linux/mm/highmem.c
<<
>>
Prefs
   1/*
   2 * High memory handling common code and variables.
   3 *
   4 * (C) 1999 Andrea Arcangeli, SuSE GmbH, andrea@suse.de
   5 *          Gerhard Wichert, Siemens AG, Gerhard.Wichert@pdb.siemens.de
   6 *
   7 *
   8 * Redesigned the x86 32-bit VM architecture to deal with
   9 * 64-bit physical space. With current x86 CPUs this
  10 * means up to 64 Gigabytes physical RAM.
  11 *
  12 * Rewrote high memory support to move the page cache into
  13 * high memory. Implemented permanent (schedulable) kmaps
  14 * based on Linus' idea.
  15 *
  16 * Copyright (C) 1999 Ingo Molnar <mingo@redhat.com>
  17 */
  18
  19#include <linux/mm.h>
  20#include <linux/module.h>
  21#include <linux/swap.h>
  22#include <linux/bio.h>
  23#include <linux/pagemap.h>
  24#include <linux/mempool.h>
  25#include <linux/blkdev.h>
  26#include <linux/init.h>
  27#include <linux/hash.h>
  28#include <linux/highmem.h>
  29#include <linux/blktrace_api.h>
  30#include <asm/tlbflush.h>
  31
  32/*
  33 * Virtual_count is not a pure "count".
  34 *  0 means that it is not mapped, and has not been mapped
  35 *    since a TLB flush - it is usable.
  36 *  1 means that there are no users, but it has been mapped
  37 *    since the last TLB flush - so we can't use it.
  38 *  n means that there are (n-1) current users of it.
  39 */
  40#ifdef CONFIG_HIGHMEM
  41
  42unsigned long totalhigh_pages __read_mostly;
  43
  44unsigned int nr_free_highpages (void)
  45{
  46        pg_data_t *pgdat;
  47        unsigned int pages = 0;
  48
  49        for_each_online_pgdat(pgdat) {
  50                pages += zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  51                        NR_FREE_PAGES);
  52                if (zone_movable_is_highmem())
  53                        pages += zone_page_state(
  54                                        &pgdat->node_zones[ZONE_MOVABLE],
  55                                        NR_FREE_PAGES);
  56        }
  57
  58        return pages;
  59}
  60
  61static int pkmap_count[LAST_PKMAP];
  62static unsigned int last_pkmap_nr;
  63static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(kmap_lock);
  64
  65pte_t * pkmap_page_table;
  66
  67static DECLARE_WAIT_QUEUE_HEAD(pkmap_map_wait);
  68
  69static void flush_all_zero_pkmaps(void)
  70{
  71        int i;
  72
  73        flush_cache_kmaps();
  74
  75        for (i = 0; i < LAST_PKMAP; i++) {
  76                struct page *page;
  77
  78                /*
  79                 * zero means we don't have anything to do,
  80                 * >1 means that it is still in use. Only
  81                 * a count of 1 means that it is free but
  82                 * needs to be unmapped
  83                 */
  84                if (pkmap_count[i] != 1)
  85                        continue;
  86                pkmap_count[i] = 0;
  87
  88                /* sanity check */
  89                BUG_ON(pte_none(pkmap_page_table[i]));
  90
  91                /*
  92                 * Don't need an atomic fetch-and-clear op here;
  93                 * no-one has the page mapped, and cannot get at
  94                 * its virtual address (and hence PTE) without first
  95                 * getting the kmap_lock (which is held here).
  96                 * So no dangers, even with speculative execution.
  97                 */
  98                page = pte_page(pkmap_page_table[i]);
  99                pte_clear(&init_mm, (unsigned long)page_address(page),
 100                          &pkmap_page_table[i]);
 101
 102                set_page_address(page, NULL);
 103        }
 104        flush_tlb_kernel_range(PKMAP_ADDR(0), PKMAP_ADDR(LAST_PKMAP));
 105}
 106
 107/* Flush all unused kmap mappings in order to remove stray
 108   mappings. */
 109void kmap_flush_unused(void)
 110{
 111        spin_lock(&kmap_lock);
 112        flush_all_zero_pkmaps();
 113        spin_unlock(&kmap_lock);
 114}
 115
 116static inline unsigned long map_new_virtual(struct page *page)
 117{
 118        unsigned long vaddr;
 119        int count;
 120
 121start:
 122        count = LAST_PKMAP;
 123        /* Find an empty entry */
 124        for (;;) {
 125                last_pkmap_nr = (last_pkmap_nr + 1) & LAST_PKMAP_MASK;
 126                if (!last_pkmap_nr) {
 127                        flush_all_zero_pkmaps();
 128                        count = LAST_PKMAP;
 129                }
 130                if (!pkmap_count[last_pkmap_nr])
 131                        break;  /* Found a usable entry */
 132                if (--count)
 133                        continue;
 134
 135                /*
 136                 * Sleep for somebody else to unmap their entries
 137                 */
 138                {
 139                        DECLARE_WAITQUEUE(wait, current);
 140
 141                        __set_current_state(TASK_UNINTERRUPTIBLE);
 142                        add_wait_queue(&pkmap_map_wait, &wait);
 143                        spin_unlock(&kmap_lock);
 144                        schedule();
 145                        remove_wait_queue(&pkmap_map_wait, &wait);
 146                        spin_lock(&kmap_lock);
 147
 148                        /* Somebody else might have mapped it while we slept */
 149                        if (page_address(page))
 150                                return (unsigned long)page_address(page);
 151
 152                        /* Re-start */
 153                        goto start;
 154                }
 155        }
 156        vaddr = PKMAP_ADDR(last_pkmap_nr);
 157        set_pte_at(&init_mm, vaddr,
 158                   &(pkmap_page_table[last_pkmap_nr]), mk_pte(page, kmap_prot));
 159
 160        pkmap_count[last_pkmap_nr] = 1;
 161        set_page_address(page, (void *)vaddr);
 162
 163        return vaddr;
 164}
 165
 166void fastcall *kmap_high(struct page *page)
 167{
 168        unsigned long vaddr;
 169
 170        /*
 171         * For highmem pages, we can't trust "virtual" until
 172         * after we have the lock.
 173         *
 174         * We cannot call this from interrupts, as it may block
 175         */
 176        spin_lock(&kmap_lock);
 177        vaddr = (unsigned long)page_address(page);
 178        if (!vaddr)
 179                vaddr = map_new_virtual(page);
 180        pkmap_count[PKMAP_NR(vaddr)]++;
 181        BUG_ON(pkmap_count[PKMAP_NR(vaddr)] < 2);
 182        spin_unlock(&kmap_lock);
 183        return (void*) vaddr;
 184}
 185
 186EXPORT_SYMBOL(kmap_high);
 187
 188void fastcall kunmap_high(struct page *page)
 189{
 190        unsigned long vaddr;
 191        unsigned long nr;
 192        int need_wakeup;
 193
 194        spin_lock(&kmap_lock);
 195        vaddr = (unsigned long)page_address(page);
 196        BUG_ON(!vaddr);
 197        nr = PKMAP_NR(vaddr);
 198
 199        /*
 200         * A count must never go down to zero
 201         * without a TLB flush!
 202         */
 203        need_wakeup = 0;
 204        switch (--pkmap_count[nr]) {
 205        case 0:
 206                BUG();
 207        case 1:
 208                /*
 209                 * Avoid an unnecessary wake_up() function call.
 210                 * The common case is pkmap_count[] == 1, but
 211                 * no waiters.
 212                 * The tasks queued in the wait-queue are guarded
 213                 * by both the lock in the wait-queue-head and by
 214                 * the kmap_lock.  As the kmap_lock is held here,
 215                 * no need for the wait-queue-head's lock.  Simply
 216                 * test if the queue is empty.
 217                 */
 218                need_wakeup = waitqueue_active(&pkmap_map_wait);
 219        }
 220        spin_unlock(&kmap_lock);
 221
 222        /* do wake-up, if needed, race-free outside of the spin lock */
 223        if (need_wakeup)
 224                wake_up(&pkmap_map_wait);
 225}
 226
 227EXPORT_SYMBOL(kunmap_high);
 228#endif
 229
 230#if defined(HASHED_PAGE_VIRTUAL)
 231
 232#define PA_HASH_ORDER   7
 233
 234/*
 235 * Describes one page->virtual association
 236 */
 237struct page_address_map {
 238        struct page *page;
 239        void *virtual;
 240        struct list_head list;
 241};
 242
 243/*
 244 * page_address_map freelist, allocated from page_address_maps.
 245 */
 246static struct list_head page_address_pool;      /* freelist */
 247static spinlock_t pool_lock;                    /* protects page_address_pool */
 248
 249/*
 250 * Hash table bucket
 251 */
 252static struct page_address_slot {
 253        struct list_head lh;                    /* List of page_address_maps */
 254        spinlock_t lock;                        /* Protect this bucket's list */
 255} ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER];
 256
 257static struct page_address_slot *page_slot(struct page *page)
 258{
 259        return &page_address_htable[hash_ptr(page, PA_HASH_ORDER)];
 260}
 261
 262void *page_address(struct page *page)
 263{
 264        unsigned long flags;
 265        void *ret;
 266        struct page_address_slot *pas;
 267
 268        if (!PageHighMem(page))
 269                return lowmem_page_address(page);
 270
 271        pas = page_slot(page);
 272        ret = NULL;
 273        spin_lock_irqsave(&pas->lock, flags);
 274        if (!list_empty(&pas->lh)) {
 275                struct page_address_map *pam;
 276
 277                list_for_each_entry(pam, &pas->lh, list) {
 278                        if (pam->page == page) {
 279                                ret = pam->virtual;
 280                                goto done;
 281                        }
 282                }
 283        }
 284done:
 285        spin_unlock_irqrestore(&pas->lock, flags);
 286        return ret;
 287}
 288
 289EXPORT_SYMBOL(page_address);
 290
 291void set_page_address(struct page *page, void *virtual)
 292{
 293        unsigned long flags;
 294        struct page_address_slot *pas;
 295        struct page_address_map *pam;
 296
 297        BUG_ON(!PageHighMem(page));
 298
 299        pas = page_slot(page);
 300        if (virtual) {          /* Add */
 301                BUG_ON(list_empty(&page_address_pool));
 302
 303                spin_lock_irqsave(&pool_lock, flags);
 304                pam = list_entry(page_address_pool.next,
 305                                struct page_address_map, list);
 306                list_del(&pam->list);
 307                spin_unlock_irqrestore(&pool_lock, flags);
 308
 309                pam->page = page;
 310                pam->virtual = virtual;
 311
 312                spin_lock_irqsave(&pas->lock, flags);
 313                list_add_tail(&pam->list, &pas->lh);
 314                spin_unlock_irqrestore(&pas->lock, flags);
 315        } else {                /* Remove */
 316                spin_lock_irqsave(&pas->lock, flags);
 317                list_for_each_entry(pam, &pas->lh, list) {
 318                        if (pam->page == page) {
 319                                list_del(&pam->list);
 320                                spin_unlock_irqrestore(&pas->lock, flags);
 321                                spin_lock_irqsave(&pool_lock, flags);
 322                                list_add_tail(&pam->list, &page_address_pool);
 323                                spin_unlock_irqrestore(&pool_lock, flags);
 324                                goto done;
 325                        }
 326                }
 327                spin_unlock_irqrestore(&pas->lock, flags);
 328        }
 329done:
 330        return;
 331}
 332
 333static struct page_address_map page_address_maps[LAST_PKMAP];
 334
 335void __init page_address_init(void)
 336{
 337        int i;
 338
 339        INIT_LIST_HEAD(&page_address_pool);
 340        for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)
 341                list_add(&page_address_maps[i].list, &page_address_pool);
 342        for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
 343                INIT_LIST_HEAD(&page_address_htable[i].lh);
 344                spin_lock_init(&page_address_htable[i].lock);
 345        }
 346        spin_lock_init(&pool_lock);
 347}
 348
 349#endif  /* defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) */
 350