linux/mm/slub.c
<<
>>
Prefs
   1/*
   2 * SLUB: A slab allocator that limits cache line use instead of queuing
   3 * objects in per cpu and per node lists.
   4 *
   5 * The allocator synchronizes using per slab locks and only
   6 * uses a centralized lock to manage a pool of partial slabs.
   7 *
   8 * (C) 2007 SGI, Christoph Lameter <clameter@sgi.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/module.h>
  13#include <linux/bit_spinlock.h>
  14#include <linux/interrupt.h>
  15#include <linux/bitops.h>
  16#include <linux/slab.h>
  17#include <linux/seq_file.h>
  18#include <linux/cpu.h>
  19#include <linux/cpuset.h>
  20#include <linux/mempolicy.h>
  21#include <linux/ctype.h>
  22#include <linux/kallsyms.h>
  23#include <linux/memory.h>
  24
  25/*
  26 * Lock order:
  27 *   1. slab_lock(page)
  28 *   2. slab->list_lock
  29 *
  30 *   The slab_lock protects operations on the object of a particular
  31 *   slab and its metadata in the page struct. If the slab lock
  32 *   has been taken then no allocations nor frees can be performed
  33 *   on the objects in the slab nor can the slab be added or removed
  34 *   from the partial or full lists since this would mean modifying
  35 *   the page_struct of the slab.
  36 *
  37 *   The list_lock protects the partial and full list on each node and
  38 *   the partial slab counter. If taken then no new slabs may be added or
  39 *   removed from the lists nor make the number of partial slabs be modified.
  40 *   (Note that the total number of slabs is an atomic value that may be
  41 *   modified without taking the list lock).
  42 *
  43 *   The list_lock is a centralized lock and thus we avoid taking it as
  44 *   much as possible. As long as SLUB does not have to handle partial
  45 *   slabs, operations can continue without any centralized lock. F.e.
  46 *   allocating a long series of objects that fill up slabs does not require
  47 *   the list lock.
  48 *
  49 *   The lock order is sometimes inverted when we are trying to get a slab
  50 *   off a list. We take the list_lock and then look for a page on the list
  51 *   to use. While we do that objects in the slabs may be freed. We can
  52 *   only operate on the slab if we have also taken the slab_lock. So we use
  53 *   a slab_trylock() on the slab. If trylock was successful then no frees
  54 *   can occur anymore and we can use the slab for allocations etc. If the
  55 *   slab_trylock() does not succeed then frees are in progress in the slab and
  56 *   we must stay away from it for a while since we may cause a bouncing
  57 *   cacheline if we try to acquire the lock. So go onto the next slab.
  58 *   If all pages are busy then we may allocate a new slab instead of reusing
  59 *   a partial slab. A new slab has noone operating on it and thus there is
  60 *   no danger of cacheline contention.
  61 *
  62 *   Interrupts are disabled during allocation and deallocation in order to
  63 *   make the slab allocator safe to use in the context of an irq. In addition
  64 *   interrupts are disabled to ensure that the processor does not change
  65 *   while handling per_cpu slabs, due to kernel preemption.
  66 *
  67 * SLUB assigns one slab for allocation to each processor.
  68 * Allocations only occur from these slabs called cpu slabs.
  69 *
  70 * Slabs with free elements are kept on a partial list and during regular
  71 * operations no list for full slabs is used. If an object in a full slab is
  72 * freed then the slab will show up again on the partial lists.
  73 * We track full slabs for debugging purposes though because otherwise we
  74 * cannot scan all objects.
  75 *
  76 * Slabs are freed when they become empty. Teardown and setup is
  77 * minimal so we rely on the page allocators per cpu caches for
  78 * fast frees and allocs.
  79 *
  80 * Overloading of page flags that are otherwise used for LRU management.
  81 *
  82 * PageActive           The slab is frozen and exempt from list processing.
  83 *                      This means that the slab is dedicated to a purpose
  84 *                      such as satisfying allocations for a specific
  85 *                      processor. Objects may be freed in the slab while
  86 *                      it is frozen but slab_free will then skip the usual
  87 *                      list operations. It is up to the processor holding
  88 *                      the slab to integrate the slab into the slab lists
  89 *                      when the slab is no longer needed.
  90 *
  91 *                      One use of this flag is to mark slabs that are
  92 *                      used for allocations. Then such a slab becomes a cpu
  93 *                      slab. The cpu slab may be equipped with an additional
  94 *                      freelist that allows lockless access to
  95 *                      free objects in addition to the regular freelist
  96 *                      that requires the slab lock.
  97 *
  98 * PageError            Slab requires special handling due to debug
  99 *                      options set. This moves slab handling out of
 100 *                      the fast path and disables lockless freelists.
 101 */
 102
 103#define FROZEN (1 << PG_active)
 104
 105#ifdef CONFIG_SLUB_DEBUG
 106#define SLABDEBUG (1 << PG_error)
 107#else
 108#define SLABDEBUG 0
 109#endif
 110
 111static inline int SlabFrozen(struct page *page)
 112{
 113        return page->flags & FROZEN;
 114}
 115
 116static inline void SetSlabFrozen(struct page *page)
 117{
 118        page->flags |= FROZEN;
 119}
 120
 121static inline void ClearSlabFrozen(struct page *page)
 122{
 123        page->flags &= ~FROZEN;
 124}
 125
 126static inline int SlabDebug(struct page *page)
 127{
 128        return page->flags & SLABDEBUG;
 129}
 130
 131static inline void SetSlabDebug(struct page *page)
 132{
 133        page->flags |= SLABDEBUG;
 134}
 135
 136static inline void ClearSlabDebug(struct page *page)
 137{
 138        page->flags &= ~SLABDEBUG;
 139}
 140
 141/*
 142 * Issues still to be resolved:
 143 *
 144 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
 145 *
 146 * - Variable sizing of the per node arrays
 147 */
 148
 149/* Enable to test recovery from slab corruption on boot */
 150#undef SLUB_RESILIENCY_TEST
 151
 152#if PAGE_SHIFT <= 12
 153
 154/*
 155 * Small page size. Make sure that we do not fragment memory
 156 */
 157#define DEFAULT_MAX_ORDER 1
 158#define DEFAULT_MIN_OBJECTS 4
 159
 160#else
 161
 162/*
 163 * Large page machines are customarily able to handle larger
 164 * page orders.
 165 */
 166#define DEFAULT_MAX_ORDER 2
 167#define DEFAULT_MIN_OBJECTS 8
 168
 169#endif
 170
 171/*
 172 * Mininum number of partial slabs. These will be left on the partial
 173 * lists even if they are empty. kmem_cache_shrink may reclaim them.
 174 */
 175#define MIN_PARTIAL 5
 176
 177/*
 178 * Maximum number of desirable partial slabs.
 179 * The existence of more partial slabs makes kmem_cache_shrink
 180 * sort the partial list by the number of objects in the.
 181 */
 182#define MAX_PARTIAL 10
 183
 184#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
 185                                SLAB_POISON | SLAB_STORE_USER)
 186
 187/*
 188 * Set of flags that will prevent slab merging
 189 */
 190#define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
 191                SLAB_TRACE | SLAB_DESTROY_BY_RCU)
 192
 193#define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
 194                SLAB_CACHE_DMA)
 195
 196#ifndef ARCH_KMALLOC_MINALIGN
 197#define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
 198#endif
 199
 200#ifndef ARCH_SLAB_MINALIGN
 201#define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
 202#endif
 203
 204/* Internal SLUB flags */
 205#define __OBJECT_POISON         0x80000000 /* Poison object */
 206#define __SYSFS_ADD_DEFERRED    0x40000000 /* Not yet visible via sysfs */
 207
 208/* Not all arches define cache_line_size */
 209#ifndef cache_line_size
 210#define cache_line_size()       L1_CACHE_BYTES
 211#endif
 212
 213static int kmem_size = sizeof(struct kmem_cache);
 214
 215#ifdef CONFIG_SMP
 216static struct notifier_block slab_notifier;
 217#endif
 218
 219static enum {
 220        DOWN,           /* No slab functionality available */
 221        PARTIAL,        /* kmem_cache_open() works but kmalloc does not */
 222        UP,             /* Everything works but does not show up in sysfs */
 223        SYSFS           /* Sysfs up */
 224} slab_state = DOWN;
 225
 226/* A list of all slab caches on the system */
 227static DECLARE_RWSEM(slub_lock);
 228static LIST_HEAD(slab_caches);
 229
 230/*
 231 * Tracking user of a slab.
 232 */
 233struct track {
 234        void *addr;             /* Called from address */
 235        int cpu;                /* Was running on cpu */
 236        int pid;                /* Pid context */
 237        unsigned long when;     /* When did the operation occur */
 238};
 239
 240enum track_item { TRACK_ALLOC, TRACK_FREE };
 241
 242#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
 243static int sysfs_slab_add(struct kmem_cache *);
 244static int sysfs_slab_alias(struct kmem_cache *, const char *);
 245static void sysfs_slab_remove(struct kmem_cache *);
 246#else
 247static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
 248static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
 249                                                        { return 0; }
 250static inline void sysfs_slab_remove(struct kmem_cache *s) {}
 251#endif
 252
 253/********************************************************************
 254 *                      Core slab cache functions
 255 *******************************************************************/
 256
 257int slab_is_available(void)
 258{
 259        return slab_state >= UP;
 260}
 261
 262static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
 263{
 264#ifdef CONFIG_NUMA
 265        return s->node[node];
 266#else
 267        return &s->local_node;
 268#endif
 269}
 270
 271static inline struct kmem_cache_cpu *get_cpu_slab(struct kmem_cache *s, int cpu)
 272{
 273#ifdef CONFIG_SMP
 274        return s->cpu_slab[cpu];
 275#else
 276        return &s->cpu_slab;
 277#endif
 278}
 279
 280static inline int check_valid_pointer(struct kmem_cache *s,
 281                                struct page *page, const void *object)
 282{
 283        void *base;
 284
 285        if (!object)
 286                return 1;
 287
 288        base = page_address(page);
 289        if (object < base || object >= base + s->objects * s->size ||
 290                (object - base) % s->size) {
 291                return 0;
 292        }
 293
 294        return 1;
 295}
 296
 297/*
 298 * Slow version of get and set free pointer.
 299 *
 300 * This version requires touching the cache lines of kmem_cache which
 301 * we avoid to do in the fast alloc free paths. There we obtain the offset
 302 * from the page struct.
 303 */
 304static inline void *get_freepointer(struct kmem_cache *s, void *object)
 305{
 306        return *(void **)(object + s->offset);
 307}
 308
 309static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
 310{
 311        *(void **)(object + s->offset) = fp;
 312}
 313
 314/* Loop over all objects in a slab */
 315#define for_each_object(__p, __s, __addr) \
 316        for (__p = (__addr); __p < (__addr) + (__s)->objects * (__s)->size;\
 317                        __p += (__s)->size)
 318
 319/* Scan freelist */
 320#define for_each_free_object(__p, __s, __free) \
 321        for (__p = (__free); __p; __p = get_freepointer((__s), __p))
 322
 323/* Determine object index from a given position */
 324static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
 325{
 326        return (p - addr) / s->size;
 327}
 328
 329#ifdef CONFIG_SLUB_DEBUG
 330/*
 331 * Debug settings:
 332 */
 333#ifdef CONFIG_SLUB_DEBUG_ON
 334static int slub_debug = DEBUG_DEFAULT_FLAGS;
 335#else
 336static int slub_debug;
 337#endif
 338
 339static char *slub_debug_slabs;
 340
 341/*
 342 * Object debugging
 343 */
 344static void print_section(char *text, u8 *addr, unsigned int length)
 345{
 346        int i, offset;
 347        int newline = 1;
 348        char ascii[17];
 349
 350        ascii[16] = 0;
 351
 352        for (i = 0; i < length; i++) {
 353                if (newline) {
 354                        printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
 355                        newline = 0;
 356                }
 357                printk(" %02x", addr[i]);
 358                offset = i % 16;
 359                ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
 360                if (offset == 15) {
 361                        printk(" %s\n",ascii);
 362                        newline = 1;
 363                }
 364        }
 365        if (!newline) {
 366                i %= 16;
 367                while (i < 16) {
 368                        printk("   ");
 369                        ascii[i] = ' ';
 370                        i++;
 371                }
 372                printk(" %s\n", ascii);
 373        }
 374}
 375
 376static struct track *get_track(struct kmem_cache *s, void *object,
 377        enum track_item alloc)
 378{
 379        struct track *p;
 380
 381        if (s->offset)
 382                p = object + s->offset + sizeof(void *);
 383        else
 384                p = object + s->inuse;
 385
 386        return p + alloc;
 387}
 388
 389static void set_track(struct kmem_cache *s, void *object,
 390                                enum track_item alloc, void *addr)
 391{
 392        struct track *p;
 393
 394        if (s->offset)
 395                p = object + s->offset + sizeof(void *);
 396        else
 397                p = object + s->inuse;
 398
 399        p += alloc;
 400        if (addr) {
 401                p->addr = addr;
 402                p->cpu = smp_processor_id();
 403                p->pid = current ? current->pid : -1;
 404                p->when = jiffies;
 405        } else
 406                memset(p, 0, sizeof(struct track));
 407}
 408
 409static void init_tracking(struct kmem_cache *s, void *object)
 410{
 411        if (!(s->flags & SLAB_STORE_USER))
 412                return;
 413
 414        set_track(s, object, TRACK_FREE, NULL);
 415        set_track(s, object, TRACK_ALLOC, NULL);
 416}
 417
 418static void print_track(const char *s, struct track *t)
 419{
 420        if (!t->addr)
 421                return;
 422
 423        printk(KERN_ERR "INFO: %s in ", s);
 424        __print_symbol("%s", (unsigned long)t->addr);
 425        printk(" age=%lu cpu=%u pid=%d\n", jiffies - t->when, t->cpu, t->pid);
 426}
 427
 428static void print_tracking(struct kmem_cache *s, void *object)
 429{
 430        if (!(s->flags & SLAB_STORE_USER))
 431                return;
 432
 433        print_track("Allocated", get_track(s, object, TRACK_ALLOC));
 434        print_track("Freed", get_track(s, object, TRACK_FREE));
 435}
 436
 437static void print_page_info(struct page *page)
 438{
 439        printk(KERN_ERR "INFO: Slab 0x%p used=%u fp=0x%p flags=0x%04lx\n",
 440                page, page->inuse, page->freelist, page->flags);
 441
 442}
 443
 444static void slab_bug(struct kmem_cache *s, char *fmt, ...)
 445{
 446        va_list args;
 447        char buf[100];
 448
 449        va_start(args, fmt);
 450        vsnprintf(buf, sizeof(buf), fmt, args);
 451        va_end(args);
 452        printk(KERN_ERR "========================================"
 453                        "=====================================\n");
 454        printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
 455        printk(KERN_ERR "----------------------------------------"
 456                        "-------------------------------------\n\n");
 457}
 458
 459static void slab_fix(struct kmem_cache *s, char *fmt, ...)
 460{
 461        va_list args;
 462        char buf[100];
 463
 464        va_start(args, fmt);
 465        vsnprintf(buf, sizeof(buf), fmt, args);
 466        va_end(args);
 467        printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
 468}
 469
 470static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
 471{
 472        unsigned int off;       /* Offset of last byte */
 473        u8 *addr = page_address(page);
 474
 475        print_tracking(s, p);
 476
 477        print_page_info(page);
 478
 479        printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
 480                        p, p - addr, get_freepointer(s, p));
 481
 482        if (p > addr + 16)
 483                print_section("Bytes b4", p - 16, 16);
 484
 485        print_section("Object", p, min(s->objsize, 128));
 486
 487        if (s->flags & SLAB_RED_ZONE)
 488                print_section("Redzone", p + s->objsize,
 489                        s->inuse - s->objsize);
 490
 491        if (s->offset)
 492                off = s->offset + sizeof(void *);
 493        else
 494                off = s->inuse;
 495
 496        if (s->flags & SLAB_STORE_USER)
 497                off += 2 * sizeof(struct track);
 498
 499        if (off != s->size)
 500                /* Beginning of the filler is the free pointer */
 501                print_section("Padding", p + off, s->size - off);
 502
 503        dump_stack();
 504}
 505
 506static void object_err(struct kmem_cache *s, struct page *page,
 507                        u8 *object, char *reason)
 508{
 509        slab_bug(s, reason);
 510        print_trailer(s, page, object);
 511}
 512
 513static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
 514{
 515        va_list args;
 516        char buf[100];
 517
 518        va_start(args, fmt);
 519        vsnprintf(buf, sizeof(buf), fmt, args);
 520        va_end(args);
 521        slab_bug(s, fmt);
 522        print_page_info(page);
 523        dump_stack();
 524}
 525
 526static void init_object(struct kmem_cache *s, void *object, int active)
 527{
 528        u8 *p = object;
 529
 530        if (s->flags & __OBJECT_POISON) {
 531                memset(p, POISON_FREE, s->objsize - 1);
 532                p[s->objsize -1] = POISON_END;
 533        }
 534
 535        if (s->flags & SLAB_RED_ZONE)
 536                memset(p + s->objsize,
 537                        active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE,
 538                        s->inuse - s->objsize);
 539}
 540
 541static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
 542{
 543        while (bytes) {
 544                if (*start != (u8)value)
 545                        return start;
 546                start++;
 547                bytes--;
 548        }
 549        return NULL;
 550}
 551
 552static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
 553                                                void *from, void *to)
 554{
 555        slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
 556        memset(from, data, to - from);
 557}
 558
 559static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
 560                        u8 *object, char *what,
 561                        u8* start, unsigned int value, unsigned int bytes)
 562{
 563        u8 *fault;
 564        u8 *end;
 565
 566        fault = check_bytes(start, value, bytes);
 567        if (!fault)
 568                return 1;
 569
 570        end = start + bytes;
 571        while (end > fault && end[-1] == value)
 572                end--;
 573
 574        slab_bug(s, "%s overwritten", what);
 575        printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
 576                                        fault, end - 1, fault[0], value);
 577        print_trailer(s, page, object);
 578
 579        restore_bytes(s, what, value, fault, end);
 580        return 0;
 581}
 582
 583/*
 584 * Object layout:
 585 *
 586 * object address
 587 *      Bytes of the object to be managed.
 588 *      If the freepointer may overlay the object then the free
 589 *      pointer is the first word of the object.
 590 *
 591 *      Poisoning uses 0x6b (POISON_FREE) and the last byte is
 592 *      0xa5 (POISON_END)
 593 *
 594 * object + s->objsize
 595 *      Padding to reach word boundary. This is also used for Redzoning.
 596 *      Padding is extended by another word if Redzoning is enabled and
 597 *      objsize == inuse.
 598 *
 599 *      We fill with 0xbb (RED_INACTIVE) for inactive objects and with
 600 *      0xcc (RED_ACTIVE) for objects in use.
 601 *
 602 * object + s->inuse
 603 *      Meta data starts here.
 604 *
 605 *      A. Free pointer (if we cannot overwrite object on free)
 606 *      B. Tracking data for SLAB_STORE_USER
 607 *      C. Padding to reach required alignment boundary or at mininum
 608 *              one word if debuggin is on to be able to detect writes
 609 *              before the word boundary.
 610 *
 611 *      Padding is done using 0x5a (POISON_INUSE)
 612 *
 613 * object + s->size
 614 *      Nothing is used beyond s->size.
 615 *
 616 * If slabcaches are merged then the objsize and inuse boundaries are mostly
 617 * ignored. And therefore no slab options that rely on these boundaries
 618 * may be used with merged slabcaches.
 619 */
 620
 621static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
 622{
 623        unsigned long off = s->inuse;   /* The end of info */
 624
 625        if (s->offset)
 626                /* Freepointer is placed after the object. */
 627                off += sizeof(void *);
 628
 629        if (s->flags & SLAB_STORE_USER)
 630                /* We also have user information there */
 631                off += 2 * sizeof(struct track);
 632
 633        if (s->size == off)
 634                return 1;
 635
 636        return check_bytes_and_report(s, page, p, "Object padding",
 637                                p + off, POISON_INUSE, s->size - off);
 638}
 639
 640static int slab_pad_check(struct kmem_cache *s, struct page *page)
 641{
 642        u8 *start;
 643        u8 *fault;
 644        u8 *end;
 645        int length;
 646        int remainder;
 647
 648        if (!(s->flags & SLAB_POISON))
 649                return 1;
 650
 651        start = page_address(page);
 652        end = start + (PAGE_SIZE << s->order);
 653        length = s->objects * s->size;
 654        remainder = end - (start + length);
 655        if (!remainder)
 656                return 1;
 657
 658        fault = check_bytes(start + length, POISON_INUSE, remainder);
 659        if (!fault)
 660                return 1;
 661        while (end > fault && end[-1] == POISON_INUSE)
 662                end--;
 663
 664        slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
 665        print_section("Padding", start, length);
 666
 667        restore_bytes(s, "slab padding", POISON_INUSE, start, end);
 668        return 0;
 669}
 670
 671static int check_object(struct kmem_cache *s, struct page *page,
 672                                        void *object, int active)
 673{
 674        u8 *p = object;
 675        u8 *endobject = object + s->objsize;
 676
 677        if (s->flags & SLAB_RED_ZONE) {
 678                unsigned int red =
 679                        active ? SLUB_RED_ACTIVE : SLUB_RED_INACTIVE;
 680
 681                if (!check_bytes_and_report(s, page, object, "Redzone",
 682                        endobject, red, s->inuse - s->objsize))
 683                        return 0;
 684        } else {
 685                if ((s->flags & SLAB_POISON) && s->objsize < s->inuse)
 686                        check_bytes_and_report(s, page, p, "Alignment padding", endobject,
 687                                POISON_INUSE, s->inuse - s->objsize);
 688        }
 689
 690        if (s->flags & SLAB_POISON) {
 691                if (!active && (s->flags & __OBJECT_POISON) &&
 692                        (!check_bytes_and_report(s, page, p, "Poison", p,
 693                                        POISON_FREE, s->objsize - 1) ||
 694                         !check_bytes_and_report(s, page, p, "Poison",
 695                                p + s->objsize -1, POISON_END, 1)))
 696                        return 0;
 697                /*
 698                 * check_pad_bytes cleans up on its own.
 699                 */
 700                check_pad_bytes(s, page, p);
 701        }
 702
 703        if (!s->offset && active)
 704                /*
 705                 * Object and freepointer overlap. Cannot check
 706                 * freepointer while object is allocated.
 707                 */
 708                return 1;
 709
 710        /* Check free pointer validity */
 711        if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
 712                object_err(s, page, p, "Freepointer corrupt");
 713                /*
 714                 * No choice but to zap it and thus loose the remainder
 715                 * of the free objects in this slab. May cause
 716                 * another error because the object count is now wrong.
 717                 */
 718                set_freepointer(s, p, NULL);
 719                return 0;
 720        }
 721        return 1;
 722}
 723
 724static int check_slab(struct kmem_cache *s, struct page *page)
 725{
 726        VM_BUG_ON(!irqs_disabled());
 727
 728        if (!PageSlab(page)) {
 729                slab_err(s, page, "Not a valid slab page");
 730                return 0;
 731        }
 732        if (page->inuse > s->objects) {
 733                slab_err(s, page, "inuse %u > max %u",
 734                        s->name, page->inuse, s->objects);
 735                return 0;
 736        }
 737        /* Slab_pad_check fixes things up after itself */
 738        slab_pad_check(s, page);
 739        return 1;
 740}
 741
 742/*
 743 * Determine if a certain object on a page is on the freelist. Must hold the
 744 * slab lock to guarantee that the chains are in a consistent state.
 745 */
 746static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
 747{
 748        int nr = 0;
 749        void *fp = page->freelist;
 750        void *object = NULL;
 751
 752        while (fp && nr <= s->objects) {
 753                if (fp == search)
 754                        return 1;
 755                if (!check_valid_pointer(s, page, fp)) {
 756                        if (object) {
 757                                object_err(s, page, object,
 758                                        "Freechain corrupt");
 759                                set_freepointer(s, object, NULL);
 760                                break;
 761                        } else {
 762                                slab_err(s, page, "Freepointer corrupt");
 763                                page->freelist = NULL;
 764                                page->inuse = s->objects;
 765                                slab_fix(s, "Freelist cleared");
 766                                return 0;
 767                        }
 768                        break;
 769                }
 770                object = fp;
 771                fp = get_freepointer(s, object);
 772                nr++;
 773        }
 774
 775        if (page->inuse != s->objects - nr) {
 776                slab_err(s, page, "Wrong object count. Counter is %d but "
 777                        "counted were %d", page->inuse, s->objects - nr);
 778                page->inuse = s->objects - nr;
 779                slab_fix(s, "Object count adjusted.");
 780        }
 781        return search == NULL;
 782}
 783
 784static void trace(struct kmem_cache *s, struct page *page, void *object, int alloc)
 785{
 786        if (s->flags & SLAB_TRACE) {
 787                printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
 788                        s->name,
 789                        alloc ? "alloc" : "free",
 790                        object, page->inuse,
 791                        page->freelist);
 792
 793                if (!alloc)
 794                        print_section("Object", (void *)object, s->objsize);
 795
 796                dump_stack();
 797        }
 798}
 799
 800/*
 801 * Tracking of fully allocated slabs for debugging purposes.
 802 */
 803static void add_full(struct kmem_cache_node *n, struct page *page)
 804{
 805        spin_lock(&n->list_lock);
 806        list_add(&page->lru, &n->full);
 807        spin_unlock(&n->list_lock);
 808}
 809
 810static void remove_full(struct kmem_cache *s, struct page *page)
 811{
 812        struct kmem_cache_node *n;
 813
 814        if (!(s->flags & SLAB_STORE_USER))
 815                return;
 816
 817        n = get_node(s, page_to_nid(page));
 818
 819        spin_lock(&n->list_lock);
 820        list_del(&page->lru);
 821        spin_unlock(&n->list_lock);
 822}
 823
 824static void setup_object_debug(struct kmem_cache *s, struct page *page,
 825                                                                void *object)
 826{
 827        if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
 828                return;
 829
 830        init_object(s, object, 0);
 831        init_tracking(s, object);
 832}
 833
 834static int alloc_debug_processing(struct kmem_cache *s, struct page *page,
 835                                                void *object, void *addr)
 836{
 837        if (!check_slab(s, page))
 838                goto bad;
 839
 840        if (object && !on_freelist(s, page, object)) {
 841                object_err(s, page, object, "Object already allocated");
 842                goto bad;
 843        }
 844
 845        if (!check_valid_pointer(s, page, object)) {
 846                object_err(s, page, object, "Freelist Pointer check fails");
 847                goto bad;
 848        }
 849
 850        if (object && !check_object(s, page, object, 0))
 851                goto bad;
 852
 853        /* Success perform special debug activities for allocs */
 854        if (s->flags & SLAB_STORE_USER)
 855                set_track(s, object, TRACK_ALLOC, addr);
 856        trace(s, page, object, 1);
 857        init_object(s, object, 1);
 858        return 1;
 859
 860bad:
 861        if (PageSlab(page)) {
 862                /*
 863                 * If this is a slab page then lets do the best we can
 864                 * to avoid issues in the future. Marking all objects
 865                 * as used avoids touching the remaining objects.
 866                 */
 867                slab_fix(s, "Marking all objects used");
 868                page->inuse = s->objects;
 869                page->freelist = NULL;
 870        }
 871        return 0;
 872}
 873
 874static int free_debug_processing(struct kmem_cache *s, struct page *page,
 875                                                void *object, void *addr)
 876{
 877        if (!check_slab(s, page))
 878                goto fail;
 879
 880        if (!check_valid_pointer(s, page, object)) {
 881                slab_err(s, page, "Invalid object pointer 0x%p", object);
 882                goto fail;
 883        }
 884
 885        if (on_freelist(s, page, object)) {
 886                object_err(s, page, object, "Object already free");
 887                goto fail;
 888        }
 889
 890        if (!check_object(s, page, object, 1))
 891                return 0;
 892
 893        if (unlikely(s != page->slab)) {
 894                if (!PageSlab(page))
 895                        slab_err(s, page, "Attempt to free object(0x%p) "
 896                                "outside of slab", object);
 897                else
 898                if (!page->slab) {
 899                        printk(KERN_ERR
 900                                "SLUB <none>: no slab for object 0x%p.\n",
 901                                                object);
 902                        dump_stack();
 903                }
 904                else
 905                        object_err(s, page, object,
 906                                        "page slab pointer corrupt.");
 907                goto fail;
 908        }
 909
 910        /* Special debug activities for freeing objects */
 911        if (!SlabFrozen(page) && !page->freelist)
 912                remove_full(s, page);
 913        if (s->flags & SLAB_STORE_USER)
 914                set_track(s, object, TRACK_FREE, addr);
 915        trace(s, page, object, 0);
 916        init_object(s, object, 0);
 917        return 1;
 918
 919fail:
 920        slab_fix(s, "Object at 0x%p not freed", object);
 921        return 0;
 922}
 923
 924static int __init setup_slub_debug(char *str)
 925{
 926        slub_debug = DEBUG_DEFAULT_FLAGS;
 927        if (*str++ != '=' || !*str)
 928                /*
 929                 * No options specified. Switch on full debugging.
 930                 */
 931                goto out;
 932
 933        if (*str == ',')
 934                /*
 935                 * No options but restriction on slabs. This means full
 936                 * debugging for slabs matching a pattern.
 937                 */
 938                goto check_slabs;
 939
 940        slub_debug = 0;
 941        if (*str == '-')
 942                /*
 943                 * Switch off all debugging measures.
 944                 */
 945                goto out;
 946
 947        /*
 948         * Determine which debug features should be switched on
 949         */
 950        for ( ;*str && *str != ','; str++) {
 951                switch (tolower(*str)) {
 952                case 'f':
 953                        slub_debug |= SLAB_DEBUG_FREE;
 954                        break;
 955                case 'z':
 956                        slub_debug |= SLAB_RED_ZONE;
 957                        break;
 958                case 'p':
 959                        slub_debug |= SLAB_POISON;
 960                        break;
 961                case 'u':
 962                        slub_debug |= SLAB_STORE_USER;
 963                        break;
 964                case 't':
 965                        slub_debug |= SLAB_TRACE;
 966                        break;
 967                default:
 968                        printk(KERN_ERR "slub_debug option '%c' "
 969                                "unknown. skipped\n",*str);
 970                }
 971        }
 972
 973check_slabs:
 974        if (*str == ',')
 975                slub_debug_slabs = str + 1;
 976out:
 977        return 1;
 978}
 979
 980__setup("slub_debug", setup_slub_debug);
 981
 982static unsigned long kmem_cache_flags(unsigned long objsize,
 983        unsigned long flags, const char *name,
 984        void (*ctor)(struct kmem_cache *, void *))
 985{
 986        /*
 987         * The page->offset field is only 16 bit wide. This is an offset
 988         * in units of words from the beginning of an object. If the slab
 989         * size is bigger then we cannot move the free pointer behind the
 990         * object anymore.
 991         *
 992         * On 32 bit platforms the limit is 256k. On 64bit platforms
 993         * the limit is 512k.
 994         *
 995         * Debugging or ctor may create a need to move the free
 996         * pointer. Fail if this happens.
 997         */
 998        if (objsize >= 65535 * sizeof(void *)) {
 999                BUG_ON(flags & (SLAB_RED_ZONE | SLAB_POISON |
1000                                SLAB_STORE_USER | SLAB_DESTROY_BY_RCU));
1001                BUG_ON(ctor);
1002        } else {
1003                /*
1004                 * Enable debugging if selected on the kernel commandline.
1005                 */
1006                if (slub_debug && (!slub_debug_slabs ||
1007                    strncmp(slub_debug_slabs, name,
1008                        strlen(slub_debug_slabs)) == 0))
1009                                flags |= slub_debug;
1010        }
1011
1012        return flags;
1013}
1014#else
1015static inline void setup_object_debug(struct kmem_cache *s,
1016                        struct page *page, void *object) {}
1017
1018static inline int alloc_debug_processing(struct kmem_cache *s,
1019        struct page *page, void *object, void *addr) { return 0; }
1020
1021static inline int free_debug_processing(struct kmem_cache *s,
1022        struct page *page, void *object, void *addr) { return 0; }
1023
1024static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1025                        { return 1; }
1026static inline int check_object(struct kmem_cache *s, struct page *page,
1027                        void *object, int active) { return 1; }
1028static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1029static inline unsigned long kmem_cache_flags(unsigned long objsize,
1030        unsigned long flags, const char *name,
1031        void (*ctor)(struct kmem_cache *, void *))
1032{
1033        return flags;
1034}
1035#define slub_debug 0
1036#endif
1037/*
1038 * Slab allocation and freeing
1039 */
1040static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1041{
1042        struct page * page;
1043        int pages = 1 << s->order;
1044
1045        if (s->order)
1046                flags |= __GFP_COMP;
1047
1048        if (s->flags & SLAB_CACHE_DMA)
1049                flags |= SLUB_DMA;
1050
1051        if (s->flags & SLAB_RECLAIM_ACCOUNT)
1052                flags |= __GFP_RECLAIMABLE;
1053
1054        if (node == -1)
1055                page = alloc_pages(flags, s->order);
1056        else
1057                page = alloc_pages_node(node, flags, s->order);
1058
1059        if (!page)
1060                return NULL;
1061
1062        mod_zone_page_state(page_zone(page),
1063                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1064                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1065                pages);
1066
1067        return page;
1068}
1069
1070static void setup_object(struct kmem_cache *s, struct page *page,
1071                                void *object)
1072{
1073        setup_object_debug(s, page, object);
1074        if (unlikely(s->ctor))
1075                s->ctor(s, object);
1076}
1077
1078static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1079{
1080        struct page *page;
1081        struct kmem_cache_node *n;
1082        void *start;
1083        void *last;
1084        void *p;
1085
1086        BUG_ON(flags & GFP_SLAB_BUG_MASK);
1087
1088        page = allocate_slab(s,
1089                flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1090        if (!page)
1091                goto out;
1092
1093        n = get_node(s, page_to_nid(page));
1094        if (n)
1095                atomic_long_inc(&n->nr_slabs);
1096        page->slab = s;
1097        page->flags |= 1 << PG_slab;
1098        if (s->flags & (SLAB_DEBUG_FREE | SLAB_RED_ZONE | SLAB_POISON |
1099                        SLAB_STORE_USER | SLAB_TRACE))
1100                SetSlabDebug(page);
1101
1102        start = page_address(page);
1103
1104        if (unlikely(s->flags & SLAB_POISON))
1105                memset(start, POISON_INUSE, PAGE_SIZE << s->order);
1106
1107        last = start;
1108        for_each_object(p, s, start) {
1109                setup_object(s, page, last);
1110                set_freepointer(s, last, p);
1111                last = p;
1112        }
1113        setup_object(s, page, last);
1114        set_freepointer(s, last, NULL);
1115
1116        page->freelist = start;
1117        page->inuse = 0;
1118out:
1119        return page;
1120}
1121
1122static void __free_slab(struct kmem_cache *s, struct page *page)
1123{
1124        int pages = 1 << s->order;
1125
1126        if (unlikely(SlabDebug(page))) {
1127                void *p;
1128
1129                slab_pad_check(s, page);
1130                for_each_object(p, s, page_address(page))
1131                        check_object(s, page, p, 0);
1132                ClearSlabDebug(page);
1133        }
1134
1135        mod_zone_page_state(page_zone(page),
1136                (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1137                NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1138                - pages);
1139
1140        __free_pages(page, s->order);
1141}
1142
1143static void rcu_free_slab(struct rcu_head *h)
1144{
1145        struct page *page;
1146
1147        page = container_of((struct list_head *)h, struct page, lru);
1148        __free_slab(page->slab, page);
1149}
1150
1151static void free_slab(struct kmem_cache *s, struct page *page)
1152{
1153        if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1154                /*
1155                 * RCU free overloads the RCU head over the LRU
1156                 */
1157                struct rcu_head *head = (void *)&page->lru;
1158
1159                call_rcu(head, rcu_free_slab);
1160        } else
1161                __free_slab(s, page);
1162}
1163
1164static void discard_slab(struct kmem_cache *s, struct page *page)
1165{
1166        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1167
1168        atomic_long_dec(&n->nr_slabs);
1169        reset_page_mapcount(page);
1170        __ClearPageSlab(page);
1171        free_slab(s, page);
1172}
1173
1174/*
1175 * Per slab locking using the pagelock
1176 */
1177static __always_inline void slab_lock(struct page *page)
1178{
1179        bit_spin_lock(PG_locked, &page->flags);
1180}
1181
1182static __always_inline void slab_unlock(struct page *page)
1183{
1184        bit_spin_unlock(PG_locked, &page->flags);
1185}
1186
1187static __always_inline int slab_trylock(struct page *page)
1188{
1189        int rc = 1;
1190
1191        rc = bit_spin_trylock(PG_locked, &page->flags);
1192        return rc;
1193}
1194
1195/*
1196 * Management of partially allocated slabs
1197 */
1198static void add_partial_tail(struct kmem_cache_node *n, struct page *page)
1199{
1200        spin_lock(&n->list_lock);
1201        n->nr_partial++;
1202        list_add_tail(&page->lru, &n->partial);
1203        spin_unlock(&n->list_lock);
1204}
1205
1206static void add_partial(struct kmem_cache_node *n, struct page *page)
1207{
1208        spin_lock(&n->list_lock);
1209        n->nr_partial++;
1210        list_add(&page->lru, &n->partial);
1211        spin_unlock(&n->list_lock);
1212}
1213
1214static void remove_partial(struct kmem_cache *s,
1215                                                struct page *page)
1216{
1217        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1218
1219        spin_lock(&n->list_lock);
1220        list_del(&page->lru);
1221        n->nr_partial--;
1222        spin_unlock(&n->list_lock);
1223}
1224
1225/*
1226 * Lock slab and remove from the partial list.
1227 *
1228 * Must hold list_lock.
1229 */
1230static inline int lock_and_freeze_slab(struct kmem_cache_node *n, struct page *page)
1231{
1232        if (slab_trylock(page)) {
1233                list_del(&page->lru);
1234                n->nr_partial--;
1235                SetSlabFrozen(page);
1236                return 1;
1237        }
1238        return 0;
1239}
1240
1241/*
1242 * Try to allocate a partial slab from a specific node.
1243 */
1244static struct page *get_partial_node(struct kmem_cache_node *n)
1245{
1246        struct page *page;
1247
1248        /*
1249         * Racy check. If we mistakenly see no partial slabs then we
1250         * just allocate an empty slab. If we mistakenly try to get a
1251         * partial slab and there is none available then get_partials()
1252         * will return NULL.
1253         */
1254        if (!n || !n->nr_partial)
1255                return NULL;
1256
1257        spin_lock(&n->list_lock);
1258        list_for_each_entry(page, &n->partial, lru)
1259                if (lock_and_freeze_slab(n, page))
1260                        goto out;
1261        page = NULL;
1262out:
1263        spin_unlock(&n->list_lock);
1264        return page;
1265}
1266
1267/*
1268 * Get a page from somewhere. Search in increasing NUMA distances.
1269 */
1270static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1271{
1272#ifdef CONFIG_NUMA
1273        struct zonelist *zonelist;
1274        struct zone **z;
1275        struct page *page;
1276
1277        /*
1278         * The defrag ratio allows a configuration of the tradeoffs between
1279         * inter node defragmentation and node local allocations. A lower
1280         * defrag_ratio increases the tendency to do local allocations
1281         * instead of attempting to obtain partial slabs from other nodes.
1282         *
1283         * If the defrag_ratio is set to 0 then kmalloc() always
1284         * returns node local objects. If the ratio is higher then kmalloc()
1285         * may return off node objects because partial slabs are obtained
1286         * from other nodes and filled up.
1287         *
1288         * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
1289         * defrag_ratio = 1000) then every (well almost) allocation will
1290         * first attempt to defrag slab caches on other nodes. This means
1291         * scanning over all nodes to look for partial slabs which may be
1292         * expensive if we do it every time we are trying to find a slab
1293         * with available objects.
1294         */
1295        if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
1296                return NULL;
1297
1298        zonelist = &NODE_DATA(slab_node(current->mempolicy))
1299                                        ->node_zonelists[gfp_zone(flags)];
1300        for (z = zonelist->zones; *z; z++) {
1301                struct kmem_cache_node *n;
1302
1303                n = get_node(s, zone_to_nid(*z));
1304
1305                if (n && cpuset_zone_allowed_hardwall(*z, flags) &&
1306                                n->nr_partial > MIN_PARTIAL) {
1307                        page = get_partial_node(n);
1308                        if (page)
1309                                return page;
1310                }
1311        }
1312#endif
1313        return NULL;
1314}
1315
1316/*
1317 * Get a partial page, lock it and return it.
1318 */
1319static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1320{
1321        struct page *page;
1322        int searchnode = (node == -1) ? numa_node_id() : node;
1323
1324        page = get_partial_node(get_node(s, searchnode));
1325        if (page || (flags & __GFP_THISNODE))
1326                return page;
1327
1328        return get_any_partial(s, flags);
1329}
1330
1331/*
1332 * Move a page back to the lists.
1333 *
1334 * Must be called with the slab lock held.
1335 *
1336 * On exit the slab lock will have been dropped.
1337 */
1338static void unfreeze_slab(struct kmem_cache *s, struct page *page)
1339{
1340        struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1341
1342        ClearSlabFrozen(page);
1343        if (page->inuse) {
1344
1345                if (page->freelist)
1346                        add_partial(n, page);
1347                else if (SlabDebug(page) && (s->flags & SLAB_STORE_USER))
1348                        add_full(n, page);
1349                slab_unlock(page);
1350
1351        } else {
1352                if (n->nr_partial < MIN_PARTIAL) {
1353                        /*
1354                         * Adding an empty slab to the partial slabs in order
1355                         * to avoid page allocator overhead. This slab needs
1356                         * to come after the other slabs with objects in
1357                         * order to fill them up. That way the size of the
1358                         * partial list stays small. kmem_cache_shrink can
1359                         * reclaim empty slabs from the partial list.
1360                         */
1361                        add_partial_tail(n, page);
1362                        slab_unlock(page);
1363                } else {
1364                        slab_unlock(page);
1365                        discard_slab(s, page);
1366                }
1367        }
1368}
1369
1370/*
1371 * Remove the cpu slab
1372 */
1373static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1374{
1375        struct page *page = c->page;
1376        /*
1377         * Merge cpu freelist into freelist. Typically we get here
1378         * because both freelists are empty. So this is unlikely
1379         * to occur.
1380         */
1381        while (unlikely(c->freelist)) {
1382                void **object;
1383
1384                /* Retrieve object from cpu_freelist */
1385                object = c->freelist;
1386                c->freelist = c->freelist[c->offset];
1387
1388                /* And put onto the regular freelist */
1389                object[c->offset] = page->freelist;
1390                page->freelist = object;
1391                page->inuse--;
1392        }
1393        c->page = NULL;
1394        unfreeze_slab(s, page);
1395}
1396
1397static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1398{
1399        slab_lock(c->page);
1400        deactivate_slab(s, c);
1401}
1402
1403/*
1404 * Flush cpu slab.
1405 * Called from IPI handler with interrupts disabled.
1406 */
1407static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1408{
1409        struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1410
1411        if (likely(c && c->page))
1412                flush_slab(s, c);
1413}
1414
1415static void flush_cpu_slab(void *d)
1416{
1417        struct kmem_cache *s = d;
1418
1419        __flush_cpu_slab(s, smp_processor_id());
1420}
1421
1422static void flush_all(struct kmem_cache *s)
1423{
1424#ifdef CONFIG_SMP
1425        on_each_cpu(flush_cpu_slab, s, 1, 1);
1426#else
1427        unsigned long flags;
1428
1429        local_irq_save(flags);
1430        flush_cpu_slab(s);
1431        local_irq_restore(flags);
1432#endif
1433}
1434
1435/*
1436 * Check if the objects in a per cpu structure fit numa
1437 * locality expectations.
1438 */
1439static inline int node_match(struct kmem_cache_cpu *c, int node)
1440{
1441#ifdef CONFIG_NUMA
1442        if (node != -1 && c->node != node)
1443                return 0;
1444#endif
1445        return 1;
1446}
1447
1448/*
1449 * Slow path. The lockless freelist is empty or we need to perform
1450 * debugging duties.
1451 *
1452 * Interrupts are disabled.
1453 *
1454 * Processing is still very fast if new objects have been freed to the
1455 * regular freelist. In that case we simply take over the regular freelist
1456 * as the lockless freelist and zap the regular freelist.
1457 *
1458 * If that is not working then we fall back to the partial lists. We take the
1459 * first element of the freelist as the object to allocate now and move the
1460 * rest of the freelist to the lockless freelist.
1461 *
1462 * And if we were unable to get a new slab from the partial slab lists then
1463 * we need to allocate a new slab. This is slowest path since we may sleep.
1464 */
1465static void *__slab_alloc(struct kmem_cache *s,
1466                gfp_t gfpflags, int node, void *addr, struct kmem_cache_cpu *c)
1467{
1468        void **object;
1469        struct page *new;
1470
1471        if (!c->page)
1472                goto new_slab;
1473
1474        slab_lock(c->page);
1475        if (unlikely(!node_match(c, node)))
1476                goto another_slab;
1477load_freelist:
1478        object = c->page->freelist;
1479        if (unlikely(!object))
1480                goto another_slab;
1481        if (unlikely(SlabDebug(c->page)))
1482                goto debug;
1483
1484        object = c->page->freelist;
1485        c->freelist = object[c->offset];
1486        c->page->inuse = s->objects;
1487        c->page->freelist = NULL;
1488        c->node = page_to_nid(c->page);
1489        slab_unlock(c->page);
1490        return object;
1491
1492another_slab:
1493        deactivate_slab(s, c);
1494
1495new_slab:
1496        new = get_partial(s, gfpflags, node);
1497        if (new) {
1498                c->page = new;
1499                goto load_freelist;
1500        }
1501
1502        if (gfpflags & __GFP_WAIT)
1503                local_irq_enable();
1504
1505        new = new_slab(s, gfpflags, node);
1506
1507        if (gfpflags & __GFP_WAIT)
1508                local_irq_disable();
1509
1510        if (new) {
1511                c = get_cpu_slab(s, smp_processor_id());
1512                if (c->page)
1513                        flush_slab(s, c);
1514                slab_lock(new);
1515                SetSlabFrozen(new);
1516                c->page = new;
1517                goto load_freelist;
1518        }
1519        return NULL;
1520debug:
1521        object = c->page->freelist;
1522        if (!alloc_debug_processing(s, c->page, object, addr))
1523                goto another_slab;
1524
1525        c->page->inuse++;
1526        c->page->freelist = object[c->offset];
1527        c->node = -1;
1528        slab_unlock(c->page);
1529        return object;
1530}
1531
1532/*
1533 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1534 * have the fastpath folded into their functions. So no function call
1535 * overhead for requests that can be satisfied on the fastpath.
1536 *
1537 * The fastpath works by first checking if the lockless freelist can be used.
1538 * If not then __slab_alloc is called for slow processing.
1539 *
1540 * Otherwise we can simply pick the next object from the lockless free list.
1541 */
1542static void __always_inline *slab_alloc(struct kmem_cache *s,
1543                gfp_t gfpflags, int node, void *addr)
1544{
1545        void **object;
1546        unsigned long flags;
1547        struct kmem_cache_cpu *c;
1548
1549        local_irq_save(flags);
1550        c = get_cpu_slab(s, smp_processor_id());
1551        if (unlikely(!c->freelist || !node_match(c, node)))
1552
1553                object = __slab_alloc(s, gfpflags, node, addr, c);
1554
1555        else {
1556                object = c->freelist;
1557                c->freelist = object[c->offset];
1558        }
1559        local_irq_restore(flags);
1560
1561        if (unlikely((gfpflags & __GFP_ZERO) && object))
1562                memset(object, 0, c->objsize);
1563
1564        return object;
1565}
1566
1567void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1568{
1569        return slab_alloc(s, gfpflags, -1, __builtin_return_address(0));
1570}
1571EXPORT_SYMBOL(kmem_cache_alloc);
1572
1573#ifdef CONFIG_NUMA
1574void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1575{
1576        return slab_alloc(s, gfpflags, node, __builtin_return_address(0));
1577}
1578EXPORT_SYMBOL(kmem_cache_alloc_node);
1579#endif
1580
1581/*
1582 * Slow patch handling. This may still be called frequently since objects
1583 * have a longer lifetime than the cpu slabs in most processing loads.
1584 *
1585 * So we still attempt to reduce cache line usage. Just take the slab
1586 * lock and free the item. If there is no additional partial page
1587 * handling required then we can return immediately.
1588 */
1589static void __slab_free(struct kmem_cache *s, struct page *page,
1590                                void *x, void *addr, unsigned int offset)
1591{
1592        void *prior;
1593        void **object = (void *)x;
1594
1595        slab_lock(page);
1596
1597        if (unlikely(SlabDebug(page)))
1598                goto debug;
1599checks_ok:
1600        prior = object[offset] = page->freelist;
1601        page->freelist = object;
1602        page->inuse--;
1603
1604        if (unlikely(SlabFrozen(page)))
1605                goto out_unlock;
1606
1607        if (unlikely(!page->inuse))
1608                goto slab_empty;
1609
1610        /*
1611         * Objects left in the slab. If it
1612         * was not on the partial list before
1613         * then add it.
1614         */
1615        if (unlikely(!prior))
1616                add_partial_tail(get_node(s, page_to_nid(page)), page);
1617
1618out_unlock:
1619        slab_unlock(page);
1620        return;
1621
1622slab_empty:
1623        if (prior)
1624                /*
1625                 * Slab still on the partial list.
1626                 */
1627                remove_partial(s, page);
1628
1629        slab_unlock(page);
1630        discard_slab(s, page);
1631        return;
1632
1633debug:
1634        if (!free_debug_processing(s, page, x, addr))
1635                goto out_unlock;
1636        goto checks_ok;
1637}
1638
1639/*
1640 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1641 * can perform fastpath freeing without additional function calls.
1642 *
1643 * The fastpath is only possible if we are freeing to the current cpu slab
1644 * of this processor. This typically the case if we have just allocated
1645 * the item before.
1646 *
1647 * If fastpath is not possible then fall back to __slab_free where we deal
1648 * with all sorts of special processing.
1649 */
1650static void __always_inline slab_free(struct kmem_cache *s,
1651                        struct page *page, void *x, void *addr)
1652{
1653        void **object = (void *)x;
1654        unsigned long flags;
1655        struct kmem_cache_cpu *c;
1656
1657        local_irq_save(flags);
1658        debug_check_no_locks_freed(object, s->objsize);
1659        c = get_cpu_slab(s, smp_processor_id());
1660        if (likely(page == c->page && c->node >= 0)) {
1661                object[c->offset] = c->freelist;
1662                c->freelist = object;
1663        } else
1664                __slab_free(s, page, x, addr, c->offset);
1665
1666        local_irq_restore(flags);
1667}
1668
1669void kmem_cache_free(struct kmem_cache *s, void *x)
1670{
1671        struct page *page;
1672
1673        page = virt_to_head_page(x);
1674
1675        slab_free(s, page, x, __builtin_return_address(0));
1676}
1677EXPORT_SYMBOL(kmem_cache_free);
1678
1679/* Figure out on which slab object the object resides */
1680static struct page *get_object_page(const void *x)
1681{
1682        struct page *page = virt_to_head_page(x);
1683
1684        if (!PageSlab(page))
1685                return NULL;
1686
1687        return page;
1688}
1689
1690/*
1691 * Object placement in a slab is made very easy because we always start at
1692 * offset 0. If we tune the size of the object to the alignment then we can
1693 * get the required alignment by putting one properly sized object after
1694 * another.
1695 *
1696 * Notice that the allocation order determines the sizes of the per cpu
1697 * caches. Each processor has always one slab available for allocations.
1698 * Increasing the allocation order reduces the number of times that slabs
1699 * must be moved on and off the partial lists and is therefore a factor in
1700 * locking overhead.
1701 */
1702
1703/*
1704 * Mininum / Maximum order of slab pages. This influences locking overhead
1705 * and slab fragmentation. A higher order reduces the number of partial slabs
1706 * and increases the number of allocations possible without having to
1707 * take the list_lock.
1708 */
1709static int slub_min_order;
1710static int slub_max_order = DEFAULT_MAX_ORDER;
1711static int slub_min_objects = DEFAULT_MIN_OBJECTS;
1712
1713/*
1714 * Merge control. If this is set then no merging of slab caches will occur.
1715 * (Could be removed. This was introduced to pacify the merge skeptics.)
1716 */
1717static int slub_nomerge;
1718
1719/*
1720 * Calculate the order of allocation given an slab object size.
1721 *
1722 * The order of allocation has significant impact on performance and other
1723 * system components. Generally order 0 allocations should be preferred since
1724 * order 0 does not cause fragmentation in the page allocator. Larger objects
1725 * be problematic to put into order 0 slabs because there may be too much
1726 * unused space left. We go to a higher order if more than 1/8th of the slab
1727 * would be wasted.
1728 *
1729 * In order to reach satisfactory performance we must ensure that a minimum
1730 * number of objects is in one slab. Otherwise we may generate too much
1731 * activity on the partial lists which requires taking the list_lock. This is
1732 * less a concern for large slabs though which are rarely used.
1733 *
1734 * slub_max_order specifies the order where we begin to stop considering the
1735 * number of objects in a slab as critical. If we reach slub_max_order then
1736 * we try to keep the page order as low as possible. So we accept more waste
1737 * of space in favor of a small page order.
1738 *
1739 * Higher order allocations also allow the placement of more objects in a
1740 * slab and thereby reduce object handling overhead. If the user has
1741 * requested a higher mininum order then we start with that one instead of
1742 * the smallest order which will fit the object.
1743 */
1744static inline int slab_order(int size, int min_objects,
1745                                int max_order, int fract_leftover)
1746{
1747        int order;
1748        int rem;
1749        int min_order = slub_min_order;
1750
1751        for (order = max(min_order,
1752                                fls(min_objects * size - 1) - PAGE_SHIFT);
1753                        order <= max_order; order++) {
1754
1755                unsigned long slab_size = PAGE_SIZE << order;
1756
1757                if (slab_size < min_objects * size)
1758                        continue;
1759
1760                rem = slab_size % size;
1761
1762                if (rem <= slab_size / fract_leftover)
1763                        break;
1764
1765        }
1766
1767        return order;
1768}
1769
1770static inline int calculate_order(int size)
1771{
1772        int order;
1773        int min_objects;
1774        int fraction;
1775
1776        /*
1777         * Attempt to find best configuration for a slab. This
1778         * works by first attempting to generate a layout with
1779         * the best configuration and backing off gradually.
1780         *
1781         * First we reduce the acceptable waste in a slab. Then
1782         * we reduce the minimum objects required in a slab.
1783         */
1784        min_objects = slub_min_objects;
1785        while (min_objects > 1) {
1786                fraction = 8;
1787                while (fraction >= 4) {
1788                        order = slab_order(size, min_objects,
1789                                                slub_max_order, fraction);
1790                        if (order <= slub_max_order)
1791                                return order;
1792                        fraction /= 2;
1793                }
1794                min_objects /= 2;
1795        }
1796
1797        /*
1798         * We were unable to place multiple objects in a slab. Now
1799         * lets see if we can place a single object there.
1800         */
1801        order = slab_order(size, 1, slub_max_order, 1);
1802        if (order <= slub_max_order)
1803                return order;
1804
1805        /*
1806         * Doh this slab cannot be placed using slub_max_order.
1807         */
1808        order = slab_order(size, 1, MAX_ORDER, 1);
1809        if (order <= MAX_ORDER)
1810                return order;
1811        return -ENOSYS;
1812}
1813
1814/*
1815 * Figure out what the alignment of the objects will be.
1816 */
1817static unsigned long calculate_alignment(unsigned long flags,
1818                unsigned long align, unsigned long size)
1819{
1820        /*
1821         * If the user wants hardware cache aligned objects then
1822         * follow that suggestion if the object is sufficiently
1823         * large.
1824         *
1825         * The hardware cache alignment cannot override the
1826         * specified alignment though. If that is greater
1827         * then use it.
1828         */
1829        if ((flags & SLAB_HWCACHE_ALIGN) &&
1830                        size > cache_line_size() / 2)
1831                return max_t(unsigned long, align, cache_line_size());
1832
1833        if (align < ARCH_SLAB_MINALIGN)
1834                return ARCH_SLAB_MINALIGN;
1835
1836        return ALIGN(align, sizeof(void *));
1837}
1838
1839static void init_kmem_cache_cpu(struct kmem_cache *s,
1840                        struct kmem_cache_cpu *c)
1841{
1842        c->page = NULL;
1843        c->freelist = NULL;
1844        c->node = 0;
1845        c->offset = s->offset / sizeof(void *);
1846        c->objsize = s->objsize;
1847}
1848
1849static void init_kmem_cache_node(struct kmem_cache_node *n)
1850{
1851        n->nr_partial = 0;
1852        atomic_long_set(&n->nr_slabs, 0);
1853        spin_lock_init(&n->list_lock);
1854        INIT_LIST_HEAD(&n->partial);
1855#ifdef CONFIG_SLUB_DEBUG
1856        INIT_LIST_HEAD(&n->full);
1857#endif
1858}
1859
1860#ifdef CONFIG_SMP
1861/*
1862 * Per cpu array for per cpu structures.
1863 *
1864 * The per cpu array places all kmem_cache_cpu structures from one processor
1865 * close together meaning that it becomes possible that multiple per cpu
1866 * structures are contained in one cacheline. This may be particularly
1867 * beneficial for the kmalloc caches.
1868 *
1869 * A desktop system typically has around 60-80 slabs. With 100 here we are
1870 * likely able to get per cpu structures for all caches from the array defined
1871 * here. We must be able to cover all kmalloc caches during bootstrap.
1872 *
1873 * If the per cpu array is exhausted then fall back to kmalloc
1874 * of individual cachelines. No sharing is possible then.
1875 */
1876#define NR_KMEM_CACHE_CPU 100
1877
1878static DEFINE_PER_CPU(struct kmem_cache_cpu,
1879                                kmem_cache_cpu)[NR_KMEM_CACHE_CPU];
1880
1881static DEFINE_PER_CPU(struct kmem_cache_cpu *, kmem_cache_cpu_free);
1882static cpumask_t kmem_cach_cpu_free_init_once = CPU_MASK_NONE;
1883
1884static struct kmem_cache_cpu *alloc_kmem_cache_cpu(struct kmem_cache *s,
1885                                                        int cpu, gfp_t flags)
1886{
1887        struct kmem_cache_cpu *c = per_cpu(kmem_cache_cpu_free, cpu);
1888
1889        if (c)
1890                per_cpu(kmem_cache_cpu_free, cpu) =
1891                                (void *)c->freelist;
1892        else {
1893                /* Table overflow: So allocate ourselves */
1894                c = kmalloc_node(
1895                        ALIGN(sizeof(struct kmem_cache_cpu), cache_line_size()),
1896                        flags, cpu_to_node(cpu));
1897                if (!c)
1898                        return NULL;
1899        }
1900
1901        init_kmem_cache_cpu(s, c);
1902        return c;
1903}
1904
1905static void free_kmem_cache_cpu(struct kmem_cache_cpu *c, int cpu)
1906{
1907        if (c < per_cpu(kmem_cache_cpu, cpu) ||
1908                        c > per_cpu(kmem_cache_cpu, cpu) + NR_KMEM_CACHE_CPU) {
1909                kfree(c);
1910                return;
1911        }
1912        c->freelist = (void *)per_cpu(kmem_cache_cpu_free, cpu);
1913        per_cpu(kmem_cache_cpu_free, cpu) = c;
1914}
1915
1916static void free_kmem_cache_cpus(struct kmem_cache *s)
1917{
1918        int cpu;
1919
1920        for_each_online_cpu(cpu) {
1921                struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1922
1923                if (c) {
1924                        s->cpu_slab[cpu] = NULL;
1925                        free_kmem_cache_cpu(c, cpu);
1926                }
1927        }
1928}
1929
1930static int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1931{
1932        int cpu;
1933
1934        for_each_online_cpu(cpu) {
1935                struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
1936
1937                if (c)
1938                        continue;
1939
1940                c = alloc_kmem_cache_cpu(s, cpu, flags);
1941                if (!c) {
1942                        free_kmem_cache_cpus(s);
1943                        return 0;
1944                }
1945                s->cpu_slab[cpu] = c;
1946        }
1947        return 1;
1948}
1949
1950/*
1951 * Initialize the per cpu array.
1952 */
1953static void init_alloc_cpu_cpu(int cpu)
1954{
1955        int i;
1956
1957        if (cpu_isset(cpu, kmem_cach_cpu_free_init_once))
1958                return;
1959
1960        for (i = NR_KMEM_CACHE_CPU - 1; i >= 0; i--)
1961                free_kmem_cache_cpu(&per_cpu(kmem_cache_cpu, cpu)[i], cpu);
1962
1963        cpu_set(cpu, kmem_cach_cpu_free_init_once);
1964}
1965
1966static void __init init_alloc_cpu(void)
1967{
1968        int cpu;
1969
1970        for_each_online_cpu(cpu)
1971                init_alloc_cpu_cpu(cpu);
1972  }
1973
1974#else
1975static inline void free_kmem_cache_cpus(struct kmem_cache *s) {}
1976static inline void init_alloc_cpu(void) {}
1977
1978static inline int alloc_kmem_cache_cpus(struct kmem_cache *s, gfp_t flags)
1979{
1980        init_kmem_cache_cpu(s, &s->cpu_slab);
1981        return 1;
1982}
1983#endif
1984
1985#ifdef CONFIG_NUMA
1986/*
1987 * No kmalloc_node yet so do it by hand. We know that this is the first
1988 * slab on the node for this slabcache. There are no concurrent accesses
1989 * possible.
1990 *
1991 * Note that this function only works on the kmalloc_node_cache
1992 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
1993 * memory on a fresh node that has no slab structures yet.
1994 */
1995static struct kmem_cache_node *early_kmem_cache_node_alloc(gfp_t gfpflags,
1996                                                           int node)
1997{
1998        struct page *page;
1999        struct kmem_cache_node *n;
2000
2001        BUG_ON(kmalloc_caches->size < sizeof(struct kmem_cache_node));
2002
2003        page = new_slab(kmalloc_caches, gfpflags, node);
2004
2005        BUG_ON(!page);
2006        if (page_to_nid(page) != node) {
2007                printk(KERN_ERR "SLUB: Unable to allocate memory from "
2008                                "node %d\n", node);
2009                printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2010                                "in order to be able to continue\n");
2011        }
2012
2013        n = page->freelist;
2014        BUG_ON(!n);
2015        page->freelist = get_freepointer(kmalloc_caches, n);
2016        page->inuse++;
2017        kmalloc_caches->node[node] = n;
2018#ifdef CONFIG_SLUB_DEBUG
2019        init_object(kmalloc_caches, n, 1);
2020        init_tracking(kmalloc_caches, n);
2021#endif
2022        init_kmem_cache_node(n);
2023        atomic_long_inc(&n->nr_slabs);
2024        add_partial(n, page);
2025        return n;
2026}
2027
2028static void free_kmem_cache_nodes(struct kmem_cache *s)
2029{
2030        int node;
2031
2032        for_each_node_state(node, N_NORMAL_MEMORY) {
2033                struct kmem_cache_node *n = s->node[node];
2034                if (n && n != &s->local_node)
2035                        kmem_cache_free(kmalloc_caches, n);
2036                s->node[node] = NULL;
2037        }
2038}
2039
2040static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2041{
2042        int node;
2043        int local_node;
2044
2045        if (slab_state >= UP)
2046                local_node = page_to_nid(virt_to_page(s));
2047        else
2048                local_node = 0;
2049
2050        for_each_node_state(node, N_NORMAL_MEMORY) {
2051                struct kmem_cache_node *n;
2052
2053                if (local_node == node)
2054                        n = &s->local_node;
2055                else {
2056                        if (slab_state == DOWN) {
2057                                n = early_kmem_cache_node_alloc(gfpflags,
2058                                                                node);
2059                                continue;
2060                        }
2061                        n = kmem_cache_alloc_node(kmalloc_caches,
2062                                                        gfpflags, node);
2063
2064                        if (!n) {
2065                                free_kmem_cache_nodes(s);
2066                                return 0;
2067                        }
2068
2069                }
2070                s->node[node] = n;
2071                init_kmem_cache_node(n);
2072        }
2073        return 1;
2074}
2075#else
2076static void free_kmem_cache_nodes(struct kmem_cache *s)
2077{
2078}
2079
2080static int init_kmem_cache_nodes(struct kmem_cache *s, gfp_t gfpflags)
2081{
2082        init_kmem_cache_node(&s->local_node);
2083        return 1;
2084}
2085#endif
2086
2087/*
2088 * calculate_sizes() determines the order and the distribution of data within
2089 * a slab object.
2090 */
2091static int calculate_sizes(struct kmem_cache *s)
2092{
2093        unsigned long flags = s->flags;
2094        unsigned long size = s->objsize;
2095        unsigned long align = s->align;
2096
2097        /*
2098         * Determine if we can poison the object itself. If the user of
2099         * the slab may touch the object after free or before allocation
2100         * then we should never poison the object itself.
2101         */
2102        if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2103                        !s->ctor)
2104                s->flags |= __OBJECT_POISON;
2105        else
2106                s->flags &= ~__OBJECT_POISON;
2107
2108        /*
2109         * Round up object size to the next word boundary. We can only
2110         * place the free pointer at word boundaries and this determines
2111         * the possible location of the free pointer.
2112         */
2113        size = ALIGN(size, sizeof(void *));
2114
2115#ifdef CONFIG_SLUB_DEBUG
2116        /*
2117         * If we are Redzoning then check if there is some space between the
2118         * end of the object and the free pointer. If not then add an
2119         * additional word to have some bytes to store Redzone information.
2120         */
2121        if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2122                size += sizeof(void *);
2123#endif
2124
2125        /*
2126         * With that we have determined the number of bytes in actual use
2127         * by the object. This is the potential offset to the free pointer.
2128         */
2129        s->inuse = size;
2130
2131        if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2132                s->ctor)) {
2133                /*
2134                 * Relocate free pointer after the object if it is not
2135                 * permitted to overwrite the first word of the object on
2136                 * kmem_cache_free.
2137                 *
2138                 * This is the case if we do RCU, have a constructor or
2139                 * destructor or are poisoning the objects.
2140                 */
2141                s->offset = size;
2142                size += sizeof(void *);
2143        }
2144
2145#ifdef CONFIG_SLUB_DEBUG
2146        if (flags & SLAB_STORE_USER)
2147                /*
2148                 * Need to store information about allocs and frees after
2149                 * the object.
2150                 */
2151                size += 2 * sizeof(struct track);
2152
2153        if (flags & SLAB_RED_ZONE)
2154                /*
2155                 * Add some empty padding so that we can catch
2156                 * overwrites from earlier objects rather than let
2157                 * tracking information or the free pointer be
2158                 * corrupted if an user writes before the start
2159                 * of the object.
2160                 */
2161                size += sizeof(void *);
2162#endif
2163
2164        /*
2165         * Determine the alignment based on various parameters that the
2166         * user specified and the dynamic determination of cache line size
2167         * on bootup.
2168         */
2169        align = calculate_alignment(flags, align, s->objsize);
2170
2171        /*
2172         * SLUB stores one object immediately after another beginning from
2173         * offset 0. In order to align the objects we have to simply size
2174         * each object to conform to the alignment.
2175         */
2176        size = ALIGN(size, align);
2177        s->size = size;
2178
2179        s->order = calculate_order(size);
2180        if (s->order < 0)
2181                return 0;
2182
2183        /*
2184         * Determine the number of objects per slab
2185         */
2186        s->objects = (PAGE_SIZE << s->order) / size;
2187
2188        return !!s->objects;
2189
2190}
2191
2192static int kmem_cache_open(struct kmem_cache *s, gfp_t gfpflags,
2193                const char *name, size_t size,
2194                size_t align, unsigned long flags,
2195                void (*ctor)(struct kmem_cache *, void *))
2196{
2197        memset(s, 0, kmem_size);
2198        s->name = name;
2199        s->ctor = ctor;
2200        s->objsize = size;
2201        s->align = align;
2202        s->flags = kmem_cache_flags(size, flags, name, ctor);
2203
2204        if (!calculate_sizes(s))
2205                goto error;
2206
2207        s->refcount = 1;
2208#ifdef CONFIG_NUMA
2209        s->defrag_ratio = 100;
2210#endif
2211        if (!init_kmem_cache_nodes(s, gfpflags & ~SLUB_DMA))
2212                goto error;
2213
2214        if (alloc_kmem_cache_cpus(s, gfpflags & ~SLUB_DMA))
2215                return 1;
2216        free_kmem_cache_nodes(s);
2217error:
2218        if (flags & SLAB_PANIC)
2219                panic("Cannot create slab %s size=%lu realsize=%u "
2220                        "order=%u offset=%u flags=%lx\n",
2221                        s->name, (unsigned long)size, s->size, s->order,
2222                        s->offset, flags);
2223        return 0;
2224}
2225
2226/*
2227 * Check if a given pointer is valid
2228 */
2229int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2230{
2231        struct page * page;
2232
2233        page = get_object_page(object);
2234
2235        if (!page || s != page->slab)
2236                /* No slab or wrong slab */
2237                return 0;
2238
2239        if (!check_valid_pointer(s, page, object))
2240                return 0;
2241
2242        /*
2243         * We could also check if the object is on the slabs freelist.
2244         * But this would be too expensive and it seems that the main
2245         * purpose of kmem_ptr_valid is to check if the object belongs
2246         * to a certain slab.
2247         */
2248        return 1;
2249}
2250EXPORT_SYMBOL(kmem_ptr_validate);
2251
2252/*
2253 * Determine the size of a slab object
2254 */
2255unsigned int kmem_cache_size(struct kmem_cache *s)
2256{
2257        return s->objsize;
2258}
2259EXPORT_SYMBOL(kmem_cache_size);
2260
2261const char *kmem_cache_name(struct kmem_cache *s)
2262{
2263        return s->name;
2264}
2265EXPORT_SYMBOL(kmem_cache_name);
2266
2267/*
2268 * Attempt to free all slabs on a node. Return the number of slabs we
2269 * were unable to free.
2270 */
2271static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
2272                        struct list_head *list)
2273{
2274        int slabs_inuse = 0;
2275        unsigned long flags;
2276        struct page *page, *h;
2277
2278        spin_lock_irqsave(&n->list_lock, flags);
2279        list_for_each_entry_safe(page, h, list, lru)
2280                if (!page->inuse) {
2281                        list_del(&page->lru);
2282                        discard_slab(s, page);
2283                } else
2284                        slabs_inuse++;
2285        spin_unlock_irqrestore(&n->list_lock, flags);
2286        return slabs_inuse;
2287}
2288
2289/*
2290 * Release all resources used by a slab cache.
2291 */
2292static inline int kmem_cache_close(struct kmem_cache *s)
2293{
2294        int node;
2295
2296        flush_all(s);
2297
2298        /* Attempt to free all objects */
2299        free_kmem_cache_cpus(s);
2300        for_each_node_state(node, N_NORMAL_MEMORY) {
2301                struct kmem_cache_node *n = get_node(s, node);
2302
2303                n->nr_partial -= free_list(s, n, &n->partial);
2304                if (atomic_long_read(&n->nr_slabs))
2305                        return 1;
2306        }
2307        free_kmem_cache_nodes(s);
2308        return 0;
2309}
2310
2311/*
2312 * Close a cache and release the kmem_cache structure
2313 * (must be used for caches created using kmem_cache_create)
2314 */
2315void kmem_cache_destroy(struct kmem_cache *s)
2316{
2317        down_write(&slub_lock);
2318        s->refcount--;
2319        if (!s->refcount) {
2320                list_del(&s->list);
2321                up_write(&slub_lock);
2322                if (kmem_cache_close(s))
2323                        WARN_ON(1);
2324                sysfs_slab_remove(s);
2325                kfree(s);
2326        } else
2327                up_write(&slub_lock);
2328}
2329EXPORT_SYMBOL(kmem_cache_destroy);
2330
2331/********************************************************************
2332 *              Kmalloc subsystem
2333 *******************************************************************/
2334
2335struct kmem_cache kmalloc_caches[PAGE_SHIFT] __cacheline_aligned;
2336EXPORT_SYMBOL(kmalloc_caches);
2337
2338#ifdef CONFIG_ZONE_DMA
2339static struct kmem_cache *kmalloc_caches_dma[PAGE_SHIFT];
2340#endif
2341
2342static int __init setup_slub_min_order(char *str)
2343{
2344        get_option (&str, &slub_min_order);
2345
2346        return 1;
2347}
2348
2349__setup("slub_min_order=", setup_slub_min_order);
2350
2351static int __init setup_slub_max_order(char *str)
2352{
2353        get_option (&str, &slub_max_order);
2354
2355        return 1;
2356}
2357
2358__setup("slub_max_order=", setup_slub_max_order);
2359
2360static int __init setup_slub_min_objects(char *str)
2361{
2362        get_option (&str, &slub_min_objects);
2363
2364        return 1;
2365}
2366
2367__setup("slub_min_objects=", setup_slub_min_objects);
2368
2369static int __init setup_slub_nomerge(char *str)
2370{
2371        slub_nomerge = 1;
2372        return 1;
2373}
2374
2375__setup("slub_nomerge", setup_slub_nomerge);
2376
2377static struct kmem_cache *create_kmalloc_cache(struct kmem_cache *s,
2378                const char *name, int size, gfp_t gfp_flags)
2379{
2380        unsigned int flags = 0;
2381
2382        if (gfp_flags & SLUB_DMA)
2383                flags = SLAB_CACHE_DMA;
2384
2385        down_write(&slub_lock);
2386        if (!kmem_cache_open(s, gfp_flags, name, size, ARCH_KMALLOC_MINALIGN,
2387                        flags, NULL))
2388                goto panic;
2389
2390        list_add(&s->list, &slab_caches);
2391        up_write(&slub_lock);
2392        if (sysfs_slab_add(s))
2393                goto panic;
2394        return s;
2395
2396panic:
2397        panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2398}
2399
2400#ifdef CONFIG_ZONE_DMA
2401
2402static void sysfs_add_func(struct work_struct *w)
2403{
2404        struct kmem_cache *s;
2405
2406        down_write(&slub_lock);
2407        list_for_each_entry(s, &slab_caches, list) {
2408                if (s->flags & __SYSFS_ADD_DEFERRED) {
2409                        s->flags &= ~__SYSFS_ADD_DEFERRED;
2410                        sysfs_slab_add(s);
2411                }
2412        }
2413        up_write(&slub_lock);
2414}
2415
2416static DECLARE_WORK(sysfs_add_work, sysfs_add_func);
2417
2418static noinline struct kmem_cache *dma_kmalloc_cache(int index, gfp_t flags)
2419{
2420        struct kmem_cache *s;
2421        char *text;
2422        size_t realsize;
2423
2424        s = kmalloc_caches_dma[index];
2425        if (s)
2426                return s;
2427
2428        /* Dynamically create dma cache */
2429        if (flags & __GFP_WAIT)
2430                down_write(&slub_lock);
2431        else {
2432                if (!down_write_trylock(&slub_lock))
2433                        goto out;
2434        }
2435
2436        if (kmalloc_caches_dma[index])
2437                goto unlock_out;
2438
2439        realsize = kmalloc_caches[index].objsize;
2440        text = kasprintf(flags & ~SLUB_DMA, "kmalloc_dma-%d", (unsigned int)realsize),
2441        s = kmalloc(kmem_size, flags & ~SLUB_DMA);
2442
2443        if (!s || !text || !kmem_cache_open(s, flags, text,
2444                        realsize, ARCH_KMALLOC_MINALIGN,
2445                        SLAB_CACHE_DMA|__SYSFS_ADD_DEFERRED, NULL)) {
2446                kfree(s);
2447                kfree(text);
2448                goto unlock_out;
2449        }
2450
2451        list_add(&s->list, &slab_caches);
2452        kmalloc_caches_dma[index] = s;
2453
2454        schedule_work(&sysfs_add_work);
2455
2456unlock_out:
2457        up_write(&slub_lock);
2458out:
2459        return kmalloc_caches_dma[index];
2460}
2461#endif
2462
2463/*
2464 * Conversion table for small slabs sizes / 8 to the index in the
2465 * kmalloc array. This is necessary for slabs < 192 since we have non power
2466 * of two cache sizes there. The size of larger slabs can be determined using
2467 * fls.
2468 */
2469static s8 size_index[24] = {
2470        3,      /* 8 */
2471        4,      /* 16 */
2472        5,      /* 24 */
2473        5,      /* 32 */
2474        6,      /* 40 */
2475        6,      /* 48 */
2476        6,      /* 56 */
2477        6,      /* 64 */
2478        1,      /* 72 */
2479        1,      /* 80 */
2480        1,      /* 88 */
2481        1,      /* 96 */
2482        7,      /* 104 */
2483        7,      /* 112 */
2484        7,      /* 120 */
2485        7,      /* 128 */
2486        2,      /* 136 */
2487        2,      /* 144 */
2488        2,      /* 152 */
2489        2,      /* 160 */
2490        2,      /* 168 */
2491        2,      /* 176 */
2492        2,      /* 184 */
2493        2       /* 192 */
2494};
2495
2496static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2497{
2498        int index;
2499
2500        if (size <= 192) {
2501                if (!size)
2502                        return ZERO_SIZE_PTR;
2503
2504                index = size_index[(size - 1) / 8];
2505        } else
2506                index = fls(size - 1);
2507
2508#ifdef CONFIG_ZONE_DMA
2509        if (unlikely((flags & SLUB_DMA)))
2510                return dma_kmalloc_cache(index, flags);
2511
2512#endif
2513        return &kmalloc_caches[index];
2514}
2515
2516void *__kmalloc(size_t size, gfp_t flags)
2517{
2518        struct kmem_cache *s;
2519
2520        if (unlikely(size > PAGE_SIZE / 2))
2521                return (void *)__get_free_pages(flags | __GFP_COMP,
2522                                                        get_order(size));
2523
2524        s = get_slab(size, flags);
2525
2526        if (unlikely(ZERO_OR_NULL_PTR(s)))
2527                return s;
2528
2529        return slab_alloc(s, flags, -1, __builtin_return_address(0));
2530}
2531EXPORT_SYMBOL(__kmalloc);
2532
2533#ifdef CONFIG_NUMA
2534void *__kmalloc_node(size_t size, gfp_t flags, int node)
2535{
2536        struct kmem_cache *s;
2537
2538        if (unlikely(size > PAGE_SIZE / 2))
2539                return (void *)__get_free_pages(flags | __GFP_COMP,
2540                                                        get_order(size));
2541
2542        s = get_slab(size, flags);
2543
2544        if (unlikely(ZERO_OR_NULL_PTR(s)))
2545                return s;
2546
2547        return slab_alloc(s, flags, node, __builtin_return_address(0));
2548}
2549EXPORT_SYMBOL(__kmalloc_node);
2550#endif
2551
2552size_t ksize(const void *object)
2553{
2554        struct page *page;
2555        struct kmem_cache *s;
2556
2557        BUG_ON(!object);
2558        if (unlikely(object == ZERO_SIZE_PTR))
2559                return 0;
2560
2561        page = virt_to_head_page(object);
2562        BUG_ON(!page);
2563
2564        if (unlikely(!PageSlab(page)))
2565                return PAGE_SIZE << compound_order(page);
2566
2567        s = page->slab;
2568        BUG_ON(!s);
2569
2570        /*
2571         * Debugging requires use of the padding between object
2572         * and whatever may come after it.
2573         */
2574        if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2575                return s->objsize;
2576
2577        /*
2578         * If we have the need to store the freelist pointer
2579         * back there or track user information then we can
2580         * only use the space before that information.
2581         */
2582        if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2583                return s->inuse;
2584
2585        /*
2586         * Else we can use all the padding etc for the allocation
2587         */
2588        return s->size;
2589}
2590EXPORT_SYMBOL(ksize);
2591
2592void kfree(const void *x)
2593{
2594        struct page *page;
2595
2596        if (unlikely(ZERO_OR_NULL_PTR(x)))
2597                return;
2598
2599        page = virt_to_head_page(x);
2600        if (unlikely(!PageSlab(page))) {
2601                put_page(page);
2602                return;
2603        }
2604        slab_free(page->slab, page, (void *)x, __builtin_return_address(0));
2605}
2606EXPORT_SYMBOL(kfree);
2607
2608/*
2609 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2610 * the remaining slabs by the number of items in use. The slabs with the
2611 * most items in use come first. New allocations will then fill those up
2612 * and thus they can be removed from the partial lists.
2613 *
2614 * The slabs with the least items are placed last. This results in them
2615 * being allocated from last increasing the chance that the last objects
2616 * are freed in them.
2617 */
2618int kmem_cache_shrink(struct kmem_cache *s)
2619{
2620        int node;
2621        int i;
2622        struct kmem_cache_node *n;
2623        struct page *page;
2624        struct page *t;
2625        struct list_head *slabs_by_inuse =
2626                kmalloc(sizeof(struct list_head) * s->objects, GFP_KERNEL);
2627        unsigned long flags;
2628
2629        if (!slabs_by_inuse)
2630                return -ENOMEM;
2631
2632        flush_all(s);
2633        for_each_node_state(node, N_NORMAL_MEMORY) {
2634                n = get_node(s, node);
2635
2636                if (!n->nr_partial)
2637                        continue;
2638
2639                for (i = 0; i < s->objects; i++)
2640                        INIT_LIST_HEAD(slabs_by_inuse + i);
2641
2642                spin_lock_irqsave(&n->list_lock, flags);
2643
2644                /*
2645                 * Build lists indexed by the items in use in each slab.
2646                 *
2647                 * Note that concurrent frees may occur while we hold the
2648                 * list_lock. page->inuse here is the upper limit.
2649                 */
2650                list_for_each_entry_safe(page, t, &n->partial, lru) {
2651                        if (!page->inuse && slab_trylock(page)) {
2652                                /*
2653                                 * Must hold slab lock here because slab_free
2654                                 * may have freed the last object and be
2655                                 * waiting to release the slab.
2656                                 */
2657                                list_del(&page->lru);
2658                                n->nr_partial--;
2659                                slab_unlock(page);
2660                                discard_slab(s, page);
2661                        } else {
2662                                list_move(&page->lru,
2663                                slabs_by_inuse + page->inuse);
2664                        }
2665                }
2666
2667                /*
2668                 * Rebuild the partial list with the slabs filled up most
2669                 * first and the least used slabs at the end.
2670                 */
2671                for (i = s->objects - 1; i >= 0; i--)
2672                        list_splice(slabs_by_inuse + i, n->partial.prev);
2673
2674                spin_unlock_irqrestore(&n->list_lock, flags);
2675        }
2676
2677        kfree(slabs_by_inuse);
2678        return 0;
2679}
2680EXPORT_SYMBOL(kmem_cache_shrink);
2681
2682#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
2683static int slab_mem_going_offline_callback(void *arg)
2684{
2685        struct kmem_cache *s;
2686
2687        down_read(&slub_lock);
2688        list_for_each_entry(s, &slab_caches, list)
2689                kmem_cache_shrink(s);
2690        up_read(&slub_lock);
2691
2692        return 0;
2693}
2694
2695static void slab_mem_offline_callback(void *arg)
2696{
2697        struct kmem_cache_node *n;
2698        struct kmem_cache *s;
2699        struct memory_notify *marg = arg;
2700        int offline_node;
2701
2702        offline_node = marg->status_change_nid;
2703
2704        /*
2705         * If the node still has available memory. we need kmem_cache_node
2706         * for it yet.
2707         */
2708        if (offline_node < 0)
2709                return;
2710
2711        down_read(&slub_lock);
2712        list_for_each_entry(s, &slab_caches, list) {
2713                n = get_node(s, offline_node);
2714                if (n) {
2715                        /*
2716                         * if n->nr_slabs > 0, slabs still exist on the node
2717                         * that is going down. We were unable to free them,
2718                         * and offline_pages() function shoudn't call this
2719                         * callback. So, we must fail.
2720                         */
2721                        BUG_ON(atomic_long_read(&n->nr_slabs));
2722
2723                        s->node[offline_node] = NULL;
2724                        kmem_cache_free(kmalloc_caches, n);
2725                }
2726        }
2727        up_read(&slub_lock);
2728}
2729
2730static int slab_mem_going_online_callback(void *arg)
2731{
2732        struct kmem_cache_node *n;
2733        struct kmem_cache *s;
2734        struct memory_notify *marg = arg;
2735        int nid = marg->status_change_nid;
2736        int ret = 0;
2737
2738        /*
2739         * If the node's memory is already available, then kmem_cache_node is
2740         * already created. Nothing to do.
2741         */
2742        if (nid < 0)
2743                return 0;
2744
2745        /*
2746         * We are bringing a node online. No memory is availabe yet. We must
2747         * allocate a kmem_cache_node structure in order to bring the node
2748         * online.
2749         */
2750        down_read(&slub_lock);
2751        list_for_each_entry(s, &slab_caches, list) {
2752                /*
2753                 * XXX: kmem_cache_alloc_node will fallback to other nodes
2754                 *      since memory is not yet available from the node that
2755                 *      is brought up.
2756                 */
2757                n = kmem_cache_alloc(kmalloc_caches, GFP_KERNEL);
2758                if (!n) {
2759                        ret = -ENOMEM;
2760                        goto out;
2761                }
2762                init_kmem_cache_node(n);
2763                s->node[nid] = n;
2764        }
2765out:
2766        up_read(&slub_lock);
2767        return ret;
2768}
2769
2770static int slab_memory_callback(struct notifier_block *self,
2771                                unsigned long action, void *arg)
2772{
2773        int ret = 0;
2774
2775        switch (action) {
2776        case MEM_GOING_ONLINE:
2777                ret = slab_mem_going_online_callback(arg);
2778                break;
2779        case MEM_GOING_OFFLINE:
2780                ret = slab_mem_going_offline_callback(arg);
2781                break;
2782        case MEM_OFFLINE:
2783        case MEM_CANCEL_ONLINE:
2784                slab_mem_offline_callback(arg);
2785                break;
2786        case MEM_ONLINE:
2787        case MEM_CANCEL_OFFLINE:
2788                break;
2789        }
2790
2791        ret = notifier_from_errno(ret);
2792        return ret;
2793}
2794
2795#endif /* CONFIG_MEMORY_HOTPLUG */
2796
2797/********************************************************************
2798 *                      Basic setup of slabs
2799 *******************************************************************/
2800
2801void __init kmem_cache_init(void)
2802{
2803        int i;
2804        int caches = 0;
2805
2806        init_alloc_cpu();
2807
2808#ifdef CONFIG_NUMA
2809        /*
2810         * Must first have the slab cache available for the allocations of the
2811         * struct kmem_cache_node's. There is special bootstrap code in
2812         * kmem_cache_open for slab_state == DOWN.
2813         */
2814        create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
2815                sizeof(struct kmem_cache_node), GFP_KERNEL);
2816        kmalloc_caches[0].refcount = -1;
2817        caches++;
2818
2819        hotplug_memory_notifier(slab_memory_callback, 1);
2820#endif
2821
2822        /* Able to allocate the per node structures */
2823        slab_state = PARTIAL;
2824
2825        /* Caches that are not of the two-to-the-power-of size */
2826        if (KMALLOC_MIN_SIZE <= 64) {
2827                create_kmalloc_cache(&kmalloc_caches[1],
2828                                "kmalloc-96", 96, GFP_KERNEL);
2829                caches++;
2830        }
2831        if (KMALLOC_MIN_SIZE <= 128) {
2832                create_kmalloc_cache(&kmalloc_caches[2],
2833                                "kmalloc-192", 192, GFP_KERNEL);
2834                caches++;
2835        }
2836
2837        for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++) {
2838                create_kmalloc_cache(&kmalloc_caches[i],
2839                        "kmalloc", 1 << i, GFP_KERNEL);
2840                caches++;
2841        }
2842
2843
2844        /*
2845         * Patch up the size_index table if we have strange large alignment
2846         * requirements for the kmalloc array. This is only the case for
2847         * mips it seems. The standard arches will not generate any code here.
2848         *
2849         * Largest permitted alignment is 256 bytes due to the way we
2850         * handle the index determination for the smaller caches.
2851         *
2852         * Make sure that nothing crazy happens if someone starts tinkering
2853         * around with ARCH_KMALLOC_MINALIGN
2854         */
2855        BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
2856                (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
2857
2858        for (i = 8; i < KMALLOC_MIN_SIZE; i += 8)
2859                size_index[(i - 1) / 8] = KMALLOC_SHIFT_LOW;
2860
2861        slab_state = UP;
2862
2863        /* Provide the correct kmalloc names now that the caches are up */
2864        for (i = KMALLOC_SHIFT_LOW; i < PAGE_SHIFT; i++)
2865                kmalloc_caches[i]. name =
2866                        kasprintf(GFP_KERNEL, "kmalloc-%d", 1 << i);
2867
2868#ifdef CONFIG_SMP
2869        register_cpu_notifier(&slab_notifier);
2870        kmem_size = offsetof(struct kmem_cache, cpu_slab) +
2871                                nr_cpu_ids * sizeof(struct kmem_cache_cpu *);
2872#else
2873        kmem_size = sizeof(struct kmem_cache);
2874#endif
2875
2876
2877        printk(KERN_INFO "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
2878                " CPUs=%d, Nodes=%d\n",
2879                caches, cache_line_size(),
2880                slub_min_order, slub_max_order, slub_min_objects,
2881                nr_cpu_ids, nr_node_ids);
2882}
2883
2884/*
2885 * Find a mergeable slab cache
2886 */
2887static int slab_unmergeable(struct kmem_cache *s)
2888{
2889        if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
2890                return 1;
2891
2892        if (s->ctor)
2893                return 1;
2894
2895        /*
2896         * We may have set a slab to be unmergeable during bootstrap.
2897         */
2898        if (s->refcount < 0)
2899                return 1;
2900
2901        return 0;
2902}
2903
2904static struct kmem_cache *find_mergeable(size_t size,
2905                size_t align, unsigned long flags, const char *name,
2906                void (*ctor)(struct kmem_cache *, void *))
2907{
2908        struct kmem_cache *s;
2909
2910        if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
2911                return NULL;
2912
2913        if (ctor)
2914                return NULL;
2915
2916        size = ALIGN(size, sizeof(void *));
2917        align = calculate_alignment(flags, align, size);
2918        size = ALIGN(size, align);
2919        flags = kmem_cache_flags(size, flags, name, NULL);
2920
2921        list_for_each_entry(s, &slab_caches, list) {
2922                if (slab_unmergeable(s))
2923                        continue;
2924
2925                if (size > s->size)
2926                        continue;
2927
2928                if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
2929                                continue;
2930                /*
2931                 * Check if alignment is compatible.
2932                 * Courtesy of Adrian Drzewiecki
2933                 */
2934                if ((s->size & ~(align -1)) != s->size)
2935                        continue;
2936
2937                if (s->size - size >= sizeof(void *))
2938                        continue;
2939
2940                return s;
2941        }
2942        return NULL;
2943}
2944
2945struct kmem_cache *kmem_cache_create(const char *name, size_t size,
2946                size_t align, unsigned long flags,
2947                void (*ctor)(struct kmem_cache *, void *))
2948{
2949        struct kmem_cache *s;
2950
2951        down_write(&slub_lock);
2952        s = find_mergeable(size, align, flags, name, ctor);
2953        if (s) {
2954                int cpu;
2955
2956                s->refcount++;
2957                /*
2958                 * Adjust the object sizes so that we clear
2959                 * the complete object on kzalloc.
2960                 */
2961                s->objsize = max(s->objsize, (int)size);
2962
2963                /*
2964                 * And then we need to update the object size in the
2965                 * per cpu structures
2966                 */
2967                for_each_online_cpu(cpu)
2968                        get_cpu_slab(s, cpu)->objsize = s->objsize;
2969                s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
2970                up_write(&slub_lock);
2971                if (sysfs_slab_alias(s, name))
2972                        goto err;
2973                return s;
2974        }
2975        s = kmalloc(kmem_size, GFP_KERNEL);
2976        if (s) {
2977                if (kmem_cache_open(s, GFP_KERNEL, name,
2978                                size, align, flags, ctor)) {
2979                        list_add(&s->list, &slab_caches);
2980                        up_write(&slub_lock);
2981                        if (sysfs_slab_add(s))
2982                                goto err;
2983                        return s;
2984                }
2985                kfree(s);
2986        }
2987        up_write(&slub_lock);
2988
2989err:
2990        if (flags & SLAB_PANIC)
2991                panic("Cannot create slabcache %s\n", name);
2992        else
2993                s = NULL;
2994        return s;
2995}
2996EXPORT_SYMBOL(kmem_cache_create);
2997
2998#ifdef CONFIG_SMP
2999/*
3000 * Use the cpu notifier to insure that the cpu slabs are flushed when
3001 * necessary.
3002 */
3003static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3004                unsigned long action, void *hcpu)
3005{
3006        long cpu = (long)hcpu;
3007        struct kmem_cache *s;
3008        unsigned long flags;
3009
3010        switch (action) {
3011        case CPU_UP_PREPARE:
3012        case CPU_UP_PREPARE_FROZEN:
3013                init_alloc_cpu_cpu(cpu);
3014                down_read(&slub_lock);
3015                list_for_each_entry(s, &slab_caches, list)
3016                        s->cpu_slab[cpu] = alloc_kmem_cache_cpu(s, cpu,
3017                                                        GFP_KERNEL);
3018                up_read(&slub_lock);
3019                break;
3020
3021        case CPU_UP_CANCELED:
3022        case CPU_UP_CANCELED_FROZEN:
3023        case CPU_DEAD:
3024        case CPU_DEAD_FROZEN:
3025                down_read(&slub_lock);
3026                list_for_each_entry(s, &slab_caches, list) {
3027                        struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3028
3029                        local_irq_save(flags);
3030                        __flush_cpu_slab(s, cpu);
3031                        local_irq_restore(flags);
3032                        free_kmem_cache_cpu(c, cpu);
3033                        s->cpu_slab[cpu] = NULL;
3034                }
3035                up_read(&slub_lock);
3036                break;
3037        default:
3038                break;
3039        }
3040        return NOTIFY_OK;
3041}
3042
3043static struct notifier_block __cpuinitdata slab_notifier =
3044        { &slab_cpuup_callback, NULL, 0 };
3045
3046#endif
3047
3048void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
3049{
3050        struct kmem_cache *s;
3051
3052        if (unlikely(size > PAGE_SIZE / 2))
3053                return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3054                                                        get_order(size));
3055        s = get_slab(size, gfpflags);
3056
3057        if (unlikely(ZERO_OR_NULL_PTR(s)))
3058                return s;
3059
3060        return slab_alloc(s, gfpflags, -1, caller);
3061}
3062
3063void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3064                                        int node, void *caller)
3065{
3066        struct kmem_cache *s;
3067
3068        if (unlikely(size > PAGE_SIZE / 2))
3069                return (void *)__get_free_pages(gfpflags | __GFP_COMP,
3070                                                        get_order(size));
3071        s = get_slab(size, gfpflags);
3072
3073        if (unlikely(ZERO_OR_NULL_PTR(s)))
3074                return s;
3075
3076        return slab_alloc(s, gfpflags, node, caller);
3077}
3078
3079static unsigned long count_partial(struct kmem_cache_node *n)
3080{
3081        unsigned long flags;
3082        unsigned long x = 0;
3083        struct page *page;
3084
3085        spin_lock_irqsave(&n->list_lock, flags);
3086        list_for_each_entry(page, &n->partial, lru)
3087                x += page->inuse;
3088        spin_unlock_irqrestore(&n->list_lock, flags);
3089        return x;
3090}
3091
3092#if defined(CONFIG_SYSFS) && defined(CONFIG_SLUB_DEBUG)
3093static int validate_slab(struct kmem_cache *s, struct page *page,
3094                                                unsigned long *map)
3095{
3096        void *p;
3097        void *addr = page_address(page);
3098
3099        if (!check_slab(s, page) ||
3100                        !on_freelist(s, page, NULL))
3101                return 0;
3102
3103        /* Now we know that a valid freelist exists */
3104        bitmap_zero(map, s->objects);
3105
3106        for_each_free_object(p, s, page->freelist) {
3107                set_bit(slab_index(p, s, addr), map);
3108                if (!check_object(s, page, p, 0))
3109                        return 0;
3110        }
3111
3112        for_each_object(p, s, addr)
3113                if (!test_bit(slab_index(p, s, addr), map))
3114                        if (!check_object(s, page, p, 1))
3115                                return 0;
3116        return 1;
3117}
3118
3119static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3120                                                unsigned long *map)
3121{
3122        if (slab_trylock(page)) {
3123                validate_slab(s, page, map);
3124                slab_unlock(page);
3125        } else
3126                printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3127                        s->name, page);
3128
3129        if (s->flags & DEBUG_DEFAULT_FLAGS) {
3130                if (!SlabDebug(page))
3131                        printk(KERN_ERR "SLUB %s: SlabDebug not set "
3132                                "on slab 0x%p\n", s->name, page);
3133        } else {
3134                if (SlabDebug(page))
3135                        printk(KERN_ERR "SLUB %s: SlabDebug set on "
3136                                "slab 0x%p\n", s->name, page);
3137        }
3138}
3139
3140static int validate_slab_node(struct kmem_cache *s,
3141                struct kmem_cache_node *n, unsigned long *map)
3142{
3143        unsigned long count = 0;
3144        struct page *page;
3145        unsigned long flags;
3146
3147        spin_lock_irqsave(&n->list_lock, flags);
3148
3149        list_for_each_entry(page, &n->partial, lru) {
3150                validate_slab_slab(s, page, map);
3151                count++;
3152        }
3153        if (count != n->nr_partial)
3154                printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3155                        "counter=%ld\n", s->name, count, n->nr_partial);
3156
3157        if (!(s->flags & SLAB_STORE_USER))
3158                goto out;
3159
3160        list_for_each_entry(page, &n->full, lru) {
3161                validate_slab_slab(s, page, map);
3162                count++;
3163        }
3164        if (count != atomic_long_read(&n->nr_slabs))
3165                printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3166                        "counter=%ld\n", s->name, count,
3167                        atomic_long_read(&n->nr_slabs));
3168
3169out:
3170        spin_unlock_irqrestore(&n->list_lock, flags);
3171        return count;
3172}
3173
3174static long validate_slab_cache(struct kmem_cache *s)
3175{
3176        int node;
3177        unsigned long count = 0;
3178        unsigned long *map = kmalloc(BITS_TO_LONGS(s->objects) *
3179                                sizeof(unsigned long), GFP_KERNEL);
3180
3181        if (!map)
3182                return -ENOMEM;
3183
3184        flush_all(s);
3185        for_each_node_state(node, N_NORMAL_MEMORY) {
3186                struct kmem_cache_node *n = get_node(s, node);
3187
3188                count += validate_slab_node(s, n, map);
3189        }
3190        kfree(map);
3191        return count;
3192}
3193
3194#ifdef SLUB_RESILIENCY_TEST
3195static void resiliency_test(void)
3196{
3197        u8 *p;
3198
3199        printk(KERN_ERR "SLUB resiliency testing\n");
3200        printk(KERN_ERR "-----------------------\n");
3201        printk(KERN_ERR "A. Corruption after allocation\n");
3202
3203        p = kzalloc(16, GFP_KERNEL);
3204        p[16] = 0x12;
3205        printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3206                        " 0x12->0x%p\n\n", p + 16);
3207
3208        validate_slab_cache(kmalloc_caches + 4);
3209
3210        /* Hmmm... The next two are dangerous */
3211        p = kzalloc(32, GFP_KERNEL);
3212        p[32 + sizeof(void *)] = 0x34;
3213        printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3214                        " 0x34 -> -0x%p\n", p);
3215        printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3216
3217        validate_slab_cache(kmalloc_caches + 5);
3218        p = kzalloc(64, GFP_KERNEL);
3219        p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3220        *p = 0x56;
3221        printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3222                                                                        p);
3223        printk(KERN_ERR "If allocated object is overwritten then not detectable\n\n");
3224        validate_slab_cache(kmalloc_caches + 6);
3225
3226        printk(KERN_ERR "\nB. Corruption after free\n");
3227        p = kzalloc(128, GFP_KERNEL);
3228        kfree(p);
3229        *p = 0x78;
3230        printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3231        validate_slab_cache(kmalloc_caches + 7);
3232
3233        p = kzalloc(256, GFP_KERNEL);
3234        kfree(p);
3235        p[50] = 0x9a;
3236        printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
3237        validate_slab_cache(kmalloc_caches + 8);
3238
3239        p = kzalloc(512, GFP_KERNEL);
3240        kfree(p);
3241        p[512] = 0xab;
3242        printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3243        validate_slab_cache(kmalloc_caches + 9);
3244}
3245#else
3246static void resiliency_test(void) {};
3247#endif
3248
3249/*
3250 * Generate lists of code addresses where slabcache objects are allocated
3251 * and freed.
3252 */
3253
3254struct location {
3255        unsigned long count;
3256        void *addr;
3257        long long sum_time;
3258        long min_time;
3259        long max_time;
3260        long min_pid;
3261        long max_pid;
3262        cpumask_t cpus;
3263        nodemask_t nodes;
3264};
3265
3266struct loc_track {
3267        unsigned long max;
3268        unsigned long count;
3269        struct location *loc;
3270};
3271
3272static void free_loc_track(struct loc_track *t)
3273{
3274        if (t->max)
3275                free_pages((unsigned long)t->loc,
3276                        get_order(sizeof(struct location) * t->max));
3277}
3278
3279static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3280{
3281        struct location *l;
3282        int order;
3283
3284        order = get_order(sizeof(struct location) * max);
3285
3286        l = (void *)__get_free_pages(flags, order);
3287        if (!l)
3288                return 0;
3289
3290        if (t->count) {
3291                memcpy(l, t->loc, sizeof(struct location) * t->count);
3292                free_loc_track(t);
3293        }
3294        t->max = max;
3295        t->loc = l;
3296        return 1;
3297}
3298
3299static int add_location(struct loc_track *t, struct kmem_cache *s,
3300                                const struct track *track)
3301{
3302        long start, end, pos;
3303        struct location *l;
3304        void *caddr;
3305        unsigned long age = jiffies - track->when;
3306
3307        start = -1;
3308        end = t->count;
3309
3310        for ( ; ; ) {
3311                pos = start + (end - start + 1) / 2;
3312
3313                /*
3314                 * There is nothing at "end". If we end up there
3315                 * we need to add something to before end.
3316                 */
3317                if (pos == end)
3318                        break;
3319
3320                caddr = t->loc[pos].addr;
3321                if (track->addr == caddr) {
3322
3323                        l = &t->loc[pos];
3324                        l->count++;
3325                        if (track->when) {
3326                                l->sum_time += age;
3327                                if (age < l->min_time)
3328                                        l->min_time = age;
3329                                if (age > l->max_time)
3330                                        l->max_time = age;
3331
3332                                if (track->pid < l->min_pid)
3333                                        l->min_pid = track->pid;
3334                                if (track->pid > l->max_pid)
3335                                        l->max_pid = track->pid;
3336
3337                                cpu_set(track->cpu, l->cpus);
3338                        }
3339                        node_set(page_to_nid(virt_to_page(track)), l->nodes);
3340                        return 1;
3341                }
3342
3343                if (track->addr < caddr)
3344                        end = pos;
3345                else
3346                        start = pos;
3347        }
3348
3349        /*
3350         * Not found. Insert new tracking element.
3351         */
3352        if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3353                return 0;
3354
3355        l = t->loc + pos;
3356        if (pos < t->count)
3357                memmove(l + 1, l,
3358                        (t->count - pos) * sizeof(struct location));
3359        t->count++;
3360        l->count = 1;
3361        l->addr = track->addr;
3362        l->sum_time = age;
3363        l->min_time = age;
3364        l->max_time = age;
3365        l->min_pid = track->pid;
3366        l->max_pid = track->pid;
3367        cpus_clear(l->cpus);
3368        cpu_set(track->cpu, l->cpus);
3369        nodes_clear(l->nodes);
3370        node_set(page_to_nid(virt_to_page(track)), l->nodes);
3371        return 1;
3372}
3373
3374static void process_slab(struct loc_track *t, struct kmem_cache *s,
3375                struct page *page, enum track_item alloc)
3376{
3377        void *addr = page_address(page);
3378        DECLARE_BITMAP(map, s->objects);
3379        void *p;
3380
3381        bitmap_zero(map, s->objects);
3382        for_each_free_object(p, s, page->freelist)
3383                set_bit(slab_index(p, s, addr), map);
3384
3385        for_each_object(p, s, addr)
3386                if (!test_bit(slab_index(p, s, addr), map))
3387                        add_location(t, s, get_track(s, p, alloc));
3388}
3389
3390static int list_locations(struct kmem_cache *s, char *buf,
3391                                        enum track_item alloc)
3392{
3393        int n = 0;
3394        unsigned long i;
3395        struct loc_track t = { 0, 0, NULL };
3396        int node;
3397
3398        if (!alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3399                        GFP_TEMPORARY))
3400                return sprintf(buf, "Out of memory\n");
3401
3402        /* Push back cpu slabs */
3403        flush_all(s);
3404
3405        for_each_node_state(node, N_NORMAL_MEMORY) {
3406                struct kmem_cache_node *n = get_node(s, node);
3407                unsigned long flags;
3408                struct page *page;
3409
3410                if (!atomic_long_read(&n->nr_slabs))
3411                        continue;
3412
3413                spin_lock_irqsave(&n->list_lock, flags);
3414                list_for_each_entry(page, &n->partial, lru)
3415                        process_slab(&t, s, page, alloc);
3416                list_for_each_entry(page, &n->full, lru)
3417                        process_slab(&t, s, page, alloc);
3418                spin_unlock_irqrestore(&n->list_lock, flags);
3419        }
3420
3421        for (i = 0; i < t.count; i++) {
3422                struct location *l = &t.loc[i];
3423
3424                if (n > PAGE_SIZE - 100)
3425                        break;
3426                n += sprintf(buf + n, "%7ld ", l->count);
3427
3428                if (l->addr)
3429                        n += sprint_symbol(buf + n, (unsigned long)l->addr);
3430                else
3431                        n += sprintf(buf + n, "<not-available>");
3432
3433                if (l->sum_time != l->min_time) {
3434                        unsigned long remainder;
3435
3436                        n += sprintf(buf + n, " age=%ld/%ld/%ld",
3437                        l->min_time,
3438                        div_long_long_rem(l->sum_time, l->count, &remainder),
3439                        l->max_time);
3440                } else
3441                        n += sprintf(buf + n, " age=%ld",
3442                                l->min_time);
3443
3444                if (l->min_pid != l->max_pid)
3445                        n += sprintf(buf + n, " pid=%ld-%ld",
3446                                l->min_pid, l->max_pid);
3447                else
3448                        n += sprintf(buf + n, " pid=%ld",
3449                                l->min_pid);
3450
3451                if (num_online_cpus() > 1 && !cpus_empty(l->cpus) &&
3452                                n < PAGE_SIZE - 60) {
3453                        n += sprintf(buf + n, " cpus=");
3454                        n += cpulist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3455                                        l->cpus);
3456                }
3457
3458                if (num_online_nodes() > 1 && !nodes_empty(l->nodes) &&
3459                                n < PAGE_SIZE - 60) {
3460                        n += sprintf(buf + n, " nodes=");
3461                        n += nodelist_scnprintf(buf + n, PAGE_SIZE - n - 50,
3462                                        l->nodes);
3463                }
3464
3465                n += sprintf(buf + n, "\n");
3466        }
3467
3468        free_loc_track(&t);
3469        if (!t.count)
3470                n += sprintf(buf, "No data\n");
3471        return n;
3472}
3473
3474enum slab_stat_type {
3475        SL_FULL,
3476        SL_PARTIAL,
3477        SL_CPU,
3478        SL_OBJECTS
3479};
3480
3481#define SO_FULL         (1 << SL_FULL)
3482#define SO_PARTIAL      (1 << SL_PARTIAL)
3483#define SO_CPU          (1 << SL_CPU)
3484#define SO_OBJECTS      (1 << SL_OBJECTS)
3485
3486static unsigned long slab_objects(struct kmem_cache *s,
3487                        char *buf, unsigned long flags)
3488{
3489        unsigned long total = 0;
3490        int cpu;
3491        int node;
3492        int x;
3493        unsigned long *nodes;
3494        unsigned long *per_cpu;
3495
3496        nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3497        per_cpu = nodes + nr_node_ids;
3498
3499        for_each_possible_cpu(cpu) {
3500                struct page *page;
3501                int node;
3502                struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3503
3504                if (!c)
3505                        continue;
3506
3507                page = c->page;
3508                node = c->node;
3509                if (node < 0)
3510                        continue;
3511                if (page) {
3512                        if (flags & SO_CPU) {
3513                                int x = 0;
3514
3515                                if (flags & SO_OBJECTS)
3516                                        x = page->inuse;
3517                                else
3518                                        x = 1;
3519                                total += x;
3520                                nodes[node] += x;
3521                        }
3522                        per_cpu[node]++;
3523                }
3524        }
3525
3526        for_each_node_state(node, N_NORMAL_MEMORY) {
3527                struct kmem_cache_node *n = get_node(s, node);
3528
3529                if (flags & SO_PARTIAL) {
3530                        if (flags & SO_OBJECTS)
3531                                x = count_partial(n);
3532                        else
3533                                x = n->nr_partial;
3534                        total += x;
3535                        nodes[node] += x;
3536                }
3537
3538                if (flags & SO_FULL) {
3539                        int full_slabs = atomic_long_read(&n->nr_slabs)
3540                                        - per_cpu[node]
3541                                        - n->nr_partial;
3542
3543                        if (flags & SO_OBJECTS)
3544                                x = full_slabs * s->objects;
3545                        else
3546                                x = full_slabs;
3547                        total += x;
3548                        nodes[node] += x;
3549                }
3550        }
3551
3552        x = sprintf(buf, "%lu", total);
3553#ifdef CONFIG_NUMA
3554        for_each_node_state(node, N_NORMAL_MEMORY)
3555                if (nodes[node])
3556                        x += sprintf(buf + x, " N%d=%lu",
3557                                        node, nodes[node]);
3558#endif
3559        kfree(nodes);
3560        return x + sprintf(buf + x, "\n");
3561}
3562
3563static int any_slab_objects(struct kmem_cache *s)
3564{
3565        int node;
3566        int cpu;
3567
3568        for_each_possible_cpu(cpu) {
3569                struct kmem_cache_cpu *c = get_cpu_slab(s, cpu);
3570
3571                if (c && c->page)
3572                        return 1;
3573        }
3574
3575        for_each_online_node(node) {
3576                struct kmem_cache_node *n = get_node(s, node);
3577
3578                if (!n)
3579                        continue;
3580
3581                if (n->nr_partial || atomic_long_read(&n->nr_slabs))
3582                        return 1;
3583        }
3584        return 0;
3585}
3586
3587#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3588#define to_slab(n) container_of(n, struct kmem_cache, kobj);
3589
3590struct slab_attribute {
3591        struct attribute attr;
3592        ssize_t (*show)(struct kmem_cache *s, char *buf);
3593        ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3594};
3595
3596#define SLAB_ATTR_RO(_name) \
3597        static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3598
3599#define SLAB_ATTR(_name) \
3600        static struct slab_attribute _name##_attr =  \
3601        __ATTR(_name, 0644, _name##_show, _name##_store)
3602
3603static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3604{
3605        return sprintf(buf, "%d\n", s->size);
3606}
3607SLAB_ATTR_RO(slab_size);
3608
3609static ssize_t align_show(struct kmem_cache *s, char *buf)
3610{
3611        return sprintf(buf, "%d\n", s->align);
3612}
3613SLAB_ATTR_RO(align);
3614
3615static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3616{
3617        return sprintf(buf, "%d\n", s->objsize);
3618}
3619SLAB_ATTR_RO(object_size);
3620
3621static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3622{
3623        return sprintf(buf, "%d\n", s->objects);
3624}
3625SLAB_ATTR_RO(objs_per_slab);
3626
3627static ssize_t order_show(struct kmem_cache *s, char *buf)
3628{
3629        return sprintf(buf, "%d\n", s->order);
3630}
3631SLAB_ATTR_RO(order);
3632
3633static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3634{
3635        if (s->ctor) {
3636                int n = sprint_symbol(buf, (unsigned long)s->ctor);
3637
3638                return n + sprintf(buf + n, "\n");
3639        }
3640        return 0;
3641}
3642SLAB_ATTR_RO(ctor);
3643
3644static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3645{
3646        return sprintf(buf, "%d\n", s->refcount - 1);
3647}
3648SLAB_ATTR_RO(aliases);
3649
3650static ssize_t slabs_show(struct kmem_cache *s, char *buf)
3651{
3652        return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU);
3653}
3654SLAB_ATTR_RO(slabs);
3655
3656static ssize_t partial_show(struct kmem_cache *s, char *buf)
3657{
3658        return slab_objects(s, buf, SO_PARTIAL);
3659}
3660SLAB_ATTR_RO(partial);
3661
3662static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3663{
3664        return slab_objects(s, buf, SO_CPU);
3665}
3666SLAB_ATTR_RO(cpu_slabs);
3667
3668static ssize_t objects_show(struct kmem_cache *s, char *buf)
3669{
3670        return slab_objects(s, buf, SO_FULL|SO_PARTIAL|SO_CPU|SO_OBJECTS);
3671}
3672SLAB_ATTR_RO(objects);
3673
3674static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
3675{
3676        return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
3677}
3678
3679static ssize_t sanity_checks_store(struct kmem_cache *s,
3680                                const char *buf, size_t length)
3681{
3682        s->flags &= ~SLAB_DEBUG_FREE;
3683        if (buf[0] == '1')
3684                s->flags |= SLAB_DEBUG_FREE;
3685        return length;
3686}
3687SLAB_ATTR(sanity_checks);
3688
3689static ssize_t trace_show(struct kmem_cache *s, char *buf)
3690{
3691        return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
3692}
3693
3694static ssize_t trace_store(struct kmem_cache *s, const char *buf,
3695                                                        size_t length)
3696{
3697        s->flags &= ~SLAB_TRACE;
3698        if (buf[0] == '1')
3699                s->flags |= SLAB_TRACE;
3700        return length;
3701}
3702SLAB_ATTR(trace);
3703
3704static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
3705{
3706        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
3707}
3708
3709static ssize_t reclaim_account_store(struct kmem_cache *s,
3710                                const char *buf, size_t length)
3711{
3712        s->flags &= ~SLAB_RECLAIM_ACCOUNT;
3713        if (buf[0] == '1')
3714                s->flags |= SLAB_RECLAIM_ACCOUNT;
3715        return length;
3716}
3717SLAB_ATTR(reclaim_account);
3718
3719static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
3720{
3721        return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
3722}
3723SLAB_ATTR_RO(hwcache_align);
3724
3725#ifdef CONFIG_ZONE_DMA
3726static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
3727{
3728        return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
3729}
3730SLAB_ATTR_RO(cache_dma);
3731#endif
3732
3733static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
3734{
3735        return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
3736}
3737SLAB_ATTR_RO(destroy_by_rcu);
3738
3739static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
3740{
3741        return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
3742}
3743
3744static ssize_t red_zone_store(struct kmem_cache *s,
3745                                const char *buf, size_t length)
3746{
3747        if (any_slab_objects(s))
3748                return -EBUSY;
3749
3750        s->flags &= ~SLAB_RED_ZONE;
3751        if (buf[0] == '1')
3752                s->flags |= SLAB_RED_ZONE;
3753        calculate_sizes(s);
3754        return length;
3755}
3756SLAB_ATTR(red_zone);
3757
3758static ssize_t poison_show(struct kmem_cache *s, char *buf)
3759{
3760        return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
3761}
3762
3763static ssize_t poison_store(struct kmem_cache *s,
3764                                const char *buf, size_t length)
3765{
3766        if (any_slab_objects(s))
3767                return -EBUSY;
3768
3769        s->flags &= ~SLAB_POISON;
3770        if (buf[0] == '1')
3771                s->flags |= SLAB_POISON;
3772        calculate_sizes(s);
3773        return length;
3774}
3775SLAB_ATTR(poison);
3776
3777static ssize_t store_user_show(struct kmem_cache *s, char *buf)
3778{
3779        return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
3780}
3781
3782static ssize_t store_user_store(struct kmem_cache *s,
3783                                const char *buf, size_t length)
3784{
3785        if (any_slab_objects(s))
3786                return -EBUSY;
3787
3788        s->flags &= ~SLAB_STORE_USER;
3789        if (buf[0] == '1')
3790                s->flags |= SLAB_STORE_USER;
3791        calculate_sizes(s);
3792        return length;
3793}
3794SLAB_ATTR(store_user);
3795
3796static ssize_t validate_show(struct kmem_cache *s, char *buf)
3797{
3798        return 0;
3799}
3800
3801static ssize_t validate_store(struct kmem_cache *s,
3802                        const char *buf, size_t length)
3803{
3804        int ret = -EINVAL;
3805
3806        if (buf[0] == '1') {
3807                ret = validate_slab_cache(s);
3808                if (ret >= 0)
3809                        ret = length;
3810        }
3811        return ret;
3812}
3813SLAB_ATTR(validate);
3814
3815static ssize_t shrink_show(struct kmem_cache *s, char *buf)
3816{
3817        return 0;
3818}
3819
3820static ssize_t shrink_store(struct kmem_cache *s,
3821                        const char *buf, size_t length)
3822{
3823        if (buf[0] == '1') {
3824                int rc = kmem_cache_shrink(s);
3825
3826                if (rc)
3827                        return rc;
3828        } else
3829                return -EINVAL;
3830        return length;
3831}
3832SLAB_ATTR(shrink);
3833
3834static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
3835{
3836        if (!(s->flags & SLAB_STORE_USER))
3837                return -ENOSYS;
3838        return list_locations(s, buf, TRACK_ALLOC);
3839}
3840SLAB_ATTR_RO(alloc_calls);
3841
3842static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
3843{
3844        if (!(s->flags & SLAB_STORE_USER))
3845                return -ENOSYS;
3846        return list_locations(s, buf, TRACK_FREE);
3847}
3848SLAB_ATTR_RO(free_calls);
3849
3850#ifdef CONFIG_NUMA
3851static ssize_t defrag_ratio_show(struct kmem_cache *s, char *buf)
3852{
3853        return sprintf(buf, "%d\n", s->defrag_ratio / 10);
3854}
3855
3856static ssize_t defrag_ratio_store(struct kmem_cache *s,
3857                                const char *buf, size_t length)
3858{
3859        int n = simple_strtoul(buf, NULL, 10);
3860
3861        if (n < 100)
3862                s->defrag_ratio = n * 10;
3863        return length;
3864}
3865SLAB_ATTR(defrag_ratio);
3866#endif
3867
3868static struct attribute * slab_attrs[] = {
3869        &slab_size_attr.attr,
3870        &object_size_attr.attr,
3871        &objs_per_slab_attr.attr,
3872        &order_attr.attr,
3873        &objects_attr.attr,
3874        &slabs_attr.attr,
3875        &partial_attr.attr,
3876        &cpu_slabs_attr.attr,
3877        &ctor_attr.attr,
3878        &aliases_attr.attr,
3879        &align_attr.attr,
3880        &sanity_checks_attr.attr,
3881        &trace_attr.attr,
3882        &hwcache_align_attr.attr,
3883        &reclaim_account_attr.attr,
3884        &destroy_by_rcu_attr.attr,
3885        &red_zone_attr.attr,
3886        &poison_attr.attr,
3887        &store_user_attr.attr,
3888        &validate_attr.attr,
3889        &shrink_attr.attr,
3890        &alloc_calls_attr.attr,
3891        &free_calls_attr.attr,
3892#ifdef CONFIG_ZONE_DMA
3893        &cache_dma_attr.attr,
3894#endif
3895#ifdef CONFIG_NUMA
3896        &defrag_ratio_attr.attr,
3897#endif
3898        NULL
3899};
3900
3901static struct attribute_group slab_attr_group = {
3902        .attrs = slab_attrs,
3903};
3904
3905static ssize_t slab_attr_show(struct kobject *kobj,
3906                                struct attribute *attr,
3907                                char *buf)
3908{
3909        struct slab_attribute *attribute;
3910        struct kmem_cache *s;
3911        int err;
3912
3913        attribute = to_slab_attr(attr);
3914        s = to_slab(kobj);
3915
3916        if (!attribute->show)
3917                return -EIO;
3918
3919        err = attribute->show(s, buf);
3920
3921        return err;
3922}
3923
3924static ssize_t slab_attr_store(struct kobject *kobj,
3925                                struct attribute *attr,
3926                                const char *buf, size_t len)
3927{
3928        struct slab_attribute *attribute;
3929        struct kmem_cache *s;
3930        int err;
3931
3932        attribute = to_slab_attr(attr);
3933        s = to_slab(kobj);
3934
3935        if (!attribute->store)
3936                return -EIO;
3937
3938        err = attribute->store(s, buf, len);
3939
3940        return err;
3941}
3942
3943static struct sysfs_ops slab_sysfs_ops = {
3944        .show = slab_attr_show,
3945        .store = slab_attr_store,
3946};
3947
3948static struct kobj_type slab_ktype = {
3949        .sysfs_ops = &slab_sysfs_ops,
3950};
3951
3952static int uevent_filter(struct kset *kset, struct kobject *kobj)
3953{
3954        struct kobj_type *ktype = get_ktype(kobj);
3955
3956        if (ktype == &slab_ktype)
3957                return 1;
3958        return 0;
3959}
3960
3961static struct kset_uevent_ops slab_uevent_ops = {
3962        .filter = uevent_filter,
3963};
3964
3965static decl_subsys(slab, &slab_ktype, &slab_uevent_ops);
3966
3967#define ID_STR_LENGTH 64
3968
3969/* Create a unique string id for a slab cache:
3970 * format
3971 * :[flags-]size:[memory address of kmemcache]
3972 */
3973static char *create_unique_id(struct kmem_cache *s)
3974{
3975        char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
3976        char *p = name;
3977
3978        BUG_ON(!name);
3979
3980        *p++ = ':';
3981        /*
3982         * First flags affecting slabcache operations. We will only
3983         * get here for aliasable slabs so we do not need to support
3984         * too many flags. The flags here must cover all flags that
3985         * are matched during merging to guarantee that the id is
3986         * unique.
3987         */
3988        if (s->flags & SLAB_CACHE_DMA)
3989                *p++ = 'd';
3990        if (s->flags & SLAB_RECLAIM_ACCOUNT)
3991                *p++ = 'a';
3992        if (s->flags & SLAB_DEBUG_FREE)
3993                *p++ = 'F';
3994        if (p != name + 1)
3995                *p++ = '-';
3996        p += sprintf(p, "%07d", s->size);
3997        BUG_ON(p > name + ID_STR_LENGTH - 1);
3998        return name;
3999}
4000
4001static int sysfs_slab_add(struct kmem_cache *s)
4002{
4003        int err;
4004        const char *name;
4005        int unmergeable;
4006
4007        if (slab_state < SYSFS)
4008                /* Defer until later */
4009                return 0;
4010
4011        unmergeable = slab_unmergeable(s);
4012        if (unmergeable) {
4013                /*
4014                 * Slabcache can never be merged so we can use the name proper.
4015                 * This is typically the case for debug situations. In that
4016                 * case we can catch duplicate names easily.
4017                 */
4018                sysfs_remove_link(&slab_subsys.kobj, s->name);
4019                name = s->name;
4020        } else {
4021                /*
4022                 * Create a unique name for the slab as a target
4023                 * for the symlinks.
4024                 */
4025                name = create_unique_id(s);
4026        }
4027
4028        kobj_set_kset_s(s, slab_subsys);
4029        kobject_set_name(&s->kobj, name);
4030        kobject_init(&s->kobj);
4031        err = kobject_add(&s->kobj);
4032        if (err)
4033                return err;
4034
4035        err = sysfs_create_group(&s->kobj, &slab_attr_group);
4036        if (err)
4037                return err;
4038        kobject_uevent(&s->kobj, KOBJ_ADD);
4039        if (!unmergeable) {
4040                /* Setup first alias */
4041                sysfs_slab_alias(s, s->name);
4042                kfree(name);
4043        }
4044        return 0;
4045}
4046
4047static void sysfs_slab_remove(struct kmem_cache *s)
4048{
4049        kobject_uevent(&s->kobj, KOBJ_REMOVE);
4050        kobject_del(&s->kobj);
4051}
4052
4053/*
4054 * Need to buffer aliases during bootup until sysfs becomes
4055 * available lest we loose that information.
4056 */
4057struct saved_alias {
4058        struct kmem_cache *s;
4059        const char *name;
4060        struct saved_alias *next;
4061};
4062
4063static struct saved_alias *alias_list;
4064
4065static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4066{
4067        struct saved_alias *al;
4068
4069        if (slab_state == SYSFS) {
4070                /*
4071                 * If we have a leftover link then remove it.
4072                 */
4073                sysfs_remove_link(&slab_subsys.kobj, name);
4074                return sysfs_create_link(&slab_subsys.kobj,
4075                                                &s->kobj, name);
4076        }
4077
4078        al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4079        if (!al)
4080                return -ENOMEM;
4081
4082        al->s = s;
4083        al->name = name;
4084        al->next = alias_list;
4085        alias_list = al;
4086        return 0;
4087}
4088
4089static int __init slab_sysfs_init(void)
4090{
4091        struct kmem_cache *s;
4092        int err;
4093
4094        err = subsystem_register(&slab_subsys);
4095        if (err) {
4096                printk(KERN_ERR "Cannot register slab subsystem.\n");
4097                return -ENOSYS;
4098        }
4099
4100        slab_state = SYSFS;
4101
4102        list_for_each_entry(s, &slab_caches, list) {
4103                err = sysfs_slab_add(s);
4104                if (err)
4105                        printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4106                                                " to sysfs\n", s->name);
4107        }
4108
4109        while (alias_list) {
4110                struct saved_alias *al = alias_list;
4111
4112                alias_list = alias_list->next;
4113                err = sysfs_slab_alias(al->s, al->name);
4114                if (err)
4115                        printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4116                                        " %s to sysfs\n", s->name);
4117                kfree(al);
4118        }
4119
4120        resiliency_test();
4121        return 0;
4122}
4123
4124__initcall(slab_sysfs_init);
4125#endif
4126
4127/*
4128 * The /proc/slabinfo ABI
4129 */
4130#ifdef CONFIG_SLABINFO
4131
4132ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4133                       size_t count, loff_t *ppos)
4134{
4135        return -EINVAL;
4136}
4137
4138
4139static void print_slabinfo_header(struct seq_file *m)
4140{
4141        seq_puts(m, "slabinfo - version: 2.1\n");
4142        seq_puts(m, "# name            <active_objs> <num_objs> <objsize> "
4143                 "<objperslab> <pagesperslab>");
4144        seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4145        seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4146        seq_putc(m, '\n');
4147}
4148
4149static void *s_start(struct seq_file *m, loff_t *pos)
4150{
4151        loff_t n = *pos;
4152
4153        down_read(&slub_lock);
4154        if (!n)
4155                print_slabinfo_header(m);
4156
4157        return seq_list_start(&slab_caches, *pos);
4158}
4159
4160static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4161{
4162        return seq_list_next(p, &slab_caches, pos);
4163}
4164
4165static void s_stop(struct seq_file *m, void *p)
4166{
4167        up_read(&slub_lock);
4168}
4169
4170static int s_show(struct seq_file *m, void *p)
4171{
4172        unsigned long nr_partials = 0;
4173        unsigned long nr_slabs = 0;
4174        unsigned long nr_inuse = 0;
4175        unsigned long nr_objs;
4176        struct kmem_cache *s;
4177        int node;
4178
4179        s = list_entry(p, struct kmem_cache, list);
4180
4181        for_each_online_node(node) {
4182                struct kmem_cache_node *n = get_node(s, node);
4183
4184                if (!n)
4185                        continue;
4186
4187                nr_partials += n->nr_partial;
4188                nr_slabs += atomic_long_read(&n->nr_slabs);
4189                nr_inuse += count_partial(n);
4190        }
4191
4192        nr_objs = nr_slabs * s->objects;
4193        nr_inuse += (nr_slabs - nr_partials) * s->objects;
4194
4195        seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4196                   nr_objs, s->size, s->objects, (1 << s->order));
4197        seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4198        seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4199                   0UL);
4200        seq_putc(m, '\n');
4201        return 0;
4202}
4203
4204const struct seq_operations slabinfo_op = {
4205        .start = s_start,
4206        .next = s_next,
4207        .stop = s_stop,
4208        .show = s_show,
4209};
4210
4211#endif /* CONFIG_SLABINFO */
4212