linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/module.h>
  13#include <linux/slab.h>
  14#include <linux/compiler.h>
  15#include <linux/fs.h>
  16#include <linux/uaccess.h>
  17#include <linux/aio.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/mman.h>
  23#include <linux/pagemap.h>
  24#include <linux/file.h>
  25#include <linux/uio.h>
  26#include <linux/hash.h>
  27#include <linux/writeback.h>
  28#include <linux/backing-dev.h>
  29#include <linux/pagevec.h>
  30#include <linux/blkdev.h>
  31#include <linux/backing-dev.h>
  32#include <linux/security.h>
  33#include <linux/syscalls.h>
  34#include <linux/cpuset.h>
  35#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
  36#include "internal.h"
  37
  38/*
  39 * FIXME: remove all knowledge of the buffer layer from the core VM
  40 */
  41#include <linux/buffer_head.h> /* for generic_osync_inode */
  42
  43#include <asm/mman.h>
  44
  45static ssize_t
  46generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
  47        loff_t offset, unsigned long nr_segs);
  48
  49/*
  50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  51 * though.
  52 *
  53 * Shared mappings now work. 15.8.1995  Bruno.
  54 *
  55 * finished 'unifying' the page and buffer cache and SMP-threaded the
  56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  57 *
  58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  59 */
  60
  61/*
  62 * Lock ordering:
  63 *
  64 *  ->i_mmap_lock               (vmtruncate)
  65 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  66 *      ->swap_lock             (exclusive_swap_page, others)
  67 *        ->mapping->tree_lock
  68 *          ->zone.lock
  69 *
  70 *  ->i_mutex
  71 *    ->i_mmap_lock             (truncate->unmap_mapping_range)
  72 *
  73 *  ->mmap_sem
  74 *    ->i_mmap_lock
  75 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  76 *        ->mapping->tree_lock  (arch-dependent flush_dcache_mmap_lock)
  77 *
  78 *  ->mmap_sem
  79 *    ->lock_page               (access_process_vm)
  80 *
  81 *  ->i_mutex                   (generic_file_buffered_write)
  82 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  83 *
  84 *  ->i_mutex
  85 *    ->i_alloc_sem             (various)
  86 *
  87 *  ->inode_lock
  88 *    ->sb_lock                 (fs/fs-writeback.c)
  89 *    ->mapping->tree_lock      (__sync_single_inode)
  90 *
  91 *  ->i_mmap_lock
  92 *    ->anon_vma.lock           (vma_adjust)
  93 *
  94 *  ->anon_vma.lock
  95 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  96 *
  97 *  ->page_table_lock or pte_lock
  98 *    ->swap_lock               (try_to_unmap_one)
  99 *    ->private_lock            (try_to_unmap_one)
 100 *    ->tree_lock               (try_to_unmap_one)
 101 *    ->zone.lru_lock           (follow_page->mark_page_accessed)
 102 *    ->zone.lru_lock           (check_pte_range->isolate_lru_page)
 103 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 104 *    ->tree_lock               (page_remove_rmap->set_page_dirty)
 105 *    ->inode_lock              (page_remove_rmap->set_page_dirty)
 106 *    ->inode_lock              (zap_pte_range->set_page_dirty)
 107 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 108 *
 109 *  ->task->proc_lock
 110 *    ->dcache_lock             (proc_pid_lookup)
 111 */
 112
 113/*
 114 * Remove a page from the page cache and free it. Caller has to make
 115 * sure the page is locked and that nobody else uses it - or that usage
 116 * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
 117 */
 118void __remove_from_page_cache(struct page *page)
 119{
 120        struct address_space *mapping = page->mapping;
 121
 122        radix_tree_delete(&mapping->page_tree, page->index);
 123        page->mapping = NULL;
 124        mapping->nrpages--;
 125        __dec_zone_page_state(page, NR_FILE_PAGES);
 126        BUG_ON(page_mapped(page));
 127
 128        /*
 129         * Some filesystems seem to re-dirty the page even after
 130         * the VM has canceled the dirty bit (eg ext3 journaling).
 131         *
 132         * Fix it up by doing a final dirty accounting check after
 133         * having removed the page entirely.
 134         */
 135        if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
 136                dec_zone_page_state(page, NR_FILE_DIRTY);
 137                dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
 138        }
 139}
 140
 141void remove_from_page_cache(struct page *page)
 142{
 143        struct address_space *mapping = page->mapping;
 144
 145        BUG_ON(!PageLocked(page));
 146
 147        write_lock_irq(&mapping->tree_lock);
 148        __remove_from_page_cache(page);
 149        write_unlock_irq(&mapping->tree_lock);
 150}
 151
 152static int sync_page(void *word)
 153{
 154        struct address_space *mapping;
 155        struct page *page;
 156
 157        page = container_of((unsigned long *)word, struct page, flags);
 158
 159        /*
 160         * page_mapping() is being called without PG_locked held.
 161         * Some knowledge of the state and use of the page is used to
 162         * reduce the requirements down to a memory barrier.
 163         * The danger here is of a stale page_mapping() return value
 164         * indicating a struct address_space different from the one it's
 165         * associated with when it is associated with one.
 166         * After smp_mb(), it's either the correct page_mapping() for
 167         * the page, or an old page_mapping() and the page's own
 168         * page_mapping() has gone NULL.
 169         * The ->sync_page() address_space operation must tolerate
 170         * page_mapping() going NULL. By an amazing coincidence,
 171         * this comes about because none of the users of the page
 172         * in the ->sync_page() methods make essential use of the
 173         * page_mapping(), merely passing the page down to the backing
 174         * device's unplug functions when it's non-NULL, which in turn
 175         * ignore it for all cases but swap, where only page_private(page) is
 176         * of interest. When page_mapping() does go NULL, the entire
 177         * call stack gracefully ignores the page and returns.
 178         * -- wli
 179         */
 180        smp_mb();
 181        mapping = page_mapping(page);
 182        if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
 183                mapping->a_ops->sync_page(page);
 184        io_schedule();
 185        return 0;
 186}
 187
 188/**
 189 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 190 * @mapping:    address space structure to write
 191 * @start:      offset in bytes where the range starts
 192 * @end:        offset in bytes where the range ends (inclusive)
 193 * @sync_mode:  enable synchronous operation
 194 *
 195 * Start writeback against all of a mapping's dirty pages that lie
 196 * within the byte offsets <start, end> inclusive.
 197 *
 198 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 199 * opposed to a regular memory cleansing writeback.  The difference between
 200 * these two operations is that if a dirty page/buffer is encountered, it must
 201 * be waited upon, and not just skipped over.
 202 */
 203int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 204                                loff_t end, int sync_mode)
 205{
 206        int ret;
 207        struct writeback_control wbc = {
 208                .sync_mode = sync_mode,
 209                .nr_to_write = mapping->nrpages * 2,
 210                .range_start = start,
 211                .range_end = end,
 212        };
 213
 214        if (!mapping_cap_writeback_dirty(mapping))
 215                return 0;
 216
 217        ret = do_writepages(mapping, &wbc);
 218        return ret;
 219}
 220
 221static inline int __filemap_fdatawrite(struct address_space *mapping,
 222        int sync_mode)
 223{
 224        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 225}
 226
 227int filemap_fdatawrite(struct address_space *mapping)
 228{
 229        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 230}
 231EXPORT_SYMBOL(filemap_fdatawrite);
 232
 233static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 234                                loff_t end)
 235{
 236        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 237}
 238
 239/**
 240 * filemap_flush - mostly a non-blocking flush
 241 * @mapping:    target address_space
 242 *
 243 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 244 * purposes - I/O may not be started against all dirty pages.
 245 */
 246int filemap_flush(struct address_space *mapping)
 247{
 248        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 249}
 250EXPORT_SYMBOL(filemap_flush);
 251
 252/**
 253 * wait_on_page_writeback_range - wait for writeback to complete
 254 * @mapping:    target address_space
 255 * @start:      beginning page index
 256 * @end:        ending page index
 257 *
 258 * Wait for writeback to complete against pages indexed by start->end
 259 * inclusive
 260 */
 261int wait_on_page_writeback_range(struct address_space *mapping,
 262                                pgoff_t start, pgoff_t end)
 263{
 264        struct pagevec pvec;
 265        int nr_pages;
 266        int ret = 0;
 267        pgoff_t index;
 268
 269        if (end < start)
 270                return 0;
 271
 272        pagevec_init(&pvec, 0);
 273        index = start;
 274        while ((index <= end) &&
 275                        (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 276                        PAGECACHE_TAG_WRITEBACK,
 277                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
 278                unsigned i;
 279
 280                for (i = 0; i < nr_pages; i++) {
 281                        struct page *page = pvec.pages[i];
 282
 283                        /* until radix tree lookup accepts end_index */
 284                        if (page->index > end)
 285                                continue;
 286
 287                        wait_on_page_writeback(page);
 288                        if (PageError(page))
 289                                ret = -EIO;
 290                }
 291                pagevec_release(&pvec);
 292                cond_resched();
 293        }
 294
 295        /* Check for outstanding write errors */
 296        if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 297                ret = -ENOSPC;
 298        if (test_and_clear_bit(AS_EIO, &mapping->flags))
 299                ret = -EIO;
 300
 301        return ret;
 302}
 303
 304/**
 305 * sync_page_range - write and wait on all pages in the passed range
 306 * @inode:      target inode
 307 * @mapping:    target address_space
 308 * @pos:        beginning offset in pages to write
 309 * @count:      number of bytes to write
 310 *
 311 * Write and wait upon all the pages in the passed range.  This is a "data
 312 * integrity" operation.  It waits upon in-flight writeout before starting and
 313 * waiting upon new writeout.  If there was an IO error, return it.
 314 *
 315 * We need to re-take i_mutex during the generic_osync_inode list walk because
 316 * it is otherwise livelockable.
 317 */
 318int sync_page_range(struct inode *inode, struct address_space *mapping,
 319                        loff_t pos, loff_t count)
 320{
 321        pgoff_t start = pos >> PAGE_CACHE_SHIFT;
 322        pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 323        int ret;
 324
 325        if (!mapping_cap_writeback_dirty(mapping) || !count)
 326                return 0;
 327        ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
 328        if (ret == 0) {
 329                mutex_lock(&inode->i_mutex);
 330                ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
 331                mutex_unlock(&inode->i_mutex);
 332        }
 333        if (ret == 0)
 334                ret = wait_on_page_writeback_range(mapping, start, end);
 335        return ret;
 336}
 337EXPORT_SYMBOL(sync_page_range);
 338
 339/**
 340 * sync_page_range_nolock
 341 * @inode:      target inode
 342 * @mapping:    target address_space
 343 * @pos:        beginning offset in pages to write
 344 * @count:      number of bytes to write
 345 *
 346 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
 347 * as it forces O_SYNC writers to different parts of the same file
 348 * to be serialised right until io completion.
 349 */
 350int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
 351                           loff_t pos, loff_t count)
 352{
 353        pgoff_t start = pos >> PAGE_CACHE_SHIFT;
 354        pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
 355        int ret;
 356
 357        if (!mapping_cap_writeback_dirty(mapping) || !count)
 358                return 0;
 359        ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
 360        if (ret == 0)
 361                ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
 362        if (ret == 0)
 363                ret = wait_on_page_writeback_range(mapping, start, end);
 364        return ret;
 365}
 366EXPORT_SYMBOL(sync_page_range_nolock);
 367
 368/**
 369 * filemap_fdatawait - wait for all under-writeback pages to complete
 370 * @mapping: address space structure to wait for
 371 *
 372 * Walk the list of under-writeback pages of the given address space
 373 * and wait for all of them.
 374 */
 375int filemap_fdatawait(struct address_space *mapping)
 376{
 377        loff_t i_size = i_size_read(mapping->host);
 378
 379        if (i_size == 0)
 380                return 0;
 381
 382        return wait_on_page_writeback_range(mapping, 0,
 383                                (i_size - 1) >> PAGE_CACHE_SHIFT);
 384}
 385EXPORT_SYMBOL(filemap_fdatawait);
 386
 387int filemap_write_and_wait(struct address_space *mapping)
 388{
 389        int err = 0;
 390
 391        if (mapping->nrpages) {
 392                err = filemap_fdatawrite(mapping);
 393                /*
 394                 * Even if the above returned error, the pages may be
 395                 * written partially (e.g. -ENOSPC), so we wait for it.
 396                 * But the -EIO is special case, it may indicate the worst
 397                 * thing (e.g. bug) happened, so we avoid waiting for it.
 398                 */
 399                if (err != -EIO) {
 400                        int err2 = filemap_fdatawait(mapping);
 401                        if (!err)
 402                                err = err2;
 403                }
 404        }
 405        return err;
 406}
 407EXPORT_SYMBOL(filemap_write_and_wait);
 408
 409/**
 410 * filemap_write_and_wait_range - write out & wait on a file range
 411 * @mapping:    the address_space for the pages
 412 * @lstart:     offset in bytes where the range starts
 413 * @lend:       offset in bytes where the range ends (inclusive)
 414 *
 415 * Write out and wait upon file offsets lstart->lend, inclusive.
 416 *
 417 * Note that `lend' is inclusive (describes the last byte to be written) so
 418 * that this function can be used to write to the very end-of-file (end = -1).
 419 */
 420int filemap_write_and_wait_range(struct address_space *mapping,
 421                                 loff_t lstart, loff_t lend)
 422{
 423        int err = 0;
 424
 425        if (mapping->nrpages) {
 426                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 427                                                 WB_SYNC_ALL);
 428                /* See comment of filemap_write_and_wait() */
 429                if (err != -EIO) {
 430                        int err2 = wait_on_page_writeback_range(mapping,
 431                                                lstart >> PAGE_CACHE_SHIFT,
 432                                                lend >> PAGE_CACHE_SHIFT);
 433                        if (!err)
 434                                err = err2;
 435                }
 436        }
 437        return err;
 438}
 439
 440/**
 441 * add_to_page_cache - add newly allocated pagecache pages
 442 * @page:       page to add
 443 * @mapping:    the page's address_space
 444 * @offset:     page index
 445 * @gfp_mask:   page allocation mode
 446 *
 447 * This function is used to add newly allocated pagecache pages;
 448 * the page is new, so we can just run SetPageLocked() against it.
 449 * The other page state flags were set by rmqueue().
 450 *
 451 * This function does not add the page to the LRU.  The caller must do that.
 452 */
 453int add_to_page_cache(struct page *page, struct address_space *mapping,
 454                pgoff_t offset, gfp_t gfp_mask)
 455{
 456        int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
 457
 458        if (error == 0) {
 459                write_lock_irq(&mapping->tree_lock);
 460                error = radix_tree_insert(&mapping->page_tree, offset, page);
 461                if (!error) {
 462                        page_cache_get(page);
 463                        SetPageLocked(page);
 464                        page->mapping = mapping;
 465                        page->index = offset;
 466                        mapping->nrpages++;
 467                        __inc_zone_page_state(page, NR_FILE_PAGES);
 468                }
 469                write_unlock_irq(&mapping->tree_lock);
 470                radix_tree_preload_end();
 471        }
 472        return error;
 473}
 474EXPORT_SYMBOL(add_to_page_cache);
 475
 476int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 477                                pgoff_t offset, gfp_t gfp_mask)
 478{
 479        int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
 480        if (ret == 0)
 481                lru_cache_add(page);
 482        return ret;
 483}
 484
 485#ifdef CONFIG_NUMA
 486struct page *__page_cache_alloc(gfp_t gfp)
 487{
 488        if (cpuset_do_page_mem_spread()) {
 489                int n = cpuset_mem_spread_node();
 490                return alloc_pages_node(n, gfp, 0);
 491        }
 492        return alloc_pages(gfp, 0);
 493}
 494EXPORT_SYMBOL(__page_cache_alloc);
 495#endif
 496
 497static int __sleep_on_page_lock(void *word)
 498{
 499        io_schedule();
 500        return 0;
 501}
 502
 503/*
 504 * In order to wait for pages to become available there must be
 505 * waitqueues associated with pages. By using a hash table of
 506 * waitqueues where the bucket discipline is to maintain all
 507 * waiters on the same queue and wake all when any of the pages
 508 * become available, and for the woken contexts to check to be
 509 * sure the appropriate page became available, this saves space
 510 * at a cost of "thundering herd" phenomena during rare hash
 511 * collisions.
 512 */
 513static wait_queue_head_t *page_waitqueue(struct page *page)
 514{
 515        const struct zone *zone = page_zone(page);
 516
 517        return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
 518}
 519
 520static inline void wake_up_page(struct page *page, int bit)
 521{
 522        __wake_up_bit(page_waitqueue(page), &page->flags, bit);
 523}
 524
 525void fastcall wait_on_page_bit(struct page *page, int bit_nr)
 526{
 527        DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
 528
 529        if (test_bit(bit_nr, &page->flags))
 530                __wait_on_bit(page_waitqueue(page), &wait, sync_page,
 531                                                        TASK_UNINTERRUPTIBLE);
 532}
 533EXPORT_SYMBOL(wait_on_page_bit);
 534
 535/**
 536 * unlock_page - unlock a locked page
 537 * @page: the page
 538 *
 539 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
 540 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
 541 * mechananism between PageLocked pages and PageWriteback pages is shared.
 542 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
 543 *
 544 * The first mb is necessary to safely close the critical section opened by the
 545 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
 546 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
 547 * parallel wait_on_page_locked()).
 548 */
 549void fastcall unlock_page(struct page *page)
 550{
 551        smp_mb__before_clear_bit();
 552        if (!TestClearPageLocked(page))
 553                BUG();
 554        smp_mb__after_clear_bit(); 
 555        wake_up_page(page, PG_locked);
 556}
 557EXPORT_SYMBOL(unlock_page);
 558
 559/**
 560 * end_page_writeback - end writeback against a page
 561 * @page: the page
 562 */
 563void end_page_writeback(struct page *page)
 564{
 565        if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
 566                if (!test_clear_page_writeback(page))
 567                        BUG();
 568        }
 569        smp_mb__after_clear_bit();
 570        wake_up_page(page, PG_writeback);
 571}
 572EXPORT_SYMBOL(end_page_writeback);
 573
 574/**
 575 * __lock_page - get a lock on the page, assuming we need to sleep to get it
 576 * @page: the page to lock
 577 *
 578 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
 579 * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
 580 * chances are that on the second loop, the block layer's plug list is empty,
 581 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
 582 */
 583void fastcall __lock_page(struct page *page)
 584{
 585        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 586
 587        __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
 588                                                        TASK_UNINTERRUPTIBLE);
 589}
 590EXPORT_SYMBOL(__lock_page);
 591
 592/*
 593 * Variant of lock_page that does not require the caller to hold a reference
 594 * on the page's mapping.
 595 */
 596void fastcall __lock_page_nosync(struct page *page)
 597{
 598        DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
 599        __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
 600                                                        TASK_UNINTERRUPTIBLE);
 601}
 602
 603/**
 604 * find_get_page - find and get a page reference
 605 * @mapping: the address_space to search
 606 * @offset: the page index
 607 *
 608 * Is there a pagecache struct page at the given (mapping, offset) tuple?
 609 * If yes, increment its refcount and return it; if no, return NULL.
 610 */
 611struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
 612{
 613        struct page *page;
 614
 615        read_lock_irq(&mapping->tree_lock);
 616        page = radix_tree_lookup(&mapping->page_tree, offset);
 617        if (page)
 618                page_cache_get(page);
 619        read_unlock_irq(&mapping->tree_lock);
 620        return page;
 621}
 622EXPORT_SYMBOL(find_get_page);
 623
 624/**
 625 * find_lock_page - locate, pin and lock a pagecache page
 626 * @mapping: the address_space to search
 627 * @offset: the page index
 628 *
 629 * Locates the desired pagecache page, locks it, increments its reference
 630 * count and returns its address.
 631 *
 632 * Returns zero if the page was not present. find_lock_page() may sleep.
 633 */
 634struct page *find_lock_page(struct address_space *mapping,
 635                                pgoff_t offset)
 636{
 637        struct page *page;
 638
 639repeat:
 640        read_lock_irq(&mapping->tree_lock);
 641        page = radix_tree_lookup(&mapping->page_tree, offset);
 642        if (page) {
 643                page_cache_get(page);
 644                if (TestSetPageLocked(page)) {
 645                        read_unlock_irq(&mapping->tree_lock);
 646                        __lock_page(page);
 647
 648                        /* Has the page been truncated while we slept? */
 649                        if (unlikely(page->mapping != mapping)) {
 650                                unlock_page(page);
 651                                page_cache_release(page);
 652                                goto repeat;
 653                        }
 654                        VM_BUG_ON(page->index != offset);
 655                        goto out;
 656                }
 657        }
 658        read_unlock_irq(&mapping->tree_lock);
 659out:
 660        return page;
 661}
 662EXPORT_SYMBOL(find_lock_page);
 663
 664/**
 665 * find_or_create_page - locate or add a pagecache page
 666 * @mapping: the page's address_space
 667 * @index: the page's index into the mapping
 668 * @gfp_mask: page allocation mode
 669 *
 670 * Locates a page in the pagecache.  If the page is not present, a new page
 671 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
 672 * LRU list.  The returned page is locked and has its reference count
 673 * incremented.
 674 *
 675 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
 676 * allocation!
 677 *
 678 * find_or_create_page() returns the desired page's address, or zero on
 679 * memory exhaustion.
 680 */
 681struct page *find_or_create_page(struct address_space *mapping,
 682                pgoff_t index, gfp_t gfp_mask)
 683{
 684        struct page *page;
 685        int err;
 686repeat:
 687        page = find_lock_page(mapping, index);
 688        if (!page) {
 689                page = __page_cache_alloc(gfp_mask);
 690                if (!page)
 691                        return NULL;
 692                err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
 693                if (unlikely(err)) {
 694                        page_cache_release(page);
 695                        page = NULL;
 696                        if (err == -EEXIST)
 697                                goto repeat;
 698                }
 699        }
 700        return page;
 701}
 702EXPORT_SYMBOL(find_or_create_page);
 703
 704/**
 705 * find_get_pages - gang pagecache lookup
 706 * @mapping:    The address_space to search
 707 * @start:      The starting page index
 708 * @nr_pages:   The maximum number of pages
 709 * @pages:      Where the resulting pages are placed
 710 *
 711 * find_get_pages() will search for and return a group of up to
 712 * @nr_pages pages in the mapping.  The pages are placed at @pages.
 713 * find_get_pages() takes a reference against the returned pages.
 714 *
 715 * The search returns a group of mapping-contiguous pages with ascending
 716 * indexes.  There may be holes in the indices due to not-present pages.
 717 *
 718 * find_get_pages() returns the number of pages which were found.
 719 */
 720unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
 721                            unsigned int nr_pages, struct page **pages)
 722{
 723        unsigned int i;
 724        unsigned int ret;
 725
 726        read_lock_irq(&mapping->tree_lock);
 727        ret = radix_tree_gang_lookup(&mapping->page_tree,
 728                                (void **)pages, start, nr_pages);
 729        for (i = 0; i < ret; i++)
 730                page_cache_get(pages[i]);
 731        read_unlock_irq(&mapping->tree_lock);
 732        return ret;
 733}
 734
 735/**
 736 * find_get_pages_contig - gang contiguous pagecache lookup
 737 * @mapping:    The address_space to search
 738 * @index:      The starting page index
 739 * @nr_pages:   The maximum number of pages
 740 * @pages:      Where the resulting pages are placed
 741 *
 742 * find_get_pages_contig() works exactly like find_get_pages(), except
 743 * that the returned number of pages are guaranteed to be contiguous.
 744 *
 745 * find_get_pages_contig() returns the number of pages which were found.
 746 */
 747unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
 748                               unsigned int nr_pages, struct page **pages)
 749{
 750        unsigned int i;
 751        unsigned int ret;
 752
 753        read_lock_irq(&mapping->tree_lock);
 754        ret = radix_tree_gang_lookup(&mapping->page_tree,
 755                                (void **)pages, index, nr_pages);
 756        for (i = 0; i < ret; i++) {
 757                if (pages[i]->mapping == NULL || pages[i]->index != index)
 758                        break;
 759
 760                page_cache_get(pages[i]);
 761                index++;
 762        }
 763        read_unlock_irq(&mapping->tree_lock);
 764        return i;
 765}
 766EXPORT_SYMBOL(find_get_pages_contig);
 767
 768/**
 769 * find_get_pages_tag - find and return pages that match @tag
 770 * @mapping:    the address_space to search
 771 * @index:      the starting page index
 772 * @tag:        the tag index
 773 * @nr_pages:   the maximum number of pages
 774 * @pages:      where the resulting pages are placed
 775 *
 776 * Like find_get_pages, except we only return pages which are tagged with
 777 * @tag.   We update @index to index the next page for the traversal.
 778 */
 779unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
 780                        int tag, unsigned int nr_pages, struct page **pages)
 781{
 782        unsigned int i;
 783        unsigned int ret;
 784
 785        read_lock_irq(&mapping->tree_lock);
 786        ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
 787                                (void **)pages, *index, nr_pages, tag);
 788        for (i = 0; i < ret; i++)
 789                page_cache_get(pages[i]);
 790        if (ret)
 791                *index = pages[ret - 1]->index + 1;
 792        read_unlock_irq(&mapping->tree_lock);
 793        return ret;
 794}
 795EXPORT_SYMBOL(find_get_pages_tag);
 796
 797/**
 798 * grab_cache_page_nowait - returns locked page at given index in given cache
 799 * @mapping: target address_space
 800 * @index: the page index
 801 *
 802 * Same as grab_cache_page(), but do not wait if the page is unavailable.
 803 * This is intended for speculative data generators, where the data can
 804 * be regenerated if the page couldn't be grabbed.  This routine should
 805 * be safe to call while holding the lock for another page.
 806 *
 807 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
 808 * and deadlock against the caller's locked page.
 809 */
 810struct page *
 811grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
 812{
 813        struct page *page = find_get_page(mapping, index);
 814
 815        if (page) {
 816                if (!TestSetPageLocked(page))
 817                        return page;
 818                page_cache_release(page);
 819                return NULL;
 820        }
 821        page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
 822        if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
 823                page_cache_release(page);
 824                page = NULL;
 825        }
 826        return page;
 827}
 828EXPORT_SYMBOL(grab_cache_page_nowait);
 829
 830/*
 831 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
 832 * a _large_ part of the i/o request. Imagine the worst scenario:
 833 *
 834 *      ---R__________________________________________B__________
 835 *         ^ reading here                             ^ bad block(assume 4k)
 836 *
 837 * read(R) => miss => readahead(R...B) => media error => frustrating retries
 838 * => failing the whole request => read(R) => read(R+1) =>
 839 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
 840 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
 841 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
 842 *
 843 * It is going insane. Fix it by quickly scaling down the readahead size.
 844 */
 845static void shrink_readahead_size_eio(struct file *filp,
 846                                        struct file_ra_state *ra)
 847{
 848        if (!ra->ra_pages)
 849                return;
 850
 851        ra->ra_pages /= 4;
 852}
 853
 854/**
 855 * do_generic_mapping_read - generic file read routine
 856 * @mapping:    address_space to be read
 857 * @ra:         file's readahead state
 858 * @filp:       the file to read
 859 * @ppos:       current file position
 860 * @desc:       read_descriptor
 861 * @actor:      read method
 862 *
 863 * This is a generic file read routine, and uses the
 864 * mapping->a_ops->readpage() function for the actual low-level stuff.
 865 *
 866 * This is really ugly. But the goto's actually try to clarify some
 867 * of the logic when it comes to error handling etc.
 868 *
 869 * Note the struct file* is only passed for the use of readpage.
 870 * It may be NULL.
 871 */
 872void do_generic_mapping_read(struct address_space *mapping,
 873                             struct file_ra_state *ra,
 874                             struct file *filp,
 875                             loff_t *ppos,
 876                             read_descriptor_t *desc,
 877                             read_actor_t actor)
 878{
 879        struct inode *inode = mapping->host;
 880        pgoff_t index;
 881        pgoff_t last_index;
 882        pgoff_t prev_index;
 883        unsigned long offset;      /* offset into pagecache page */
 884        unsigned int prev_offset;
 885        int error;
 886
 887        index = *ppos >> PAGE_CACHE_SHIFT;
 888        prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
 889        prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
 890        last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
 891        offset = *ppos & ~PAGE_CACHE_MASK;
 892
 893        for (;;) {
 894                struct page *page;
 895                pgoff_t end_index;
 896                loff_t isize;
 897                unsigned long nr, ret;
 898
 899                cond_resched();
 900find_page:
 901                page = find_get_page(mapping, index);
 902                if (!page) {
 903                        page_cache_sync_readahead(mapping,
 904                                        ra, filp,
 905                                        index, last_index - index);
 906                        page = find_get_page(mapping, index);
 907                        if (unlikely(page == NULL))
 908                                goto no_cached_page;
 909                }
 910                if (PageReadahead(page)) {
 911                        page_cache_async_readahead(mapping,
 912                                        ra, filp, page,
 913                                        index, last_index - index);
 914                }
 915                if (!PageUptodate(page))
 916                        goto page_not_up_to_date;
 917page_ok:
 918                /*
 919                 * i_size must be checked after we know the page is Uptodate.
 920                 *
 921                 * Checking i_size after the check allows us to calculate
 922                 * the correct value for "nr", which means the zero-filled
 923                 * part of the page is not copied back to userspace (unless
 924                 * another truncate extends the file - this is desired though).
 925                 */
 926
 927                isize = i_size_read(inode);
 928                end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
 929                if (unlikely(!isize || index > end_index)) {
 930                        page_cache_release(page);
 931                        goto out;
 932                }
 933
 934                /* nr is the maximum number of bytes to copy from this page */
 935                nr = PAGE_CACHE_SIZE;
 936                if (index == end_index) {
 937                        nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
 938                        if (nr <= offset) {
 939                                page_cache_release(page);
 940                                goto out;
 941                        }
 942                }
 943                nr = nr - offset;
 944
 945                /* If users can be writing to this page using arbitrary
 946                 * virtual addresses, take care about potential aliasing
 947                 * before reading the page on the kernel side.
 948                 */
 949                if (mapping_writably_mapped(mapping))
 950                        flush_dcache_page(page);
 951
 952                /*
 953                 * When a sequential read accesses a page several times,
 954                 * only mark it as accessed the first time.
 955                 */
 956                if (prev_index != index || offset != prev_offset)
 957                        mark_page_accessed(page);
 958                prev_index = index;
 959
 960                /*
 961                 * Ok, we have the page, and it's up-to-date, so
 962                 * now we can copy it to user space...
 963                 *
 964                 * The actor routine returns how many bytes were actually used..
 965                 * NOTE! This may not be the same as how much of a user buffer
 966                 * we filled up (we may be padding etc), so we can only update
 967                 * "pos" here (the actor routine has to update the user buffer
 968                 * pointers and the remaining count).
 969                 */
 970                ret = actor(desc, page, offset, nr);
 971                offset += ret;
 972                index += offset >> PAGE_CACHE_SHIFT;
 973                offset &= ~PAGE_CACHE_MASK;
 974                prev_offset = offset;
 975
 976                page_cache_release(page);
 977                if (ret == nr && desc->count)
 978                        continue;
 979                goto out;
 980
 981page_not_up_to_date:
 982                /* Get exclusive access to the page ... */
 983                lock_page(page);
 984
 985                /* Did it get truncated before we got the lock? */
 986                if (!page->mapping) {
 987                        unlock_page(page);
 988                        page_cache_release(page);
 989                        continue;
 990                }
 991
 992                /* Did somebody else fill it already? */
 993                if (PageUptodate(page)) {
 994                        unlock_page(page);
 995                        goto page_ok;
 996                }
 997
 998readpage:
 999                /* Start the actual read. The read will unlock the page. */
1000                error = mapping->a_ops->readpage(filp, page);
1001
1002                if (unlikely(error)) {
1003                        if (error == AOP_TRUNCATED_PAGE) {
1004                                page_cache_release(page);
1005                                goto find_page;
1006                        }
1007                        goto readpage_error;
1008                }
1009
1010                if (!PageUptodate(page)) {
1011                        lock_page(page);
1012                        if (!PageUptodate(page)) {
1013                                if (page->mapping == NULL) {
1014                                        /*
1015                                         * invalidate_inode_pages got it
1016                                         */
1017                                        unlock_page(page);
1018                                        page_cache_release(page);
1019                                        goto find_page;
1020                                }
1021                                unlock_page(page);
1022                                error = -EIO;
1023                                shrink_readahead_size_eio(filp, ra);
1024                                goto readpage_error;
1025                        }
1026                        unlock_page(page);
1027                }
1028
1029                goto page_ok;
1030
1031readpage_error:
1032                /* UHHUH! A synchronous read error occurred. Report it */
1033                desc->error = error;
1034                page_cache_release(page);
1035                goto out;
1036
1037no_cached_page:
1038                /*
1039                 * Ok, it wasn't cached, so we need to create a new
1040                 * page..
1041                 */
1042                page = page_cache_alloc_cold(mapping);
1043                if (!page) {
1044                        desc->error = -ENOMEM;
1045                        goto out;
1046                }
1047                error = add_to_page_cache_lru(page, mapping,
1048                                                index, GFP_KERNEL);
1049                if (error) {
1050                        page_cache_release(page);
1051                        if (error == -EEXIST)
1052                                goto find_page;
1053                        desc->error = error;
1054                        goto out;
1055                }
1056                goto readpage;
1057        }
1058
1059out:
1060        ra->prev_pos = prev_index;
1061        ra->prev_pos <<= PAGE_CACHE_SHIFT;
1062        ra->prev_pos |= prev_offset;
1063
1064        *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1065        if (filp)
1066                file_accessed(filp);
1067}
1068EXPORT_SYMBOL(do_generic_mapping_read);
1069
1070int file_read_actor(read_descriptor_t *desc, struct page *page,
1071                        unsigned long offset, unsigned long size)
1072{
1073        char *kaddr;
1074        unsigned long left, count = desc->count;
1075
1076        if (size > count)
1077                size = count;
1078
1079        /*
1080         * Faults on the destination of a read are common, so do it before
1081         * taking the kmap.
1082         */
1083        if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1084                kaddr = kmap_atomic(page, KM_USER0);
1085                left = __copy_to_user_inatomic(desc->arg.buf,
1086                                                kaddr + offset, size);
1087                kunmap_atomic(kaddr, KM_USER0);
1088                if (left == 0)
1089                        goto success;
1090        }
1091
1092        /* Do it the slow way */
1093        kaddr = kmap(page);
1094        left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1095        kunmap(page);
1096
1097        if (left) {
1098                size -= left;
1099                desc->error = -EFAULT;
1100        }
1101success:
1102        desc->count = count - size;
1103        desc->written += size;
1104        desc->arg.buf += size;
1105        return size;
1106}
1107
1108/*
1109 * Performs necessary checks before doing a write
1110 * @iov:        io vector request
1111 * @nr_segs:    number of segments in the iovec
1112 * @count:      number of bytes to write
1113 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1114 *
1115 * Adjust number of segments and amount of bytes to write (nr_segs should be
1116 * properly initialized first). Returns appropriate error code that caller
1117 * should return or zero in case that write should be allowed.
1118 */
1119int generic_segment_checks(const struct iovec *iov,
1120                        unsigned long *nr_segs, size_t *count, int access_flags)
1121{
1122        unsigned long   seg;
1123        size_t cnt = 0;
1124        for (seg = 0; seg < *nr_segs; seg++) {
1125                const struct iovec *iv = &iov[seg];
1126
1127                /*
1128                 * If any segment has a negative length, or the cumulative
1129                 * length ever wraps negative then return -EINVAL.
1130                 */
1131                cnt += iv->iov_len;
1132                if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1133                        return -EINVAL;
1134                if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1135                        continue;
1136                if (seg == 0)
1137                        return -EFAULT;
1138                *nr_segs = seg;
1139                cnt -= iv->iov_len;     /* This segment is no good */
1140                break;
1141        }
1142        *count = cnt;
1143        return 0;
1144}
1145EXPORT_SYMBOL(generic_segment_checks);
1146
1147/**
1148 * generic_file_aio_read - generic filesystem read routine
1149 * @iocb:       kernel I/O control block
1150 * @iov:        io vector request
1151 * @nr_segs:    number of segments in the iovec
1152 * @pos:        current file position
1153 *
1154 * This is the "read()" routine for all filesystems
1155 * that can use the page cache directly.
1156 */
1157ssize_t
1158generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1159                unsigned long nr_segs, loff_t pos)
1160{
1161        struct file *filp = iocb->ki_filp;
1162        ssize_t retval;
1163        unsigned long seg;
1164        size_t count;
1165        loff_t *ppos = &iocb->ki_pos;
1166
1167        count = 0;
1168        retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1169        if (retval)
1170                return retval;
1171
1172        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1173        if (filp->f_flags & O_DIRECT) {
1174                loff_t size;
1175                struct address_space *mapping;
1176                struct inode *inode;
1177
1178                mapping = filp->f_mapping;
1179                inode = mapping->host;
1180                retval = 0;
1181                if (!count)
1182                        goto out; /* skip atime */
1183                size = i_size_read(inode);
1184                if (pos < size) {
1185                        retval = generic_file_direct_IO(READ, iocb,
1186                                                iov, pos, nr_segs);
1187                        if (retval > 0)
1188                                *ppos = pos + retval;
1189                }
1190                if (likely(retval != 0)) {
1191                        file_accessed(filp);
1192                        goto out;
1193                }
1194        }
1195
1196        retval = 0;
1197        if (count) {
1198                for (seg = 0; seg < nr_segs; seg++) {
1199                        read_descriptor_t desc;
1200
1201                        desc.written = 0;
1202                        desc.arg.buf = iov[seg].iov_base;
1203                        desc.count = iov[seg].iov_len;
1204                        if (desc.count == 0)
1205                                continue;
1206                        desc.error = 0;
1207                        do_generic_file_read(filp,ppos,&desc,file_read_actor);
1208                        retval += desc.written;
1209                        if (desc.error) {
1210                                retval = retval ?: desc.error;
1211                                break;
1212                        }
1213                        if (desc.count > 0)
1214                                break;
1215                }
1216        }
1217out:
1218        return retval;
1219}
1220EXPORT_SYMBOL(generic_file_aio_read);
1221
1222static ssize_t
1223do_readahead(struct address_space *mapping, struct file *filp,
1224             pgoff_t index, unsigned long nr)
1225{
1226        if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1227                return -EINVAL;
1228
1229        force_page_cache_readahead(mapping, filp, index,
1230                                        max_sane_readahead(nr));
1231        return 0;
1232}
1233
1234asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1235{
1236        ssize_t ret;
1237        struct file *file;
1238
1239        ret = -EBADF;
1240        file = fget(fd);
1241        if (file) {
1242                if (file->f_mode & FMODE_READ) {
1243                        struct address_space *mapping = file->f_mapping;
1244                        pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1245                        pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1246                        unsigned long len = end - start + 1;
1247                        ret = do_readahead(mapping, file, start, len);
1248                }
1249                fput(file);
1250        }
1251        return ret;
1252}
1253
1254#ifdef CONFIG_MMU
1255/**
1256 * page_cache_read - adds requested page to the page cache if not already there
1257 * @file:       file to read
1258 * @offset:     page index
1259 *
1260 * This adds the requested page to the page cache if it isn't already there,
1261 * and schedules an I/O to read in its contents from disk.
1262 */
1263static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1264{
1265        struct address_space *mapping = file->f_mapping;
1266        struct page *page; 
1267        int ret;
1268
1269        do {
1270                page = page_cache_alloc_cold(mapping);
1271                if (!page)
1272                        return -ENOMEM;
1273
1274                ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1275                if (ret == 0)
1276                        ret = mapping->a_ops->readpage(file, page);
1277                else if (ret == -EEXIST)
1278                        ret = 0; /* losing race to add is OK */
1279
1280                page_cache_release(page);
1281
1282        } while (ret == AOP_TRUNCATED_PAGE);
1283                
1284        return ret;
1285}
1286
1287#define MMAP_LOTSAMISS  (100)
1288
1289/**
1290 * filemap_fault - read in file data for page fault handling
1291 * @vma:        vma in which the fault was taken
1292 * @vmf:        struct vm_fault containing details of the fault
1293 *
1294 * filemap_fault() is invoked via the vma operations vector for a
1295 * mapped memory region to read in file data during a page fault.
1296 *
1297 * The goto's are kind of ugly, but this streamlines the normal case of having
1298 * it in the page cache, and handles the special cases reasonably without
1299 * having a lot of duplicated code.
1300 */
1301int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1302{
1303        int error;
1304        struct file *file = vma->vm_file;
1305        struct address_space *mapping = file->f_mapping;
1306        struct file_ra_state *ra = &file->f_ra;
1307        struct inode *inode = mapping->host;
1308        struct page *page;
1309        unsigned long size;
1310        int did_readaround = 0;
1311        int ret = 0;
1312
1313        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1314        if (vmf->pgoff >= size)
1315                return VM_FAULT_SIGBUS;
1316
1317        /* If we don't want any read-ahead, don't bother */
1318        if (VM_RandomReadHint(vma))
1319                goto no_cached_page;
1320
1321        /*
1322         * Do we have something in the page cache already?
1323         */
1324retry_find:
1325        page = find_lock_page(mapping, vmf->pgoff);
1326        /*
1327         * For sequential accesses, we use the generic readahead logic.
1328         */
1329        if (VM_SequentialReadHint(vma)) {
1330                if (!page) {
1331                        page_cache_sync_readahead(mapping, ra, file,
1332                                                           vmf->pgoff, 1);
1333                        page = find_lock_page(mapping, vmf->pgoff);
1334                        if (!page)
1335                                goto no_cached_page;
1336                }
1337                if (PageReadahead(page)) {
1338                        page_cache_async_readahead(mapping, ra, file, page,
1339                                                           vmf->pgoff, 1);
1340                }
1341        }
1342
1343        if (!page) {
1344                unsigned long ra_pages;
1345
1346                ra->mmap_miss++;
1347
1348                /*
1349                 * Do we miss much more than hit in this file? If so,
1350                 * stop bothering with read-ahead. It will only hurt.
1351                 */
1352                if (ra->mmap_miss > MMAP_LOTSAMISS)
1353                        goto no_cached_page;
1354
1355                /*
1356                 * To keep the pgmajfault counter straight, we need to
1357                 * check did_readaround, as this is an inner loop.
1358                 */
1359                if (!did_readaround) {
1360                        ret = VM_FAULT_MAJOR;
1361                        count_vm_event(PGMAJFAULT);
1362                }
1363                did_readaround = 1;
1364                ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1365                if (ra_pages) {
1366                        pgoff_t start = 0;
1367
1368                        if (vmf->pgoff > ra_pages / 2)
1369                                start = vmf->pgoff - ra_pages / 2;
1370                        do_page_cache_readahead(mapping, file, start, ra_pages);
1371                }
1372                page = find_lock_page(mapping, vmf->pgoff);
1373                if (!page)
1374                        goto no_cached_page;
1375        }
1376
1377        if (!did_readaround)
1378                ra->mmap_miss--;
1379
1380        /*
1381         * We have a locked page in the page cache, now we need to check
1382         * that it's up-to-date. If not, it is going to be due to an error.
1383         */
1384        if (unlikely(!PageUptodate(page)))
1385                goto page_not_uptodate;
1386
1387        /* Must recheck i_size under page lock */
1388        size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1389        if (unlikely(vmf->pgoff >= size)) {
1390                unlock_page(page);
1391                page_cache_release(page);
1392                return VM_FAULT_SIGBUS;
1393        }
1394
1395        /*
1396         * Found the page and have a reference on it.
1397         */
1398        mark_page_accessed(page);
1399        ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1400        vmf->page = page;
1401        return ret | VM_FAULT_LOCKED;
1402
1403no_cached_page:
1404        /*
1405         * We're only likely to ever get here if MADV_RANDOM is in
1406         * effect.
1407         */
1408        error = page_cache_read(file, vmf->pgoff);
1409
1410        /*
1411         * The page we want has now been added to the page cache.
1412         * In the unlikely event that someone removed it in the
1413         * meantime, we'll just come back here and read it again.
1414         */
1415        if (error >= 0)
1416                goto retry_find;
1417
1418        /*
1419         * An error return from page_cache_read can result if the
1420         * system is low on memory, or a problem occurs while trying
1421         * to schedule I/O.
1422         */
1423        if (error == -ENOMEM)
1424                return VM_FAULT_OOM;
1425        return VM_FAULT_SIGBUS;
1426
1427page_not_uptodate:
1428        /* IO error path */
1429        if (!did_readaround) {
1430                ret = VM_FAULT_MAJOR;
1431                count_vm_event(PGMAJFAULT);
1432        }
1433
1434        /*
1435         * Umm, take care of errors if the page isn't up-to-date.
1436         * Try to re-read it _once_. We do this synchronously,
1437         * because there really aren't any performance issues here
1438         * and we need to check for errors.
1439         */
1440        ClearPageError(page);
1441        error = mapping->a_ops->readpage(file, page);
1442        page_cache_release(page);
1443
1444        if (!error || error == AOP_TRUNCATED_PAGE)
1445                goto retry_find;
1446
1447        /* Things didn't work out. Return zero to tell the mm layer so. */
1448        shrink_readahead_size_eio(file, ra);
1449        return VM_FAULT_SIGBUS;
1450}
1451EXPORT_SYMBOL(filemap_fault);
1452
1453struct vm_operations_struct generic_file_vm_ops = {
1454        .fault          = filemap_fault,
1455};
1456
1457/* This is used for a general mmap of a disk file */
1458
1459int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1460{
1461        struct address_space *mapping = file->f_mapping;
1462
1463        if (!mapping->a_ops->readpage)
1464                return -ENOEXEC;
1465        file_accessed(file);
1466        vma->vm_ops = &generic_file_vm_ops;
1467        vma->vm_flags |= VM_CAN_NONLINEAR;
1468        return 0;
1469}
1470
1471/*
1472 * This is for filesystems which do not implement ->writepage.
1473 */
1474int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1475{
1476        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1477                return -EINVAL;
1478        return generic_file_mmap(file, vma);
1479}
1480#else
1481int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1482{
1483        return -ENOSYS;
1484}
1485int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1486{
1487        return -ENOSYS;
1488}
1489#endif /* CONFIG_MMU */
1490
1491EXPORT_SYMBOL(generic_file_mmap);
1492EXPORT_SYMBOL(generic_file_readonly_mmap);
1493
1494static struct page *__read_cache_page(struct address_space *mapping,
1495                                pgoff_t index,
1496                                int (*filler)(void *,struct page*),
1497                                void *data)
1498{
1499        struct page *page;
1500        int err;
1501repeat:
1502        page = find_get_page(mapping, index);
1503        if (!page) {
1504                page = page_cache_alloc_cold(mapping);
1505                if (!page)
1506                        return ERR_PTR(-ENOMEM);
1507                err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1508                if (unlikely(err)) {
1509                        page_cache_release(page);
1510                        if (err == -EEXIST)
1511                                goto repeat;
1512                        /* Presumably ENOMEM for radix tree node */
1513                        return ERR_PTR(err);
1514                }
1515                err = filler(data, page);
1516                if (err < 0) {
1517                        page_cache_release(page);
1518                        page = ERR_PTR(err);
1519                }
1520        }
1521        return page;
1522}
1523
1524/*
1525 * Same as read_cache_page, but don't wait for page to become unlocked
1526 * after submitting it to the filler.
1527 */
1528struct page *read_cache_page_async(struct address_space *mapping,
1529                                pgoff_t index,
1530                                int (*filler)(void *,struct page*),
1531                                void *data)
1532{
1533        struct page *page;
1534        int err;
1535
1536retry:
1537        page = __read_cache_page(mapping, index, filler, data);
1538        if (IS_ERR(page))
1539                return page;
1540        if (PageUptodate(page))
1541                goto out;
1542
1543        lock_page(page);
1544        if (!page->mapping) {
1545                unlock_page(page);
1546                page_cache_release(page);
1547                goto retry;
1548        }
1549        if (PageUptodate(page)) {
1550                unlock_page(page);
1551                goto out;
1552        }
1553        err = filler(data, page);
1554        if (err < 0) {
1555                page_cache_release(page);
1556                return ERR_PTR(err);
1557        }
1558out:
1559        mark_page_accessed(page);
1560        return page;
1561}
1562EXPORT_SYMBOL(read_cache_page_async);
1563
1564/**
1565 * read_cache_page - read into page cache, fill it if needed
1566 * @mapping:    the page's address_space
1567 * @index:      the page index
1568 * @filler:     function to perform the read
1569 * @data:       destination for read data
1570 *
1571 * Read into the page cache. If a page already exists, and PageUptodate() is
1572 * not set, try to fill the page then wait for it to become unlocked.
1573 *
1574 * If the page does not get brought uptodate, return -EIO.
1575 */
1576struct page *read_cache_page(struct address_space *mapping,
1577                                pgoff_t index,
1578                                int (*filler)(void *,struct page*),
1579                                void *data)
1580{
1581        struct page *page;
1582
1583        page = read_cache_page_async(mapping, index, filler, data);
1584        if (IS_ERR(page))
1585                goto out;
1586        wait_on_page_locked(page);
1587        if (!PageUptodate(page)) {
1588                page_cache_release(page);
1589                page = ERR_PTR(-EIO);
1590        }
1591 out:
1592        return page;
1593}
1594EXPORT_SYMBOL(read_cache_page);
1595
1596/*
1597 * The logic we want is
1598 *
1599 *      if suid or (sgid and xgrp)
1600 *              remove privs
1601 */
1602int should_remove_suid(struct dentry *dentry)
1603{
1604        mode_t mode = dentry->d_inode->i_mode;
1605        int kill = 0;
1606
1607        /* suid always must be killed */
1608        if (unlikely(mode & S_ISUID))
1609                kill = ATTR_KILL_SUID;
1610
1611        /*
1612         * sgid without any exec bits is just a mandatory locking mark; leave
1613         * it alone.  If some exec bits are set, it's a real sgid; kill it.
1614         */
1615        if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1616                kill |= ATTR_KILL_SGID;
1617
1618        if (unlikely(kill && !capable(CAP_FSETID)))
1619                return kill;
1620
1621        return 0;
1622}
1623EXPORT_SYMBOL(should_remove_suid);
1624
1625int __remove_suid(struct dentry *dentry, int kill)
1626{
1627        struct iattr newattrs;
1628
1629        newattrs.ia_valid = ATTR_FORCE | kill;
1630        return notify_change(dentry, &newattrs);
1631}
1632
1633int remove_suid(struct dentry *dentry)
1634{
1635        int killsuid = should_remove_suid(dentry);
1636        int killpriv = security_inode_need_killpriv(dentry);
1637        int error = 0;
1638
1639        if (killpriv < 0)
1640                return killpriv;
1641        if (killpriv)
1642                error = security_inode_killpriv(dentry);
1643        if (!error && killsuid)
1644                error = __remove_suid(dentry, killsuid);
1645
1646        return error;
1647}
1648EXPORT_SYMBOL(remove_suid);
1649
1650static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1651                        const struct iovec *iov, size_t base, size_t bytes)
1652{
1653        size_t copied = 0, left = 0;
1654
1655        while (bytes) {
1656                char __user *buf = iov->iov_base + base;
1657                int copy = min(bytes, iov->iov_len - base);
1658
1659                base = 0;
1660                left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1661                copied += copy;
1662                bytes -= copy;
1663                vaddr += copy;
1664                iov++;
1665
1666                if (unlikely(left))
1667                        break;
1668        }
1669        return copied - left;
1670}
1671
1672/*
1673 * Copy as much as we can into the page and return the number of bytes which
1674 * were sucessfully copied.  If a fault is encountered then return the number of
1675 * bytes which were copied.
1676 */
1677size_t iov_iter_copy_from_user_atomic(struct page *page,
1678                struct iov_iter *i, unsigned long offset, size_t bytes)
1679{
1680        char *kaddr;
1681        size_t copied;
1682
1683        BUG_ON(!in_atomic());
1684        kaddr = kmap_atomic(page, KM_USER0);
1685        if (likely(i->nr_segs == 1)) {
1686                int left;
1687                char __user *buf = i->iov->iov_base + i->iov_offset;
1688                left = __copy_from_user_inatomic_nocache(kaddr + offset,
1689                                                        buf, bytes);
1690                copied = bytes - left;
1691        } else {
1692                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1693                                                i->iov, i->iov_offset, bytes);
1694        }
1695        kunmap_atomic(kaddr, KM_USER0);
1696
1697        return copied;
1698}
1699EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1700
1701/*
1702 * This has the same sideeffects and return value as
1703 * iov_iter_copy_from_user_atomic().
1704 * The difference is that it attempts to resolve faults.
1705 * Page must not be locked.
1706 */
1707size_t iov_iter_copy_from_user(struct page *page,
1708                struct iov_iter *i, unsigned long offset, size_t bytes)
1709{
1710        char *kaddr;
1711        size_t copied;
1712
1713        kaddr = kmap(page);
1714        if (likely(i->nr_segs == 1)) {
1715                int left;
1716                char __user *buf = i->iov->iov_base + i->iov_offset;
1717                left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1718                copied = bytes - left;
1719        } else {
1720                copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1721                                                i->iov, i->iov_offset, bytes);
1722        }
1723        kunmap(page);
1724        return copied;
1725}
1726EXPORT_SYMBOL(iov_iter_copy_from_user);
1727
1728static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1729{
1730        if (likely(i->nr_segs == 1)) {
1731                i->iov_offset += bytes;
1732        } else {
1733                const struct iovec *iov = i->iov;
1734                size_t base = i->iov_offset;
1735
1736                while (bytes) {
1737                        int copy = min(bytes, iov->iov_len - base);
1738
1739                        bytes -= copy;
1740                        base += copy;
1741                        if (iov->iov_len == base) {
1742                                iov++;
1743                                base = 0;
1744                        }
1745                }
1746                i->iov = iov;
1747                i->iov_offset = base;
1748        }
1749}
1750
1751void iov_iter_advance(struct iov_iter *i, size_t bytes)
1752{
1753        BUG_ON(i->count < bytes);
1754
1755        __iov_iter_advance_iov(i, bytes);
1756        i->count -= bytes;
1757}
1758EXPORT_SYMBOL(iov_iter_advance);
1759
1760/*
1761 * Fault in the first iovec of the given iov_iter, to a maximum length
1762 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1763 * accessed (ie. because it is an invalid address).
1764 *
1765 * writev-intensive code may want this to prefault several iovecs -- that
1766 * would be possible (callers must not rely on the fact that _only_ the
1767 * first iovec will be faulted with the current implementation).
1768 */
1769int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1770{
1771        char __user *buf = i->iov->iov_base + i->iov_offset;
1772        bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1773        return fault_in_pages_readable(buf, bytes);
1774}
1775EXPORT_SYMBOL(iov_iter_fault_in_readable);
1776
1777/*
1778 * Return the count of just the current iov_iter segment.
1779 */
1780size_t iov_iter_single_seg_count(struct iov_iter *i)
1781{
1782        const struct iovec *iov = i->iov;
1783        if (i->nr_segs == 1)
1784                return i->count;
1785        else
1786                return min(i->count, iov->iov_len - i->iov_offset);
1787}
1788EXPORT_SYMBOL(iov_iter_single_seg_count);
1789
1790/*
1791 * Performs necessary checks before doing a write
1792 *
1793 * Can adjust writing position or amount of bytes to write.
1794 * Returns appropriate error code that caller should return or
1795 * zero in case that write should be allowed.
1796 */
1797inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1798{
1799        struct inode *inode = file->f_mapping->host;
1800        unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1801
1802        if (unlikely(*pos < 0))
1803                return -EINVAL;
1804
1805        if (!isblk) {
1806                /* FIXME: this is for backwards compatibility with 2.4 */
1807                if (file->f_flags & O_APPEND)
1808                        *pos = i_size_read(inode);
1809
1810                if (limit != RLIM_INFINITY) {
1811                        if (*pos >= limit) {
1812                                send_sig(SIGXFSZ, current, 0);
1813                                return -EFBIG;
1814                        }
1815                        if (*count > limit - (typeof(limit))*pos) {
1816                                *count = limit - (typeof(limit))*pos;
1817                        }
1818                }
1819        }
1820
1821        /*
1822         * LFS rule
1823         */
1824        if (unlikely(*pos + *count > MAX_NON_LFS &&
1825                                !(file->f_flags & O_LARGEFILE))) {
1826                if (*pos >= MAX_NON_LFS) {
1827                        return -EFBIG;
1828                }
1829                if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1830                        *count = MAX_NON_LFS - (unsigned long)*pos;
1831                }
1832        }
1833
1834        /*
1835         * Are we about to exceed the fs block limit ?
1836         *
1837         * If we have written data it becomes a short write.  If we have
1838         * exceeded without writing data we send a signal and return EFBIG.
1839         * Linus frestrict idea will clean these up nicely..
1840         */
1841        if (likely(!isblk)) {
1842                if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1843                        if (*count || *pos > inode->i_sb->s_maxbytes) {
1844                                return -EFBIG;
1845                        }
1846                        /* zero-length writes at ->s_maxbytes are OK */
1847                }
1848
1849                if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1850                        *count = inode->i_sb->s_maxbytes - *pos;
1851        } else {
1852#ifdef CONFIG_BLOCK
1853                loff_t isize;
1854                if (bdev_read_only(I_BDEV(inode)))
1855                        return -EPERM;
1856                isize = i_size_read(inode);
1857                if (*pos >= isize) {
1858                        if (*count || *pos > isize)
1859                                return -ENOSPC;
1860                }
1861
1862                if (*pos + *count > isize)
1863                        *count = isize - *pos;
1864#else
1865                return -EPERM;
1866#endif
1867        }
1868        return 0;
1869}
1870EXPORT_SYMBOL(generic_write_checks);
1871
1872int pagecache_write_begin(struct file *file, struct address_space *mapping,
1873                                loff_t pos, unsigned len, unsigned flags,
1874                                struct page **pagep, void **fsdata)
1875{
1876        const struct address_space_operations *aops = mapping->a_ops;
1877
1878        if (aops->write_begin) {
1879                return aops->write_begin(file, mapping, pos, len, flags,
1880                                                        pagep, fsdata);
1881        } else {
1882                int ret;
1883                pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1884                unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1885                struct inode *inode = mapping->host;
1886                struct page *page;
1887again:
1888                page = __grab_cache_page(mapping, index);
1889                *pagep = page;
1890                if (!page)
1891                        return -ENOMEM;
1892
1893                if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1894                        /*
1895                         * There is no way to resolve a short write situation
1896                         * for a !Uptodate page (except by double copying in
1897                         * the caller done by generic_perform_write_2copy).
1898                         *
1899                         * Instead, we have to bring it uptodate here.
1900                         */
1901                        ret = aops->readpage(file, page);
1902                        page_cache_release(page);
1903                        if (ret) {
1904                                if (ret == AOP_TRUNCATED_PAGE)
1905                                        goto again;
1906                                return ret;
1907                        }
1908                        goto again;
1909                }
1910
1911                ret = aops->prepare_write(file, page, offset, offset+len);
1912                if (ret) {
1913                        unlock_page(page);
1914                        page_cache_release(page);
1915                        if (pos + len > inode->i_size)
1916                                vmtruncate(inode, inode->i_size);
1917                }
1918                return ret;
1919        }
1920}
1921EXPORT_SYMBOL(pagecache_write_begin);
1922
1923int pagecache_write_end(struct file *file, struct address_space *mapping,
1924                                loff_t pos, unsigned len, unsigned copied,
1925                                struct page *page, void *fsdata)
1926{
1927        const struct address_space_operations *aops = mapping->a_ops;
1928        int ret;
1929
1930        if (aops->write_end) {
1931                mark_page_accessed(page);
1932                ret = aops->write_end(file, mapping, pos, len, copied,
1933                                                        page, fsdata);
1934        } else {
1935                unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1936                struct inode *inode = mapping->host;
1937
1938                flush_dcache_page(page);
1939                ret = aops->commit_write(file, page, offset, offset+len);
1940                unlock_page(page);
1941                mark_page_accessed(page);
1942                page_cache_release(page);
1943
1944                if (ret < 0) {
1945                        if (pos + len > inode->i_size)
1946                                vmtruncate(inode, inode->i_size);
1947                } else if (ret > 0)
1948                        ret = min_t(size_t, copied, ret);
1949                else
1950                        ret = copied;
1951        }
1952
1953        return ret;
1954}
1955EXPORT_SYMBOL(pagecache_write_end);
1956
1957ssize_t
1958generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1959                unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1960                size_t count, size_t ocount)
1961{
1962        struct file     *file = iocb->ki_filp;
1963        struct address_space *mapping = file->f_mapping;
1964        struct inode    *inode = mapping->host;
1965        ssize_t         written;
1966
1967        if (count != ocount)
1968                *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1969
1970        written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1971        if (written > 0) {
1972                loff_t end = pos + written;
1973                if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1974                        i_size_write(inode,  end);
1975                        mark_inode_dirty(inode);
1976                }
1977                *ppos = end;
1978        }
1979
1980        /*
1981         * Sync the fs metadata but not the minor inode changes and
1982         * of course not the data as we did direct DMA for the IO.
1983         * i_mutex is held, which protects generic_osync_inode() from
1984         * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
1985         */
1986        if ((written >= 0 || written == -EIOCBQUEUED) &&
1987            ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1988                int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1989                if (err < 0)
1990                        written = err;
1991        }
1992        return written;
1993}
1994EXPORT_SYMBOL(generic_file_direct_write);
1995
1996/*
1997 * Find or create a page at the given pagecache position. Return the locked
1998 * page. This function is specifically for buffered writes.
1999 */
2000struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2001{
2002        int status;
2003        struct page *page;
2004repeat:
2005        page = find_lock_page(mapping, index);
2006        if (likely(page))
2007                return page;
2008
2009        page = page_cache_alloc(mapping);
2010        if (!page)
2011                return NULL;
2012        status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2013        if (unlikely(status)) {
2014                page_cache_release(page);
2015                if (status == -EEXIST)
2016                        goto repeat;
2017                return NULL;
2018        }
2019        return page;
2020}
2021EXPORT_SYMBOL(__grab_cache_page);
2022
2023static ssize_t generic_perform_write_2copy(struct file *file,
2024                                struct iov_iter *i, loff_t pos)
2025{
2026        struct address_space *mapping = file->f_mapping;
2027        const struct address_space_operations *a_ops = mapping->a_ops;
2028        struct inode *inode = mapping->host;
2029        long status = 0;
2030        ssize_t written = 0;
2031
2032        do {
2033                struct page *src_page;
2034                struct page *page;
2035                pgoff_t index;          /* Pagecache index for current page */
2036                unsigned long offset;   /* Offset into pagecache page */
2037                unsigned long bytes;    /* Bytes to write to page */
2038                size_t copied;          /* Bytes copied from user */
2039
2040                offset = (pos & (PAGE_CACHE_SIZE - 1));
2041                index = pos >> PAGE_CACHE_SHIFT;
2042                bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2043                                                iov_iter_count(i));
2044
2045                /*
2046                 * a non-NULL src_page indicates that we're doing the
2047                 * copy via get_user_pages and kmap.
2048                 */
2049                src_page = NULL;
2050
2051                /*
2052                 * Bring in the user page that we will copy from _first_.
2053                 * Otherwise there's a nasty deadlock on copying from the
2054                 * same page as we're writing to, without it being marked
2055                 * up-to-date.
2056                 *
2057                 * Not only is this an optimisation, but it is also required
2058                 * to check that the address is actually valid, when atomic
2059                 * usercopies are used, below.
2060                 */
2061                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2062                        status = -EFAULT;
2063                        break;
2064                }
2065
2066                page = __grab_cache_page(mapping, index);
2067                if (!page) {
2068                        status = -ENOMEM;
2069                        break;
2070                }
2071
2072                /*
2073                 * non-uptodate pages cannot cope with short copies, and we
2074                 * cannot take a pagefault with the destination page locked.
2075                 * So pin the source page to copy it.
2076                 */
2077                if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2078                        unlock_page(page);
2079
2080                        src_page = alloc_page(GFP_KERNEL);
2081                        if (!src_page) {
2082                                page_cache_release(page);
2083                                status = -ENOMEM;
2084                                break;
2085                        }
2086
2087                        /*
2088                         * Cannot get_user_pages with a page locked for the
2089                         * same reason as we can't take a page fault with a
2090                         * page locked (as explained below).
2091                         */
2092                        copied = iov_iter_copy_from_user(src_page, i,
2093                                                                offset, bytes);
2094                        if (unlikely(copied == 0)) {
2095                                status = -EFAULT;
2096                                page_cache_release(page);
2097                                page_cache_release(src_page);
2098                                break;
2099                        }
2100                        bytes = copied;
2101
2102                        lock_page(page);
2103                        /*
2104                         * Can't handle the page going uptodate here, because
2105                         * that means we would use non-atomic usercopies, which
2106                         * zero out the tail of the page, which can cause
2107                         * zeroes to become transiently visible. We could just
2108                         * use a non-zeroing copy, but the APIs aren't too
2109                         * consistent.
2110                         */
2111                        if (unlikely(!page->mapping || PageUptodate(page))) {
2112                                unlock_page(page);
2113                                page_cache_release(page);
2114                                page_cache_release(src_page);
2115                                continue;
2116                        }
2117                }
2118
2119                status = a_ops->prepare_write(file, page, offset, offset+bytes);
2120                if (unlikely(status))
2121                        goto fs_write_aop_error;
2122
2123                if (!src_page) {
2124                        /*
2125                         * Must not enter the pagefault handler here, because
2126                         * we hold the page lock, so we might recursively
2127                         * deadlock on the same lock, or get an ABBA deadlock
2128                         * against a different lock, or against the mmap_sem
2129                         * (which nests outside the page lock).  So increment
2130                         * preempt count, and use _atomic usercopies.
2131                         *
2132                         * The page is uptodate so we are OK to encounter a
2133                         * short copy: if unmodified parts of the page are
2134                         * marked dirty and written out to disk, it doesn't
2135                         * really matter.
2136                         */
2137                        pagefault_disable();
2138                        copied = iov_iter_copy_from_user_atomic(page, i,
2139                                                                offset, bytes);
2140                        pagefault_enable();
2141                } else {
2142                        void *src, *dst;
2143                        src = kmap_atomic(src_page, KM_USER0);
2144                        dst = kmap_atomic(page, KM_USER1);
2145                        memcpy(dst + offset, src + offset, bytes);
2146                        kunmap_atomic(dst, KM_USER1);
2147                        kunmap_atomic(src, KM_USER0);
2148                        copied = bytes;
2149                }
2150                flush_dcache_page(page);
2151
2152                status = a_ops->commit_write(file, page, offset, offset+bytes);
2153                if (unlikely(status < 0))
2154                        goto fs_write_aop_error;
2155                if (unlikely(status > 0)) /* filesystem did partial write */
2156                        copied = min_t(size_t, copied, status);
2157
2158                unlock_page(page);
2159                mark_page_accessed(page);
2160                page_cache_release(page);
2161                if (src_page)
2162                        page_cache_release(src_page);
2163
2164                iov_iter_advance(i, copied);
2165                pos += copied;
2166                written += copied;
2167
2168                balance_dirty_pages_ratelimited(mapping);
2169                cond_resched();
2170                continue;
2171
2172fs_write_aop_error:
2173                unlock_page(page);
2174                page_cache_release(page);
2175                if (src_page)
2176                        page_cache_release(src_page);
2177
2178                /*
2179                 * prepare_write() may have instantiated a few blocks
2180                 * outside i_size.  Trim these off again. Don't need
2181                 * i_size_read because we hold i_mutex.
2182                 */
2183                if (pos + bytes > inode->i_size)
2184                        vmtruncate(inode, inode->i_size);
2185                break;
2186        } while (iov_iter_count(i));
2187
2188        return written ? written : status;
2189}
2190
2191static ssize_t generic_perform_write(struct file *file,
2192                                struct iov_iter *i, loff_t pos)
2193{
2194        struct address_space *mapping = file->f_mapping;
2195        const struct address_space_operations *a_ops = mapping->a_ops;
2196        long status = 0;
2197        ssize_t written = 0;
2198        unsigned int flags = 0;
2199
2200        /*
2201         * Copies from kernel address space cannot fail (NFSD is a big user).
2202         */
2203        if (segment_eq(get_fs(), KERNEL_DS))
2204                flags |= AOP_FLAG_UNINTERRUPTIBLE;
2205
2206        do {
2207                struct page *page;
2208                pgoff_t index;          /* Pagecache index for current page */
2209                unsigned long offset;   /* Offset into pagecache page */
2210                unsigned long bytes;    /* Bytes to write to page */
2211                size_t copied;          /* Bytes copied from user */
2212                void *fsdata;
2213
2214                offset = (pos & (PAGE_CACHE_SIZE - 1));
2215                index = pos >> PAGE_CACHE_SHIFT;
2216                bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2217                                                iov_iter_count(i));
2218
2219again:
2220
2221                /*
2222                 * Bring in the user page that we will copy from _first_.
2223                 * Otherwise there's a nasty deadlock on copying from the
2224                 * same page as we're writing to, without it being marked
2225                 * up-to-date.
2226                 *
2227                 * Not only is this an optimisation, but it is also required
2228                 * to check that the address is actually valid, when atomic
2229                 * usercopies are used, below.
2230                 */
2231                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2232                        status = -EFAULT;
2233                        break;
2234                }
2235
2236                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2237                                                &page, &fsdata);
2238                if (unlikely(status))
2239                        break;
2240
2241                pagefault_disable();
2242                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2243                pagefault_enable();
2244                flush_dcache_page(page);
2245
2246                status = a_ops->write_end(file, mapping, pos, bytes, copied,
2247                                                page, fsdata);
2248                if (unlikely(status < 0))
2249                        break;
2250                copied = status;
2251
2252                cond_resched();
2253
2254                if (unlikely(copied == 0)) {
2255                        /*
2256                         * If we were unable to copy any data at all, we must
2257                         * fall back to a single segment length write.
2258                         *
2259                         * If we didn't fallback here, we could livelock
2260                         * because not all segments in the iov can be copied at
2261                         * once without a pagefault.
2262                         */
2263                        bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2264                                                iov_iter_single_seg_count(i));
2265                        goto again;
2266                }
2267                iov_iter_advance(i, copied);
2268                pos += copied;
2269                written += copied;
2270
2271                balance_dirty_pages_ratelimited(mapping);
2272
2273        } while (iov_iter_count(i));
2274
2275        return written ? written : status;
2276}
2277
2278ssize_t
2279generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2280                unsigned long nr_segs, loff_t pos, loff_t *ppos,
2281                size_t count, ssize_t written)
2282{
2283        struct file *file = iocb->ki_filp;
2284        struct address_space *mapping = file->f_mapping;
2285        const struct address_space_operations *a_ops = mapping->a_ops;
2286        struct inode *inode = mapping->host;
2287        ssize_t status;
2288        struct iov_iter i;
2289
2290        iov_iter_init(&i, iov, nr_segs, count, written);
2291        if (a_ops->write_begin)
2292                status = generic_perform_write(file, &i, pos);
2293        else
2294                status = generic_perform_write_2copy(file, &i, pos);
2295
2296        if (likely(status >= 0)) {
2297                written += status;
2298                *ppos = pos + status;
2299
2300                /*
2301                 * For now, when the user asks for O_SYNC, we'll actually give
2302                 * O_DSYNC
2303                 */
2304                if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2305                        if (!a_ops->writepage || !is_sync_kiocb(iocb))
2306                                status = generic_osync_inode(inode, mapping,
2307                                                OSYNC_METADATA|OSYNC_DATA);
2308                }
2309        }
2310        
2311        /*
2312         * If we get here for O_DIRECT writes then we must have fallen through
2313         * to buffered writes (block instantiation inside i_size).  So we sync
2314         * the file data here, to try to honour O_DIRECT expectations.
2315         */
2316        if (unlikely(file->f_flags & O_DIRECT) && written)
2317                status = filemap_write_and_wait(mapping);
2318
2319        return written ? written : status;
2320}
2321EXPORT_SYMBOL(generic_file_buffered_write);
2322
2323static ssize_t
2324__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2325                                unsigned long nr_segs, loff_t *ppos)
2326{
2327        struct file *file = iocb->ki_filp;
2328        struct address_space * mapping = file->f_mapping;
2329        size_t ocount;          /* original count */
2330        size_t count;           /* after file limit checks */
2331        struct inode    *inode = mapping->host;
2332        loff_t          pos;
2333        ssize_t         written;
2334        ssize_t         err;
2335
2336        ocount = 0;
2337        err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2338        if (err)
2339                return err;
2340
2341        count = ocount;
2342        pos = *ppos;
2343
2344        vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2345
2346        /* We can write back this queue in page reclaim */
2347        current->backing_dev_info = mapping->backing_dev_info;
2348        written = 0;
2349
2350        err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2351        if (err)
2352                goto out;
2353
2354        if (count == 0)
2355                goto out;
2356
2357        err = remove_suid(file->f_path.dentry);
2358        if (err)
2359                goto out;
2360
2361        file_update_time(file);
2362
2363        /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2364        if (unlikely(file->f_flags & O_DIRECT)) {
2365                loff_t endbyte;
2366                ssize_t written_buffered;
2367
2368                written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2369                                                        ppos, count, ocount);
2370                if (written < 0 || written == count)
2371                        goto out;
2372                /*
2373                 * direct-io write to a hole: fall through to buffered I/O
2374                 * for completing the rest of the request.
2375                 */
2376                pos += written;
2377                count -= written;
2378                written_buffered = generic_file_buffered_write(iocb, iov,
2379                                                nr_segs, pos, ppos, count,
2380                                                written);
2381                /*
2382                 * If generic_file_buffered_write() retuned a synchronous error
2383                 * then we want to return the number of bytes which were
2384                 * direct-written, or the error code if that was zero.  Note
2385                 * that this differs from normal direct-io semantics, which
2386                 * will return -EFOO even if some bytes were written.
2387                 */
2388                if (written_buffered < 0) {
2389                        err = written_buffered;
2390                        goto out;
2391                }
2392
2393                /*
2394                 * We need to ensure that the page cache pages are written to
2395                 * disk and invalidated to preserve the expected O_DIRECT
2396                 * semantics.
2397                 */
2398                endbyte = pos + written_buffered - written - 1;
2399                err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2400                                            SYNC_FILE_RANGE_WAIT_BEFORE|
2401                                            SYNC_FILE_RANGE_WRITE|
2402                                            SYNC_FILE_RANGE_WAIT_AFTER);
2403                if (err == 0) {
2404                        written = written_buffered;
2405                        invalidate_mapping_pages(mapping,
2406                                                 pos >> PAGE_CACHE_SHIFT,
2407                                                 endbyte >> PAGE_CACHE_SHIFT);
2408                } else {
2409                        /*
2410                         * We don't know how much we wrote, so just return
2411                         * the number of bytes which were direct-written
2412                         */
2413                }
2414        } else {
2415                written = generic_file_buffered_write(iocb, iov, nr_segs,
2416                                pos, ppos, count, written);
2417        }
2418out:
2419        current->backing_dev_info = NULL;
2420        return written ? written : err;
2421}
2422
2423ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2424                const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2425{
2426        struct file *file = iocb->ki_filp;
2427        struct address_space *mapping = file->f_mapping;
2428        struct inode *inode = mapping->host;
2429        ssize_t ret;
2430
2431        BUG_ON(iocb->ki_pos != pos);
2432
2433        ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2434                        &iocb->ki_pos);
2435
2436        if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2437                ssize_t err;
2438
2439                err = sync_page_range_nolock(inode, mapping, pos, ret);
2440                if (err < 0)
2441                        ret = err;
2442        }
2443        return ret;
2444}
2445EXPORT_SYMBOL(generic_file_aio_write_nolock);
2446
2447ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2448                unsigned long nr_segs, loff_t pos)
2449{
2450        struct file *file = iocb->ki_filp;
2451        struct address_space *mapping = file->f_mapping;
2452        struct inode *inode = mapping->host;
2453        ssize_t ret;
2454
2455        BUG_ON(iocb->ki_pos != pos);
2456
2457        mutex_lock(&inode->i_mutex);
2458        ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2459                        &iocb->ki_pos);
2460        mutex_unlock(&inode->i_mutex);
2461
2462        if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2463                ssize_t err;
2464
2465                err = sync_page_range(inode, mapping, pos, ret);
2466                if (err < 0)
2467                        ret = err;
2468        }
2469        return ret;
2470}
2471EXPORT_SYMBOL(generic_file_aio_write);
2472
2473/*
2474 * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2475 * went wrong during pagecache shootdown.
2476 */
2477static ssize_t
2478generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2479        loff_t offset, unsigned long nr_segs)
2480{
2481        struct file *file = iocb->ki_filp;
2482        struct address_space *mapping = file->f_mapping;
2483        ssize_t retval;
2484        size_t write_len;
2485        pgoff_t end = 0; /* silence gcc */
2486
2487        /*
2488         * If it's a write, unmap all mmappings of the file up-front.  This
2489         * will cause any pte dirty bits to be propagated into the pageframes
2490         * for the subsequent filemap_write_and_wait().
2491         */
2492        if (rw == WRITE) {
2493                write_len = iov_length(iov, nr_segs);
2494                end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2495                if (mapping_mapped(mapping))
2496                        unmap_mapping_range(mapping, offset, write_len, 0);
2497        }
2498
2499        retval = filemap_write_and_wait(mapping);
2500        if (retval)
2501                goto out;
2502
2503        /*
2504         * After a write we want buffered reads to be sure to go to disk to get
2505         * the new data.  We invalidate clean cached page from the region we're
2506         * about to write.  We do this *before* the write so that we can return
2507         * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2508         */
2509        if (rw == WRITE && mapping->nrpages) {
2510                retval = invalidate_inode_pages2_range(mapping,
2511                                        offset >> PAGE_CACHE_SHIFT, end);
2512                if (retval)
2513                        goto out;
2514        }
2515
2516        retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2517
2518        /*
2519         * Finally, try again to invalidate clean pages which might have been
2520         * cached by non-direct readahead, or faulted in by get_user_pages()
2521         * if the source of the write was an mmap'ed region of the file
2522         * we're writing.  Either one is a pretty crazy thing to do,
2523         * so we don't support it 100%.  If this invalidation
2524         * fails, tough, the write still worked...
2525         */
2526        if (rw == WRITE && mapping->nrpages) {
2527                invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2528        }
2529out:
2530        return retval;
2531}
2532
2533/**
2534 * try_to_release_page() - release old fs-specific metadata on a page
2535 *
2536 * @page: the page which the kernel is trying to free
2537 * @gfp_mask: memory allocation flags (and I/O mode)
2538 *
2539 * The address_space is to try to release any data against the page
2540 * (presumably at page->private).  If the release was successful, return `1'.
2541 * Otherwise return zero.
2542 *
2543 * The @gfp_mask argument specifies whether I/O may be performed to release
2544 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2545 *
2546 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2547 */
2548int try_to_release_page(struct page *page, gfp_t gfp_mask)
2549{
2550        struct address_space * const mapping = page->mapping;
2551
2552        BUG_ON(!PageLocked(page));
2553        if (PageWriteback(page))
2554                return 0;
2555
2556        if (mapping && mapping->a_ops->releasepage)
2557                return mapping->a_ops->releasepage(page, gfp_mask);
2558        return try_to_free_buffers(page);
2559}
2560
2561EXPORT_SYMBOL(try_to_release_page);
2562