linux/mm/page-writeback.c
<<
>>
Prefs
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002    akpm@zip.com.au
  11 *              Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h>
  36#include <linux/pagevec.h>
  37
  38/*
  39 * The maximum number of pages to writeout in a single bdflush/kupdate
  40 * operation.  We do this so we don't hold I_SYNC against an inode for
  41 * enormous amounts of time, which would block a userspace task which has
  42 * been forced to throttle against that inode.  Also, the code reevaluates
  43 * the dirty each time it has written this many pages.
  44 */
  45#define MAX_WRITEBACK_PAGES     1024
  46
  47/*
  48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  49 * will look to see if it needs to force writeback or throttling.
  50 */
  51static long ratelimit_pages = 32;
  52
  53/*
  54 * When balance_dirty_pages decides that the caller needs to perform some
  55 * non-background writeback, this is how many pages it will attempt to write.
  56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
  57 * large amounts of I/O are submitted.
  58 */
  59static inline long sync_writeback_pages(void)
  60{
  61        return ratelimit_pages + ratelimit_pages / 2;
  62}
  63
  64/* The following parameters are exported via /proc/sys/vm */
  65
  66/*
  67 * Start background writeback (via pdflush) at this percentage
  68 */
  69int dirty_background_ratio = 5;
  70
  71/*
  72 * The generator of dirty data starts writeback at this percentage
  73 */
  74int vm_dirty_ratio = 10;
  75
  76/*
  77 * The interval between `kupdate'-style writebacks, in jiffies
  78 */
  79int dirty_writeback_interval = 5 * HZ;
  80
  81/*
  82 * The longest number of jiffies for which data is allowed to remain dirty
  83 */
  84int dirty_expire_interval = 30 * HZ;
  85
  86/*
  87 * Flag that makes the machine dump writes/reads and block dirtyings.
  88 */
  89int block_dump;
  90
  91/*
  92 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
  93 * a full sync is triggered after this time elapses without any disk activity.
  94 */
  95int laptop_mode;
  96
  97EXPORT_SYMBOL(laptop_mode);
  98
  99/* End of sysctl-exported parameters */
 100
 101
 102static void background_writeout(unsigned long _min_pages);
 103
 104/*
 105 * Scale the writeback cache size proportional to the relative writeout speeds.
 106 *
 107 * We do this by keeping a floating proportion between BDIs, based on page
 108 * writeback completions [end_page_writeback()]. Those devices that write out
 109 * pages fastest will get the larger share, while the slower will get a smaller
 110 * share.
 111 *
 112 * We use page writeout completions because we are interested in getting rid of
 113 * dirty pages. Having them written out is the primary goal.
 114 *
 115 * We introduce a concept of time, a period over which we measure these events,
 116 * because demand can/will vary over time. The length of this period itself is
 117 * measured in page writeback completions.
 118 *
 119 */
 120static struct prop_descriptor vm_completions;
 121static struct prop_descriptor vm_dirties;
 122
 123static unsigned long determine_dirtyable_memory(void);
 124
 125/*
 126 * couple the period to the dirty_ratio:
 127 *
 128 *   period/2 ~ roundup_pow_of_two(dirty limit)
 129 */
 130static int calc_period_shift(void)
 131{
 132        unsigned long dirty_total;
 133
 134        dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
 135        return 2 + ilog2(dirty_total - 1);
 136}
 137
 138/*
 139 * update the period when the dirty ratio changes.
 140 */
 141int dirty_ratio_handler(struct ctl_table *table, int write,
 142                struct file *filp, void __user *buffer, size_t *lenp,
 143                loff_t *ppos)
 144{
 145        int old_ratio = vm_dirty_ratio;
 146        int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
 147        if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 148                int shift = calc_period_shift();
 149                prop_change_shift(&vm_completions, shift);
 150                prop_change_shift(&vm_dirties, shift);
 151        }
 152        return ret;
 153}
 154
 155/*
 156 * Increment the BDI's writeout completion count and the global writeout
 157 * completion count. Called from test_clear_page_writeback().
 158 */
 159static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 160{
 161        __prop_inc_percpu(&vm_completions, &bdi->completions);
 162}
 163
 164static inline void task_dirty_inc(struct task_struct *tsk)
 165{
 166        prop_inc_single(&vm_dirties, &tsk->dirties);
 167}
 168
 169/*
 170 * Obtain an accurate fraction of the BDI's portion.
 171 */
 172static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 173                long *numerator, long *denominator)
 174{
 175        if (bdi_cap_writeback_dirty(bdi)) {
 176                prop_fraction_percpu(&vm_completions, &bdi->completions,
 177                                numerator, denominator);
 178        } else {
 179                *numerator = 0;
 180                *denominator = 1;
 181        }
 182}
 183
 184/*
 185 * Clip the earned share of dirty pages to that which is actually available.
 186 * This avoids exceeding the total dirty_limit when the floating averages
 187 * fluctuate too quickly.
 188 */
 189static void
 190clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
 191{
 192        long avail_dirty;
 193
 194        avail_dirty = dirty -
 195                (global_page_state(NR_FILE_DIRTY) +
 196                 global_page_state(NR_WRITEBACK) +
 197                 global_page_state(NR_UNSTABLE_NFS));
 198
 199        if (avail_dirty < 0)
 200                avail_dirty = 0;
 201
 202        avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
 203                bdi_stat(bdi, BDI_WRITEBACK);
 204
 205        *pbdi_dirty = min(*pbdi_dirty, avail_dirty);
 206}
 207
 208static inline void task_dirties_fraction(struct task_struct *tsk,
 209                long *numerator, long *denominator)
 210{
 211        prop_fraction_single(&vm_dirties, &tsk->dirties,
 212                                numerator, denominator);
 213}
 214
 215/*
 216 * scale the dirty limit
 217 *
 218 * task specific dirty limit:
 219 *
 220 *   dirty -= (dirty/8) * p_{t}
 221 */
 222void task_dirty_limit(struct task_struct *tsk, long *pdirty)
 223{
 224        long numerator, denominator;
 225        long dirty = *pdirty;
 226        u64 inv = dirty >> 3;
 227
 228        task_dirties_fraction(tsk, &numerator, &denominator);
 229        inv *= numerator;
 230        do_div(inv, denominator);
 231
 232        dirty -= inv;
 233        if (dirty < *pdirty/2)
 234                dirty = *pdirty/2;
 235
 236        *pdirty = dirty;
 237}
 238
 239/*
 240 * Work out the current dirty-memory clamping and background writeout
 241 * thresholds.
 242 *
 243 * The main aim here is to lower them aggressively if there is a lot of mapped
 244 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 245 * pages.  It is better to clamp down on writers than to start swapping, and
 246 * performing lots of scanning.
 247 *
 248 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 249 *
 250 * We don't permit the clamping level to fall below 5% - that is getting rather
 251 * excessive.
 252 *
 253 * We make sure that the background writeout level is below the adjusted
 254 * clamping level.
 255 */
 256
 257static unsigned long highmem_dirtyable_memory(unsigned long total)
 258{
 259#ifdef CONFIG_HIGHMEM
 260        int node;
 261        unsigned long x = 0;
 262
 263        for_each_node_state(node, N_HIGH_MEMORY) {
 264                struct zone *z =
 265                        &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 266
 267                x += zone_page_state(z, NR_FREE_PAGES)
 268                        + zone_page_state(z, NR_INACTIVE)
 269                        + zone_page_state(z, NR_ACTIVE);
 270        }
 271        /*
 272         * Make sure that the number of highmem pages is never larger
 273         * than the number of the total dirtyable memory. This can only
 274         * occur in very strange VM situations but we want to make sure
 275         * that this does not occur.
 276         */
 277        return min(x, total);
 278#else
 279        return 0;
 280#endif
 281}
 282
 283static unsigned long determine_dirtyable_memory(void)
 284{
 285        unsigned long x;
 286
 287        x = global_page_state(NR_FREE_PAGES)
 288                + global_page_state(NR_INACTIVE)
 289                + global_page_state(NR_ACTIVE);
 290        x -= highmem_dirtyable_memory(x);
 291        return x + 1;   /* Ensure that we never return 0 */
 292}
 293
 294static void
 295get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
 296                 struct backing_dev_info *bdi)
 297{
 298        int background_ratio;           /* Percentages */
 299        int dirty_ratio;
 300        long background;
 301        long dirty;
 302        unsigned long available_memory = determine_dirtyable_memory();
 303        struct task_struct *tsk;
 304
 305        dirty_ratio = vm_dirty_ratio;
 306        if (dirty_ratio < 5)
 307                dirty_ratio = 5;
 308
 309        background_ratio = dirty_background_ratio;
 310        if (background_ratio >= dirty_ratio)
 311                background_ratio = dirty_ratio / 2;
 312
 313        background = (background_ratio * available_memory) / 100;
 314        dirty = (dirty_ratio * available_memory) / 100;
 315        tsk = current;
 316        if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 317                background += background / 4;
 318                dirty += dirty / 4;
 319        }
 320        *pbackground = background;
 321        *pdirty = dirty;
 322
 323        if (bdi) {
 324                u64 bdi_dirty = dirty;
 325                long numerator, denominator;
 326
 327                /*
 328                 * Calculate this BDI's share of the dirty ratio.
 329                 */
 330                bdi_writeout_fraction(bdi, &numerator, &denominator);
 331
 332                bdi_dirty *= numerator;
 333                do_div(bdi_dirty, denominator);
 334
 335                *pbdi_dirty = bdi_dirty;
 336                clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
 337                task_dirty_limit(current, pbdi_dirty);
 338        }
 339}
 340
 341/*
 342 * balance_dirty_pages() must be called by processes which are generating dirty
 343 * data.  It looks at the number of dirty pages in the machine and will force
 344 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
 345 * If we're over `background_thresh' then pdflush is woken to perform some
 346 * writeout.
 347 */
 348static void balance_dirty_pages(struct address_space *mapping)
 349{
 350        long nr_reclaimable, bdi_nr_reclaimable;
 351        long nr_writeback, bdi_nr_writeback;
 352        long background_thresh;
 353        long dirty_thresh;
 354        long bdi_thresh;
 355        unsigned long pages_written = 0;
 356        unsigned long write_chunk = sync_writeback_pages();
 357
 358        struct backing_dev_info *bdi = mapping->backing_dev_info;
 359
 360        for (;;) {
 361                struct writeback_control wbc = {
 362                        .bdi            = bdi,
 363                        .sync_mode      = WB_SYNC_NONE,
 364                        .older_than_this = NULL,
 365                        .nr_to_write    = write_chunk,
 366                        .range_cyclic   = 1,
 367                };
 368
 369                get_dirty_limits(&background_thresh, &dirty_thresh,
 370                                &bdi_thresh, bdi);
 371
 372                nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
 373                                        global_page_state(NR_UNSTABLE_NFS);
 374                nr_writeback = global_page_state(NR_WRITEBACK);
 375
 376                bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 377                bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
 378
 379                if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
 380                        break;
 381
 382                /*
 383                 * Throttle it only when the background writeback cannot
 384                 * catch-up. This avoids (excessively) small writeouts
 385                 * when the bdi limits are ramping up.
 386                 */
 387                if (nr_reclaimable + nr_writeback <
 388                                (background_thresh + dirty_thresh) / 2)
 389                        break;
 390
 391                if (!bdi->dirty_exceeded)
 392                        bdi->dirty_exceeded = 1;
 393
 394                /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
 395                 * Unstable writes are a feature of certain networked
 396                 * filesystems (i.e. NFS) in which data may have been
 397                 * written to the server's write cache, but has not yet
 398                 * been flushed to permanent storage.
 399                 */
 400                if (bdi_nr_reclaimable) {
 401                        writeback_inodes(&wbc);
 402                        pages_written += write_chunk - wbc.nr_to_write;
 403                        get_dirty_limits(&background_thresh, &dirty_thresh,
 404                                       &bdi_thresh, bdi);
 405                }
 406
 407                /*
 408                 * In order to avoid the stacked BDI deadlock we need
 409                 * to ensure we accurately count the 'dirty' pages when
 410                 * the threshold is low.
 411                 *
 412                 * Otherwise it would be possible to get thresh+n pages
 413                 * reported dirty, even though there are thresh-m pages
 414                 * actually dirty; with m+n sitting in the percpu
 415                 * deltas.
 416                 */
 417                if (bdi_thresh < 2*bdi_stat_error(bdi)) {
 418                        bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
 419                        bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
 420                } else if (bdi_nr_reclaimable) {
 421                        bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
 422                        bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
 423                }
 424
 425                if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
 426                        break;
 427                if (pages_written >= write_chunk)
 428                        break;          /* We've done our duty */
 429
 430                congestion_wait(WRITE, HZ/10);
 431        }
 432
 433        if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
 434                        bdi->dirty_exceeded)
 435                bdi->dirty_exceeded = 0;
 436
 437        if (writeback_in_progress(bdi))
 438                return;         /* pdflush is already working this queue */
 439
 440        /*
 441         * In laptop mode, we wait until hitting the higher threshold before
 442         * starting background writeout, and then write out all the way down
 443         * to the lower threshold.  So slow writers cause minimal disk activity.
 444         *
 445         * In normal mode, we start background writeout at the lower
 446         * background_thresh, to keep the amount of dirty memory low.
 447         */
 448        if ((laptop_mode && pages_written) ||
 449                        (!laptop_mode && (global_page_state(NR_FILE_DIRTY)
 450                                          + global_page_state(NR_UNSTABLE_NFS)
 451                                          > background_thresh)))
 452                pdflush_operation(background_writeout, 0);
 453}
 454
 455void set_page_dirty_balance(struct page *page, int page_mkwrite)
 456{
 457        if (set_page_dirty(page) || page_mkwrite) {
 458                struct address_space *mapping = page_mapping(page);
 459
 460                if (mapping)
 461                        balance_dirty_pages_ratelimited(mapping);
 462        }
 463}
 464
 465/**
 466 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
 467 * @mapping: address_space which was dirtied
 468 * @nr_pages_dirtied: number of pages which the caller has just dirtied
 469 *
 470 * Processes which are dirtying memory should call in here once for each page
 471 * which was newly dirtied.  The function will periodically check the system's
 472 * dirty state and will initiate writeback if needed.
 473 *
 474 * On really big machines, get_writeback_state is expensive, so try to avoid
 475 * calling it too often (ratelimiting).  But once we're over the dirty memory
 476 * limit we decrease the ratelimiting by a lot, to prevent individual processes
 477 * from overshooting the limit by (ratelimit_pages) each.
 478 */
 479void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
 480                                        unsigned long nr_pages_dirtied)
 481{
 482        static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
 483        unsigned long ratelimit;
 484        unsigned long *p;
 485
 486        ratelimit = ratelimit_pages;
 487        if (mapping->backing_dev_info->dirty_exceeded)
 488                ratelimit = 8;
 489
 490        /*
 491         * Check the rate limiting. Also, we do not want to throttle real-time
 492         * tasks in balance_dirty_pages(). Period.
 493         */
 494        preempt_disable();
 495        p =  &__get_cpu_var(ratelimits);
 496        *p += nr_pages_dirtied;
 497        if (unlikely(*p >= ratelimit)) {
 498                *p = 0;
 499                preempt_enable();
 500                balance_dirty_pages(mapping);
 501                return;
 502        }
 503        preempt_enable();
 504}
 505EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
 506
 507void throttle_vm_writeout(gfp_t gfp_mask)
 508{
 509        long background_thresh;
 510        long dirty_thresh;
 511
 512        for ( ; ; ) {
 513                get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
 514
 515                /*
 516                 * Boost the allowable dirty threshold a bit for page
 517                 * allocators so they don't get DoS'ed by heavy writers
 518                 */
 519                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
 520
 521                if (global_page_state(NR_UNSTABLE_NFS) +
 522                        global_page_state(NR_WRITEBACK) <= dirty_thresh)
 523                                break;
 524                congestion_wait(WRITE, HZ/10);
 525
 526                /*
 527                 * The caller might hold locks which can prevent IO completion
 528                 * or progress in the filesystem.  So we cannot just sit here
 529                 * waiting for IO to complete.
 530                 */
 531                if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
 532                        break;
 533        }
 534}
 535
 536/*
 537 * writeback at least _min_pages, and keep writing until the amount of dirty
 538 * memory is less than the background threshold, or until we're all clean.
 539 */
 540static void background_writeout(unsigned long _min_pages)
 541{
 542        long min_pages = _min_pages;
 543        struct writeback_control wbc = {
 544                .bdi            = NULL,
 545                .sync_mode      = WB_SYNC_NONE,
 546                .older_than_this = NULL,
 547                .nr_to_write    = 0,
 548                .nonblocking    = 1,
 549                .range_cyclic   = 1,
 550        };
 551
 552        for ( ; ; ) {
 553                long background_thresh;
 554                long dirty_thresh;
 555
 556                get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
 557                if (global_page_state(NR_FILE_DIRTY) +
 558                        global_page_state(NR_UNSTABLE_NFS) < background_thresh
 559                                && min_pages <= 0)
 560                        break;
 561                wbc.encountered_congestion = 0;
 562                wbc.nr_to_write = MAX_WRITEBACK_PAGES;
 563                wbc.pages_skipped = 0;
 564                writeback_inodes(&wbc);
 565                min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
 566                if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
 567                        /* Wrote less than expected */
 568                        congestion_wait(WRITE, HZ/10);
 569                        if (!wbc.encountered_congestion)
 570                                break;
 571                }
 572        }
 573}
 574
 575/*
 576 * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
 577 * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
 578 * -1 if all pdflush threads were busy.
 579 */
 580int wakeup_pdflush(long nr_pages)
 581{
 582        if (nr_pages == 0)
 583                nr_pages = global_page_state(NR_FILE_DIRTY) +
 584                                global_page_state(NR_UNSTABLE_NFS);
 585        return pdflush_operation(background_writeout, nr_pages);
 586}
 587
 588static void wb_timer_fn(unsigned long unused);
 589static void laptop_timer_fn(unsigned long unused);
 590
 591static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
 592static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
 593
 594/*
 595 * Periodic writeback of "old" data.
 596 *
 597 * Define "old": the first time one of an inode's pages is dirtied, we mark the
 598 * dirtying-time in the inode's address_space.  So this periodic writeback code
 599 * just walks the superblock inode list, writing back any inodes which are
 600 * older than a specific point in time.
 601 *
 602 * Try to run once per dirty_writeback_interval.  But if a writeback event
 603 * takes longer than a dirty_writeback_interval interval, then leave a
 604 * one-second gap.
 605 *
 606 * older_than_this takes precedence over nr_to_write.  So we'll only write back
 607 * all dirty pages if they are all attached to "old" mappings.
 608 */
 609static void wb_kupdate(unsigned long arg)
 610{
 611        unsigned long oldest_jif;
 612        unsigned long start_jif;
 613        unsigned long next_jif;
 614        long nr_to_write;
 615        struct writeback_control wbc = {
 616                .bdi            = NULL,
 617                .sync_mode      = WB_SYNC_NONE,
 618                .older_than_this = &oldest_jif,
 619                .nr_to_write    = 0,
 620                .nonblocking    = 1,
 621                .for_kupdate    = 1,
 622                .range_cyclic   = 1,
 623        };
 624
 625        sync_supers();
 626
 627        oldest_jif = jiffies - dirty_expire_interval;
 628        start_jif = jiffies;
 629        next_jif = start_jif + dirty_writeback_interval;
 630        nr_to_write = global_page_state(NR_FILE_DIRTY) +
 631                        global_page_state(NR_UNSTABLE_NFS) +
 632                        (inodes_stat.nr_inodes - inodes_stat.nr_unused);
 633        while (nr_to_write > 0) {
 634                wbc.encountered_congestion = 0;
 635                wbc.nr_to_write = MAX_WRITEBACK_PAGES;
 636                writeback_inodes(&wbc);
 637                if (wbc.nr_to_write > 0) {
 638                        if (wbc.encountered_congestion)
 639                                congestion_wait(WRITE, HZ/10);
 640                        else
 641                                break;  /* All the old data is written */
 642                }
 643                nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
 644        }
 645        if (time_before(next_jif, jiffies + HZ))
 646                next_jif = jiffies + HZ;
 647        if (dirty_writeback_interval)
 648                mod_timer(&wb_timer, next_jif);
 649}
 650
 651/*
 652 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
 653 */
 654int dirty_writeback_centisecs_handler(ctl_table *table, int write,
 655        struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
 656{
 657        proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
 658        if (dirty_writeback_interval)
 659                mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
 660        else
 661                del_timer(&wb_timer);
 662        return 0;
 663}
 664
 665static void wb_timer_fn(unsigned long unused)
 666{
 667        if (pdflush_operation(wb_kupdate, 0) < 0)
 668                mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
 669}
 670
 671static void laptop_flush(unsigned long unused)
 672{
 673        sys_sync();
 674}
 675
 676static void laptop_timer_fn(unsigned long unused)
 677{
 678        pdflush_operation(laptop_flush, 0);
 679}
 680
 681/*
 682 * We've spun up the disk and we're in laptop mode: schedule writeback
 683 * of all dirty data a few seconds from now.  If the flush is already scheduled
 684 * then push it back - the user is still using the disk.
 685 */
 686void laptop_io_completion(void)
 687{
 688        mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
 689}
 690
 691/*
 692 * We're in laptop mode and we've just synced. The sync's writes will have
 693 * caused another writeback to be scheduled by laptop_io_completion.
 694 * Nothing needs to be written back anymore, so we unschedule the writeback.
 695 */
 696void laptop_sync_completion(void)
 697{
 698        del_timer(&laptop_mode_wb_timer);
 699}
 700
 701/*
 702 * If ratelimit_pages is too high then we can get into dirty-data overload
 703 * if a large number of processes all perform writes at the same time.
 704 * If it is too low then SMP machines will call the (expensive)
 705 * get_writeback_state too often.
 706 *
 707 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
 708 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
 709 * thresholds before writeback cuts in.
 710 *
 711 * But the limit should not be set too high.  Because it also controls the
 712 * amount of memory which the balance_dirty_pages() caller has to write back.
 713 * If this is too large then the caller will block on the IO queue all the
 714 * time.  So limit it to four megabytes - the balance_dirty_pages() caller
 715 * will write six megabyte chunks, max.
 716 */
 717
 718void writeback_set_ratelimit(void)
 719{
 720        ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
 721        if (ratelimit_pages < 16)
 722                ratelimit_pages = 16;
 723        if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
 724                ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
 725}
 726
 727static int __cpuinit
 728ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
 729{
 730        writeback_set_ratelimit();
 731        return NOTIFY_DONE;
 732}
 733
 734static struct notifier_block __cpuinitdata ratelimit_nb = {
 735        .notifier_call  = ratelimit_handler,
 736        .next           = NULL,
 737};
 738
 739/*
 740 * Called early on to tune the page writeback dirty limits.
 741 *
 742 * We used to scale dirty pages according to how total memory
 743 * related to pages that could be allocated for buffers (by
 744 * comparing nr_free_buffer_pages() to vm_total_pages.
 745 *
 746 * However, that was when we used "dirty_ratio" to scale with
 747 * all memory, and we don't do that any more. "dirty_ratio"
 748 * is now applied to total non-HIGHPAGE memory (by subtracting
 749 * totalhigh_pages from vm_total_pages), and as such we can't
 750 * get into the old insane situation any more where we had
 751 * large amounts of dirty pages compared to a small amount of
 752 * non-HIGHMEM memory.
 753 *
 754 * But we might still want to scale the dirty_ratio by how
 755 * much memory the box has..
 756 */
 757void __init page_writeback_init(void)
 758{
 759        int shift;
 760
 761        mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
 762        writeback_set_ratelimit();
 763        register_cpu_notifier(&ratelimit_nb);
 764
 765        shift = calc_period_shift();
 766        prop_descriptor_init(&vm_completions, shift);
 767        prop_descriptor_init(&vm_dirties, shift);
 768}
 769
 770/**
 771 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
 772 * @mapping: address space structure to write
 773 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 774 * @writepage: function called for each page
 775 * @data: data passed to writepage function
 776 *
 777 * If a page is already under I/O, write_cache_pages() skips it, even
 778 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
 779 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
 780 * and msync() need to guarantee that all the data which was dirty at the time
 781 * the call was made get new I/O started against them.  If wbc->sync_mode is
 782 * WB_SYNC_ALL then we were called for data integrity and we must wait for
 783 * existing IO to complete.
 784 */
 785int write_cache_pages(struct address_space *mapping,
 786                      struct writeback_control *wbc, writepage_t writepage,
 787                      void *data)
 788{
 789        struct backing_dev_info *bdi = mapping->backing_dev_info;
 790        int ret = 0;
 791        int done = 0;
 792        struct pagevec pvec;
 793        int nr_pages;
 794        pgoff_t index;
 795        pgoff_t end;            /* Inclusive */
 796        int scanned = 0;
 797        int range_whole = 0;
 798
 799        if (wbc->nonblocking && bdi_write_congested(bdi)) {
 800                wbc->encountered_congestion = 1;
 801                return 0;
 802        }
 803
 804        pagevec_init(&pvec, 0);
 805        if (wbc->range_cyclic) {
 806                index = mapping->writeback_index; /* Start from prev offset */
 807                end = -1;
 808        } else {
 809                index = wbc->range_start >> PAGE_CACHE_SHIFT;
 810                end = wbc->range_end >> PAGE_CACHE_SHIFT;
 811                if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 812                        range_whole = 1;
 813                scanned = 1;
 814        }
 815retry:
 816        while (!done && (index <= end) &&
 817               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
 818                                              PAGECACHE_TAG_DIRTY,
 819                                              min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
 820                unsigned i;
 821
 822                scanned = 1;
 823                for (i = 0; i < nr_pages; i++) {
 824                        struct page *page = pvec.pages[i];
 825
 826                        /*
 827                         * At this point we hold neither mapping->tree_lock nor
 828                         * lock on the page itself: the page may be truncated or
 829                         * invalidated (changing page->mapping to NULL), or even
 830                         * swizzled back from swapper_space to tmpfs file
 831                         * mapping
 832                         */
 833                        lock_page(page);
 834
 835                        if (unlikely(page->mapping != mapping)) {
 836                                unlock_page(page);
 837                                continue;
 838                        }
 839
 840                        if (!wbc->range_cyclic && page->index > end) {
 841                                done = 1;
 842                                unlock_page(page);
 843                                continue;
 844                        }
 845
 846                        if (wbc->sync_mode != WB_SYNC_NONE)
 847                                wait_on_page_writeback(page);
 848
 849                        if (PageWriteback(page) ||
 850                            !clear_page_dirty_for_io(page)) {
 851                                unlock_page(page);
 852                                continue;
 853                        }
 854
 855                        ret = (*writepage)(page, wbc, data);
 856
 857                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
 858                                unlock_page(page);
 859                                ret = 0;
 860                        }
 861                        if (ret || (--(wbc->nr_to_write) <= 0))
 862                                done = 1;
 863                        if (wbc->nonblocking && bdi_write_congested(bdi)) {
 864                                wbc->encountered_congestion = 1;
 865                                done = 1;
 866                        }
 867                }
 868                pagevec_release(&pvec);
 869                cond_resched();
 870        }
 871        if (!scanned && !done) {
 872                /*
 873                 * We hit the last page and there is more work to be done: wrap
 874                 * back to the start of the file
 875                 */
 876                scanned = 1;
 877                index = 0;
 878                goto retry;
 879        }
 880        if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 881                mapping->writeback_index = index;
 882        return ret;
 883}
 884EXPORT_SYMBOL(write_cache_pages);
 885
 886/*
 887 * Function used by generic_writepages to call the real writepage
 888 * function and set the mapping flags on error
 889 */
 890static int __writepage(struct page *page, struct writeback_control *wbc,
 891                       void *data)
 892{
 893        struct address_space *mapping = data;
 894        int ret = mapping->a_ops->writepage(page, wbc);
 895        mapping_set_error(mapping, ret);
 896        return ret;
 897}
 898
 899/**
 900 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
 901 * @mapping: address space structure to write
 902 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 903 *
 904 * This is a library function, which implements the writepages()
 905 * address_space_operation.
 906 */
 907int generic_writepages(struct address_space *mapping,
 908                       struct writeback_control *wbc)
 909{
 910        /* deal with chardevs and other special file */
 911        if (!mapping->a_ops->writepage)
 912                return 0;
 913
 914        return write_cache_pages(mapping, wbc, __writepage, mapping);
 915}
 916
 917EXPORT_SYMBOL(generic_writepages);
 918
 919int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
 920{
 921        int ret;
 922
 923        if (wbc->nr_to_write <= 0)
 924                return 0;
 925        wbc->for_writepages = 1;
 926        if (mapping->a_ops->writepages)
 927                ret = mapping->a_ops->writepages(mapping, wbc);
 928        else
 929                ret = generic_writepages(mapping, wbc);
 930        wbc->for_writepages = 0;
 931        return ret;
 932}
 933
 934/**
 935 * write_one_page - write out a single page and optionally wait on I/O
 936 * @page: the page to write
 937 * @wait: if true, wait on writeout
 938 *
 939 * The page must be locked by the caller and will be unlocked upon return.
 940 *
 941 * write_one_page() returns a negative error code if I/O failed.
 942 */
 943int write_one_page(struct page *page, int wait)
 944{
 945        struct address_space *mapping = page->mapping;
 946        int ret = 0;
 947        struct writeback_control wbc = {
 948                .sync_mode = WB_SYNC_ALL,
 949                .nr_to_write = 1,
 950        };
 951
 952        BUG_ON(!PageLocked(page));
 953
 954        if (wait)
 955                wait_on_page_writeback(page);
 956
 957        if (clear_page_dirty_for_io(page)) {
 958                page_cache_get(page);
 959                ret = mapping->a_ops->writepage(page, &wbc);
 960                if (ret == 0 && wait) {
 961                        wait_on_page_writeback(page);
 962                        if (PageError(page))
 963                                ret = -EIO;
 964                }
 965                page_cache_release(page);
 966        } else {
 967                unlock_page(page);
 968        }
 969        return ret;
 970}
 971EXPORT_SYMBOL(write_one_page);
 972
 973/*
 974 * For address_spaces which do not use buffers nor write back.
 975 */
 976int __set_page_dirty_no_writeback(struct page *page)
 977{
 978        if (!PageDirty(page))
 979                SetPageDirty(page);
 980        return 0;
 981}
 982
 983/*
 984 * For address_spaces which do not use buffers.  Just tag the page as dirty in
 985 * its radix tree.
 986 *
 987 * This is also used when a single buffer is being dirtied: we want to set the
 988 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
 989 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
 990 *
 991 * Most callers have locked the page, which pins the address_space in memory.
 992 * But zap_pte_range() does not lock the page, however in that case the
 993 * mapping is pinned by the vma's ->vm_file reference.
 994 *
 995 * We take care to handle the case where the page was truncated from the
 996 * mapping by re-checking page_mapping() inside tree_lock.
 997 */
 998int __set_page_dirty_nobuffers(struct page *page)
 999{
1000        if (!TestSetPageDirty(page)) {
1001                struct address_space *mapping = page_mapping(page);
1002                struct address_space *mapping2;
1003
1004                if (!mapping)
1005                        return 1;
1006
1007                write_lock_irq(&mapping->tree_lock);
1008                mapping2 = page_mapping(page);
1009                if (mapping2) { /* Race with truncate? */
1010                        BUG_ON(mapping2 != mapping);
1011                        WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1012                        if (mapping_cap_account_dirty(mapping)) {
1013                                __inc_zone_page_state(page, NR_FILE_DIRTY);
1014                                __inc_bdi_stat(mapping->backing_dev_info,
1015                                                BDI_RECLAIMABLE);
1016                                task_io_account_write(PAGE_CACHE_SIZE);
1017                        }
1018                        radix_tree_tag_set(&mapping->page_tree,
1019                                page_index(page), PAGECACHE_TAG_DIRTY);
1020                }
1021                write_unlock_irq(&mapping->tree_lock);
1022                if (mapping->host) {
1023                        /* !PageAnon && !swapper_space */
1024                        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1025                }
1026                return 1;
1027        }
1028        return 0;
1029}
1030EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1031
1032/*
1033 * When a writepage implementation decides that it doesn't want to write this
1034 * page for some reason, it should redirty the locked page via
1035 * redirty_page_for_writepage() and it should then unlock the page and return 0
1036 */
1037int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1038{
1039        wbc->pages_skipped++;
1040        return __set_page_dirty_nobuffers(page);
1041}
1042EXPORT_SYMBOL(redirty_page_for_writepage);
1043
1044/*
1045 * If the mapping doesn't provide a set_page_dirty a_op, then
1046 * just fall through and assume that it wants buffer_heads.
1047 */
1048static int __set_page_dirty(struct page *page)
1049{
1050        struct address_space *mapping = page_mapping(page);
1051
1052        if (likely(mapping)) {
1053                int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1054#ifdef CONFIG_BLOCK
1055                if (!spd)
1056                        spd = __set_page_dirty_buffers;
1057#endif
1058                return (*spd)(page);
1059        }
1060        if (!PageDirty(page)) {
1061                if (!TestSetPageDirty(page))
1062                        return 1;
1063        }
1064        return 0;
1065}
1066
1067int fastcall set_page_dirty(struct page *page)
1068{
1069        int ret = __set_page_dirty(page);
1070        if (ret)
1071                task_dirty_inc(current);
1072        return ret;
1073}
1074EXPORT_SYMBOL(set_page_dirty);
1075
1076/*
1077 * set_page_dirty() is racy if the caller has no reference against
1078 * page->mapping->host, and if the page is unlocked.  This is because another
1079 * CPU could truncate the page off the mapping and then free the mapping.
1080 *
1081 * Usually, the page _is_ locked, or the caller is a user-space process which
1082 * holds a reference on the inode by having an open file.
1083 *
1084 * In other cases, the page should be locked before running set_page_dirty().
1085 */
1086int set_page_dirty_lock(struct page *page)
1087{
1088        int ret;
1089
1090        lock_page_nosync(page);
1091        ret = set_page_dirty(page);
1092        unlock_page(page);
1093        return ret;
1094}
1095EXPORT_SYMBOL(set_page_dirty_lock);
1096
1097/*
1098 * Clear a page's dirty flag, while caring for dirty memory accounting.
1099 * Returns true if the page was previously dirty.
1100 *
1101 * This is for preparing to put the page under writeout.  We leave the page
1102 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1103 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1104 * implementation will run either set_page_writeback() or set_page_dirty(),
1105 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1106 * back into sync.
1107 *
1108 * This incoherency between the page's dirty flag and radix-tree tag is
1109 * unfortunate, but it only exists while the page is locked.
1110 */
1111int clear_page_dirty_for_io(struct page *page)
1112{
1113        struct address_space *mapping = page_mapping(page);
1114
1115        BUG_ON(!PageLocked(page));
1116
1117        ClearPageReclaim(page);
1118        if (mapping && mapping_cap_account_dirty(mapping)) {
1119                /*
1120                 * Yes, Virginia, this is indeed insane.
1121                 *
1122                 * We use this sequence to make sure that
1123                 *  (a) we account for dirty stats properly
1124                 *  (b) we tell the low-level filesystem to
1125                 *      mark the whole page dirty if it was
1126                 *      dirty in a pagetable. Only to then
1127                 *  (c) clean the page again and return 1 to
1128                 *      cause the writeback.
1129                 *
1130                 * This way we avoid all nasty races with the
1131                 * dirty bit in multiple places and clearing
1132                 * them concurrently from different threads.
1133                 *
1134                 * Note! Normally the "set_page_dirty(page)"
1135                 * has no effect on the actual dirty bit - since
1136                 * that will already usually be set. But we
1137                 * need the side effects, and it can help us
1138                 * avoid races.
1139                 *
1140                 * We basically use the page "master dirty bit"
1141                 * as a serialization point for all the different
1142                 * threads doing their things.
1143                 */
1144                if (page_mkclean(page))
1145                        set_page_dirty(page);
1146                /*
1147                 * We carefully synchronise fault handlers against
1148                 * installing a dirty pte and marking the page dirty
1149                 * at this point. We do this by having them hold the
1150                 * page lock at some point after installing their
1151                 * pte, but before marking the page dirty.
1152                 * Pages are always locked coming in here, so we get
1153                 * the desired exclusion. See mm/memory.c:do_wp_page()
1154                 * for more comments.
1155                 */
1156                if (TestClearPageDirty(page)) {
1157                        dec_zone_page_state(page, NR_FILE_DIRTY);
1158                        dec_bdi_stat(mapping->backing_dev_info,
1159                                        BDI_RECLAIMABLE);
1160                        return 1;
1161                }
1162                return 0;
1163        }
1164        return TestClearPageDirty(page);
1165}
1166EXPORT_SYMBOL(clear_page_dirty_for_io);
1167
1168int test_clear_page_writeback(struct page *page)
1169{
1170        struct address_space *mapping = page_mapping(page);
1171        int ret;
1172
1173        if (mapping) {
1174                struct backing_dev_info *bdi = mapping->backing_dev_info;
1175                unsigned long flags;
1176
1177                write_lock_irqsave(&mapping->tree_lock, flags);
1178                ret = TestClearPageWriteback(page);
1179                if (ret) {
1180                        radix_tree_tag_clear(&mapping->page_tree,
1181                                                page_index(page),
1182                                                PAGECACHE_TAG_WRITEBACK);
1183                        if (bdi_cap_writeback_dirty(bdi)) {
1184                                __dec_bdi_stat(bdi, BDI_WRITEBACK);
1185                                __bdi_writeout_inc(bdi);
1186                        }
1187                }
1188                write_unlock_irqrestore(&mapping->tree_lock, flags);
1189        } else {
1190                ret = TestClearPageWriteback(page);
1191        }
1192        if (ret)
1193                dec_zone_page_state(page, NR_WRITEBACK);
1194        return ret;
1195}
1196
1197int test_set_page_writeback(struct page *page)
1198{
1199        struct address_space *mapping = page_mapping(page);
1200        int ret;
1201
1202        if (mapping) {
1203                struct backing_dev_info *bdi = mapping->backing_dev_info;
1204                unsigned long flags;
1205
1206                write_lock_irqsave(&mapping->tree_lock, flags);
1207                ret = TestSetPageWriteback(page);
1208                if (!ret) {
1209                        radix_tree_tag_set(&mapping->page_tree,
1210                                                page_index(page),
1211                                                PAGECACHE_TAG_WRITEBACK);
1212                        if (bdi_cap_writeback_dirty(bdi))
1213                                __inc_bdi_stat(bdi, BDI_WRITEBACK);
1214                }
1215                if (!PageDirty(page))
1216                        radix_tree_tag_clear(&mapping->page_tree,
1217                                                page_index(page),
1218                                                PAGECACHE_TAG_DIRTY);
1219                write_unlock_irqrestore(&mapping->tree_lock, flags);
1220        } else {
1221                ret = TestSetPageWriteback(page);
1222        }
1223        if (!ret)
1224                inc_zone_page_state(page, NR_WRITEBACK);
1225        return ret;
1226
1227}
1228EXPORT_SYMBOL(test_set_page_writeback);
1229
1230/*
1231 * Return true if any of the pages in the mapping are marked with the
1232 * passed tag.
1233 */
1234int mapping_tagged(struct address_space *mapping, int tag)
1235{
1236        int ret;
1237        rcu_read_lock();
1238        ret = radix_tree_tagged(&mapping->page_tree, tag);
1239        rcu_read_unlock();
1240        return ret;
1241}
1242EXPORT_SYMBOL(mapping_tagged);
1243