linux/kernel/rtmutex.c
<<
>>
Prefs
   1/*
   2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
   3 *
   4 * started by Ingo Molnar and Thomas Gleixner.
   5 *
   6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
   8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
   9 *  Copyright (C) 2006 Esben Nielsen
  10 *
  11 *  See Documentation/rt-mutex-design.txt for details.
  12 */
  13#include <linux/spinlock.h>
  14#include <linux/module.h>
  15#include <linux/sched.h>
  16#include <linux/timer.h>
  17
  18#include "rtmutex_common.h"
  19
  20/*
  21 * lock->owner state tracking:
  22 *
  23 * lock->owner holds the task_struct pointer of the owner. Bit 0 and 1
  24 * are used to keep track of the "owner is pending" and "lock has
  25 * waiters" state.
  26 *
  27 * owner        bit1    bit0
  28 * NULL         0       0       lock is free (fast acquire possible)
  29 * NULL         0       1       invalid state
  30 * NULL         1       0       Transitional State*
  31 * NULL         1       1       invalid state
  32 * taskpointer  0       0       lock is held (fast release possible)
  33 * taskpointer  0       1       task is pending owner
  34 * taskpointer  1       0       lock is held and has waiters
  35 * taskpointer  1       1       task is pending owner and lock has more waiters
  36 *
  37 * Pending ownership is assigned to the top (highest priority)
  38 * waiter of the lock, when the lock is released. The thread is woken
  39 * up and can now take the lock. Until the lock is taken (bit 0
  40 * cleared) a competing higher priority thread can steal the lock
  41 * which puts the woken up thread back on the waiters list.
  42 *
  43 * The fast atomic compare exchange based acquire and release is only
  44 * possible when bit 0 and 1 of lock->owner are 0.
  45 *
  46 * (*) There's a small time where the owner can be NULL and the
  47 * "lock has waiters" bit is set.  This can happen when grabbing the lock.
  48 * To prevent a cmpxchg of the owner releasing the lock, we need to set this
  49 * bit before looking at the lock, hence the reason this is a transitional
  50 * state.
  51 */
  52
  53static void
  54rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner,
  55                   unsigned long mask)
  56{
  57        unsigned long val = (unsigned long)owner | mask;
  58
  59        if (rt_mutex_has_waiters(lock))
  60                val |= RT_MUTEX_HAS_WAITERS;
  61
  62        lock->owner = (struct task_struct *)val;
  63}
  64
  65static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
  66{
  67        lock->owner = (struct task_struct *)
  68                        ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
  69}
  70
  71static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
  72{
  73        if (!rt_mutex_has_waiters(lock))
  74                clear_rt_mutex_waiters(lock);
  75}
  76
  77/*
  78 * We can speed up the acquire/release, if the architecture
  79 * supports cmpxchg and if there's no debugging state to be set up
  80 */
  81#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
  82# define rt_mutex_cmpxchg(l,c,n)        (cmpxchg(&l->owner, c, n) == c)
  83static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
  84{
  85        unsigned long owner, *p = (unsigned long *) &lock->owner;
  86
  87        do {
  88                owner = *p;
  89        } while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
  90}
  91#else
  92# define rt_mutex_cmpxchg(l,c,n)        (0)
  93static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
  94{
  95        lock->owner = (struct task_struct *)
  96                        ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
  97}
  98#endif
  99
 100/*
 101 * Calculate task priority from the waiter list priority
 102 *
 103 * Return task->normal_prio when the waiter list is empty or when
 104 * the waiter is not allowed to do priority boosting
 105 */
 106int rt_mutex_getprio(struct task_struct *task)
 107{
 108        if (likely(!task_has_pi_waiters(task)))
 109                return task->normal_prio;
 110
 111        return min(task_top_pi_waiter(task)->pi_list_entry.prio,
 112                   task->normal_prio);
 113}
 114
 115/*
 116 * Adjust the priority of a task, after its pi_waiters got modified.
 117 *
 118 * This can be both boosting and unboosting. task->pi_lock must be held.
 119 */
 120static void __rt_mutex_adjust_prio(struct task_struct *task)
 121{
 122        int prio = rt_mutex_getprio(task);
 123
 124        if (task->prio != prio)
 125                rt_mutex_setprio(task, prio);
 126}
 127
 128/*
 129 * Adjust task priority (undo boosting). Called from the exit path of
 130 * rt_mutex_slowunlock() and rt_mutex_slowlock().
 131 *
 132 * (Note: We do this outside of the protection of lock->wait_lock to
 133 * allow the lock to be taken while or before we readjust the priority
 134 * of task. We do not use the spin_xx_mutex() variants here as we are
 135 * outside of the debug path.)
 136 */
 137static void rt_mutex_adjust_prio(struct task_struct *task)
 138{
 139        unsigned long flags;
 140
 141        spin_lock_irqsave(&task->pi_lock, flags);
 142        __rt_mutex_adjust_prio(task);
 143        spin_unlock_irqrestore(&task->pi_lock, flags);
 144}
 145
 146/*
 147 * Max number of times we'll walk the boosting chain:
 148 */
 149int max_lock_depth = 1024;
 150
 151/*
 152 * Adjust the priority chain. Also used for deadlock detection.
 153 * Decreases task's usage by one - may thus free the task.
 154 * Returns 0 or -EDEADLK.
 155 */
 156static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 157                                      int deadlock_detect,
 158                                      struct rt_mutex *orig_lock,
 159                                      struct rt_mutex_waiter *orig_waiter,
 160                                      struct task_struct *top_task)
 161{
 162        struct rt_mutex *lock;
 163        struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
 164        int detect_deadlock, ret = 0, depth = 0;
 165        unsigned long flags;
 166
 167        detect_deadlock = debug_rt_mutex_detect_deadlock(orig_waiter,
 168                                                         deadlock_detect);
 169
 170        /*
 171         * The (de)boosting is a step by step approach with a lot of
 172         * pitfalls. We want this to be preemptible and we want hold a
 173         * maximum of two locks per step. So we have to check
 174         * carefully whether things change under us.
 175         */
 176 again:
 177        if (++depth > max_lock_depth) {
 178                static int prev_max;
 179
 180                /*
 181                 * Print this only once. If the admin changes the limit,
 182                 * print a new message when reaching the limit again.
 183                 */
 184                if (prev_max != max_lock_depth) {
 185                        prev_max = max_lock_depth;
 186                        printk(KERN_WARNING "Maximum lock depth %d reached "
 187                               "task: %s (%d)\n", max_lock_depth,
 188                               top_task->comm, task_pid_nr(top_task));
 189                }
 190                put_task_struct(task);
 191
 192                return deadlock_detect ? -EDEADLK : 0;
 193        }
 194 retry:
 195        /*
 196         * Task can not go away as we did a get_task() before !
 197         */
 198        spin_lock_irqsave(&task->pi_lock, flags);
 199
 200        waiter = task->pi_blocked_on;
 201        /*
 202         * Check whether the end of the boosting chain has been
 203         * reached or the state of the chain has changed while we
 204         * dropped the locks.
 205         */
 206        if (!waiter || !waiter->task)
 207                goto out_unlock_pi;
 208
 209        /*
 210         * Check the orig_waiter state. After we dropped the locks,
 211         * the previous owner of the lock might have released the lock
 212         * and made us the pending owner:
 213         */
 214        if (orig_waiter && !orig_waiter->task)
 215                goto out_unlock_pi;
 216
 217        /*
 218         * Drop out, when the task has no waiters. Note,
 219         * top_waiter can be NULL, when we are in the deboosting
 220         * mode!
 221         */
 222        if (top_waiter && (!task_has_pi_waiters(task) ||
 223                           top_waiter != task_top_pi_waiter(task)))
 224                goto out_unlock_pi;
 225
 226        /*
 227         * When deadlock detection is off then we check, if further
 228         * priority adjustment is necessary.
 229         */
 230        if (!detect_deadlock && waiter->list_entry.prio == task->prio)
 231                goto out_unlock_pi;
 232
 233        lock = waiter->lock;
 234        if (!spin_trylock(&lock->wait_lock)) {
 235                spin_unlock_irqrestore(&task->pi_lock, flags);
 236                cpu_relax();
 237                goto retry;
 238        }
 239
 240        /* Deadlock detection */
 241        if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
 242                debug_rt_mutex_deadlock(deadlock_detect, orig_waiter, lock);
 243                spin_unlock(&lock->wait_lock);
 244                ret = deadlock_detect ? -EDEADLK : 0;
 245                goto out_unlock_pi;
 246        }
 247
 248        top_waiter = rt_mutex_top_waiter(lock);
 249
 250        /* Requeue the waiter */
 251        plist_del(&waiter->list_entry, &lock->wait_list);
 252        waiter->list_entry.prio = task->prio;
 253        plist_add(&waiter->list_entry, &lock->wait_list);
 254
 255        /* Release the task */
 256        spin_unlock_irqrestore(&task->pi_lock, flags);
 257        put_task_struct(task);
 258
 259        /* Grab the next task */
 260        task = rt_mutex_owner(lock);
 261        get_task_struct(task);
 262        spin_lock_irqsave(&task->pi_lock, flags);
 263
 264        if (waiter == rt_mutex_top_waiter(lock)) {
 265                /* Boost the owner */
 266                plist_del(&top_waiter->pi_list_entry, &task->pi_waiters);
 267                waiter->pi_list_entry.prio = waiter->list_entry.prio;
 268                plist_add(&waiter->pi_list_entry, &task->pi_waiters);
 269                __rt_mutex_adjust_prio(task);
 270
 271        } else if (top_waiter == waiter) {
 272                /* Deboost the owner */
 273                plist_del(&waiter->pi_list_entry, &task->pi_waiters);
 274                waiter = rt_mutex_top_waiter(lock);
 275                waiter->pi_list_entry.prio = waiter->list_entry.prio;
 276                plist_add(&waiter->pi_list_entry, &task->pi_waiters);
 277                __rt_mutex_adjust_prio(task);
 278        }
 279
 280        spin_unlock_irqrestore(&task->pi_lock, flags);
 281
 282        top_waiter = rt_mutex_top_waiter(lock);
 283        spin_unlock(&lock->wait_lock);
 284
 285        if (!detect_deadlock && waiter != top_waiter)
 286                goto out_put_task;
 287
 288        goto again;
 289
 290 out_unlock_pi:
 291        spin_unlock_irqrestore(&task->pi_lock, flags);
 292 out_put_task:
 293        put_task_struct(task);
 294
 295        return ret;
 296}
 297
 298/*
 299 * Optimization: check if we can steal the lock from the
 300 * assigned pending owner [which might not have taken the
 301 * lock yet]:
 302 */
 303static inline int try_to_steal_lock(struct rt_mutex *lock)
 304{
 305        struct task_struct *pendowner = rt_mutex_owner(lock);
 306        struct rt_mutex_waiter *next;
 307        unsigned long flags;
 308
 309        if (!rt_mutex_owner_pending(lock))
 310                return 0;
 311
 312        if (pendowner == current)
 313                return 1;
 314
 315        spin_lock_irqsave(&pendowner->pi_lock, flags);
 316        if (current->prio >= pendowner->prio) {
 317                spin_unlock_irqrestore(&pendowner->pi_lock, flags);
 318                return 0;
 319        }
 320
 321        /*
 322         * Check if a waiter is enqueued on the pending owners
 323         * pi_waiters list. Remove it and readjust pending owners
 324         * priority.
 325         */
 326        if (likely(!rt_mutex_has_waiters(lock))) {
 327                spin_unlock_irqrestore(&pendowner->pi_lock, flags);
 328                return 1;
 329        }
 330
 331        /* No chain handling, pending owner is not blocked on anything: */
 332        next = rt_mutex_top_waiter(lock);
 333        plist_del(&next->pi_list_entry, &pendowner->pi_waiters);
 334        __rt_mutex_adjust_prio(pendowner);
 335        spin_unlock_irqrestore(&pendowner->pi_lock, flags);
 336
 337        /*
 338         * We are going to steal the lock and a waiter was
 339         * enqueued on the pending owners pi_waiters queue. So
 340         * we have to enqueue this waiter into
 341         * current->pi_waiters list. This covers the case,
 342         * where current is boosted because it holds another
 343         * lock and gets unboosted because the booster is
 344         * interrupted, so we would delay a waiter with higher
 345         * priority as current->normal_prio.
 346         *
 347         * Note: in the rare case of a SCHED_OTHER task changing
 348         * its priority and thus stealing the lock, next->task
 349         * might be current:
 350         */
 351        if (likely(next->task != current)) {
 352                spin_lock_irqsave(&current->pi_lock, flags);
 353                plist_add(&next->pi_list_entry, &current->pi_waiters);
 354                __rt_mutex_adjust_prio(current);
 355                spin_unlock_irqrestore(&current->pi_lock, flags);
 356        }
 357        return 1;
 358}
 359
 360/*
 361 * Try to take an rt-mutex
 362 *
 363 * This fails
 364 * - when the lock has a real owner
 365 * - when a different pending owner exists and has higher priority than current
 366 *
 367 * Must be called with lock->wait_lock held.
 368 */
 369static int try_to_take_rt_mutex(struct rt_mutex *lock)
 370{
 371        /*
 372         * We have to be careful here if the atomic speedups are
 373         * enabled, such that, when
 374         *  - no other waiter is on the lock
 375         *  - the lock has been released since we did the cmpxchg
 376         * the lock can be released or taken while we are doing the
 377         * checks and marking the lock with RT_MUTEX_HAS_WAITERS.
 378         *
 379         * The atomic acquire/release aware variant of
 380         * mark_rt_mutex_waiters uses a cmpxchg loop. After setting
 381         * the WAITERS bit, the atomic release / acquire can not
 382         * happen anymore and lock->wait_lock protects us from the
 383         * non-atomic case.
 384         *
 385         * Note, that this might set lock->owner =
 386         * RT_MUTEX_HAS_WAITERS in the case the lock is not contended
 387         * any more. This is fixed up when we take the ownership.
 388         * This is the transitional state explained at the top of this file.
 389         */
 390        mark_rt_mutex_waiters(lock);
 391
 392        if (rt_mutex_owner(lock) && !try_to_steal_lock(lock))
 393                return 0;
 394
 395        /* We got the lock. */
 396        debug_rt_mutex_lock(lock);
 397
 398        rt_mutex_set_owner(lock, current, 0);
 399
 400        rt_mutex_deadlock_account_lock(lock, current);
 401
 402        return 1;
 403}
 404
 405/*
 406 * Task blocks on lock.
 407 *
 408 * Prepare waiter and propagate pi chain
 409 *
 410 * This must be called with lock->wait_lock held.
 411 */
 412static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 413                                   struct rt_mutex_waiter *waiter,
 414                                   int detect_deadlock)
 415{
 416        struct task_struct *owner = rt_mutex_owner(lock);
 417        struct rt_mutex_waiter *top_waiter = waiter;
 418        unsigned long flags;
 419        int chain_walk = 0, res;
 420
 421        spin_lock_irqsave(&current->pi_lock, flags);
 422        __rt_mutex_adjust_prio(current);
 423        waiter->task = current;
 424        waiter->lock = lock;
 425        plist_node_init(&waiter->list_entry, current->prio);
 426        plist_node_init(&waiter->pi_list_entry, current->prio);
 427
 428        /* Get the top priority waiter on the lock */
 429        if (rt_mutex_has_waiters(lock))
 430                top_waiter = rt_mutex_top_waiter(lock);
 431        plist_add(&waiter->list_entry, &lock->wait_list);
 432
 433        current->pi_blocked_on = waiter;
 434
 435        spin_unlock_irqrestore(&current->pi_lock, flags);
 436
 437        if (waiter == rt_mutex_top_waiter(lock)) {
 438                spin_lock_irqsave(&owner->pi_lock, flags);
 439                plist_del(&top_waiter->pi_list_entry, &owner->pi_waiters);
 440                plist_add(&waiter->pi_list_entry, &owner->pi_waiters);
 441
 442                __rt_mutex_adjust_prio(owner);
 443                if (owner->pi_blocked_on)
 444                        chain_walk = 1;
 445                spin_unlock_irqrestore(&owner->pi_lock, flags);
 446        }
 447        else if (debug_rt_mutex_detect_deadlock(waiter, detect_deadlock))
 448                chain_walk = 1;
 449
 450        if (!chain_walk)
 451                return 0;
 452
 453        /*
 454         * The owner can't disappear while holding a lock,
 455         * so the owner struct is protected by wait_lock.
 456         * Gets dropped in rt_mutex_adjust_prio_chain()!
 457         */
 458        get_task_struct(owner);
 459
 460        spin_unlock(&lock->wait_lock);
 461
 462        res = rt_mutex_adjust_prio_chain(owner, detect_deadlock, lock, waiter,
 463                                         current);
 464
 465        spin_lock(&lock->wait_lock);
 466
 467        return res;
 468}
 469
 470/*
 471 * Wake up the next waiter on the lock.
 472 *
 473 * Remove the top waiter from the current tasks waiter list and from
 474 * the lock waiter list. Set it as pending owner. Then wake it up.
 475 *
 476 * Called with lock->wait_lock held.
 477 */
 478static void wakeup_next_waiter(struct rt_mutex *lock)
 479{
 480        struct rt_mutex_waiter *waiter;
 481        struct task_struct *pendowner;
 482        unsigned long flags;
 483
 484        spin_lock_irqsave(&current->pi_lock, flags);
 485
 486        waiter = rt_mutex_top_waiter(lock);
 487        plist_del(&waiter->list_entry, &lock->wait_list);
 488
 489        /*
 490         * Remove it from current->pi_waiters. We do not adjust a
 491         * possible priority boost right now. We execute wakeup in the
 492         * boosted mode and go back to normal after releasing
 493         * lock->wait_lock.
 494         */
 495        plist_del(&waiter->pi_list_entry, &current->pi_waiters);
 496        pendowner = waiter->task;
 497        waiter->task = NULL;
 498
 499        rt_mutex_set_owner(lock, pendowner, RT_MUTEX_OWNER_PENDING);
 500
 501        spin_unlock_irqrestore(&current->pi_lock, flags);
 502
 503        /*
 504         * Clear the pi_blocked_on variable and enqueue a possible
 505         * waiter into the pi_waiters list of the pending owner. This
 506         * prevents that in case the pending owner gets unboosted a
 507         * waiter with higher priority than pending-owner->normal_prio
 508         * is blocked on the unboosted (pending) owner.
 509         */
 510        spin_lock_irqsave(&pendowner->pi_lock, flags);
 511
 512        WARN_ON(!pendowner->pi_blocked_on);
 513        WARN_ON(pendowner->pi_blocked_on != waiter);
 514        WARN_ON(pendowner->pi_blocked_on->lock != lock);
 515
 516        pendowner->pi_blocked_on = NULL;
 517
 518        if (rt_mutex_has_waiters(lock)) {
 519                struct rt_mutex_waiter *next;
 520
 521                next = rt_mutex_top_waiter(lock);
 522                plist_add(&next->pi_list_entry, &pendowner->pi_waiters);
 523        }
 524        spin_unlock_irqrestore(&pendowner->pi_lock, flags);
 525
 526        wake_up_process(pendowner);
 527}
 528
 529/*
 530 * Remove a waiter from a lock
 531 *
 532 * Must be called with lock->wait_lock held
 533 */
 534static void remove_waiter(struct rt_mutex *lock,
 535                          struct rt_mutex_waiter *waiter)
 536{
 537        int first = (waiter == rt_mutex_top_waiter(lock));
 538        struct task_struct *owner = rt_mutex_owner(lock);
 539        unsigned long flags;
 540        int chain_walk = 0;
 541
 542        spin_lock_irqsave(&current->pi_lock, flags);
 543        plist_del(&waiter->list_entry, &lock->wait_list);
 544        waiter->task = NULL;
 545        current->pi_blocked_on = NULL;
 546        spin_unlock_irqrestore(&current->pi_lock, flags);
 547
 548        if (first && owner != current) {
 549
 550                spin_lock_irqsave(&owner->pi_lock, flags);
 551
 552                plist_del(&waiter->pi_list_entry, &owner->pi_waiters);
 553
 554                if (rt_mutex_has_waiters(lock)) {
 555                        struct rt_mutex_waiter *next;
 556
 557                        next = rt_mutex_top_waiter(lock);
 558                        plist_add(&next->pi_list_entry, &owner->pi_waiters);
 559                }
 560                __rt_mutex_adjust_prio(owner);
 561
 562                if (owner->pi_blocked_on)
 563                        chain_walk = 1;
 564
 565                spin_unlock_irqrestore(&owner->pi_lock, flags);
 566        }
 567
 568        WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
 569
 570        if (!chain_walk)
 571                return;
 572
 573        /* gets dropped in rt_mutex_adjust_prio_chain()! */
 574        get_task_struct(owner);
 575
 576        spin_unlock(&lock->wait_lock);
 577
 578        rt_mutex_adjust_prio_chain(owner, 0, lock, NULL, current);
 579
 580        spin_lock(&lock->wait_lock);
 581}
 582
 583/*
 584 * Recheck the pi chain, in case we got a priority setting
 585 *
 586 * Called from sched_setscheduler
 587 */
 588void rt_mutex_adjust_pi(struct task_struct *task)
 589{
 590        struct rt_mutex_waiter *waiter;
 591        unsigned long flags;
 592
 593        spin_lock_irqsave(&task->pi_lock, flags);
 594
 595        waiter = task->pi_blocked_on;
 596        if (!waiter || waiter->list_entry.prio == task->prio) {
 597                spin_unlock_irqrestore(&task->pi_lock, flags);
 598                return;
 599        }
 600
 601        spin_unlock_irqrestore(&task->pi_lock, flags);
 602
 603        /* gets dropped in rt_mutex_adjust_prio_chain()! */
 604        get_task_struct(task);
 605        rt_mutex_adjust_prio_chain(task, 0, NULL, NULL, task);
 606}
 607
 608/*
 609 * Slow path lock function:
 610 */
 611static int __sched
 612rt_mutex_slowlock(struct rt_mutex *lock, int state,
 613                  struct hrtimer_sleeper *timeout,
 614                  int detect_deadlock)
 615{
 616        struct rt_mutex_waiter waiter;
 617        int ret = 0;
 618
 619        debug_rt_mutex_init_waiter(&waiter);
 620        waiter.task = NULL;
 621
 622        spin_lock(&lock->wait_lock);
 623
 624        /* Try to acquire the lock again: */
 625        if (try_to_take_rt_mutex(lock)) {
 626                spin_unlock(&lock->wait_lock);
 627                return 0;
 628        }
 629
 630        set_current_state(state);
 631
 632        /* Setup the timer, when timeout != NULL */
 633        if (unlikely(timeout))
 634                hrtimer_start(&timeout->timer, timeout->timer.expires,
 635                              HRTIMER_MODE_ABS);
 636
 637        for (;;) {
 638                /* Try to acquire the lock: */
 639                if (try_to_take_rt_mutex(lock))
 640                        break;
 641
 642                /*
 643                 * TASK_INTERRUPTIBLE checks for signals and
 644                 * timeout. Ignored otherwise.
 645                 */
 646                if (unlikely(state == TASK_INTERRUPTIBLE)) {
 647                        /* Signal pending? */
 648                        if (signal_pending(current))
 649                                ret = -EINTR;
 650                        if (timeout && !timeout->task)
 651                                ret = -ETIMEDOUT;
 652                        if (ret)
 653                                break;
 654                }
 655
 656                /*
 657                 * waiter.task is NULL the first time we come here and
 658                 * when we have been woken up by the previous owner
 659                 * but the lock got stolen by a higher prio task.
 660                 */
 661                if (!waiter.task) {
 662                        ret = task_blocks_on_rt_mutex(lock, &waiter,
 663                                                      detect_deadlock);
 664                        /*
 665                         * If we got woken up by the owner then start loop
 666                         * all over without going into schedule to try
 667                         * to get the lock now:
 668                         */
 669                        if (unlikely(!waiter.task)) {
 670                                /*
 671                                 * Reset the return value. We might
 672                                 * have returned with -EDEADLK and the
 673                                 * owner released the lock while we
 674                                 * were walking the pi chain.
 675                                 */
 676                                ret = 0;
 677                                continue;
 678                        }
 679                        if (unlikely(ret))
 680                                break;
 681                }
 682
 683                spin_unlock(&lock->wait_lock);
 684
 685                debug_rt_mutex_print_deadlock(&waiter);
 686
 687                if (waiter.task)
 688                        schedule_rt_mutex(lock);
 689
 690                spin_lock(&lock->wait_lock);
 691                set_current_state(state);
 692        }
 693
 694        set_current_state(TASK_RUNNING);
 695
 696        if (unlikely(waiter.task))
 697                remove_waiter(lock, &waiter);
 698
 699        /*
 700         * try_to_take_rt_mutex() sets the waiter bit
 701         * unconditionally. We might have to fix that up.
 702         */
 703        fixup_rt_mutex_waiters(lock);
 704
 705        spin_unlock(&lock->wait_lock);
 706
 707        /* Remove pending timer: */
 708        if (unlikely(timeout))
 709                hrtimer_cancel(&timeout->timer);
 710
 711        /*
 712         * Readjust priority, when we did not get the lock. We might
 713         * have been the pending owner and boosted. Since we did not
 714         * take the lock, the PI boost has to go.
 715         */
 716        if (unlikely(ret))
 717                rt_mutex_adjust_prio(current);
 718
 719        debug_rt_mutex_free_waiter(&waiter);
 720
 721        return ret;
 722}
 723
 724/*
 725 * Slow path try-lock function:
 726 */
 727static inline int
 728rt_mutex_slowtrylock(struct rt_mutex *lock)
 729{
 730        int ret = 0;
 731
 732        spin_lock(&lock->wait_lock);
 733
 734        if (likely(rt_mutex_owner(lock) != current)) {
 735
 736                ret = try_to_take_rt_mutex(lock);
 737                /*
 738                 * try_to_take_rt_mutex() sets the lock waiters
 739                 * bit unconditionally. Clean this up.
 740                 */
 741                fixup_rt_mutex_waiters(lock);
 742        }
 743
 744        spin_unlock(&lock->wait_lock);
 745
 746        return ret;
 747}
 748
 749/*
 750 * Slow path to release a rt-mutex:
 751 */
 752static void __sched
 753rt_mutex_slowunlock(struct rt_mutex *lock)
 754{
 755        spin_lock(&lock->wait_lock);
 756
 757        debug_rt_mutex_unlock(lock);
 758
 759        rt_mutex_deadlock_account_unlock(current);
 760
 761        if (!rt_mutex_has_waiters(lock)) {
 762                lock->owner = NULL;
 763                spin_unlock(&lock->wait_lock);
 764                return;
 765        }
 766
 767        wakeup_next_waiter(lock);
 768
 769        spin_unlock(&lock->wait_lock);
 770
 771        /* Undo pi boosting if necessary: */
 772        rt_mutex_adjust_prio(current);
 773}
 774
 775/*
 776 * debug aware fast / slowpath lock,trylock,unlock
 777 *
 778 * The atomic acquire/release ops are compiled away, when either the
 779 * architecture does not support cmpxchg or when debugging is enabled.
 780 */
 781static inline int
 782rt_mutex_fastlock(struct rt_mutex *lock, int state,
 783                  int detect_deadlock,
 784                  int (*slowfn)(struct rt_mutex *lock, int state,
 785                                struct hrtimer_sleeper *timeout,
 786                                int detect_deadlock))
 787{
 788        if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
 789                rt_mutex_deadlock_account_lock(lock, current);
 790                return 0;
 791        } else
 792                return slowfn(lock, state, NULL, detect_deadlock);
 793}
 794
 795static inline int
 796rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
 797                        struct hrtimer_sleeper *timeout, int detect_deadlock,
 798                        int (*slowfn)(struct rt_mutex *lock, int state,
 799                                      struct hrtimer_sleeper *timeout,
 800                                      int detect_deadlock))
 801{
 802        if (!detect_deadlock && likely(rt_mutex_cmpxchg(lock, NULL, current))) {
 803                rt_mutex_deadlock_account_lock(lock, current);
 804                return 0;
 805        } else
 806                return slowfn(lock, state, timeout, detect_deadlock);
 807}
 808
 809static inline int
 810rt_mutex_fasttrylock(struct rt_mutex *lock,
 811                     int (*slowfn)(struct rt_mutex *lock))
 812{
 813        if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
 814                rt_mutex_deadlock_account_lock(lock, current);
 815                return 1;
 816        }
 817        return slowfn(lock);
 818}
 819
 820static inline void
 821rt_mutex_fastunlock(struct rt_mutex *lock,
 822                    void (*slowfn)(struct rt_mutex *lock))
 823{
 824        if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
 825                rt_mutex_deadlock_account_unlock(current);
 826        else
 827                slowfn(lock);
 828}
 829
 830/**
 831 * rt_mutex_lock - lock a rt_mutex
 832 *
 833 * @lock: the rt_mutex to be locked
 834 */
 835void __sched rt_mutex_lock(struct rt_mutex *lock)
 836{
 837        might_sleep();
 838
 839        rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, 0, rt_mutex_slowlock);
 840}
 841EXPORT_SYMBOL_GPL(rt_mutex_lock);
 842
 843/**
 844 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
 845 *
 846 * @lock:               the rt_mutex to be locked
 847 * @detect_deadlock:    deadlock detection on/off
 848 *
 849 * Returns:
 850 *  0           on success
 851 * -EINTR       when interrupted by a signal
 852 * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
 853 */
 854int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock,
 855                                                 int detect_deadlock)
 856{
 857        might_sleep();
 858
 859        return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE,
 860                                 detect_deadlock, rt_mutex_slowlock);
 861}
 862EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
 863
 864/**
 865 * rt_mutex_lock_interruptible_ktime - lock a rt_mutex interruptible
 866 *                                     the timeout structure is provided
 867 *                                     by the caller
 868 *
 869 * @lock:               the rt_mutex to be locked
 870 * @timeout:            timeout structure or NULL (no timeout)
 871 * @detect_deadlock:    deadlock detection on/off
 872 *
 873 * Returns:
 874 *  0           on success
 875 * -EINTR       when interrupted by a signal
 876 * -ETIMEOUT    when the timeout expired
 877 * -EDEADLK     when the lock would deadlock (when deadlock detection is on)
 878 */
 879int
 880rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout,
 881                    int detect_deadlock)
 882{
 883        might_sleep();
 884
 885        return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
 886                                       detect_deadlock, rt_mutex_slowlock);
 887}
 888EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
 889
 890/**
 891 * rt_mutex_trylock - try to lock a rt_mutex
 892 *
 893 * @lock:       the rt_mutex to be locked
 894 *
 895 * Returns 1 on success and 0 on contention
 896 */
 897int __sched rt_mutex_trylock(struct rt_mutex *lock)
 898{
 899        return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
 900}
 901EXPORT_SYMBOL_GPL(rt_mutex_trylock);
 902
 903/**
 904 * rt_mutex_unlock - unlock a rt_mutex
 905 *
 906 * @lock: the rt_mutex to be unlocked
 907 */
 908void __sched rt_mutex_unlock(struct rt_mutex *lock)
 909{
 910        rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
 911}
 912EXPORT_SYMBOL_GPL(rt_mutex_unlock);
 913
 914/***
 915 * rt_mutex_destroy - mark a mutex unusable
 916 * @lock: the mutex to be destroyed
 917 *
 918 * This function marks the mutex uninitialized, and any subsequent
 919 * use of the mutex is forbidden. The mutex must not be locked when
 920 * this function is called.
 921 */
 922void rt_mutex_destroy(struct rt_mutex *lock)
 923{
 924        WARN_ON(rt_mutex_is_locked(lock));
 925#ifdef CONFIG_DEBUG_RT_MUTEXES
 926        lock->magic = NULL;
 927#endif
 928}
 929
 930EXPORT_SYMBOL_GPL(rt_mutex_destroy);
 931
 932/**
 933 * __rt_mutex_init - initialize the rt lock
 934 *
 935 * @lock: the rt lock to be initialized
 936 *
 937 * Initialize the rt lock to unlocked state.
 938 *
 939 * Initializing of a locked rt lock is not allowed
 940 */
 941void __rt_mutex_init(struct rt_mutex *lock, const char *name)
 942{
 943        lock->owner = NULL;
 944        spin_lock_init(&lock->wait_lock);
 945        plist_head_init(&lock->wait_list, &lock->wait_lock);
 946
 947        debug_rt_mutex_init(lock, name);
 948}
 949EXPORT_SYMBOL_GPL(__rt_mutex_init);
 950
 951/**
 952 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
 953 *                              proxy owner
 954 *
 955 * @lock:       the rt_mutex to be locked
 956 * @proxy_owner:the task to set as owner
 957 *
 958 * No locking. Caller has to do serializing itself
 959 * Special API call for PI-futex support
 960 */
 961void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
 962                                struct task_struct *proxy_owner)
 963{
 964        __rt_mutex_init(lock, NULL);
 965        debug_rt_mutex_proxy_lock(lock, proxy_owner);
 966        rt_mutex_set_owner(lock, proxy_owner, 0);
 967        rt_mutex_deadlock_account_lock(lock, proxy_owner);
 968}
 969
 970/**
 971 * rt_mutex_proxy_unlock - release a lock on behalf of owner
 972 *
 973 * @lock:       the rt_mutex to be locked
 974 *
 975 * No locking. Caller has to do serializing itself
 976 * Special API call for PI-futex support
 977 */
 978void rt_mutex_proxy_unlock(struct rt_mutex *lock,
 979                           struct task_struct *proxy_owner)
 980{
 981        debug_rt_mutex_proxy_unlock(lock);
 982        rt_mutex_set_owner(lock, NULL, 0);
 983        rt_mutex_deadlock_account_unlock(proxy_owner);
 984}
 985
 986/**
 987 * rt_mutex_next_owner - return the next owner of the lock
 988 *
 989 * @lock: the rt lock query
 990 *
 991 * Returns the next owner of the lock or NULL
 992 *
 993 * Caller has to serialize against other accessors to the lock
 994 * itself.
 995 *
 996 * Special API call for PI-futex support
 997 */
 998struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
 999{
1000        if (!rt_mutex_has_waiters(lock))
1001                return NULL;
1002
1003        return rt_mutex_top_waiter(lock)->task;
1004}
1005