linux/lib/bitmap.c
<<
>>
Prefs
   1/*
   2 * lib/bitmap.c
   3 * Helper functions for bitmap.h.
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8#include <linux/module.h>
   9#include <linux/ctype.h>
  10#include <linux/errno.h>
  11#include <linux/bitmap.h>
  12#include <linux/bitops.h>
  13#include <asm/uaccess.h>
  14
  15/*
  16 * bitmaps provide an array of bits, implemented using an an
  17 * array of unsigned longs.  The number of valid bits in a
  18 * given bitmap does _not_ need to be an exact multiple of
  19 * BITS_PER_LONG.
  20 *
  21 * The possible unused bits in the last, partially used word
  22 * of a bitmap are 'don't care'.  The implementation makes
  23 * no particular effort to keep them zero.  It ensures that
  24 * their value will not affect the results of any operation.
  25 * The bitmap operations that return Boolean (bitmap_empty,
  26 * for example) or scalar (bitmap_weight, for example) results
  27 * carefully filter out these unused bits from impacting their
  28 * results.
  29 *
  30 * These operations actually hold to a slightly stronger rule:
  31 * if you don't input any bitmaps to these ops that have some
  32 * unused bits set, then they won't output any set unused bits
  33 * in output bitmaps.
  34 *
  35 * The byte ordering of bitmaps is more natural on little
  36 * endian architectures.  See the big-endian headers
  37 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  38 * for the best explanations of this ordering.
  39 */
  40
  41int __bitmap_empty(const unsigned long *bitmap, int bits)
  42{
  43        int k, lim = bits/BITS_PER_LONG;
  44        for (k = 0; k < lim; ++k)
  45                if (bitmap[k])
  46                        return 0;
  47
  48        if (bits % BITS_PER_LONG)
  49                if (bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  50                        return 0;
  51
  52        return 1;
  53}
  54EXPORT_SYMBOL(__bitmap_empty);
  55
  56int __bitmap_full(const unsigned long *bitmap, int bits)
  57{
  58        int k, lim = bits/BITS_PER_LONG;
  59        for (k = 0; k < lim; ++k)
  60                if (~bitmap[k])
  61                        return 0;
  62
  63        if (bits % BITS_PER_LONG)
  64                if (~bitmap[k] & BITMAP_LAST_WORD_MASK(bits))
  65                        return 0;
  66
  67        return 1;
  68}
  69EXPORT_SYMBOL(__bitmap_full);
  70
  71int __bitmap_equal(const unsigned long *bitmap1,
  72                const unsigned long *bitmap2, int bits)
  73{
  74        int k, lim = bits/BITS_PER_LONG;
  75        for (k = 0; k < lim; ++k)
  76                if (bitmap1[k] != bitmap2[k])
  77                        return 0;
  78
  79        if (bits % BITS_PER_LONG)
  80                if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  81                        return 0;
  82
  83        return 1;
  84}
  85EXPORT_SYMBOL(__bitmap_equal);
  86
  87void __bitmap_complement(unsigned long *dst, const unsigned long *src, int bits)
  88{
  89        int k, lim = bits/BITS_PER_LONG;
  90        for (k = 0; k < lim; ++k)
  91                dst[k] = ~src[k];
  92
  93        if (bits % BITS_PER_LONG)
  94                dst[k] = ~src[k] & BITMAP_LAST_WORD_MASK(bits);
  95}
  96EXPORT_SYMBOL(__bitmap_complement);
  97
  98/**
  99 * __bitmap_shift_right - logical right shift of the bits in a bitmap
 100 *   @dst : destination bitmap
 101 *   @src : source bitmap
 102 *   @shift : shift by this many bits
 103 *   @bits : bitmap size, in bits
 104 *
 105 * Shifting right (dividing) means moving bits in the MS -> LS bit
 106 * direction.  Zeros are fed into the vacated MS positions and the
 107 * LS bits shifted off the bottom are lost.
 108 */
 109void __bitmap_shift_right(unsigned long *dst,
 110                        const unsigned long *src, int shift, int bits)
 111{
 112        int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 113        int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 114        unsigned long mask = (1UL << left) - 1;
 115        for (k = 0; off + k < lim; ++k) {
 116                unsigned long upper, lower;
 117
 118                /*
 119                 * If shift is not word aligned, take lower rem bits of
 120                 * word above and make them the top rem bits of result.
 121                 */
 122                if (!rem || off + k + 1 >= lim)
 123                        upper = 0;
 124                else {
 125                        upper = src[off + k + 1];
 126                        if (off + k + 1 == lim - 1 && left)
 127                                upper &= mask;
 128                }
 129                lower = src[off + k];
 130                if (left && off + k == lim - 1)
 131                        lower &= mask;
 132                dst[k] = upper << (BITS_PER_LONG - rem) | lower >> rem;
 133                if (left && k == lim - 1)
 134                        dst[k] &= mask;
 135        }
 136        if (off)
 137                memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 138}
 139EXPORT_SYMBOL(__bitmap_shift_right);
 140
 141
 142/**
 143 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 144 *   @dst : destination bitmap
 145 *   @src : source bitmap
 146 *   @shift : shift by this many bits
 147 *   @bits : bitmap size, in bits
 148 *
 149 * Shifting left (multiplying) means moving bits in the LS -> MS
 150 * direction.  Zeros are fed into the vacated LS bit positions
 151 * and those MS bits shifted off the top are lost.
 152 */
 153
 154void __bitmap_shift_left(unsigned long *dst,
 155                        const unsigned long *src, int shift, int bits)
 156{
 157        int k, lim = BITS_TO_LONGS(bits), left = bits % BITS_PER_LONG;
 158        int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 159        for (k = lim - off - 1; k >= 0; --k) {
 160                unsigned long upper, lower;
 161
 162                /*
 163                 * If shift is not word aligned, take upper rem bits of
 164                 * word below and make them the bottom rem bits of result.
 165                 */
 166                if (rem && k > 0)
 167                        lower = src[k - 1];
 168                else
 169                        lower = 0;
 170                upper = src[k];
 171                if (left && k == lim - 1)
 172                        upper &= (1UL << left) - 1;
 173                dst[k + off] = lower  >> (BITS_PER_LONG - rem) | upper << rem;
 174                if (left && k + off == lim - 1)
 175                        dst[k + off] &= (1UL << left) - 1;
 176        }
 177        if (off)
 178                memset(dst, 0, off*sizeof(unsigned long));
 179}
 180EXPORT_SYMBOL(__bitmap_shift_left);
 181
 182void __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 183                                const unsigned long *bitmap2, int bits)
 184{
 185        int k;
 186        int nr = BITS_TO_LONGS(bits);
 187
 188        for (k = 0; k < nr; k++)
 189                dst[k] = bitmap1[k] & bitmap2[k];
 190}
 191EXPORT_SYMBOL(__bitmap_and);
 192
 193void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 194                                const unsigned long *bitmap2, int bits)
 195{
 196        int k;
 197        int nr = BITS_TO_LONGS(bits);
 198
 199        for (k = 0; k < nr; k++)
 200                dst[k] = bitmap1[k] | bitmap2[k];
 201}
 202EXPORT_SYMBOL(__bitmap_or);
 203
 204void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 205                                const unsigned long *bitmap2, int bits)
 206{
 207        int k;
 208        int nr = BITS_TO_LONGS(bits);
 209
 210        for (k = 0; k < nr; k++)
 211                dst[k] = bitmap1[k] ^ bitmap2[k];
 212}
 213EXPORT_SYMBOL(__bitmap_xor);
 214
 215void __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 216                                const unsigned long *bitmap2, int bits)
 217{
 218        int k;
 219        int nr = BITS_TO_LONGS(bits);
 220
 221        for (k = 0; k < nr; k++)
 222                dst[k] = bitmap1[k] & ~bitmap2[k];
 223}
 224EXPORT_SYMBOL(__bitmap_andnot);
 225
 226int __bitmap_intersects(const unsigned long *bitmap1,
 227                                const unsigned long *bitmap2, int bits)
 228{
 229        int k, lim = bits/BITS_PER_LONG;
 230        for (k = 0; k < lim; ++k)
 231                if (bitmap1[k] & bitmap2[k])
 232                        return 1;
 233
 234        if (bits % BITS_PER_LONG)
 235                if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 236                        return 1;
 237        return 0;
 238}
 239EXPORT_SYMBOL(__bitmap_intersects);
 240
 241int __bitmap_subset(const unsigned long *bitmap1,
 242                                const unsigned long *bitmap2, int bits)
 243{
 244        int k, lim = bits/BITS_PER_LONG;
 245        for (k = 0; k < lim; ++k)
 246                if (bitmap1[k] & ~bitmap2[k])
 247                        return 0;
 248
 249        if (bits % BITS_PER_LONG)
 250                if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 251                        return 0;
 252        return 1;
 253}
 254EXPORT_SYMBOL(__bitmap_subset);
 255
 256int __bitmap_weight(const unsigned long *bitmap, int bits)
 257{
 258        int k, w = 0, lim = bits/BITS_PER_LONG;
 259
 260        for (k = 0; k < lim; k++)
 261                w += hweight_long(bitmap[k]);
 262
 263        if (bits % BITS_PER_LONG)
 264                w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 265
 266        return w;
 267}
 268EXPORT_SYMBOL(__bitmap_weight);
 269
 270/*
 271 * Bitmap printing & parsing functions: first version by Bill Irwin,
 272 * second version by Paul Jackson, third by Joe Korty.
 273 */
 274
 275#define CHUNKSZ                         32
 276#define nbits_to_hold_value(val)        fls(val)
 277#define unhex(c)                        (isdigit(c) ? (c - '0') : (toupper(c) - 'A' + 10))
 278#define BASEDEC 10              /* fancier cpuset lists input in decimal */
 279
 280/**
 281 * bitmap_scnprintf - convert bitmap to an ASCII hex string.
 282 * @buf: byte buffer into which string is placed
 283 * @buflen: reserved size of @buf, in bytes
 284 * @maskp: pointer to bitmap to convert
 285 * @nmaskbits: size of bitmap, in bits
 286 *
 287 * Exactly @nmaskbits bits are displayed.  Hex digits are grouped into
 288 * comma-separated sets of eight digits per set.
 289 */
 290int bitmap_scnprintf(char *buf, unsigned int buflen,
 291        const unsigned long *maskp, int nmaskbits)
 292{
 293        int i, word, bit, len = 0;
 294        unsigned long val;
 295        const char *sep = "";
 296        int chunksz;
 297        u32 chunkmask;
 298
 299        chunksz = nmaskbits & (CHUNKSZ - 1);
 300        if (chunksz == 0)
 301                chunksz = CHUNKSZ;
 302
 303        i = ALIGN(nmaskbits, CHUNKSZ) - CHUNKSZ;
 304        for (; i >= 0; i -= CHUNKSZ) {
 305                chunkmask = ((1ULL << chunksz) - 1);
 306                word = i / BITS_PER_LONG;
 307                bit = i % BITS_PER_LONG;
 308                val = (maskp[word] >> bit) & chunkmask;
 309                len += scnprintf(buf+len, buflen-len, "%s%0*lx", sep,
 310                        (chunksz+3)/4, val);
 311                chunksz = CHUNKSZ;
 312                sep = ",";
 313        }
 314        return len;
 315}
 316EXPORT_SYMBOL(bitmap_scnprintf);
 317
 318/**
 319 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 320 * @buf: pointer to buffer containing string.
 321 * @buflen: buffer size in bytes.  If string is smaller than this
 322 *    then it must be terminated with a \0.
 323 * @is_user: location of buffer, 0 indicates kernel space
 324 * @maskp: pointer to bitmap array that will contain result.
 325 * @nmaskbits: size of bitmap, in bits.
 326 *
 327 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 328 * bits of the resultant bitmask.  No chunk may specify a value larger
 329 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 330 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 331 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 332 * Leading and trailing whitespace accepted, but not embedded whitespace.
 333 */
 334int __bitmap_parse(const char *buf, unsigned int buflen,
 335                int is_user, unsigned long *maskp,
 336                int nmaskbits)
 337{
 338        int c, old_c, totaldigits, ndigits, nchunks, nbits;
 339        u32 chunk;
 340        const char __user *ubuf = buf;
 341
 342        bitmap_zero(maskp, nmaskbits);
 343
 344        nchunks = nbits = totaldigits = c = 0;
 345        do {
 346                chunk = ndigits = 0;
 347
 348                /* Get the next chunk of the bitmap */
 349                while (buflen) {
 350                        old_c = c;
 351                        if (is_user) {
 352                                if (__get_user(c, ubuf++))
 353                                        return -EFAULT;
 354                        }
 355                        else
 356                                c = *buf++;
 357                        buflen--;
 358                        if (isspace(c))
 359                                continue;
 360
 361                        /*
 362                         * If the last character was a space and the current
 363                         * character isn't '\0', we've got embedded whitespace.
 364                         * This is a no-no, so throw an error.
 365                         */
 366                        if (totaldigits && c && isspace(old_c))
 367                                return -EINVAL;
 368
 369                        /* A '\0' or a ',' signal the end of the chunk */
 370                        if (c == '\0' || c == ',')
 371                                break;
 372
 373                        if (!isxdigit(c))
 374                                return -EINVAL;
 375
 376                        /*
 377                         * Make sure there are at least 4 free bits in 'chunk'.
 378                         * If not, this hexdigit will overflow 'chunk', so
 379                         * throw an error.
 380                         */
 381                        if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 382                                return -EOVERFLOW;
 383
 384                        chunk = (chunk << 4) | unhex(c);
 385                        ndigits++; totaldigits++;
 386                }
 387                if (ndigits == 0)
 388                        return -EINVAL;
 389                if (nchunks == 0 && chunk == 0)
 390                        continue;
 391
 392                __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 393                *maskp |= chunk;
 394                nchunks++;
 395                nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 396                if (nbits > nmaskbits)
 397                        return -EOVERFLOW;
 398        } while (buflen && c == ',');
 399
 400        return 0;
 401}
 402EXPORT_SYMBOL(__bitmap_parse);
 403
 404/**
 405 * bitmap_parse_user()
 406 *
 407 * @ubuf: pointer to user buffer containing string.
 408 * @ulen: buffer size in bytes.  If string is smaller than this
 409 *    then it must be terminated with a \0.
 410 * @maskp: pointer to bitmap array that will contain result.
 411 * @nmaskbits: size of bitmap, in bits.
 412 *
 413 * Wrapper for __bitmap_parse(), providing it with user buffer.
 414 *
 415 * We cannot have this as an inline function in bitmap.h because it needs
 416 * linux/uaccess.h to get the access_ok() declaration and this causes
 417 * cyclic dependencies.
 418 */
 419int bitmap_parse_user(const char __user *ubuf,
 420                        unsigned int ulen, unsigned long *maskp,
 421                        int nmaskbits)
 422{
 423        if (!access_ok(VERIFY_READ, ubuf, ulen))
 424                return -EFAULT;
 425        return __bitmap_parse((const char *)ubuf, ulen, 1, maskp, nmaskbits);
 426}
 427EXPORT_SYMBOL(bitmap_parse_user);
 428
 429/*
 430 * bscnl_emit(buf, buflen, rbot, rtop, bp)
 431 *
 432 * Helper routine for bitmap_scnlistprintf().  Write decimal number
 433 * or range to buf, suppressing output past buf+buflen, with optional
 434 * comma-prefix.  Return len of what would be written to buf, if it
 435 * all fit.
 436 */
 437static inline int bscnl_emit(char *buf, int buflen, int rbot, int rtop, int len)
 438{
 439        if (len > 0)
 440                len += scnprintf(buf + len, buflen - len, ",");
 441        if (rbot == rtop)
 442                len += scnprintf(buf + len, buflen - len, "%d", rbot);
 443        else
 444                len += scnprintf(buf + len, buflen - len, "%d-%d", rbot, rtop);
 445        return len;
 446}
 447
 448/**
 449 * bitmap_scnlistprintf - convert bitmap to list format ASCII string
 450 * @buf: byte buffer into which string is placed
 451 * @buflen: reserved size of @buf, in bytes
 452 * @maskp: pointer to bitmap to convert
 453 * @nmaskbits: size of bitmap, in bits
 454 *
 455 * Output format is a comma-separated list of decimal numbers and
 456 * ranges.  Consecutively set bits are shown as two hyphen-separated
 457 * decimal numbers, the smallest and largest bit numbers set in
 458 * the range.  Output format is compatible with the format
 459 * accepted as input by bitmap_parselist().
 460 *
 461 * The return value is the number of characters which would be
 462 * generated for the given input, excluding the trailing '\0', as
 463 * per ISO C99.
 464 */
 465int bitmap_scnlistprintf(char *buf, unsigned int buflen,
 466        const unsigned long *maskp, int nmaskbits)
 467{
 468        int len = 0;
 469        /* current bit is 'cur', most recently seen range is [rbot, rtop] */
 470        int cur, rbot, rtop;
 471
 472        if (buflen == 0)
 473                return 0;
 474        buf[0] = 0;
 475
 476        rbot = cur = find_first_bit(maskp, nmaskbits);
 477        while (cur < nmaskbits) {
 478                rtop = cur;
 479                cur = find_next_bit(maskp, nmaskbits, cur+1);
 480                if (cur >= nmaskbits || cur > rtop + 1) {
 481                        len = bscnl_emit(buf, buflen, rbot, rtop, len);
 482                        rbot = cur;
 483                }
 484        }
 485        return len;
 486}
 487EXPORT_SYMBOL(bitmap_scnlistprintf);
 488
 489/**
 490 * bitmap_parselist - convert list format ASCII string to bitmap
 491 * @bp: read nul-terminated user string from this buffer
 492 * @maskp: write resulting mask here
 493 * @nmaskbits: number of bits in mask to be written
 494 *
 495 * Input format is a comma-separated list of decimal numbers and
 496 * ranges.  Consecutively set bits are shown as two hyphen-separated
 497 * decimal numbers, the smallest and largest bit numbers set in
 498 * the range.
 499 *
 500 * Returns 0 on success, -errno on invalid input strings.
 501 * Error values:
 502 *    %-EINVAL: second number in range smaller than first
 503 *    %-EINVAL: invalid character in string
 504 *    %-ERANGE: bit number specified too large for mask
 505 */
 506int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 507{
 508        unsigned a, b;
 509
 510        bitmap_zero(maskp, nmaskbits);
 511        do {
 512                if (!isdigit(*bp))
 513                        return -EINVAL;
 514                b = a = simple_strtoul(bp, (char **)&bp, BASEDEC);
 515                if (*bp == '-') {
 516                        bp++;
 517                        if (!isdigit(*bp))
 518                                return -EINVAL;
 519                        b = simple_strtoul(bp, (char **)&bp, BASEDEC);
 520                }
 521                if (!(a <= b))
 522                        return -EINVAL;
 523                if (b >= nmaskbits)
 524                        return -ERANGE;
 525                while (a <= b) {
 526                        set_bit(a, maskp);
 527                        a++;
 528                }
 529                if (*bp == ',')
 530                        bp++;
 531        } while (*bp != '\0' && *bp != '\n');
 532        return 0;
 533}
 534EXPORT_SYMBOL(bitmap_parselist);
 535
 536/**
 537 * bitmap_pos_to_ord(buf, pos, bits)
 538 *      @buf: pointer to a bitmap
 539 *      @pos: a bit position in @buf (0 <= @pos < @bits)
 540 *      @bits: number of valid bit positions in @buf
 541 *
 542 * Map the bit at position @pos in @buf (of length @bits) to the
 543 * ordinal of which set bit it is.  If it is not set or if @pos
 544 * is not a valid bit position, map to -1.
 545 *
 546 * If for example, just bits 4 through 7 are set in @buf, then @pos
 547 * values 4 through 7 will get mapped to 0 through 3, respectively,
 548 * and other @pos values will get mapped to 0.  When @pos value 7
 549 * gets mapped to (returns) @ord value 3 in this example, that means
 550 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 551 *
 552 * The bit positions 0 through @bits are valid positions in @buf.
 553 */
 554static int bitmap_pos_to_ord(const unsigned long *buf, int pos, int bits)
 555{
 556        int i, ord;
 557
 558        if (pos < 0 || pos >= bits || !test_bit(pos, buf))
 559                return -1;
 560
 561        i = find_first_bit(buf, bits);
 562        ord = 0;
 563        while (i < pos) {
 564                i = find_next_bit(buf, bits, i + 1);
 565                ord++;
 566        }
 567        BUG_ON(i != pos);
 568
 569        return ord;
 570}
 571
 572/**
 573 * bitmap_ord_to_pos(buf, ord, bits)
 574 *      @buf: pointer to bitmap
 575 *      @ord: ordinal bit position (n-th set bit, n >= 0)
 576 *      @bits: number of valid bit positions in @buf
 577 *
 578 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 579 * Value of @ord should be in range 0 <= @ord < weight(buf), else
 580 * results are undefined.
 581 *
 582 * If for example, just bits 4 through 7 are set in @buf, then @ord
 583 * values 0 through 3 will get mapped to 4 through 7, respectively,
 584 * and all other @ord values return undefined values.  When @ord value 3
 585 * gets mapped to (returns) @pos value 7 in this example, that means
 586 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 587 *
 588 * The bit positions 0 through @bits are valid positions in @buf.
 589 */
 590static int bitmap_ord_to_pos(const unsigned long *buf, int ord, int bits)
 591{
 592        int pos = 0;
 593
 594        if (ord >= 0 && ord < bits) {
 595                int i;
 596
 597                for (i = find_first_bit(buf, bits);
 598                     i < bits && ord > 0;
 599                     i = find_next_bit(buf, bits, i + 1))
 600                        ord--;
 601                if (i < bits && ord == 0)
 602                        pos = i;
 603        }
 604
 605        return pos;
 606}
 607
 608/**
 609 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 610 *      @dst: remapped result
 611 *      @src: subset to be remapped
 612 *      @old: defines domain of map
 613 *      @new: defines range of map
 614 *      @bits: number of bits in each of these bitmaps
 615 *
 616 * Let @old and @new define a mapping of bit positions, such that
 617 * whatever position is held by the n-th set bit in @old is mapped
 618 * to the n-th set bit in @new.  In the more general case, allowing
 619 * for the possibility that the weight 'w' of @new is less than the
 620 * weight of @old, map the position of the n-th set bit in @old to
 621 * the position of the m-th set bit in @new, where m == n % w.
 622 *
 623 * If either of the @old and @new bitmaps are empty, or if @src and
 624 * @dst point to the same location, then this routine copies @src
 625 * to @dst.
 626 *
 627 * The positions of unset bits in @old are mapped to themselves
 628 * (the identify map).
 629 *
 630 * Apply the above specified mapping to @src, placing the result in
 631 * @dst, clearing any bits previously set in @dst.
 632 *
 633 * For example, lets say that @old has bits 4 through 7 set, and
 634 * @new has bits 12 through 15 set.  This defines the mapping of bit
 635 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 636 * bit positions unchanged.  So if say @src comes into this routine
 637 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 638 * 13 and 15 set.
 639 */
 640void bitmap_remap(unsigned long *dst, const unsigned long *src,
 641                const unsigned long *old, const unsigned long *new,
 642                int bits)
 643{
 644        int oldbit, w;
 645
 646        if (dst == src)         /* following doesn't handle inplace remaps */
 647                return;
 648        bitmap_zero(dst, bits);
 649
 650        w = bitmap_weight(new, bits);
 651        for (oldbit = find_first_bit(src, bits);
 652             oldbit < bits;
 653             oldbit = find_next_bit(src, bits, oldbit + 1)) {
 654                int n = bitmap_pos_to_ord(old, oldbit, bits);
 655                if (n < 0 || w == 0)
 656                        set_bit(oldbit, dst);   /* identity map */
 657                else
 658                        set_bit(bitmap_ord_to_pos(new, n % w, bits), dst);
 659        }
 660}
 661EXPORT_SYMBOL(bitmap_remap);
 662
 663/**
 664 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 665 *      @oldbit: bit position to be mapped
 666 *      @old: defines domain of map
 667 *      @new: defines range of map
 668 *      @bits: number of bits in each of these bitmaps
 669 *
 670 * Let @old and @new define a mapping of bit positions, such that
 671 * whatever position is held by the n-th set bit in @old is mapped
 672 * to the n-th set bit in @new.  In the more general case, allowing
 673 * for the possibility that the weight 'w' of @new is less than the
 674 * weight of @old, map the position of the n-th set bit in @old to
 675 * the position of the m-th set bit in @new, where m == n % w.
 676 *
 677 * The positions of unset bits in @old are mapped to themselves
 678 * (the identify map).
 679 *
 680 * Apply the above specified mapping to bit position @oldbit, returning
 681 * the new bit position.
 682 *
 683 * For example, lets say that @old has bits 4 through 7 set, and
 684 * @new has bits 12 through 15 set.  This defines the mapping of bit
 685 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 686 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 687 * returns 13.
 688 */
 689int bitmap_bitremap(int oldbit, const unsigned long *old,
 690                                const unsigned long *new, int bits)
 691{
 692        int w = bitmap_weight(new, bits);
 693        int n = bitmap_pos_to_ord(old, oldbit, bits);
 694        if (n < 0 || w == 0)
 695                return oldbit;
 696        else
 697                return bitmap_ord_to_pos(new, n % w, bits);
 698}
 699EXPORT_SYMBOL(bitmap_bitremap);
 700
 701/*
 702 * Common code for bitmap_*_region() routines.
 703 *      bitmap: array of unsigned longs corresponding to the bitmap
 704 *      pos: the beginning of the region
 705 *      order: region size (log base 2 of number of bits)
 706 *      reg_op: operation(s) to perform on that region of bitmap
 707 *
 708 * Can set, verify and/or release a region of bits in a bitmap,
 709 * depending on which combination of REG_OP_* flag bits is set.
 710 *
 711 * A region of a bitmap is a sequence of bits in the bitmap, of
 712 * some size '1 << order' (a power of two), aligned to that same
 713 * '1 << order' power of two.
 714 *
 715 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 716 * Returns 0 in all other cases and reg_ops.
 717 */
 718
 719enum {
 720        REG_OP_ISFREE,          /* true if region is all zero bits */
 721        REG_OP_ALLOC,           /* set all bits in region */
 722        REG_OP_RELEASE,         /* clear all bits in region */
 723};
 724
 725static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
 726{
 727        int nbits_reg;          /* number of bits in region */
 728        int index;              /* index first long of region in bitmap */
 729        int offset;             /* bit offset region in bitmap[index] */
 730        int nlongs_reg;         /* num longs spanned by region in bitmap */
 731        int nbitsinlong;        /* num bits of region in each spanned long */
 732        unsigned long mask;     /* bitmask for one long of region */
 733        int i;                  /* scans bitmap by longs */
 734        int ret = 0;            /* return value */
 735
 736        /*
 737         * Either nlongs_reg == 1 (for small orders that fit in one long)
 738         * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
 739         */
 740        nbits_reg = 1 << order;
 741        index = pos / BITS_PER_LONG;
 742        offset = pos - (index * BITS_PER_LONG);
 743        nlongs_reg = BITS_TO_LONGS(nbits_reg);
 744        nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
 745
 746        /*
 747         * Can't do "mask = (1UL << nbitsinlong) - 1", as that
 748         * overflows if nbitsinlong == BITS_PER_LONG.
 749         */
 750        mask = (1UL << (nbitsinlong - 1));
 751        mask += mask - 1;
 752        mask <<= offset;
 753
 754        switch (reg_op) {
 755        case REG_OP_ISFREE:
 756                for (i = 0; i < nlongs_reg; i++) {
 757                        if (bitmap[index + i] & mask)
 758                                goto done;
 759                }
 760                ret = 1;        /* all bits in region free (zero) */
 761                break;
 762
 763        case REG_OP_ALLOC:
 764                for (i = 0; i < nlongs_reg; i++)
 765                        bitmap[index + i] |= mask;
 766                break;
 767
 768        case REG_OP_RELEASE:
 769                for (i = 0; i < nlongs_reg; i++)
 770                        bitmap[index + i] &= ~mask;
 771                break;
 772        }
 773done:
 774        return ret;
 775}
 776
 777/**
 778 * bitmap_find_free_region - find a contiguous aligned mem region
 779 *      @bitmap: array of unsigned longs corresponding to the bitmap
 780 *      @bits: number of bits in the bitmap
 781 *      @order: region size (log base 2 of number of bits) to find
 782 *
 783 * Find a region of free (zero) bits in a @bitmap of @bits bits and
 784 * allocate them (set them to one).  Only consider regions of length
 785 * a power (@order) of two, aligned to that power of two, which
 786 * makes the search algorithm much faster.
 787 *
 788 * Return the bit offset in bitmap of the allocated region,
 789 * or -errno on failure.
 790 */
 791int bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
 792{
 793        int pos;                /* scans bitmap by regions of size order */
 794
 795        for (pos = 0; pos < bits; pos += (1 << order))
 796                if (__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 797                        break;
 798        if (pos == bits)
 799                return -ENOMEM;
 800        __reg_op(bitmap, pos, order, REG_OP_ALLOC);
 801        return pos;
 802}
 803EXPORT_SYMBOL(bitmap_find_free_region);
 804
 805/**
 806 * bitmap_release_region - release allocated bitmap region
 807 *      @bitmap: array of unsigned longs corresponding to the bitmap
 808 *      @pos: beginning of bit region to release
 809 *      @order: region size (log base 2 of number of bits) to release
 810 *
 811 * This is the complement to __bitmap_find_free_region() and releases
 812 * the found region (by clearing it in the bitmap).
 813 *
 814 * No return value.
 815 */
 816void bitmap_release_region(unsigned long *bitmap, int pos, int order)
 817{
 818        __reg_op(bitmap, pos, order, REG_OP_RELEASE);
 819}
 820EXPORT_SYMBOL(bitmap_release_region);
 821
 822/**
 823 * bitmap_allocate_region - allocate bitmap region
 824 *      @bitmap: array of unsigned longs corresponding to the bitmap
 825 *      @pos: beginning of bit region to allocate
 826 *      @order: region size (log base 2 of number of bits) to allocate
 827 *
 828 * Allocate (set bits in) a specified region of a bitmap.
 829 *
 830 * Return 0 on success, or %-EBUSY if specified region wasn't
 831 * free (not all bits were zero).
 832 */
 833int bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
 834{
 835        if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
 836                return -EBUSY;
 837        __reg_op(bitmap, pos, order, REG_OP_ALLOC);
 838        return 0;
 839}
 840EXPORT_SYMBOL(bitmap_allocate_region);
 841