linux/kernel/relay.c
<<
>>
Prefs
   1/*
   2 * Public API and common code for kernel->userspace relay file support.
   3 *
   4 * See Documentation/filesystems/relay.txt for an overview.
   5 *
   6 * Copyright (C) 2002-2005 - Tom Zanussi (zanussi@us.ibm.com), IBM Corp
   7 * Copyright (C) 1999-2005 - Karim Yaghmour (karim@opersys.com)
   8 *
   9 * Moved to kernel/relay.c by Paul Mundt, 2006.
  10 * November 2006 - CPU hotplug support by Mathieu Desnoyers
  11 *      (mathieu.desnoyers@polymtl.ca)
  12 *
  13 * This file is released under the GPL.
  14 */
  15#include <linux/errno.h>
  16#include <linux/stddef.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/string.h>
  20#include <linux/relay.h>
  21#include <linux/vmalloc.h>
  22#include <linux/mm.h>
  23#include <linux/cpu.h>
  24#include <linux/splice.h>
  25
  26/* list of open channels, for cpu hotplug */
  27static DEFINE_MUTEX(relay_channels_mutex);
  28static LIST_HEAD(relay_channels);
  29
  30/*
  31 * close() vm_op implementation for relay file mapping.
  32 */
  33static void relay_file_mmap_close(struct vm_area_struct *vma)
  34{
  35        struct rchan_buf *buf = vma->vm_private_data;
  36        buf->chan->cb->buf_unmapped(buf, vma->vm_file);
  37}
  38
  39/*
  40 * nopage() vm_op implementation for relay file mapping.
  41 */
  42static struct page *relay_buf_nopage(struct vm_area_struct *vma,
  43                                     unsigned long address,
  44                                     int *type)
  45{
  46        struct page *page;
  47        struct rchan_buf *buf = vma->vm_private_data;
  48        unsigned long offset = address - vma->vm_start;
  49
  50        if (address > vma->vm_end)
  51                return NOPAGE_SIGBUS; /* Disallow mremap */
  52        if (!buf)
  53                return NOPAGE_OOM;
  54
  55        page = vmalloc_to_page(buf->start + offset);
  56        if (!page)
  57                return NOPAGE_OOM;
  58        get_page(page);
  59
  60        if (type)
  61                *type = VM_FAULT_MINOR;
  62
  63        return page;
  64}
  65
  66/*
  67 * vm_ops for relay file mappings.
  68 */
  69static struct vm_operations_struct relay_file_mmap_ops = {
  70        .nopage = relay_buf_nopage,
  71        .close = relay_file_mmap_close,
  72};
  73
  74/**
  75 *      relay_mmap_buf: - mmap channel buffer to process address space
  76 *      @buf: relay channel buffer
  77 *      @vma: vm_area_struct describing memory to be mapped
  78 *
  79 *      Returns 0 if ok, negative on error
  80 *
  81 *      Caller should already have grabbed mmap_sem.
  82 */
  83static int relay_mmap_buf(struct rchan_buf *buf, struct vm_area_struct *vma)
  84{
  85        unsigned long length = vma->vm_end - vma->vm_start;
  86        struct file *filp = vma->vm_file;
  87
  88        if (!buf)
  89                return -EBADF;
  90
  91        if (length != (unsigned long)buf->chan->alloc_size)
  92                return -EINVAL;
  93
  94        vma->vm_ops = &relay_file_mmap_ops;
  95        vma->vm_private_data = buf;
  96        buf->chan->cb->buf_mapped(buf, filp);
  97
  98        return 0;
  99}
 100
 101/**
 102 *      relay_alloc_buf - allocate a channel buffer
 103 *      @buf: the buffer struct
 104 *      @size: total size of the buffer
 105 *
 106 *      Returns a pointer to the resulting buffer, %NULL if unsuccessful. The
 107 *      passed in size will get page aligned, if it isn't already.
 108 */
 109static void *relay_alloc_buf(struct rchan_buf *buf, size_t *size)
 110{
 111        void *mem;
 112        unsigned int i, j, n_pages;
 113
 114        *size = PAGE_ALIGN(*size);
 115        n_pages = *size >> PAGE_SHIFT;
 116
 117        buf->page_array = kcalloc(n_pages, sizeof(struct page *), GFP_KERNEL);
 118        if (!buf->page_array)
 119                return NULL;
 120
 121        for (i = 0; i < n_pages; i++) {
 122                buf->page_array[i] = alloc_page(GFP_KERNEL);
 123                if (unlikely(!buf->page_array[i]))
 124                        goto depopulate;
 125                set_page_private(buf->page_array[i], (unsigned long)buf);
 126        }
 127        mem = vmap(buf->page_array, n_pages, VM_MAP, PAGE_KERNEL);
 128        if (!mem)
 129                goto depopulate;
 130
 131        memset(mem, 0, *size);
 132        buf->page_count = n_pages;
 133        return mem;
 134
 135depopulate:
 136        for (j = 0; j < i; j++)
 137                __free_page(buf->page_array[j]);
 138        kfree(buf->page_array);
 139        return NULL;
 140}
 141
 142/**
 143 *      relay_create_buf - allocate and initialize a channel buffer
 144 *      @chan: the relay channel
 145 *
 146 *      Returns channel buffer if successful, %NULL otherwise.
 147 */
 148static struct rchan_buf *relay_create_buf(struct rchan *chan)
 149{
 150        struct rchan_buf *buf = kzalloc(sizeof(struct rchan_buf), GFP_KERNEL);
 151        if (!buf)
 152                return NULL;
 153
 154        buf->padding = kmalloc(chan->n_subbufs * sizeof(size_t *), GFP_KERNEL);
 155        if (!buf->padding)
 156                goto free_buf;
 157
 158        buf->start = relay_alloc_buf(buf, &chan->alloc_size);
 159        if (!buf->start)
 160                goto free_buf;
 161
 162        buf->chan = chan;
 163        kref_get(&buf->chan->kref);
 164        return buf;
 165
 166free_buf:
 167        kfree(buf->padding);
 168        kfree(buf);
 169        return NULL;
 170}
 171
 172/**
 173 *      relay_destroy_channel - free the channel struct
 174 *      @kref: target kernel reference that contains the relay channel
 175 *
 176 *      Should only be called from kref_put().
 177 */
 178static void relay_destroy_channel(struct kref *kref)
 179{
 180        struct rchan *chan = container_of(kref, struct rchan, kref);
 181        kfree(chan);
 182}
 183
 184/**
 185 *      relay_destroy_buf - destroy an rchan_buf struct and associated buffer
 186 *      @buf: the buffer struct
 187 */
 188static void relay_destroy_buf(struct rchan_buf *buf)
 189{
 190        struct rchan *chan = buf->chan;
 191        unsigned int i;
 192
 193        if (likely(buf->start)) {
 194                vunmap(buf->start);
 195                for (i = 0; i < buf->page_count; i++)
 196                        __free_page(buf->page_array[i]);
 197                kfree(buf->page_array);
 198        }
 199        chan->buf[buf->cpu] = NULL;
 200        kfree(buf->padding);
 201        kfree(buf);
 202        kref_put(&chan->kref, relay_destroy_channel);
 203}
 204
 205/**
 206 *      relay_remove_buf - remove a channel buffer
 207 *      @kref: target kernel reference that contains the relay buffer
 208 *
 209 *      Removes the file from the fileystem, which also frees the
 210 *      rchan_buf_struct and the channel buffer.  Should only be called from
 211 *      kref_put().
 212 */
 213static void relay_remove_buf(struct kref *kref)
 214{
 215        struct rchan_buf *buf = container_of(kref, struct rchan_buf, kref);
 216        buf->chan->cb->remove_buf_file(buf->dentry);
 217        relay_destroy_buf(buf);
 218}
 219
 220/**
 221 *      relay_buf_empty - boolean, is the channel buffer empty?
 222 *      @buf: channel buffer
 223 *
 224 *      Returns 1 if the buffer is empty, 0 otherwise.
 225 */
 226static int relay_buf_empty(struct rchan_buf *buf)
 227{
 228        return (buf->subbufs_produced - buf->subbufs_consumed) ? 0 : 1;
 229}
 230
 231/**
 232 *      relay_buf_full - boolean, is the channel buffer full?
 233 *      @buf: channel buffer
 234 *
 235 *      Returns 1 if the buffer is full, 0 otherwise.
 236 */
 237int relay_buf_full(struct rchan_buf *buf)
 238{
 239        size_t ready = buf->subbufs_produced - buf->subbufs_consumed;
 240        return (ready >= buf->chan->n_subbufs) ? 1 : 0;
 241}
 242EXPORT_SYMBOL_GPL(relay_buf_full);
 243
 244/*
 245 * High-level relay kernel API and associated functions.
 246 */
 247
 248/*
 249 * rchan_callback implementations defining default channel behavior.  Used
 250 * in place of corresponding NULL values in client callback struct.
 251 */
 252
 253/*
 254 * subbuf_start() default callback.  Does nothing.
 255 */
 256static int subbuf_start_default_callback (struct rchan_buf *buf,
 257                                          void *subbuf,
 258                                          void *prev_subbuf,
 259                                          size_t prev_padding)
 260{
 261        if (relay_buf_full(buf))
 262                return 0;
 263
 264        return 1;
 265}
 266
 267/*
 268 * buf_mapped() default callback.  Does nothing.
 269 */
 270static void buf_mapped_default_callback(struct rchan_buf *buf,
 271                                        struct file *filp)
 272{
 273}
 274
 275/*
 276 * buf_unmapped() default callback.  Does nothing.
 277 */
 278static void buf_unmapped_default_callback(struct rchan_buf *buf,
 279                                          struct file *filp)
 280{
 281}
 282
 283/*
 284 * create_buf_file_create() default callback.  Does nothing.
 285 */
 286static struct dentry *create_buf_file_default_callback(const char *filename,
 287                                                       struct dentry *parent,
 288                                                       int mode,
 289                                                       struct rchan_buf *buf,
 290                                                       int *is_global)
 291{
 292        return NULL;
 293}
 294
 295/*
 296 * remove_buf_file() default callback.  Does nothing.
 297 */
 298static int remove_buf_file_default_callback(struct dentry *dentry)
 299{
 300        return -EINVAL;
 301}
 302
 303/* relay channel default callbacks */
 304static struct rchan_callbacks default_channel_callbacks = {
 305        .subbuf_start = subbuf_start_default_callback,
 306        .buf_mapped = buf_mapped_default_callback,
 307        .buf_unmapped = buf_unmapped_default_callback,
 308        .create_buf_file = create_buf_file_default_callback,
 309        .remove_buf_file = remove_buf_file_default_callback,
 310};
 311
 312/**
 313 *      wakeup_readers - wake up readers waiting on a channel
 314 *      @data: contains the channel buffer
 315 *
 316 *      This is the timer function used to defer reader waking.
 317 */
 318static void wakeup_readers(unsigned long data)
 319{
 320        struct rchan_buf *buf = (struct rchan_buf *)data;
 321        wake_up_interruptible(&buf->read_wait);
 322}
 323
 324/**
 325 *      __relay_reset - reset a channel buffer
 326 *      @buf: the channel buffer
 327 *      @init: 1 if this is a first-time initialization
 328 *
 329 *      See relay_reset() for description of effect.
 330 */
 331static void __relay_reset(struct rchan_buf *buf, unsigned int init)
 332{
 333        size_t i;
 334
 335        if (init) {
 336                init_waitqueue_head(&buf->read_wait);
 337                kref_init(&buf->kref);
 338                setup_timer(&buf->timer, wakeup_readers, (unsigned long)buf);
 339        } else
 340                del_timer_sync(&buf->timer);
 341
 342        buf->subbufs_produced = 0;
 343        buf->subbufs_consumed = 0;
 344        buf->bytes_consumed = 0;
 345        buf->finalized = 0;
 346        buf->data = buf->start;
 347        buf->offset = 0;
 348
 349        for (i = 0; i < buf->chan->n_subbufs; i++)
 350                buf->padding[i] = 0;
 351
 352        buf->chan->cb->subbuf_start(buf, buf->data, NULL, 0);
 353}
 354
 355/**
 356 *      relay_reset - reset the channel
 357 *      @chan: the channel
 358 *
 359 *      This has the effect of erasing all data from all channel buffers
 360 *      and restarting the channel in its initial state.  The buffers
 361 *      are not freed, so any mappings are still in effect.
 362 *
 363 *      NOTE. Care should be taken that the channel isn't actually
 364 *      being used by anything when this call is made.
 365 */
 366void relay_reset(struct rchan *chan)
 367{
 368        unsigned int i;
 369
 370        if (!chan)
 371                return;
 372
 373        if (chan->is_global && chan->buf[0]) {
 374                __relay_reset(chan->buf[0], 0);
 375                return;
 376        }
 377
 378        mutex_lock(&relay_channels_mutex);
 379        for_each_online_cpu(i)
 380                if (chan->buf[i])
 381                        __relay_reset(chan->buf[i], 0);
 382        mutex_unlock(&relay_channels_mutex);
 383}
 384EXPORT_SYMBOL_GPL(relay_reset);
 385
 386/*
 387 *      relay_open_buf - create a new relay channel buffer
 388 *
 389 *      used by relay_open() and CPU hotplug.
 390 */
 391static struct rchan_buf *relay_open_buf(struct rchan *chan, unsigned int cpu)
 392{
 393        struct rchan_buf *buf = NULL;
 394        struct dentry *dentry;
 395        char *tmpname;
 396
 397        if (chan->is_global)
 398                return chan->buf[0];
 399
 400        tmpname = kzalloc(NAME_MAX + 1, GFP_KERNEL);
 401        if (!tmpname)
 402                goto end;
 403        snprintf(tmpname, NAME_MAX, "%s%d", chan->base_filename, cpu);
 404
 405        buf = relay_create_buf(chan);
 406        if (!buf)
 407                goto free_name;
 408
 409        buf->cpu = cpu;
 410        __relay_reset(buf, 1);
 411
 412        /* Create file in fs */
 413        dentry = chan->cb->create_buf_file(tmpname, chan->parent, S_IRUSR,
 414                                           buf, &chan->is_global);
 415        if (!dentry)
 416                goto free_buf;
 417
 418        buf->dentry = dentry;
 419
 420        if(chan->is_global) {
 421                chan->buf[0] = buf;
 422                buf->cpu = 0;
 423        }
 424
 425        goto free_name;
 426
 427free_buf:
 428        relay_destroy_buf(buf);
 429        buf = NULL;
 430free_name:
 431        kfree(tmpname);
 432end:
 433        return buf;
 434}
 435
 436/**
 437 *      relay_close_buf - close a channel buffer
 438 *      @buf: channel buffer
 439 *
 440 *      Marks the buffer finalized and restores the default callbacks.
 441 *      The channel buffer and channel buffer data structure are then freed
 442 *      automatically when the last reference is given up.
 443 */
 444static void relay_close_buf(struct rchan_buf *buf)
 445{
 446        buf->finalized = 1;
 447        del_timer_sync(&buf->timer);
 448        kref_put(&buf->kref, relay_remove_buf);
 449}
 450
 451static void setup_callbacks(struct rchan *chan,
 452                                   struct rchan_callbacks *cb)
 453{
 454        if (!cb) {
 455                chan->cb = &default_channel_callbacks;
 456                return;
 457        }
 458
 459        if (!cb->subbuf_start)
 460                cb->subbuf_start = subbuf_start_default_callback;
 461        if (!cb->buf_mapped)
 462                cb->buf_mapped = buf_mapped_default_callback;
 463        if (!cb->buf_unmapped)
 464                cb->buf_unmapped = buf_unmapped_default_callback;
 465        if (!cb->create_buf_file)
 466                cb->create_buf_file = create_buf_file_default_callback;
 467        if (!cb->remove_buf_file)
 468                cb->remove_buf_file = remove_buf_file_default_callback;
 469        chan->cb = cb;
 470}
 471
 472/**
 473 *      relay_hotcpu_callback - CPU hotplug callback
 474 *      @nb: notifier block
 475 *      @action: hotplug action to take
 476 *      @hcpu: CPU number
 477 *
 478 *      Returns the success/failure of the operation. (%NOTIFY_OK, %NOTIFY_BAD)
 479 */
 480static int __cpuinit relay_hotcpu_callback(struct notifier_block *nb,
 481                                unsigned long action,
 482                                void *hcpu)
 483{
 484        unsigned int hotcpu = (unsigned long)hcpu;
 485        struct rchan *chan;
 486
 487        switch(action) {
 488        case CPU_UP_PREPARE:
 489        case CPU_UP_PREPARE_FROZEN:
 490                mutex_lock(&relay_channels_mutex);
 491                list_for_each_entry(chan, &relay_channels, list) {
 492                        if (chan->buf[hotcpu])
 493                                continue;
 494                        chan->buf[hotcpu] = relay_open_buf(chan, hotcpu);
 495                        if(!chan->buf[hotcpu]) {
 496                                printk(KERN_ERR
 497                                        "relay_hotcpu_callback: cpu %d buffer "
 498                                        "creation failed\n", hotcpu);
 499                                mutex_unlock(&relay_channels_mutex);
 500                                return NOTIFY_BAD;
 501                        }
 502                }
 503                mutex_unlock(&relay_channels_mutex);
 504                break;
 505        case CPU_DEAD:
 506        case CPU_DEAD_FROZEN:
 507                /* No need to flush the cpu : will be flushed upon
 508                 * final relay_flush() call. */
 509                break;
 510        }
 511        return NOTIFY_OK;
 512}
 513
 514/**
 515 *      relay_open - create a new relay channel
 516 *      @base_filename: base name of files to create
 517 *      @parent: dentry of parent directory, %NULL for root directory
 518 *      @subbuf_size: size of sub-buffers
 519 *      @n_subbufs: number of sub-buffers
 520 *      @cb: client callback functions
 521 *      @private_data: user-defined data
 522 *
 523 *      Returns channel pointer if successful, %NULL otherwise.
 524 *
 525 *      Creates a channel buffer for each cpu using the sizes and
 526 *      attributes specified.  The created channel buffer files
 527 *      will be named base_filename0...base_filenameN-1.  File
 528 *      permissions will be %S_IRUSR.
 529 */
 530struct rchan *relay_open(const char *base_filename,
 531                         struct dentry *parent,
 532                         size_t subbuf_size,
 533                         size_t n_subbufs,
 534                         struct rchan_callbacks *cb,
 535                         void *private_data)
 536{
 537        unsigned int i;
 538        struct rchan *chan;
 539        if (!base_filename)
 540                return NULL;
 541
 542        if (!(subbuf_size && n_subbufs))
 543                return NULL;
 544
 545        chan = kzalloc(sizeof(struct rchan), GFP_KERNEL);
 546        if (!chan)
 547                return NULL;
 548
 549        chan->version = RELAYFS_CHANNEL_VERSION;
 550        chan->n_subbufs = n_subbufs;
 551        chan->subbuf_size = subbuf_size;
 552        chan->alloc_size = FIX_SIZE(subbuf_size * n_subbufs);
 553        chan->parent = parent;
 554        chan->private_data = private_data;
 555        strlcpy(chan->base_filename, base_filename, NAME_MAX);
 556        setup_callbacks(chan, cb);
 557        kref_init(&chan->kref);
 558
 559        mutex_lock(&relay_channels_mutex);
 560        for_each_online_cpu(i) {
 561                chan->buf[i] = relay_open_buf(chan, i);
 562                if (!chan->buf[i])
 563                        goto free_bufs;
 564        }
 565        list_add(&chan->list, &relay_channels);
 566        mutex_unlock(&relay_channels_mutex);
 567
 568        return chan;
 569
 570free_bufs:
 571        for_each_online_cpu(i) {
 572                if (!chan->buf[i])
 573                        break;
 574                relay_close_buf(chan->buf[i]);
 575        }
 576
 577        kref_put(&chan->kref, relay_destroy_channel);
 578        mutex_unlock(&relay_channels_mutex);
 579        return NULL;
 580}
 581EXPORT_SYMBOL_GPL(relay_open);
 582
 583/**
 584 *      relay_switch_subbuf - switch to a new sub-buffer
 585 *      @buf: channel buffer
 586 *      @length: size of current event
 587 *
 588 *      Returns either the length passed in or 0 if full.
 589 *
 590 *      Performs sub-buffer-switch tasks such as invoking callbacks,
 591 *      updating padding counts, waking up readers, etc.
 592 */
 593size_t relay_switch_subbuf(struct rchan_buf *buf, size_t length)
 594{
 595        void *old, *new;
 596        size_t old_subbuf, new_subbuf;
 597
 598        if (unlikely(length > buf->chan->subbuf_size))
 599                goto toobig;
 600
 601        if (buf->offset != buf->chan->subbuf_size + 1) {
 602                buf->prev_padding = buf->chan->subbuf_size - buf->offset;
 603                old_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 604                buf->padding[old_subbuf] = buf->prev_padding;
 605                buf->subbufs_produced++;
 606                buf->dentry->d_inode->i_size += buf->chan->subbuf_size -
 607                        buf->padding[old_subbuf];
 608                smp_mb();
 609                if (waitqueue_active(&buf->read_wait))
 610                        /*
 611                         * Calling wake_up_interruptible() from here
 612                         * will deadlock if we happen to be logging
 613                         * from the scheduler (trying to re-grab
 614                         * rq->lock), so defer it.
 615                         */
 616                        __mod_timer(&buf->timer, jiffies + 1);
 617        }
 618
 619        old = buf->data;
 620        new_subbuf = buf->subbufs_produced % buf->chan->n_subbufs;
 621        new = buf->start + new_subbuf * buf->chan->subbuf_size;
 622        buf->offset = 0;
 623        if (!buf->chan->cb->subbuf_start(buf, new, old, buf->prev_padding)) {
 624                buf->offset = buf->chan->subbuf_size + 1;
 625                return 0;
 626        }
 627        buf->data = new;
 628        buf->padding[new_subbuf] = 0;
 629
 630        if (unlikely(length + buf->offset > buf->chan->subbuf_size))
 631                goto toobig;
 632
 633        return length;
 634
 635toobig:
 636        buf->chan->last_toobig = length;
 637        return 0;
 638}
 639EXPORT_SYMBOL_GPL(relay_switch_subbuf);
 640
 641/**
 642 *      relay_subbufs_consumed - update the buffer's sub-buffers-consumed count
 643 *      @chan: the channel
 644 *      @cpu: the cpu associated with the channel buffer to update
 645 *      @subbufs_consumed: number of sub-buffers to add to current buf's count
 646 *
 647 *      Adds to the channel buffer's consumed sub-buffer count.
 648 *      subbufs_consumed should be the number of sub-buffers newly consumed,
 649 *      not the total consumed.
 650 *
 651 *      NOTE. Kernel clients don't need to call this function if the channel
 652 *      mode is 'overwrite'.
 653 */
 654void relay_subbufs_consumed(struct rchan *chan,
 655                            unsigned int cpu,
 656                            size_t subbufs_consumed)
 657{
 658        struct rchan_buf *buf;
 659
 660        if (!chan)
 661                return;
 662
 663        if (cpu >= NR_CPUS || !chan->buf[cpu])
 664                return;
 665
 666        buf = chan->buf[cpu];
 667        buf->subbufs_consumed += subbufs_consumed;
 668        if (buf->subbufs_consumed > buf->subbufs_produced)
 669                buf->subbufs_consumed = buf->subbufs_produced;
 670}
 671EXPORT_SYMBOL_GPL(relay_subbufs_consumed);
 672
 673/**
 674 *      relay_close - close the channel
 675 *      @chan: the channel
 676 *
 677 *      Closes all channel buffers and frees the channel.
 678 */
 679void relay_close(struct rchan *chan)
 680{
 681        unsigned int i;
 682
 683        if (!chan)
 684                return;
 685
 686        mutex_lock(&relay_channels_mutex);
 687        if (chan->is_global && chan->buf[0])
 688                relay_close_buf(chan->buf[0]);
 689        else
 690                for_each_possible_cpu(i)
 691                        if (chan->buf[i])
 692                                relay_close_buf(chan->buf[i]);
 693
 694        if (chan->last_toobig)
 695                printk(KERN_WARNING "relay: one or more items not logged "
 696                       "[item size (%Zd) > sub-buffer size (%Zd)]\n",
 697                       chan->last_toobig, chan->subbuf_size);
 698
 699        list_del(&chan->list);
 700        kref_put(&chan->kref, relay_destroy_channel);
 701        mutex_unlock(&relay_channels_mutex);
 702}
 703EXPORT_SYMBOL_GPL(relay_close);
 704
 705/**
 706 *      relay_flush - close the channel
 707 *      @chan: the channel
 708 *
 709 *      Flushes all channel buffers, i.e. forces buffer switch.
 710 */
 711void relay_flush(struct rchan *chan)
 712{
 713        unsigned int i;
 714
 715        if (!chan)
 716                return;
 717
 718        if (chan->is_global && chan->buf[0]) {
 719                relay_switch_subbuf(chan->buf[0], 0);
 720                return;
 721        }
 722
 723        mutex_lock(&relay_channels_mutex);
 724        for_each_possible_cpu(i)
 725                if (chan->buf[i])
 726                        relay_switch_subbuf(chan->buf[i], 0);
 727        mutex_unlock(&relay_channels_mutex);
 728}
 729EXPORT_SYMBOL_GPL(relay_flush);
 730
 731/**
 732 *      relay_file_open - open file op for relay files
 733 *      @inode: the inode
 734 *      @filp: the file
 735 *
 736 *      Increments the channel buffer refcount.
 737 */
 738static int relay_file_open(struct inode *inode, struct file *filp)
 739{
 740        struct rchan_buf *buf = inode->i_private;
 741        kref_get(&buf->kref);
 742        filp->private_data = buf;
 743
 744        return 0;
 745}
 746
 747/**
 748 *      relay_file_mmap - mmap file op for relay files
 749 *      @filp: the file
 750 *      @vma: the vma describing what to map
 751 *
 752 *      Calls upon relay_mmap_buf() to map the file into user space.
 753 */
 754static int relay_file_mmap(struct file *filp, struct vm_area_struct *vma)
 755{
 756        struct rchan_buf *buf = filp->private_data;
 757        return relay_mmap_buf(buf, vma);
 758}
 759
 760/**
 761 *      relay_file_poll - poll file op for relay files
 762 *      @filp: the file
 763 *      @wait: poll table
 764 *
 765 *      Poll implemention.
 766 */
 767static unsigned int relay_file_poll(struct file *filp, poll_table *wait)
 768{
 769        unsigned int mask = 0;
 770        struct rchan_buf *buf = filp->private_data;
 771
 772        if (buf->finalized)
 773                return POLLERR;
 774
 775        if (filp->f_mode & FMODE_READ) {
 776                poll_wait(filp, &buf->read_wait, wait);
 777                if (!relay_buf_empty(buf))
 778                        mask |= POLLIN | POLLRDNORM;
 779        }
 780
 781        return mask;
 782}
 783
 784/**
 785 *      relay_file_release - release file op for relay files
 786 *      @inode: the inode
 787 *      @filp: the file
 788 *
 789 *      Decrements the channel refcount, as the filesystem is
 790 *      no longer using it.
 791 */
 792static int relay_file_release(struct inode *inode, struct file *filp)
 793{
 794        struct rchan_buf *buf = filp->private_data;
 795        kref_put(&buf->kref, relay_remove_buf);
 796
 797        return 0;
 798}
 799
 800/*
 801 *      relay_file_read_consume - update the consumed count for the buffer
 802 */
 803static void relay_file_read_consume(struct rchan_buf *buf,
 804                                    size_t read_pos,
 805                                    size_t bytes_consumed)
 806{
 807        size_t subbuf_size = buf->chan->subbuf_size;
 808        size_t n_subbufs = buf->chan->n_subbufs;
 809        size_t read_subbuf;
 810
 811        if (buf->bytes_consumed + bytes_consumed > subbuf_size) {
 812                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 813                buf->bytes_consumed = 0;
 814        }
 815
 816        buf->bytes_consumed += bytes_consumed;
 817        if (!read_pos)
 818                read_subbuf = buf->subbufs_consumed % n_subbufs;
 819        else
 820                read_subbuf = read_pos / buf->chan->subbuf_size;
 821        if (buf->bytes_consumed + buf->padding[read_subbuf] == subbuf_size) {
 822                if ((read_subbuf == buf->subbufs_produced % n_subbufs) &&
 823                    (buf->offset == subbuf_size))
 824                        return;
 825                relay_subbufs_consumed(buf->chan, buf->cpu, 1);
 826                buf->bytes_consumed = 0;
 827        }
 828}
 829
 830/*
 831 *      relay_file_read_avail - boolean, are there unconsumed bytes available?
 832 */
 833static int relay_file_read_avail(struct rchan_buf *buf, size_t read_pos)
 834{
 835        size_t subbuf_size = buf->chan->subbuf_size;
 836        size_t n_subbufs = buf->chan->n_subbufs;
 837        size_t produced = buf->subbufs_produced;
 838        size_t consumed = buf->subbufs_consumed;
 839
 840        relay_file_read_consume(buf, read_pos, 0);
 841
 842        if (unlikely(buf->offset > subbuf_size)) {
 843                if (produced == consumed)
 844                        return 0;
 845                return 1;
 846        }
 847
 848        if (unlikely(produced - consumed >= n_subbufs)) {
 849                consumed = produced - n_subbufs + 1;
 850                buf->subbufs_consumed = consumed;
 851                buf->bytes_consumed = 0;
 852        }
 853
 854        produced = (produced % n_subbufs) * subbuf_size + buf->offset;
 855        consumed = (consumed % n_subbufs) * subbuf_size + buf->bytes_consumed;
 856
 857        if (consumed > produced)
 858                produced += n_subbufs * subbuf_size;
 859
 860        if (consumed == produced)
 861                return 0;
 862
 863        return 1;
 864}
 865
 866/**
 867 *      relay_file_read_subbuf_avail - return bytes available in sub-buffer
 868 *      @read_pos: file read position
 869 *      @buf: relay channel buffer
 870 */
 871static size_t relay_file_read_subbuf_avail(size_t read_pos,
 872                                           struct rchan_buf *buf)
 873{
 874        size_t padding, avail = 0;
 875        size_t read_subbuf, read_offset, write_subbuf, write_offset;
 876        size_t subbuf_size = buf->chan->subbuf_size;
 877
 878        write_subbuf = (buf->data - buf->start) / subbuf_size;
 879        write_offset = buf->offset > subbuf_size ? subbuf_size : buf->offset;
 880        read_subbuf = read_pos / subbuf_size;
 881        read_offset = read_pos % subbuf_size;
 882        padding = buf->padding[read_subbuf];
 883
 884        if (read_subbuf == write_subbuf) {
 885                if (read_offset + padding < write_offset)
 886                        avail = write_offset - (read_offset + padding);
 887        } else
 888                avail = (subbuf_size - padding) - read_offset;
 889
 890        return avail;
 891}
 892
 893/**
 894 *      relay_file_read_start_pos - find the first available byte to read
 895 *      @read_pos: file read position
 896 *      @buf: relay channel buffer
 897 *
 898 *      If the @read_pos is in the middle of padding, return the
 899 *      position of the first actually available byte, otherwise
 900 *      return the original value.
 901 */
 902static size_t relay_file_read_start_pos(size_t read_pos,
 903                                        struct rchan_buf *buf)
 904{
 905        size_t read_subbuf, padding, padding_start, padding_end;
 906        size_t subbuf_size = buf->chan->subbuf_size;
 907        size_t n_subbufs = buf->chan->n_subbufs;
 908        size_t consumed = buf->subbufs_consumed % n_subbufs;
 909
 910        if (!read_pos)
 911                read_pos = consumed * subbuf_size + buf->bytes_consumed;
 912        read_subbuf = read_pos / subbuf_size;
 913        padding = buf->padding[read_subbuf];
 914        padding_start = (read_subbuf + 1) * subbuf_size - padding;
 915        padding_end = (read_subbuf + 1) * subbuf_size;
 916        if (read_pos >= padding_start && read_pos < padding_end) {
 917                read_subbuf = (read_subbuf + 1) % n_subbufs;
 918                read_pos = read_subbuf * subbuf_size;
 919        }
 920
 921        return read_pos;
 922}
 923
 924/**
 925 *      relay_file_read_end_pos - return the new read position
 926 *      @read_pos: file read position
 927 *      @buf: relay channel buffer
 928 *      @count: number of bytes to be read
 929 */
 930static size_t relay_file_read_end_pos(struct rchan_buf *buf,
 931                                      size_t read_pos,
 932                                      size_t count)
 933{
 934        size_t read_subbuf, padding, end_pos;
 935        size_t subbuf_size = buf->chan->subbuf_size;
 936        size_t n_subbufs = buf->chan->n_subbufs;
 937
 938        read_subbuf = read_pos / subbuf_size;
 939        padding = buf->padding[read_subbuf];
 940        if (read_pos % subbuf_size + count + padding == subbuf_size)
 941                end_pos = (read_subbuf + 1) * subbuf_size;
 942        else
 943                end_pos = read_pos + count;
 944        if (end_pos >= subbuf_size * n_subbufs)
 945                end_pos = 0;
 946
 947        return end_pos;
 948}
 949
 950/*
 951 *      subbuf_read_actor - read up to one subbuf's worth of data
 952 */
 953static int subbuf_read_actor(size_t read_start,
 954                             struct rchan_buf *buf,
 955                             size_t avail,
 956                             read_descriptor_t *desc,
 957                             read_actor_t actor)
 958{
 959        void *from;
 960        int ret = 0;
 961
 962        from = buf->start + read_start;
 963        ret = avail;
 964        if (copy_to_user(desc->arg.buf, from, avail)) {
 965                desc->error = -EFAULT;
 966                ret = 0;
 967        }
 968        desc->arg.data += ret;
 969        desc->written += ret;
 970        desc->count -= ret;
 971
 972        return ret;
 973}
 974
 975typedef int (*subbuf_actor_t) (size_t read_start,
 976                               struct rchan_buf *buf,
 977                               size_t avail,
 978                               read_descriptor_t *desc,
 979                               read_actor_t actor);
 980
 981/*
 982 *      relay_file_read_subbufs - read count bytes, bridging subbuf boundaries
 983 */
 984static ssize_t relay_file_read_subbufs(struct file *filp, loff_t *ppos,
 985                                        subbuf_actor_t subbuf_actor,
 986                                        read_actor_t actor,
 987                                        read_descriptor_t *desc)
 988{
 989        struct rchan_buf *buf = filp->private_data;
 990        size_t read_start, avail;
 991        int ret;
 992
 993        if (!desc->count)
 994                return 0;
 995
 996        mutex_lock(&filp->f_path.dentry->d_inode->i_mutex);
 997        do {
 998                if (!relay_file_read_avail(buf, *ppos))
 999                        break;
1000
1001                read_start = relay_file_read_start_pos(*ppos, buf);
1002                avail = relay_file_read_subbuf_avail(read_start, buf);
1003                if (!avail)
1004                        break;
1005
1006                avail = min(desc->count, avail);
1007                ret = subbuf_actor(read_start, buf, avail, desc, actor);
1008                if (desc->error < 0)
1009                        break;
1010
1011                if (ret) {
1012                        relay_file_read_consume(buf, read_start, ret);
1013                        *ppos = relay_file_read_end_pos(buf, read_start, ret);
1014                }
1015        } while (desc->count && ret);
1016        mutex_unlock(&filp->f_path.dentry->d_inode->i_mutex);
1017
1018        return desc->written;
1019}
1020
1021static ssize_t relay_file_read(struct file *filp,
1022                               char __user *buffer,
1023                               size_t count,
1024                               loff_t *ppos)
1025{
1026        read_descriptor_t desc;
1027        desc.written = 0;
1028        desc.count = count;
1029        desc.arg.buf = buffer;
1030        desc.error = 0;
1031        return relay_file_read_subbufs(filp, ppos, subbuf_read_actor,
1032                                       NULL, &desc);
1033}
1034
1035static void relay_consume_bytes(struct rchan_buf *rbuf, int bytes_consumed)
1036{
1037        rbuf->bytes_consumed += bytes_consumed;
1038
1039        if (rbuf->bytes_consumed >= rbuf->chan->subbuf_size) {
1040                relay_subbufs_consumed(rbuf->chan, rbuf->cpu, 1);
1041                rbuf->bytes_consumed %= rbuf->chan->subbuf_size;
1042        }
1043}
1044
1045static void relay_pipe_buf_release(struct pipe_inode_info *pipe,
1046                                   struct pipe_buffer *buf)
1047{
1048        struct rchan_buf *rbuf;
1049
1050        rbuf = (struct rchan_buf *)page_private(buf->page);
1051        relay_consume_bytes(rbuf, buf->private);
1052}
1053
1054static struct pipe_buf_operations relay_pipe_buf_ops = {
1055        .can_merge = 0,
1056        .map = generic_pipe_buf_map,
1057        .unmap = generic_pipe_buf_unmap,
1058        .confirm = generic_pipe_buf_confirm,
1059        .release = relay_pipe_buf_release,
1060        .steal = generic_pipe_buf_steal,
1061        .get = generic_pipe_buf_get,
1062};
1063
1064/*
1065 *      subbuf_splice_actor - splice up to one subbuf's worth of data
1066 */
1067static int subbuf_splice_actor(struct file *in,
1068                               loff_t *ppos,
1069                               struct pipe_inode_info *pipe,
1070                               size_t len,
1071                               unsigned int flags,
1072                               int *nonpad_ret)
1073{
1074        unsigned int pidx, poff, total_len, subbuf_pages, ret;
1075        struct rchan_buf *rbuf = in->private_data;
1076        unsigned int subbuf_size = rbuf->chan->subbuf_size;
1077        uint64_t pos = (uint64_t) *ppos;
1078        uint32_t alloc_size = (uint32_t) rbuf->chan->alloc_size;
1079        size_t read_start = (size_t) do_div(pos, alloc_size);
1080        size_t read_subbuf = read_start / subbuf_size;
1081        size_t padding = rbuf->padding[read_subbuf];
1082        size_t nonpad_end = read_subbuf * subbuf_size + subbuf_size - padding;
1083        struct page *pages[PIPE_BUFFERS];
1084        struct partial_page partial[PIPE_BUFFERS];
1085        struct splice_pipe_desc spd = {
1086                .pages = pages,
1087                .nr_pages = 0,
1088                .partial = partial,
1089                .flags = flags,
1090                .ops = &relay_pipe_buf_ops,
1091        };
1092
1093        if (rbuf->subbufs_produced == rbuf->subbufs_consumed)
1094                return 0;
1095
1096        /*
1097         * Adjust read len, if longer than what is available
1098         */
1099        if (len > (subbuf_size - read_start % subbuf_size))
1100                len = subbuf_size - read_start % subbuf_size;
1101
1102        subbuf_pages = rbuf->chan->alloc_size >> PAGE_SHIFT;
1103        pidx = (read_start / PAGE_SIZE) % subbuf_pages;
1104        poff = read_start & ~PAGE_MASK;
1105
1106        for (total_len = 0; spd.nr_pages < subbuf_pages; spd.nr_pages++) {
1107                unsigned int this_len, this_end, private;
1108                unsigned int cur_pos = read_start + total_len;
1109
1110                if (!len)
1111                        break;
1112
1113                this_len = min_t(unsigned long, len, PAGE_SIZE - poff);
1114                private = this_len;
1115
1116                spd.pages[spd.nr_pages] = rbuf->page_array[pidx];
1117                spd.partial[spd.nr_pages].offset = poff;
1118
1119                this_end = cur_pos + this_len;
1120                if (this_end >= nonpad_end) {
1121                        this_len = nonpad_end - cur_pos;
1122                        private = this_len + padding;
1123                }
1124                spd.partial[spd.nr_pages].len = this_len;
1125                spd.partial[spd.nr_pages].private = private;
1126
1127                len -= this_len;
1128                total_len += this_len;
1129                poff = 0;
1130                pidx = (pidx + 1) % subbuf_pages;
1131
1132                if (this_end >= nonpad_end) {
1133                        spd.nr_pages++;
1134                        break;
1135                }
1136        }
1137
1138        if (!spd.nr_pages)
1139                return 0;
1140
1141        ret = *nonpad_ret = splice_to_pipe(pipe, &spd);
1142        if (ret < 0 || ret < total_len)
1143                return ret;
1144
1145        if (read_start + ret == nonpad_end)
1146                ret += padding;
1147
1148        return ret;
1149}
1150
1151static ssize_t relay_file_splice_read(struct file *in,
1152                                      loff_t *ppos,
1153                                      struct pipe_inode_info *pipe,
1154                                      size_t len,
1155                                      unsigned int flags)
1156{
1157        ssize_t spliced;
1158        int ret;
1159        int nonpad_ret = 0;
1160
1161        ret = 0;
1162        spliced = 0;
1163
1164        while (len) {
1165                ret = subbuf_splice_actor(in, ppos, pipe, len, flags, &nonpad_ret);
1166                if (ret < 0)
1167                        break;
1168                else if (!ret) {
1169                        if (spliced)
1170                                break;
1171                        if (flags & SPLICE_F_NONBLOCK) {
1172                                ret = -EAGAIN;
1173                                break;
1174                        }
1175                }
1176
1177                *ppos += ret;
1178                if (ret > len)
1179                        len = 0;
1180                else
1181                        len -= ret;
1182                spliced += nonpad_ret;
1183                nonpad_ret = 0;
1184        }
1185
1186        if (spliced)
1187                return spliced;
1188
1189        return ret;
1190}
1191
1192const struct file_operations relay_file_operations = {
1193        .open           = relay_file_open,
1194        .poll           = relay_file_poll,
1195        .mmap           = relay_file_mmap,
1196        .read           = relay_file_read,
1197        .llseek         = no_llseek,
1198        .release        = relay_file_release,
1199        .splice_read    = relay_file_splice_read,
1200};
1201EXPORT_SYMBOL_GPL(relay_file_operations);
1202
1203static __init int relay_init(void)
1204{
1205
1206        hotcpu_notifier(relay_hotcpu_callback, 0);
1207        return 0;
1208}
1209
1210module_init(relay_init);
1211