linux/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  This file contains the interface functions for the various
   7 *  time related system calls: time, stime, gettimeofday, settimeofday,
   8 *                             adjtime
   9 */
  10/*
  11 * Modification history kernel/time.c
  12 *
  13 * 1993-09-02    Philip Gladstone
  14 *      Created file with time related functions from sched.c and adjtimex()
  15 * 1993-10-08    Torsten Duwe
  16 *      adjtime interface update and CMOS clock write code
  17 * 1995-08-13    Torsten Duwe
  18 *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
  19 * 1999-01-16    Ulrich Windl
  20 *      Introduced error checking for many cases in adjtimex().
  21 *      Updated NTP code according to technical memorandum Jan '96
  22 *      "A Kernel Model for Precision Timekeeping" by Dave Mills
  23 *      Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
  24 *      (Even though the technical memorandum forbids it)
  25 * 2004-07-14    Christoph Lameter
  26 *      Added getnstimeofday to allow the posix timer functions to return
  27 *      with nanosecond accuracy
  28 */
  29
  30#include <linux/module.h>
  31#include <linux/timex.h>
  32#include <linux/capability.h>
  33#include <linux/clocksource.h>
  34#include <linux/errno.h>
  35#include <linux/syscalls.h>
  36#include <linux/security.h>
  37#include <linux/fs.h>
  38
  39#include <asm/uaccess.h>
  40#include <asm/unistd.h>
  41
  42/*
  43 * The timezone where the local system is located.  Used as a default by some
  44 * programs who obtain this value by using gettimeofday.
  45 */
  46struct timezone sys_tz;
  47
  48EXPORT_SYMBOL(sys_tz);
  49
  50#ifdef __ARCH_WANT_SYS_TIME
  51
  52/*
  53 * sys_time() can be implemented in user-level using
  54 * sys_gettimeofday().  Is this for backwards compatibility?  If so,
  55 * why not move it into the appropriate arch directory (for those
  56 * architectures that need it).
  57 */
  58asmlinkage long sys_time(time_t __user * tloc)
  59{
  60        time_t i = get_seconds();
  61
  62        if (tloc) {
  63                if (put_user(i,tloc))
  64                        i = -EFAULT;
  65        }
  66        return i;
  67}
  68
  69/*
  70 * sys_stime() can be implemented in user-level using
  71 * sys_settimeofday().  Is this for backwards compatibility?  If so,
  72 * why not move it into the appropriate arch directory (for those
  73 * architectures that need it).
  74 */
  75
  76asmlinkage long sys_stime(time_t __user *tptr)
  77{
  78        struct timespec tv;
  79        int err;
  80
  81        if (get_user(tv.tv_sec, tptr))
  82                return -EFAULT;
  83
  84        tv.tv_nsec = 0;
  85
  86        err = security_settime(&tv, NULL);
  87        if (err)
  88                return err;
  89
  90        do_settimeofday(&tv);
  91        return 0;
  92}
  93
  94#endif /* __ARCH_WANT_SYS_TIME */
  95
  96asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  97{
  98        if (likely(tv != NULL)) {
  99                struct timeval ktv;
 100                do_gettimeofday(&ktv);
 101                if (copy_to_user(tv, &ktv, sizeof(ktv)))
 102                        return -EFAULT;
 103        }
 104        if (unlikely(tz != NULL)) {
 105                if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 106                        return -EFAULT;
 107        }
 108        return 0;
 109}
 110
 111/*
 112 * Adjust the time obtained from the CMOS to be UTC time instead of
 113 * local time.
 114 *
 115 * This is ugly, but preferable to the alternatives.  Otherwise we
 116 * would either need to write a program to do it in /etc/rc (and risk
 117 * confusion if the program gets run more than once; it would also be
 118 * hard to make the program warp the clock precisely n hours)  or
 119 * compile in the timezone information into the kernel.  Bad, bad....
 120 *
 121 *                                              - TYT, 1992-01-01
 122 *
 123 * The best thing to do is to keep the CMOS clock in universal time (UTC)
 124 * as real UNIX machines always do it. This avoids all headaches about
 125 * daylight saving times and warping kernel clocks.
 126 */
 127static inline void warp_clock(void)
 128{
 129        write_seqlock_irq(&xtime_lock);
 130        wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60;
 131        xtime.tv_sec += sys_tz.tz_minuteswest * 60;
 132        write_sequnlock_irq(&xtime_lock);
 133        clock_was_set();
 134}
 135
 136/*
 137 * In case for some reason the CMOS clock has not already been running
 138 * in UTC, but in some local time: The first time we set the timezone,
 139 * we will warp the clock so that it is ticking UTC time instead of
 140 * local time. Presumably, if someone is setting the timezone then we
 141 * are running in an environment where the programs understand about
 142 * timezones. This should be done at boot time in the /etc/rc script,
 143 * as soon as possible, so that the clock can be set right. Otherwise,
 144 * various programs will get confused when the clock gets warped.
 145 */
 146
 147int do_sys_settimeofday(struct timespec *tv, struct timezone *tz)
 148{
 149        static int firsttime = 1;
 150        int error = 0;
 151
 152        if (tv && !timespec_valid(tv))
 153                return -EINVAL;
 154
 155        error = security_settime(tv, tz);
 156        if (error)
 157                return error;
 158
 159        if (tz) {
 160                /* SMP safe, global irq locking makes it work. */
 161                sys_tz = *tz;
 162                update_vsyscall_tz();
 163                if (firsttime) {
 164                        firsttime = 0;
 165                        if (!tv)
 166                                warp_clock();
 167                }
 168        }
 169        if (tv)
 170        {
 171                /* SMP safe, again the code in arch/foo/time.c should
 172                 * globally block out interrupts when it runs.
 173                 */
 174                return do_settimeofday(tv);
 175        }
 176        return 0;
 177}
 178
 179asmlinkage long sys_settimeofday(struct timeval __user *tv,
 180                                struct timezone __user *tz)
 181{
 182        struct timeval user_tv;
 183        struct timespec new_ts;
 184        struct timezone new_tz;
 185
 186        if (tv) {
 187                if (copy_from_user(&user_tv, tv, sizeof(*tv)))
 188                        return -EFAULT;
 189                new_ts.tv_sec = user_tv.tv_sec;
 190                new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
 191        }
 192        if (tz) {
 193                if (copy_from_user(&new_tz, tz, sizeof(*tz)))
 194                        return -EFAULT;
 195        }
 196
 197        return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
 198}
 199
 200asmlinkage long sys_adjtimex(struct timex __user *txc_p)
 201{
 202        struct timex txc;               /* Local copy of parameter */
 203        int ret;
 204
 205        /* Copy the user data space into the kernel copy
 206         * structure. But bear in mind that the structures
 207         * may change
 208         */
 209        if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
 210                return -EFAULT;
 211        ret = do_adjtimex(&txc);
 212        return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
 213}
 214
 215/**
 216 * current_fs_time - Return FS time
 217 * @sb: Superblock.
 218 *
 219 * Return the current time truncated to the time granularity supported by
 220 * the fs.
 221 */
 222struct timespec current_fs_time(struct super_block *sb)
 223{
 224        struct timespec now = current_kernel_time();
 225        return timespec_trunc(now, sb->s_time_gran);
 226}
 227EXPORT_SYMBOL(current_fs_time);
 228
 229/*
 230 * Convert jiffies to milliseconds and back.
 231 *
 232 * Avoid unnecessary multiplications/divisions in the
 233 * two most common HZ cases:
 234 */
 235unsigned int inline jiffies_to_msecs(const unsigned long j)
 236{
 237#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 238        return (MSEC_PER_SEC / HZ) * j;
 239#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 240        return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
 241#else
 242        return (j * MSEC_PER_SEC) / HZ;
 243#endif
 244}
 245EXPORT_SYMBOL(jiffies_to_msecs);
 246
 247unsigned int inline jiffies_to_usecs(const unsigned long j)
 248{
 249#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
 250        return (USEC_PER_SEC / HZ) * j;
 251#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
 252        return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
 253#else
 254        return (j * USEC_PER_SEC) / HZ;
 255#endif
 256}
 257EXPORT_SYMBOL(jiffies_to_usecs);
 258
 259/**
 260 * timespec_trunc - Truncate timespec to a granularity
 261 * @t: Timespec
 262 * @gran: Granularity in ns.
 263 *
 264 * Truncate a timespec to a granularity. gran must be smaller than a second.
 265 * Always rounds down.
 266 *
 267 * This function should be only used for timestamps returned by
 268 * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
 269 * it doesn't handle the better resolution of the later.
 270 */
 271struct timespec timespec_trunc(struct timespec t, unsigned gran)
 272{
 273        /*
 274         * Division is pretty slow so avoid it for common cases.
 275         * Currently current_kernel_time() never returns better than
 276         * jiffies resolution. Exploit that.
 277         */
 278        if (gran <= jiffies_to_usecs(1) * 1000) {
 279                /* nothing */
 280        } else if (gran == 1000000000) {
 281                t.tv_nsec = 0;
 282        } else {
 283                t.tv_nsec -= t.tv_nsec % gran;
 284        }
 285        return t;
 286}
 287EXPORT_SYMBOL(timespec_trunc);
 288
 289#ifndef CONFIG_GENERIC_TIME
 290/*
 291 * Simulate gettimeofday using do_gettimeofday which only allows a timeval
 292 * and therefore only yields usec accuracy
 293 */
 294void getnstimeofday(struct timespec *tv)
 295{
 296        struct timeval x;
 297
 298        do_gettimeofday(&x);
 299        tv->tv_sec = x.tv_sec;
 300        tv->tv_nsec = x.tv_usec * NSEC_PER_USEC;
 301}
 302EXPORT_SYMBOL_GPL(getnstimeofday);
 303#endif
 304
 305/* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
 306 * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
 307 * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
 308 *
 309 * [For the Julian calendar (which was used in Russia before 1917,
 310 * Britain & colonies before 1752, anywhere else before 1582,
 311 * and is still in use by some communities) leave out the
 312 * -year/100+year/400 terms, and add 10.]
 313 *
 314 * This algorithm was first published by Gauss (I think).
 315 *
 316 * WARNING: this function will overflow on 2106-02-07 06:28:16 on
 317 * machines were long is 32-bit! (However, as time_t is signed, we
 318 * will already get problems at other places on 2038-01-19 03:14:08)
 319 */
 320unsigned long
 321mktime(const unsigned int year0, const unsigned int mon0,
 322       const unsigned int day, const unsigned int hour,
 323       const unsigned int min, const unsigned int sec)
 324{
 325        unsigned int mon = mon0, year = year0;
 326
 327        /* 1..12 -> 11,12,1..10 */
 328        if (0 >= (int) (mon -= 2)) {
 329                mon += 12;      /* Puts Feb last since it has leap day */
 330                year -= 1;
 331        }
 332
 333        return ((((unsigned long)
 334                  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
 335                  year*365 - 719499
 336            )*24 + hour /* now have hours */
 337          )*60 + min /* now have minutes */
 338        )*60 + sec; /* finally seconds */
 339}
 340
 341EXPORT_SYMBOL(mktime);
 342
 343/**
 344 * set_normalized_timespec - set timespec sec and nsec parts and normalize
 345 *
 346 * @ts:         pointer to timespec variable to be set
 347 * @sec:        seconds to set
 348 * @nsec:       nanoseconds to set
 349 *
 350 * Set seconds and nanoseconds field of a timespec variable and
 351 * normalize to the timespec storage format
 352 *
 353 * Note: The tv_nsec part is always in the range of
 354 *      0 <= tv_nsec < NSEC_PER_SEC
 355 * For negative values only the tv_sec field is negative !
 356 */
 357void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec)
 358{
 359        while (nsec >= NSEC_PER_SEC) {
 360                nsec -= NSEC_PER_SEC;
 361                ++sec;
 362        }
 363        while (nsec < 0) {
 364                nsec += NSEC_PER_SEC;
 365                --sec;
 366        }
 367        ts->tv_sec = sec;
 368        ts->tv_nsec = nsec;
 369}
 370
 371/**
 372 * ns_to_timespec - Convert nanoseconds to timespec
 373 * @nsec:       the nanoseconds value to be converted
 374 *
 375 * Returns the timespec representation of the nsec parameter.
 376 */
 377struct timespec ns_to_timespec(const s64 nsec)
 378{
 379        struct timespec ts;
 380
 381        if (!nsec)
 382                return (struct timespec) {0, 0};
 383
 384        ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec);
 385        if (unlikely(nsec < 0))
 386                set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec);
 387
 388        return ts;
 389}
 390EXPORT_SYMBOL(ns_to_timespec);
 391
 392/**
 393 * ns_to_timeval - Convert nanoseconds to timeval
 394 * @nsec:       the nanoseconds value to be converted
 395 *
 396 * Returns the timeval representation of the nsec parameter.
 397 */
 398struct timeval ns_to_timeval(const s64 nsec)
 399{
 400        struct timespec ts = ns_to_timespec(nsec);
 401        struct timeval tv;
 402
 403        tv.tv_sec = ts.tv_sec;
 404        tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
 405
 406        return tv;
 407}
 408EXPORT_SYMBOL(ns_to_timeval);
 409
 410/*
 411 * When we convert to jiffies then we interpret incoming values
 412 * the following way:
 413 *
 414 * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
 415 *
 416 * - 'too large' values [that would result in larger than
 417 *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
 418 *
 419 * - all other values are converted to jiffies by either multiplying
 420 *   the input value by a factor or dividing it with a factor
 421 *
 422 * We must also be careful about 32-bit overflows.
 423 */
 424unsigned long msecs_to_jiffies(const unsigned int m)
 425{
 426        /*
 427         * Negative value, means infinite timeout:
 428         */
 429        if ((int)m < 0)
 430                return MAX_JIFFY_OFFSET;
 431
 432#if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
 433        /*
 434         * HZ is equal to or smaller than 1000, and 1000 is a nice
 435         * round multiple of HZ, divide with the factor between them,
 436         * but round upwards:
 437         */
 438        return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
 439#elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
 440        /*
 441         * HZ is larger than 1000, and HZ is a nice round multiple of
 442         * 1000 - simply multiply with the factor between them.
 443         *
 444         * But first make sure the multiplication result cannot
 445         * overflow:
 446         */
 447        if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 448                return MAX_JIFFY_OFFSET;
 449
 450        return m * (HZ / MSEC_PER_SEC);
 451#else
 452        /*
 453         * Generic case - multiply, round and divide. But first
 454         * check that if we are doing a net multiplication, that
 455         * we wouldnt overflow:
 456         */
 457        if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
 458                return MAX_JIFFY_OFFSET;
 459
 460        return (m * HZ + MSEC_PER_SEC - 1) / MSEC_PER_SEC;
 461#endif
 462}
 463EXPORT_SYMBOL(msecs_to_jiffies);
 464
 465unsigned long usecs_to_jiffies(const unsigned int u)
 466{
 467        if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
 468                return MAX_JIFFY_OFFSET;
 469#if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
 470        return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
 471#elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
 472        return u * (HZ / USEC_PER_SEC);
 473#else
 474        return (u * HZ + USEC_PER_SEC - 1) / USEC_PER_SEC;
 475#endif
 476}
 477EXPORT_SYMBOL(usecs_to_jiffies);
 478
 479/*
 480 * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
 481 * that a remainder subtract here would not do the right thing as the
 482 * resolution values don't fall on second boundries.  I.e. the line:
 483 * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
 484 *
 485 * Rather, we just shift the bits off the right.
 486 *
 487 * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
 488 * value to a scaled second value.
 489 */
 490unsigned long
 491timespec_to_jiffies(const struct timespec *value)
 492{
 493        unsigned long sec = value->tv_sec;
 494        long nsec = value->tv_nsec + TICK_NSEC - 1;
 495
 496        if (sec >= MAX_SEC_IN_JIFFIES){
 497                sec = MAX_SEC_IN_JIFFIES;
 498                nsec = 0;
 499        }
 500        return (((u64)sec * SEC_CONVERSION) +
 501                (((u64)nsec * NSEC_CONVERSION) >>
 502                 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 503
 504}
 505EXPORT_SYMBOL(timespec_to_jiffies);
 506
 507void
 508jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
 509{
 510        /*
 511         * Convert jiffies to nanoseconds and separate with
 512         * one divide.
 513         */
 514        u64 nsec = (u64)jiffies * TICK_NSEC;
 515        value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &value->tv_nsec);
 516}
 517EXPORT_SYMBOL(jiffies_to_timespec);
 518
 519/* Same for "timeval"
 520 *
 521 * Well, almost.  The problem here is that the real system resolution is
 522 * in nanoseconds and the value being converted is in micro seconds.
 523 * Also for some machines (those that use HZ = 1024, in-particular),
 524 * there is a LARGE error in the tick size in microseconds.
 525
 526 * The solution we use is to do the rounding AFTER we convert the
 527 * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
 528 * Instruction wise, this should cost only an additional add with carry
 529 * instruction above the way it was done above.
 530 */
 531unsigned long
 532timeval_to_jiffies(const struct timeval *value)
 533{
 534        unsigned long sec = value->tv_sec;
 535        long usec = value->tv_usec;
 536
 537        if (sec >= MAX_SEC_IN_JIFFIES){
 538                sec = MAX_SEC_IN_JIFFIES;
 539                usec = 0;
 540        }
 541        return (((u64)sec * SEC_CONVERSION) +
 542                (((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
 543                 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
 544}
 545EXPORT_SYMBOL(timeval_to_jiffies);
 546
 547void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
 548{
 549        /*
 550         * Convert jiffies to nanoseconds and separate with
 551         * one divide.
 552         */
 553        u64 nsec = (u64)jiffies * TICK_NSEC;
 554        long tv_usec;
 555
 556        value->tv_sec = div_long_long_rem(nsec, NSEC_PER_SEC, &tv_usec);
 557        tv_usec /= NSEC_PER_USEC;
 558        value->tv_usec = tv_usec;
 559}
 560EXPORT_SYMBOL(jiffies_to_timeval);
 561
 562/*
 563 * Convert jiffies/jiffies_64 to clock_t and back.
 564 */
 565clock_t jiffies_to_clock_t(long x)
 566{
 567#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 568        return x / (HZ / USER_HZ);
 569#else
 570        u64 tmp = (u64)x * TICK_NSEC;
 571        do_div(tmp, (NSEC_PER_SEC / USER_HZ));
 572        return (long)tmp;
 573#endif
 574}
 575EXPORT_SYMBOL(jiffies_to_clock_t);
 576
 577unsigned long clock_t_to_jiffies(unsigned long x)
 578{
 579#if (HZ % USER_HZ)==0
 580        if (x >= ~0UL / (HZ / USER_HZ))
 581                return ~0UL;
 582        return x * (HZ / USER_HZ);
 583#else
 584        u64 jif;
 585
 586        /* Don't worry about loss of precision here .. */
 587        if (x >= ~0UL / HZ * USER_HZ)
 588                return ~0UL;
 589
 590        /* .. but do try to contain it here */
 591        jif = x * (u64) HZ;
 592        do_div(jif, USER_HZ);
 593        return jif;
 594#endif
 595}
 596EXPORT_SYMBOL(clock_t_to_jiffies);
 597
 598u64 jiffies_64_to_clock_t(u64 x)
 599{
 600#if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
 601        do_div(x, HZ / USER_HZ);
 602#else
 603        /*
 604         * There are better ways that don't overflow early,
 605         * but even this doesn't overflow in hundreds of years
 606         * in 64 bits, so..
 607         */
 608        x *= TICK_NSEC;
 609        do_div(x, (NSEC_PER_SEC / USER_HZ));
 610#endif
 611        return x;
 612}
 613
 614EXPORT_SYMBOL(jiffies_64_to_clock_t);
 615
 616u64 nsec_to_clock_t(u64 x)
 617{
 618#if (NSEC_PER_SEC % USER_HZ) == 0
 619        do_div(x, (NSEC_PER_SEC / USER_HZ));
 620#elif (USER_HZ % 512) == 0
 621        x *= USER_HZ/512;
 622        do_div(x, (NSEC_PER_SEC / 512));
 623#else
 624        /*
 625         * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
 626         * overflow after 64.99 years.
 627         * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
 628         */
 629        x *= 9;
 630        do_div(x, (unsigned long)((9ull * NSEC_PER_SEC + (USER_HZ/2)) /
 631                                  USER_HZ));
 632#endif
 633        return x;
 634}
 635
 636#if (BITS_PER_LONG < 64)
 637u64 get_jiffies_64(void)
 638{
 639        unsigned long seq;
 640        u64 ret;
 641
 642        do {
 643                seq = read_seqbegin(&xtime_lock);
 644                ret = jiffies_64;
 645        } while (read_seqretry(&xtime_lock, seq));
 646        return ret;
 647}
 648
 649EXPORT_SYMBOL(get_jiffies_64);
 650#endif
 651
 652EXPORT_SYMBOL(jiffies);
 653