linux/kernel/time/tick-broadcast.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/time/tick-broadcast.c
   3 *
   4 * This file contains functions which emulate a local clock-event
   5 * device via a broadcast event source.
   6 *
   7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10 *
  11 * This code is licenced under the GPL version 2. For details see
  12 * kernel-base/COPYING.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/irq.h>
  18#include <linux/percpu.h>
  19#include <linux/profile.h>
  20#include <linux/sched.h>
  21#include <linux/tick.h>
  22
  23#include "tick-internal.h"
  24
  25/*
  26 * Broadcast support for broken x86 hardware, where the local apic
  27 * timer stops in C3 state.
  28 */
  29
  30struct tick_device tick_broadcast_device;
  31static cpumask_t tick_broadcast_mask;
  32static DEFINE_SPINLOCK(tick_broadcast_lock);
  33
  34#ifdef CONFIG_TICK_ONESHOT
  35static void tick_broadcast_clear_oneshot(int cpu);
  36#else
  37static inline void tick_broadcast_clear_oneshot(int cpu) { }
  38#endif
  39
  40/*
  41 * Debugging: see timer_list.c
  42 */
  43struct tick_device *tick_get_broadcast_device(void)
  44{
  45        return &tick_broadcast_device;
  46}
  47
  48cpumask_t *tick_get_broadcast_mask(void)
  49{
  50        return &tick_broadcast_mask;
  51}
  52
  53/*
  54 * Start the device in periodic mode
  55 */
  56static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  57{
  58        if (bc)
  59                tick_setup_periodic(bc, 1);
  60}
  61
  62/*
  63 * Check, if the device can be utilized as broadcast device:
  64 */
  65int tick_check_broadcast_device(struct clock_event_device *dev)
  66{
  67        if ((tick_broadcast_device.evtdev &&
  68             tick_broadcast_device.evtdev->rating >= dev->rating) ||
  69             (dev->features & CLOCK_EVT_FEAT_C3STOP))
  70                return 0;
  71
  72        clockevents_exchange_device(NULL, dev);
  73        tick_broadcast_device.evtdev = dev;
  74        if (!cpus_empty(tick_broadcast_mask))
  75                tick_broadcast_start_periodic(dev);
  76        return 1;
  77}
  78
  79/*
  80 * Check, if the device is the broadcast device
  81 */
  82int tick_is_broadcast_device(struct clock_event_device *dev)
  83{
  84        return (dev && tick_broadcast_device.evtdev == dev);
  85}
  86
  87/*
  88 * Check, if the device is disfunctional and a place holder, which
  89 * needs to be handled by the broadcast device.
  90 */
  91int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
  92{
  93        unsigned long flags;
  94        int ret = 0;
  95
  96        spin_lock_irqsave(&tick_broadcast_lock, flags);
  97
  98        /*
  99         * Devices might be registered with both periodic and oneshot
 100         * mode disabled. This signals, that the device needs to be
 101         * operated from the broadcast device and is a placeholder for
 102         * the cpu local device.
 103         */
 104        if (!tick_device_is_functional(dev)) {
 105                dev->event_handler = tick_handle_periodic;
 106                cpu_set(cpu, tick_broadcast_mask);
 107                tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
 108                ret = 1;
 109        } else {
 110                /*
 111                 * When the new device is not affected by the stop
 112                 * feature and the cpu is marked in the broadcast mask
 113                 * then clear the broadcast bit.
 114                 */
 115                if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
 116                        int cpu = smp_processor_id();
 117
 118                        cpu_clear(cpu, tick_broadcast_mask);
 119                        tick_broadcast_clear_oneshot(cpu);
 120                }
 121        }
 122        spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 123        return ret;
 124}
 125
 126/*
 127 * Broadcast the event to the cpus, which are set in the mask
 128 */
 129int tick_do_broadcast(cpumask_t mask)
 130{
 131        int ret = 0, cpu = smp_processor_id();
 132        struct tick_device *td;
 133
 134        /*
 135         * Check, if the current cpu is in the mask
 136         */
 137        if (cpu_isset(cpu, mask)) {
 138                cpu_clear(cpu, mask);
 139                td = &per_cpu(tick_cpu_device, cpu);
 140                td->evtdev->event_handler(td->evtdev);
 141                ret = 1;
 142        }
 143
 144        if (!cpus_empty(mask)) {
 145                /*
 146                 * It might be necessary to actually check whether the devices
 147                 * have different broadcast functions. For now, just use the
 148                 * one of the first device. This works as long as we have this
 149                 * misfeature only on x86 (lapic)
 150                 */
 151                cpu = first_cpu(mask);
 152                td = &per_cpu(tick_cpu_device, cpu);
 153                td->evtdev->broadcast(mask);
 154                ret = 1;
 155        }
 156        return ret;
 157}
 158
 159/*
 160 * Periodic broadcast:
 161 * - invoke the broadcast handlers
 162 */
 163static void tick_do_periodic_broadcast(void)
 164{
 165        cpumask_t mask;
 166
 167        spin_lock(&tick_broadcast_lock);
 168
 169        cpus_and(mask, cpu_online_map, tick_broadcast_mask);
 170        tick_do_broadcast(mask);
 171
 172        spin_unlock(&tick_broadcast_lock);
 173}
 174
 175/*
 176 * Event handler for periodic broadcast ticks
 177 */
 178static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 179{
 180        tick_do_periodic_broadcast();
 181
 182        /*
 183         * The device is in periodic mode. No reprogramming necessary:
 184         */
 185        if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
 186                return;
 187
 188        /*
 189         * Setup the next period for devices, which do not have
 190         * periodic mode:
 191         */
 192        for (;;) {
 193                ktime_t next = ktime_add(dev->next_event, tick_period);
 194
 195                if (!clockevents_program_event(dev, next, ktime_get()))
 196                        return;
 197                tick_do_periodic_broadcast();
 198        }
 199}
 200
 201/*
 202 * Powerstate information: The system enters/leaves a state, where
 203 * affected devices might stop
 204 */
 205static void tick_do_broadcast_on_off(void *why)
 206{
 207        struct clock_event_device *bc, *dev;
 208        struct tick_device *td;
 209        unsigned long flags, *reason = why;
 210        int cpu;
 211
 212        spin_lock_irqsave(&tick_broadcast_lock, flags);
 213
 214        cpu = smp_processor_id();
 215        td = &per_cpu(tick_cpu_device, cpu);
 216        dev = td->evtdev;
 217        bc = tick_broadcast_device.evtdev;
 218
 219        /*
 220         * Is the device not affected by the powerstate ?
 221         */
 222        if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 223                goto out;
 224
 225        if (!tick_device_is_functional(dev))
 226                goto out;
 227
 228        switch (*reason) {
 229        case CLOCK_EVT_NOTIFY_BROADCAST_ON:
 230        case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
 231                if (!cpu_isset(cpu, tick_broadcast_mask)) {
 232                        cpu_set(cpu, tick_broadcast_mask);
 233                        if (td->mode == TICKDEV_MODE_PERIODIC)
 234                                clockevents_set_mode(dev,
 235                                                     CLOCK_EVT_MODE_SHUTDOWN);
 236                }
 237                if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
 238                        dev->features |= CLOCK_EVT_FEAT_DUMMY;
 239                break;
 240        case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
 241                if (cpu_isset(cpu, tick_broadcast_mask)) {
 242                        cpu_clear(cpu, tick_broadcast_mask);
 243                        if (td->mode == TICKDEV_MODE_PERIODIC)
 244                                tick_setup_periodic(dev, 0);
 245                }
 246                break;
 247        }
 248
 249        if (cpus_empty(tick_broadcast_mask))
 250                clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
 251        else {
 252                if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 253                        tick_broadcast_start_periodic(bc);
 254                else
 255                        tick_broadcast_setup_oneshot(bc);
 256        }
 257out:
 258        spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 259}
 260
 261/*
 262 * Powerstate information: The system enters/leaves a state, where
 263 * affected devices might stop.
 264 */
 265void tick_broadcast_on_off(unsigned long reason, int *oncpu)
 266{
 267        if (!cpu_isset(*oncpu, cpu_online_map))
 268                printk(KERN_ERR "tick-braodcast: ignoring broadcast for "
 269                       "offline CPU #%d\n", *oncpu);
 270        else
 271                smp_call_function_single(*oncpu, tick_do_broadcast_on_off,
 272                                         &reason, 1, 1);
 273}
 274
 275/*
 276 * Set the periodic handler depending on broadcast on/off
 277 */
 278void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 279{
 280        if (!broadcast)
 281                dev->event_handler = tick_handle_periodic;
 282        else
 283                dev->event_handler = tick_handle_periodic_broadcast;
 284}
 285
 286/*
 287 * Remove a CPU from broadcasting
 288 */
 289void tick_shutdown_broadcast(unsigned int *cpup)
 290{
 291        struct clock_event_device *bc;
 292        unsigned long flags;
 293        unsigned int cpu = *cpup;
 294
 295        spin_lock_irqsave(&tick_broadcast_lock, flags);
 296
 297        bc = tick_broadcast_device.evtdev;
 298        cpu_clear(cpu, tick_broadcast_mask);
 299
 300        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 301                if (bc && cpus_empty(tick_broadcast_mask))
 302                        clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
 303        }
 304
 305        spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 306}
 307
 308void tick_suspend_broadcast(void)
 309{
 310        struct clock_event_device *bc;
 311        unsigned long flags;
 312
 313        spin_lock_irqsave(&tick_broadcast_lock, flags);
 314
 315        bc = tick_broadcast_device.evtdev;
 316        if (bc)
 317                clockevents_set_mode(bc, CLOCK_EVT_MODE_SHUTDOWN);
 318
 319        spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 320}
 321
 322int tick_resume_broadcast(void)
 323{
 324        struct clock_event_device *bc;
 325        unsigned long flags;
 326        int broadcast = 0;
 327
 328        spin_lock_irqsave(&tick_broadcast_lock, flags);
 329
 330        bc = tick_broadcast_device.evtdev;
 331
 332        if (bc) {
 333                clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
 334
 335                switch (tick_broadcast_device.mode) {
 336                case TICKDEV_MODE_PERIODIC:
 337                        if(!cpus_empty(tick_broadcast_mask))
 338                                tick_broadcast_start_periodic(bc);
 339                        broadcast = cpu_isset(smp_processor_id(),
 340                                              tick_broadcast_mask);
 341                        break;
 342                case TICKDEV_MODE_ONESHOT:
 343                        broadcast = tick_resume_broadcast_oneshot(bc);
 344                        break;
 345                }
 346        }
 347        spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 348
 349        return broadcast;
 350}
 351
 352
 353#ifdef CONFIG_TICK_ONESHOT
 354
 355static cpumask_t tick_broadcast_oneshot_mask;
 356
 357/*
 358 * Debugging: see timer_list.c
 359 */
 360cpumask_t *tick_get_broadcast_oneshot_mask(void)
 361{
 362        return &tick_broadcast_oneshot_mask;
 363}
 364
 365static int tick_broadcast_set_event(ktime_t expires, int force)
 366{
 367        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 368        ktime_t now = ktime_get();
 369        int res;
 370
 371        for(;;) {
 372                res = clockevents_program_event(bc, expires, now);
 373                if (!res || !force)
 374                        return res;
 375                now = ktime_get();
 376                expires = ktime_add(now, ktime_set(0, bc->min_delta_ns));
 377        }
 378}
 379
 380int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 381{
 382        clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
 383        return 0;
 384}
 385
 386/*
 387 * Handle oneshot mode broadcasting
 388 */
 389static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 390{
 391        struct tick_device *td;
 392        cpumask_t mask;
 393        ktime_t now, next_event;
 394        int cpu;
 395
 396        spin_lock(&tick_broadcast_lock);
 397again:
 398        dev->next_event.tv64 = KTIME_MAX;
 399        next_event.tv64 = KTIME_MAX;
 400        mask = CPU_MASK_NONE;
 401        now = ktime_get();
 402        /* Find all expired events */
 403        for (cpu = first_cpu(tick_broadcast_oneshot_mask); cpu != NR_CPUS;
 404             cpu = next_cpu(cpu, tick_broadcast_oneshot_mask)) {
 405                td = &per_cpu(tick_cpu_device, cpu);
 406                if (td->evtdev->next_event.tv64 <= now.tv64)
 407                        cpu_set(cpu, mask);
 408                else if (td->evtdev->next_event.tv64 < next_event.tv64)
 409                        next_event.tv64 = td->evtdev->next_event.tv64;
 410        }
 411
 412        /*
 413         * Wakeup the cpus which have an expired event.
 414         */
 415        tick_do_broadcast(mask);
 416
 417        /*
 418         * Two reasons for reprogram:
 419         *
 420         * - The global event did not expire any CPU local
 421         * events. This happens in dyntick mode, as the maximum PIT
 422         * delta is quite small.
 423         *
 424         * - There are pending events on sleeping CPUs which were not
 425         * in the event mask
 426         */
 427        if (next_event.tv64 != KTIME_MAX) {
 428                /*
 429                 * Rearm the broadcast device. If event expired,
 430                 * repeat the above
 431                 */
 432                if (tick_broadcast_set_event(next_event, 0))
 433                        goto again;
 434        }
 435        spin_unlock(&tick_broadcast_lock);
 436}
 437
 438/*
 439 * Powerstate information: The system enters/leaves a state, where
 440 * affected devices might stop
 441 */
 442void tick_broadcast_oneshot_control(unsigned long reason)
 443{
 444        struct clock_event_device *bc, *dev;
 445        struct tick_device *td;
 446        unsigned long flags;
 447        int cpu;
 448
 449        spin_lock_irqsave(&tick_broadcast_lock, flags);
 450
 451        /*
 452         * Periodic mode does not care about the enter/exit of power
 453         * states
 454         */
 455        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 456                goto out;
 457
 458        bc = tick_broadcast_device.evtdev;
 459        cpu = smp_processor_id();
 460        td = &per_cpu(tick_cpu_device, cpu);
 461        dev = td->evtdev;
 462
 463        if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 464                goto out;
 465
 466        if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
 467                if (!cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
 468                        cpu_set(cpu, tick_broadcast_oneshot_mask);
 469                        clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
 470                        if (dev->next_event.tv64 < bc->next_event.tv64)
 471                                tick_broadcast_set_event(dev->next_event, 1);
 472                }
 473        } else {
 474                if (cpu_isset(cpu, tick_broadcast_oneshot_mask)) {
 475                        cpu_clear(cpu, tick_broadcast_oneshot_mask);
 476                        clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
 477                        if (dev->next_event.tv64 != KTIME_MAX)
 478                                tick_program_event(dev->next_event, 1);
 479                }
 480        }
 481
 482out:
 483        spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 484}
 485
 486/*
 487 * Reset the one shot broadcast for a cpu
 488 *
 489 * Called with tick_broadcast_lock held
 490 */
 491static void tick_broadcast_clear_oneshot(int cpu)
 492{
 493        cpu_clear(cpu, tick_broadcast_oneshot_mask);
 494}
 495
 496/**
 497 * tick_broadcast_setup_oneshot - setup the broadcast device
 498 */
 499void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
 500{
 501        bc->event_handler = tick_handle_oneshot_broadcast;
 502        clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
 503        bc->next_event.tv64 = KTIME_MAX;
 504}
 505
 506/*
 507 * Select oneshot operating mode for the broadcast device
 508 */
 509void tick_broadcast_switch_to_oneshot(void)
 510{
 511        struct clock_event_device *bc;
 512        unsigned long flags;
 513
 514        spin_lock_irqsave(&tick_broadcast_lock, flags);
 515
 516        tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
 517        bc = tick_broadcast_device.evtdev;
 518        if (bc)
 519                tick_broadcast_setup_oneshot(bc);
 520        spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 521}
 522
 523
 524/*
 525 * Remove a dead CPU from broadcasting
 526 */
 527void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
 528{
 529        unsigned long flags;
 530        unsigned int cpu = *cpup;
 531
 532        spin_lock_irqsave(&tick_broadcast_lock, flags);
 533
 534        /*
 535         * Clear the broadcast mask flag for the dead cpu, but do not
 536         * stop the broadcast device!
 537         */
 538        cpu_clear(cpu, tick_broadcast_oneshot_mask);
 539
 540        spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 541}
 542
 543#endif
 544