relative timers */
 769                if (mode == HRTIMER_MODE_REL)
 770                        timer->expires = ktime_add(timer->expires,
 771                                                   timer->base->get_time());
 772                return 0;
 773        }
 774
 775        hrtimer_start(timer, timer->expires, mode);
 776        return 0;
 777}
 778
 779/* Set a POSIX.1b interval timer */
 780asmlinkage long
 781sys_timer_settime(timer_t timer_id, int flags,
 782                  const struct itimerspec __user *new_setting,
 783                  struct itimerspec __user *old_setting)
 784{
 785        struct k_itimer *timr;
 786        struct itimerspec new_spec, old_spec;
 787        int error = 0;
 788        unsigned long flag;
 789        struct itimerspec *rtn = old_setting ? &old_spec : NULL;
 790
 791        if (!new_setting)
 792                return -EINVAL;
 793
 794        if (copy_from_user(&new_spec, new_setting, sizeof (new_spec)))
 795                return -EFAULT;
 796
 797        if (!timespec_valid(&new_spec.it_interval) ||
 798            !timespec_valid(&new_spec.it_value))
 799                return -EINVAL;
 800retry:
 801        timr = lock_timer(timer_id, &flag);
 802        if (!timr)
 803                return -EINVAL;
 804
 805        error = CLOCK_DISPATCH(timr->it_clock, timer_set,
 806                               (timr, flags, &new_spec, rtn));
 807
 808        unlock_timer(timr, flag);
 809        if (error == TIMER_RETRY) {
 810                rtn = NULL;     // We already got the old time...
 811                goto retry;
 812        }
 813
 814        if (old_setting && !error &&
 815            copy_to_user(old_setting, &old_spec, sizeof (old_spec)))
 816                error = -EFAULT;
 817
 818        return error;
 819}
 820
 821static inline int common_timer_del(struct k_itimer *timer)
 822{
 823        timer->it.real.interval.tv64 = 0;
 824
 825        if (hrtimer_try_to_cancel(&timer->it.real.timer) < 0)
 826                return TIMER_RETRY;
 827        return 0;
 828}
 829
 830static inline int timer_delete_hook(struct k_itimer *timer)
 831{
 832        return CLOCK_DISPATCH(timer->it_clock, timer_del, (timer));
 833}
 834
 835/* Delete a POSIX.1b interval timer. */
 836asmlinkage long
 837sys_timer_delete(timer_t timer_id)
 838{
 839        struct k_itimer *timer;
 840        unsigned long flags;
 841
 842retry_delete:
 843        timer = lock_timer(timer_id, &flags);
 844        if (!timer)
 845                return -EINVAL;
 846
 847        if (timer_delete_hook(timer) == TIMER_RETRY) {
 848                unlock_timer(timer, flags);
 849                goto retry_delete;
 850        }
 851
 852        spin_lock(&current->sighand->siglock);
 853        list_del(&timer->list);
 854        spin_unlock(&current->sighand->siglock);
 855        /*
 856         * This keeps any tasks waiting on the spin lock from thinking
 857         * they got something (see the lock code above).
 858         */
 859        if (timer->it_process) {
 860                if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 861                        put_task_struct(timer->it_process);
 862                timer->it_process = NULL;
 863        }
 864        unlock_timer(timer, flags);
 865        release_posix_timer(timer, IT_ID_SET);
 866        return 0;
 867}
 868
 869/*
 870 * return timer owned by the process, used by exit_itimers
 871 */
 872static void itimer_delete(struct k_itimer *timer)
 873{
 874        unsigned long flags;
 875
 876retry_delete:
 877        spin_lock_irqsave(&timer->it_lock, flags);
 878
 879        if (timer_delete_hook(timer) == TIMER_RETRY) {
 880                unlock_timer(timer, flags);
 881                goto retry_delete;
 882        }
 883        list_del(&timer->list);
 884        /*
 885         * This keeps any tasks waiting on the spin lock from thinking
 886         * they got something (see the lock code above).
 887         */
 888        if (timer->it_process) {
 889                if (timer->it_sigev_notify == (SIGEV_SIGNAL|SIGEV_THREAD_ID))
 890                        put_task_struct(timer->it_process);
 891                timer->it_process = NULL;
 892        }
 893        unlock_timer(timer, flags);
 894        release_posix_timer(timer, IT_ID_SET);
 895}
 896
 897/*
 898 * This is called by do_exit or de_thread, only when there are no more
 899 * references to the shared signal_struct.
 900 */
 901void exit_itimers(struct signal_struct *sig)
 902{
 903        struct k_itimer *tmr;
 904
 905        while (!list_empty(&sig->posix_timers)) {
 906                tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
 907                itimer_delete(tmr);
 908        }
 909}
 910
 911/* Not available / possible... functions */
 912int do_posix_clock_nosettime(const clockid_t clockid, struct timespec *tp)
 913{
 914        return -EINVAL;
 915}
 916EXPORT_SYMBOL_GPL(do_posix_clock_nosettime);
 917
 918int do_posix_clock_nonanosleep(const clockid_t clock, int flags,
 919                               struct timespec *t, struct timespec __user *r)
 920{
 921#ifndef ENOTSUP
 922        return -EOPNOTSUPP;     /* aka ENOTSUP in userland for POSIX */
 923#else  /*  parisc does define it separately.  */
 924        return -ENOTSUP;
 925#endif
 926}
 927EXPORT_SYMBOL_GPL(do_posix_clock_nonanosleep);
 928
 929asmlinkage long sys_clock_settime(const clockid_t which_clock,
 930                                  const struct timespec __user *tp)
 931{
 932        struct timespec new_tp;
 933
 934        if (invalid_clockid(which_clock))
 935                return -EINVAL;
 936        if (copy_from_user(&new_tp, tp, sizeof (*tp)))
 937                return -EFAULT;
 938
 939        return CLOCK_DISPATCH(which_clock, clock_set, (which_clock, &new_tp));
 940}
 941
 942asmlinkage long
 943sys_clock_gettime(const clockid_t which_clock, struct timespec __user *tp)
 944{
 945        struct timespec kernel_tp;
 946        int error;
 947
 948        if (invalid_clockid(which_clock))
 949                return -EINVAL;
 950        error = CLOCK_DISPATCH(which_clock, clock_get,
 951                               (which_clock, &kernel_tp));
 952        if (!error && copy_to_user(tp, &kernel_tp, sizeof (kernel_tp)))
 953                error = -EFAULT;
 954
 955        return error;
 956
 957}
 958
 959asmlinkage long
 960sys_clock_getres(const clockid_t which_clock, struct timespec __user *tp)
 961{
 962        struct timespec rtn_tp;
 963        int error;
 964
 965        if (invalid_clockid(which_clock))
 966                return -EINVAL;
 967
 968        error = CLOCK_DISPATCH(which_clock, clock_getres,
 969                               (which_clock, &rtn_tp));
 970
 971        if (!error && tp && copy_to_user(tp, &rtn_tp, sizeof (rtn_tp))) {
 972                error = -EFAULT;
 973        }
 974
 975        return error;
 976}
 977
 978/*
 979 * nanosleep for monotonic and realtime clocks
 980 */
 981static int common_nsleep(const clockid_t which_clock, int flags,
 982                         struct timespec *tsave, struct timespec __user *rmtp)
 983{
 984        struct timespec rmt;
 985        int ret;
 986
 987        ret = hrtimer_nanosleep(tsave, rmtp ? &rmt : NULL,
 988                                flags & TIMER_ABSTIME ?
 989                                HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
 990                                which_clock);
 991
 992        if (ret && rmtp) {
 993                if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
 994                        return -EFAULT;
 995        }
 996
 997        return ret;
 998}
 999
1000asmlinkage long
1001sys_clock_nanosleep(const clockid_t which_clock, int flags,
1002                    const struct timespec __user *rqtp,
1003                    struct timespec __user *rmtp)
1004{
1005        struct timespec t;
1006
1007        if (invalid_clockid(which_clock))
1008                return -EINVAL;
1009
1010        if (copy_from_user(&t, rqtp, sizeof (struct timespec)))
1011                return -EFAULT;
1012
1013        if (!timespec_valid(&t))
1014                return -EINVAL;
1015
1016        return CLOCK_DISPATCH(which_clock, nsleep,
1017                              (which_clock, flags, &t, rmtp));
1018}
1019
1020/*
1021 * nanosleep_restart for monotonic and realtime clocks
1022 */
1023static int common_nsleep_restart(struct restart_block *restart_block)
1024{
1025        return hrtimer_nanosleep_restart(restart_block);
1026}
1027
1028/*
1029 * This will restart clock_nanosleep. This is required only by
1030 * compat_clock_nanosleep_restart for now.
1031 */
1032long
1033clock_nanosleep_restart(struct restart_block *restart_block)
1034{
1035        clockid_t which_clock = restart_block->arg0;
1036
1037        return CLOCK_DISPATCH(which_clock, nsleep_restart,
1038                              (restart_block));
1039}
1040