linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/rcupdate.h>
  67#include <linux/netdevice.h>
  68#include <linux/proc_fs.h>
  69#include <linux/seq_file.h>
  70#include <linux/mutex.h>
  71#include <linux/wanrouter.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/init.h>
  76#include <linux/poll.h>
  77#include <linux/cache.h>
  78#include <linux/module.h>
  79#include <linux/highmem.h>
  80#include <linux/mount.h>
  81#include <linux/security.h>
  82#include <linux/syscalls.h>
  83#include <linux/compat.h>
  84#include <linux/kmod.h>
  85#include <linux/audit.h>
  86#include <linux/wireless.h>
  87#include <linux/nsproxy.h>
  88
  89#include <asm/uaccess.h>
  90#include <asm/unistd.h>
  91
  92#include <net/compat.h>
  93
  94#include <net/sock.h>
  95#include <linux/netfilter.h>
  96
  97static int sock_no_open(struct inode *irrelevant, struct file *dontcare);
  98static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
  99                         unsigned long nr_segs, loff_t pos);
 100static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 101                          unsigned long nr_segs, loff_t pos);
 102static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 103
 104static int sock_close(struct inode *inode, struct file *file);
 105static unsigned int sock_poll(struct file *file,
 106                              struct poll_table_struct *wait);
 107static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 108#ifdef CONFIG_COMPAT
 109static long compat_sock_ioctl(struct file *file,
 110                              unsigned int cmd, unsigned long arg);
 111#endif
 112static int sock_fasync(int fd, struct file *filp, int on);
 113static ssize_t sock_sendpage(struct file *file, struct page *page,
 114                             int offset, size_t size, loff_t *ppos, int more);
 115
 116/*
 117 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 118 *      in the operation structures but are done directly via the socketcall() multiplexor.
 119 */
 120
 121static const struct file_operations socket_file_ops = {
 122        .owner =        THIS_MODULE,
 123        .llseek =       no_llseek,
 124        .aio_read =     sock_aio_read,
 125        .aio_write =    sock_aio_write,
 126        .poll =         sock_poll,
 127        .unlocked_ioctl = sock_ioctl,
 128#ifdef CONFIG_COMPAT
 129        .compat_ioctl = compat_sock_ioctl,
 130#endif
 131        .mmap =         sock_mmap,
 132        .open =         sock_no_open,   /* special open code to disallow open via /proc */
 133        .release =      sock_close,
 134        .fasync =       sock_fasync,
 135        .sendpage =     sock_sendpage,
 136        .splice_write = generic_splice_sendpage,
 137};
 138
 139/*
 140 *      The protocol list. Each protocol is registered in here.
 141 */
 142
 143static DEFINE_SPINLOCK(net_family_lock);
 144static const struct net_proto_family *net_families[NPROTO] __read_mostly;
 145
 146/*
 147 *      Statistics counters of the socket lists
 148 */
 149
 150static DEFINE_PER_CPU(int, sockets_in_use) = 0;
 151
 152/*
 153 * Support routines.
 154 * Move socket addresses back and forth across the kernel/user
 155 * divide and look after the messy bits.
 156 */
 157
 158#define MAX_SOCK_ADDR   128             /* 108 for Unix domain -
 159                                           16 for IP, 16 for IPX,
 160                                           24 for IPv6,
 161                                           about 80 for AX.25
 162                                           must be at least one bigger than
 163                                           the AF_UNIX size (see net/unix/af_unix.c
 164                                           :unix_mkname()).
 165                                         */
 166
 167/**
 168 *      move_addr_to_kernel     -       copy a socket address into kernel space
 169 *      @uaddr: Address in user space
 170 *      @kaddr: Address in kernel space
 171 *      @ulen: Length in user space
 172 *
 173 *      The address is copied into kernel space. If the provided address is
 174 *      too long an error code of -EINVAL is returned. If the copy gives
 175 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 176 */
 177
 178int move_addr_to_kernel(void __user *uaddr, int ulen, void *kaddr)
 179{
 180        if (ulen < 0 || ulen > MAX_SOCK_ADDR)
 181                return -EINVAL;
 182        if (ulen == 0)
 183                return 0;
 184        if (copy_from_user(kaddr, uaddr, ulen))
 185                return -EFAULT;
 186        return audit_sockaddr(ulen, kaddr);
 187}
 188
 189/**
 190 *      move_addr_to_user       -       copy an address to user space
 191 *      @kaddr: kernel space address
 192 *      @klen: length of address in kernel
 193 *      @uaddr: user space address
 194 *      @ulen: pointer to user length field
 195 *
 196 *      The value pointed to by ulen on entry is the buffer length available.
 197 *      This is overwritten with the buffer space used. -EINVAL is returned
 198 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 199 *      is returned if either the buffer or the length field are not
 200 *      accessible.
 201 *      After copying the data up to the limit the user specifies, the true
 202 *      length of the data is written over the length limit the user
 203 *      specified. Zero is returned for a success.
 204 */
 205
 206int move_addr_to_user(void *kaddr, int klen, void __user *uaddr,
 207                      int __user *ulen)
 208{
 209        int err;
 210        int len;
 211
 212        err = get_user(len, ulen);
 213        if (err)
 214                return err;
 215        if (len > klen)
 216                len = klen;
 217        if (len < 0 || len > MAX_SOCK_ADDR)
 218                return -EINVAL;
 219        if (len) {
 220                if (audit_sockaddr(klen, kaddr))
 221                        return -ENOMEM;
 222                if (copy_to_user(uaddr, kaddr, len))
 223                        return -EFAULT;
 224        }
 225        /*
 226         *      "fromlen shall refer to the value before truncation.."
 227         *                      1003.1g
 228         */
 229        return __put_user(klen, ulen);
 230}
 231
 232#define SOCKFS_MAGIC 0x534F434B
 233
 234static struct kmem_cache *sock_inode_cachep __read_mostly;
 235
 236static struct inode *sock_alloc_inode(struct super_block *sb)
 237{
 238        struct socket_alloc *ei;
 239
 240        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 241        if (!ei)
 242                return NULL;
 243        init_waitqueue_head(&ei->socket.wait);
 244
 245        ei->socket.fasync_list = NULL;
 246        ei->socket.state = SS_UNCONNECTED;
 247        ei->socket.flags = 0;
 248        ei->socket.ops = NULL;
 249        ei->socket.sk = NULL;
 250        ei->socket.file = NULL;
 251
 252        return &ei->vfs_inode;
 253}
 254
 255static void sock_destroy_inode(struct inode *inode)
 256{
 257        kmem_cache_free(sock_inode_cachep,
 258                        container_of(inode, struct socket_alloc, vfs_inode));
 259}
 260
 261static void init_once(struct kmem_cache *cachep, void *foo)
 262{
 263        struct socket_alloc *ei = (struct socket_alloc *)foo;
 264
 265        inode_init_once(&ei->vfs_inode);
 266}
 267
 268static int init_inodecache(void)
 269{
 270        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 271                                              sizeof(struct socket_alloc),
 272                                              0,
 273                                              (SLAB_HWCACHE_ALIGN |
 274                                               SLAB_RECLAIM_ACCOUNT |
 275                                               SLAB_MEM_SPREAD),
 276                                              init_once);
 277        if (sock_inode_cachep == NULL)
 278                return -ENOMEM;
 279        return 0;
 280}
 281
 282static struct super_operations sockfs_ops = {
 283        .alloc_inode =  sock_alloc_inode,
 284        .destroy_inode =sock_destroy_inode,
 285        .statfs =       simple_statfs,
 286};
 287
 288static int sockfs_get_sb(struct file_system_type *fs_type,
 289                         int flags, const char *dev_name, void *data,
 290                         struct vfsmount *mnt)
 291{
 292        return get_sb_pseudo(fs_type, "socket:", &sockfs_ops, SOCKFS_MAGIC,
 293                             mnt);
 294}
 295
 296static struct vfsmount *sock_mnt __read_mostly;
 297
 298static struct file_system_type sock_fs_type = {
 299        .name =         "sockfs",
 300        .get_sb =       sockfs_get_sb,
 301        .kill_sb =      kill_anon_super,
 302};
 303
 304static int sockfs_delete_dentry(struct dentry *dentry)
 305{
 306        /*
 307         * At creation time, we pretended this dentry was hashed
 308         * (by clearing DCACHE_UNHASHED bit in d_flags)
 309         * At delete time, we restore the truth : not hashed.
 310         * (so that dput() can proceed correctly)
 311         */
 312        dentry->d_flags |= DCACHE_UNHASHED;
 313        return 0;
 314}
 315
 316/*
 317 * sockfs_dname() is called from d_path().
 318 */
 319static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 320{
 321        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 322                                dentry->d_inode->i_ino);
 323}
 324
 325static struct dentry_operations sockfs_dentry_operations = {
 326        .d_delete = sockfs_delete_dentry,
 327        .d_dname  = sockfs_dname,
 328};
 329
 330/*
 331 *      Obtains the first available file descriptor and sets it up for use.
 332 *
 333 *      These functions create file structures and maps them to fd space
 334 *      of the current process. On success it returns file descriptor
 335 *      and file struct implicitly stored in sock->file.
 336 *      Note that another thread may close file descriptor before we return
 337 *      from this function. We use the fact that now we do not refer
 338 *      to socket after mapping. If one day we will need it, this
 339 *      function will increment ref. count on file by 1.
 340 *
 341 *      In any case returned fd MAY BE not valid!
 342 *      This race condition is unavoidable
 343 *      with shared fd spaces, we cannot solve it inside kernel,
 344 *      but we take care of internal coherence yet.
 345 */
 346
 347static int sock_alloc_fd(struct file **filep)
 348{
 349        int fd;
 350
 351        fd = get_unused_fd();
 352        if (likely(fd >= 0)) {
 353                struct file *file = get_empty_filp();
 354
 355                *filep = file;
 356                if (unlikely(!file)) {
 357                        put_unused_fd(fd);
 358                        return -ENFILE;
 359                }
 360        } else
 361                *filep = NULL;
 362        return fd;
 363}
 364
 365static int sock_attach_fd(struct socket *sock, struct file *file)
 366{
 367        struct dentry *dentry;
 368        struct qstr name = { .name = "" };
 369
 370        dentry = d_alloc(sock_mnt->mnt_sb->s_root, &name);
 371        if (unlikely(!dentry))
 372                return -ENOMEM;
 373
 374        dentry->d_op = &sockfs_dentry_operations;
 375        /*
 376         * We dont want to push this dentry into global dentry hash table.
 377         * We pretend dentry is already hashed, by unsetting DCACHE_UNHASHED
 378         * This permits a working /proc/$pid/fd/XXX on sockets
 379         */
 380        dentry->d_flags &= ~DCACHE_UNHASHED;
 381        d_instantiate(dentry, SOCK_INODE(sock));
 382
 383        sock->file = file;
 384        init_file(file, sock_mnt, dentry, FMODE_READ | FMODE_WRITE,
 385                  &socket_file_ops);
 386        SOCK_INODE(sock)->i_fop = &socket_file_ops;
 387        file->f_flags = O_RDWR;
 388        file->f_pos = 0;
 389        file->private_data = sock;
 390
 391        return 0;
 392}
 393
 394int sock_map_fd(struct socket *sock)
 395{
 396        struct file *newfile;
 397        int fd = sock_alloc_fd(&newfile);
 398
 399        if (likely(fd >= 0)) {
 400                int err = sock_attach_fd(sock, newfile);
 401
 402                if (unlikely(err < 0)) {
 403                        put_filp(newfile);
 404                        put_unused_fd(fd);
 405                        return err;
 406                }
 407                fd_install(fd, newfile);
 408        }
 409        return fd;
 410}
 411
 412static struct socket *sock_from_file(struct file *file, int *err)
 413{
 414        if (file->f_op == &socket_file_ops)
 415                return file->private_data;      /* set in sock_map_fd */
 416
 417        *err = -ENOTSOCK;
 418        return NULL;
 419}
 420
 421/**
 422 *      sockfd_lookup   -       Go from a file number to its socket slot
 423 *      @fd: file handle
 424 *      @err: pointer to an error code return
 425 *
 426 *      The file handle passed in is locked and the socket it is bound
 427 *      too is returned. If an error occurs the err pointer is overwritten
 428 *      with a negative errno code and NULL is returned. The function checks
 429 *      for both invalid handles and passing a handle which is not a socket.
 430 *
 431 *      On a success the socket object pointer is returned.
 432 */
 433
 434struct socket *sockfd_lookup(int fd, int *err)
 435{
 436        struct file *file;
 437        struct socket *sock;
 438
 439        file = fget(fd);
 440        if (!file) {
 441                *err = -EBADF;
 442                return NULL;
 443        }
 444
 445        sock = sock_from_file(file, err);
 446        if (!sock)
 447                fput(file);
 448        return sock;
 449}
 450
 451static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 452{
 453        struct file *file;
 454        struct socket *sock;
 455
 456        *err = -EBADF;
 457        file = fget_light(fd, fput_needed);
 458        if (file) {
 459                sock = sock_from_file(file, err);
 460                if (sock)
 461                        return sock;
 462                fput_light(file, *fput_needed);
 463        }
 464        return NULL;
 465}
 466
 467/**
 468 *      sock_alloc      -       allocate a socket
 469 *
 470 *      Allocate a new inode and socket object. The two are bound together
 471 *      and initialised. The socket is then returned. If we are out of inodes
 472 *      NULL is returned.
 473 */
 474
 475static struct socket *sock_alloc(void)
 476{
 477        struct inode *inode;
 478        struct socket *sock;
 479
 480        inode = new_inode(sock_mnt->mnt_sb);
 481        if (!inode)
 482                return NULL;
 483
 484        sock = SOCKET_I(inode);
 485
 486        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 487        inode->i_uid = current->fsuid;
 488        inode->i_gid = current->fsgid;
 489
 490        get_cpu_var(sockets_in_use)++;
 491        put_cpu_var(sockets_in_use);
 492        return sock;
 493}
 494
 495/*
 496 *      In theory you can't get an open on this inode, but /proc provides
 497 *      a back door. Remember to keep it shut otherwise you'll let the
 498 *      creepy crawlies in.
 499 */
 500
 501static int sock_no_open(struct inode *irrelevant, struct file *dontcare)
 502{
 503        return -ENXIO;
 504}
 505
 506const struct file_operations bad_sock_fops = {
 507        .owner = THIS_MODULE,
 508        .open = sock_no_open,
 509};
 510
 511/**
 512 *      sock_release    -       close a socket
 513 *      @sock: socket to close
 514 *
 515 *      The socket is released from the protocol stack if it has a release
 516 *      callback, and the inode is then released if the socket is bound to
 517 *      an inode not a file.
 518 */
 519
 520void sock_release(struct socket *sock)
 521{
 522        if (sock->ops) {
 523                struct module *owner = sock->ops->owner;
 524
 525                sock->ops->release(sock);
 526                sock->ops = NULL;
 527                module_put(owner);
 528        }
 529
 530        if (sock->fasync_list)
 531                printk(KERN_ERR "sock_release: fasync list not empty!\n");
 532
 533        get_cpu_var(sockets_in_use)--;
 534        put_cpu_var(sockets_in_use);
 535        if (!sock->file) {
 536                iput(SOCK_INODE(sock));
 537                return;
 538        }
 539        sock->file = NULL;
 540}
 541
 542static inline int __sock_sendmsg(struct kiocb *iocb, struct socket *sock,
 543                                 struct msghdr *msg, size_t size)
 544{
 545        struct sock_iocb *si = kiocb_to_siocb(iocb);
 546        int err;
 547
 548        si->sock = sock;
 549        si->scm = NULL;
 550        si->msg = msg;
 551        si->size = size;
 552
 553        err = security_socket_sendmsg(sock, msg, size);
 554        if (err)
 555                return err;
 556
 557        return sock->ops->sendmsg(iocb, sock, msg, size);
 558}
 559
 560int sock_sendmsg(struct socket *sock, struct msghdr *msg, size_t size)
 561{
 562        struct kiocb iocb;
 563        struct sock_iocb siocb;
 564        int ret;
 565
 566        init_sync_kiocb(&iocb, NULL);
 567        iocb.private = &siocb;
 568        ret = __sock_sendmsg(&iocb, sock, msg, size);
 569        if (-EIOCBQUEUED == ret)
 570                ret = wait_on_sync_kiocb(&iocb);
 571        return ret;
 572}
 573
 574int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 575                   struct kvec *vec, size_t num, size_t size)
 576{
 577        mm_segment_t oldfs = get_fs();
 578        int result;
 579
 580        set_fs(KERNEL_DS);
 581        /*
 582         * the following is safe, since for compiler definitions of kvec and
 583         * iovec are identical, yielding the same in-core layout and alignment
 584         */
 585        msg->msg_iov = (struct iovec *)vec;
 586        msg->msg_iovlen = num;
 587        result = sock_sendmsg(sock, msg, size);
 588        set_fs(oldfs);
 589        return result;
 590}
 591
 592/*
 593 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 594 */
 595void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 596        struct sk_buff *skb)
 597{
 598        ktime_t kt = skb->tstamp;
 599
 600        if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 601                struct timeval tv;
 602                /* Race occurred between timestamp enabling and packet
 603                   receiving.  Fill in the current time for now. */
 604                if (kt.tv64 == 0)
 605                        kt = ktime_get_real();
 606                skb->tstamp = kt;
 607                tv = ktime_to_timeval(kt);
 608                put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP, sizeof(tv), &tv);
 609        } else {
 610                struct timespec ts;
 611                /* Race occurred between timestamp enabling and packet
 612                   receiving.  Fill in the current time for now. */
 613                if (kt.tv64 == 0)
 614                        kt = ktime_get_real();
 615                skb->tstamp = kt;
 616                ts = ktime_to_timespec(kt);
 617                put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS, sizeof(ts), &ts);
 618        }
 619}
 620
 621EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 622
 623static inline int __sock_recvmsg(struct kiocb *iocb, struct socket *sock,
 624                                 struct msghdr *msg, size_t size, int flags)
 625{
 626        int err;
 627        struct sock_iocb *si = kiocb_to_siocb(iocb);
 628
 629        si->sock = sock;
 630        si->scm = NULL;
 631        si->msg = msg;
 632        si->size = size;
 633        si->flags = flags;
 634
 635        err = security_socket_recvmsg(sock, msg, size, flags);
 636        if (err)
 637                return err;
 638
 639        return sock->ops->recvmsg(iocb, sock, msg, size, flags);
 640}
 641
 642int sock_recvmsg(struct socket *sock, struct msghdr *msg,
 643                 size_t size, int flags)
 644{
 645        struct kiocb iocb;
 646        struct sock_iocb siocb;
 647        int ret;
 648
 649        init_sync_kiocb(&iocb, NULL);
 650        iocb.private = &siocb;
 651        ret = __sock_recvmsg(&iocb, sock, msg, size, flags);
 652        if (-EIOCBQUEUED == ret)
 653                ret = wait_on_sync_kiocb(&iocb);
 654        return ret;
 655}
 656
 657int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 658                   struct kvec *vec, size_t num, size_t size, int flags)
 659{
 660        mm_segment_t oldfs = get_fs();
 661        int result;
 662
 663        set_fs(KERNEL_DS);
 664        /*
 665         * the following is safe, since for compiler definitions of kvec and
 666         * iovec are identical, yielding the same in-core layout and alignment
 667         */
 668        msg->msg_iov = (struct iovec *)vec, msg->msg_iovlen = num;
 669        result = sock_recvmsg(sock, msg, size, flags);
 670        set_fs(oldfs);
 671        return result;
 672}
 673
 674static void sock_aio_dtor(struct kiocb *iocb)
 675{
 676        kfree(iocb->private);
 677}
 678
 679static ssize_t sock_sendpage(struct file *file, struct page *page,
 680                             int offset, size_t size, loff_t *ppos, int more)
 681{
 682        struct socket *sock;
 683        int flags;
 684
 685        sock = file->private_data;
 686
 687        flags = !(file->f_flags & O_NONBLOCK) ? 0 : MSG_DONTWAIT;
 688        if (more)
 689                flags |= MSG_MORE;
 690
 691        return sock->ops->sendpage(sock, page, offset, size, flags);
 692}
 693
 694static struct sock_iocb *alloc_sock_iocb(struct kiocb *iocb,
 695                                         struct sock_iocb *siocb)
 696{
 697        if (!is_sync_kiocb(iocb)) {
 698                siocb = kmalloc(sizeof(*siocb), GFP_KERNEL);
 699                if (!siocb)
 700                        return NULL;
 701                iocb->ki_dtor = sock_aio_dtor;
 702        }
 703
 704        siocb->kiocb = iocb;
 705        iocb->private = siocb;
 706        return siocb;
 707}
 708
 709static ssize_t do_sock_read(struct msghdr *msg, struct kiocb *iocb,
 710                struct file *file, const struct iovec *iov,
 711                unsigned long nr_segs)
 712{
 713        struct socket *sock = file->private_data;
 714        size_t size = 0;
 715        int i;
 716
 717        for (i = 0; i < nr_segs; i++)
 718                size += iov[i].iov_len;
 719
 720        msg->msg_name = NULL;
 721        msg->msg_namelen = 0;
 722        msg->msg_control = NULL;
 723        msg->msg_controllen = 0;
 724        msg->msg_iov = (struct iovec *)iov;
 725        msg->msg_iovlen = nr_segs;
 726        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 727
 728        return __sock_recvmsg(iocb, sock, msg, size, msg->msg_flags);
 729}
 730
 731static ssize_t sock_aio_read(struct kiocb *iocb, const struct iovec *iov,
 732                                unsigned long nr_segs, loff_t pos)
 733{
 734        struct sock_iocb siocb, *x;
 735
 736        if (pos != 0)
 737                return -ESPIPE;
 738
 739        if (iocb->ki_left == 0) /* Match SYS5 behaviour */
 740                return 0;
 741
 742
 743        x = alloc_sock_iocb(iocb, &siocb);
 744        if (!x)
 745                return -ENOMEM;
 746        return do_sock_read(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 747}
 748
 749static ssize_t do_sock_write(struct msghdr *msg, struct kiocb *iocb,
 750                        struct file *file, const struct iovec *iov,
 751                        unsigned long nr_segs)
 752{
 753        struct socket *sock = file->private_data;
 754        size_t size = 0;
 755        int i;
 756
 757        for (i = 0; i < nr_segs; i++)
 758                size += iov[i].iov_len;
 759
 760        msg->msg_name = NULL;
 761        msg->msg_namelen = 0;
 762        msg->msg_control = NULL;
 763        msg->msg_controllen = 0;
 764        msg->msg_iov = (struct iovec *)iov;
 765        msg->msg_iovlen = nr_segs;
 766        msg->msg_flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 767        if (sock->type == SOCK_SEQPACKET)
 768                msg->msg_flags |= MSG_EOR;
 769
 770        return __sock_sendmsg(iocb, sock, msg, size);
 771}
 772
 773static ssize_t sock_aio_write(struct kiocb *iocb, const struct iovec *iov,
 774                          unsigned long nr_segs, loff_t pos)
 775{
 776        struct sock_iocb siocb, *x;
 777
 778        if (pos != 0)
 779                return -ESPIPE;
 780
 781        x = alloc_sock_iocb(iocb, &siocb);
 782        if (!x)
 783                return -ENOMEM;
 784
 785        return do_sock_write(&x->async_msg, iocb, iocb->ki_filp, iov, nr_segs);
 786}
 787
 788/*
 789 * Atomic setting of ioctl hooks to avoid race
 790 * with module unload.
 791 */
 792
 793static DEFINE_MUTEX(br_ioctl_mutex);
 794static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg) = NULL;
 795
 796void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 797{
 798        mutex_lock(&br_ioctl_mutex);
 799        br_ioctl_hook = hook;
 800        mutex_unlock(&br_ioctl_mutex);
 801}
 802
 803EXPORT_SYMBOL(brioctl_set);
 804
 805static DEFINE_MUTEX(vlan_ioctl_mutex);
 806static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 807
 808void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 809{
 810        mutex_lock(&vlan_ioctl_mutex);
 811        vlan_ioctl_hook = hook;
 812        mutex_unlock(&vlan_ioctl_mutex);
 813}
 814
 815EXPORT_SYMBOL(vlan_ioctl_set);
 816
 817static DEFINE_MUTEX(dlci_ioctl_mutex);
 818static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 819
 820void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 821{
 822        mutex_lock(&dlci_ioctl_mutex);
 823        dlci_ioctl_hook = hook;
 824        mutex_unlock(&dlci_ioctl_mutex);
 825}
 826
 827EXPORT_SYMBOL(dlci_ioctl_set);
 828
 829/*
 830 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 831 *      what to do with it - that's up to the protocol still.
 832 */
 833
 834static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 835{
 836        struct socket *sock;
 837        struct sock *sk;
 838        void __user *argp = (void __user *)arg;
 839        int pid, err;
 840        struct net *net;
 841
 842        sock = file->private_data;
 843        sk = sock->sk;
 844        net = sk->sk_net;
 845        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 846                err = dev_ioctl(net, cmd, argp);
 847        } else
 848#ifdef CONFIG_WIRELESS_EXT
 849        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 850                err = dev_ioctl(net, cmd, argp);
 851        } else
 852#endif                          /* CONFIG_WIRELESS_EXT */
 853                switch (cmd) {
 854                case FIOSETOWN:
 855                case SIOCSPGRP:
 856                        err = -EFAULT;
 857                        if (get_user(pid, (int __user *)argp))
 858                                break;
 859                        err = f_setown(sock->file, pid, 1);
 860                        break;
 861                case FIOGETOWN:
 862                case SIOCGPGRP:
 863                        err = put_user(f_getown(sock->file),
 864                                       (int __user *)argp);
 865                        break;
 866                case SIOCGIFBR:
 867                case SIOCSIFBR:
 868                case SIOCBRADDBR:
 869                case SIOCBRDELBR:
 870                        err = -ENOPKG;
 871                        if (!br_ioctl_hook)
 872                                request_module("bridge");
 873
 874                        mutex_lock(&br_ioctl_mutex);
 875                        if (br_ioctl_hook)
 876                                err = br_ioctl_hook(net, cmd, argp);
 877                        mutex_unlock(&br_ioctl_mutex);
 878                        break;
 879                case SIOCGIFVLAN:
 880                case SIOCSIFVLAN:
 881                        err = -ENOPKG;
 882                        if (!vlan_ioctl_hook)
 883                                request_module("8021q");
 884
 885                        mutex_lock(&vlan_ioctl_mutex);
 886                        if (vlan_ioctl_hook)
 887                                err = vlan_ioctl_hook(net, argp);
 888                        mutex_unlock(&vlan_ioctl_mutex);
 889                        break;
 890                case SIOCADDDLCI:
 891                case SIOCDELDLCI:
 892                        err = -ENOPKG;
 893                        if (!dlci_ioctl_hook)
 894                                request_module("dlci");
 895
 896                        if (dlci_ioctl_hook) {
 897                                mutex_lock(&dlci_ioctl_mutex);
 898                                err = dlci_ioctl_hook(cmd, argp);
 899                                mutex_unlock(&dlci_ioctl_mutex);
 900                        }
 901                        break;
 902                default:
 903                        err = sock->ops->ioctl(sock, cmd, arg);
 904
 905                        /*
 906                         * If this ioctl is unknown try to hand it down
 907                         * to the NIC driver.
 908                         */
 909                        if (err == -ENOIOCTLCMD)
 910                                err = dev_ioctl(net, cmd, argp);
 911                        break;
 912                }
 913        return err;
 914}
 915
 916int sock_create_lite(int family, int type, int protocol, struct socket **res)
 917{
 918        int err;
 919        struct socket *sock = NULL;
 920
 921        err = security_socket_create(family, type, protocol, 1);
 922        if (err)
 923                goto out;
 924
 925        sock = sock_alloc();
 926        if (!sock) {
 927                err = -ENOMEM;
 928                goto out;
 929        }
 930
 931        sock->type = type;
 932        err = security_socket_post_create(sock, family, type, protocol, 1);
 933        if (err)
 934                goto out_release;
 935
 936out:
 937        *res = sock;
 938        return err;
 939out_release:
 940        sock_release(sock);
 941        sock = NULL;
 942        goto out;
 943}
 944
 945/* No kernel lock held - perfect */
 946static unsigned int sock_poll(struct file *file, poll_table *wait)
 947{
 948        struct socket *sock;
 949
 950        /*
 951         *      We can't return errors to poll, so it's either yes or no.
 952         */
 953        sock = file->private_data;
 954        return sock->ops->poll(file, sock, wait);
 955}
 956
 957static int sock_mmap(struct file *file, struct vm_area_struct *vma)
 958{
 959        struct socket *sock = file->private_data;
 960
 961        return sock->ops->mmap(file, sock, vma);
 962}
 963
 964static int sock_close(struct inode *inode, struct file *filp)
 965{
 966        /*
 967         *      It was possible the inode is NULL we were
 968         *      closing an unfinished socket.
 969         */
 970
 971        if (!inode) {
 972                printk(KERN_DEBUG "sock_close: NULL inode\n");
 973                return 0;
 974        }
 975        sock_fasync(-1, filp, 0);
 976        sock_release(SOCKET_I(inode));
 977        return 0;
 978}
 979
 980/*
 981 *      Update the socket async list
 982 *
 983 *      Fasync_list locking strategy.
 984 *
 985 *      1. fasync_list is modified only under process context socket lock
 986 *         i.e. under semaphore.
 987 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
 988 *         or under socket lock.
 989 *      3. fasync_list can be used from softirq context, so that
 990 *         modification under socket lock have to be enhanced with
 991 *         write_lock_bh(&sk->sk_callback_lock).
 992 *                                                      --ANK (990710)
 993 */
 994
 995static int sock_fasync(int fd, struct file *filp, int on)
 996{
 997        struct fasync_struct *fa, *fna = NULL, **prev;
 998        struct socket *sock;
 999        struct sock *sk;
1000
1001        if (on) {
1002                fna = kmalloc(sizeof(struct fasync_struct), GFP_KERNEL);
1003                if (fna == NULL)
1004                        return -ENOMEM;
1005        }
1006
1007        sock = filp->private_data;
1008
1009        sk = sock->sk;
1010        if (sk == NULL) {
1011                kfree(fna);
1012                return -EINVAL;
1013        }
1014
1015        lock_sock(sk);
1016
1017        prev = &(sock->fasync_list);
1018
1019        for (fa = *prev; fa != NULL; prev = &fa->fa_next, fa = *prev)
1020                if (fa->fa_file == filp)
1021                        break;
1022
1023        if (on) {
1024                if (fa != NULL) {
1025                        write_lock_bh(&sk->sk_callback_lock);
1026                        fa->fa_fd = fd;
1027                        write_unlock_bh(&sk->sk_callback_lock);
1028
1029                        kfree(fna);
1030                        goto out;
1031                }
1032                fna->fa_file = filp;
1033                fna->fa_fd = fd;
1034                fna->magic = FASYNC_MAGIC;
1035                fna->fa_next = sock->fasync_list;
1036                write_lock_bh(&sk->sk_callback_lock);
1037                sock->fasync_list = fna;
1038                write_unlock_bh(&sk->sk_callback_lock);
1039        } else {
1040                if (fa != NULL) {
1041                        write_lock_bh(&sk->sk_callback_lock);
1042                        *prev = fa->fa_next;
1043                        write_unlock_bh(&sk->sk_callback_lock);
1044                        kfree(fa);
1045                }
1046        }
1047
1048out:
1049        release_sock(sock->sk);
1050        return 0;
1051}
1052
1053/* This function may be called only under socket lock or callback_lock */
1054
1055int sock_wake_async(struct socket *sock, int how, int band)
1056{
1057        if (!sock || !sock->fasync_list)
1058                return -1;
1059        switch (how) {
1060        case 1:
1061
1062                if (test_bit(SOCK_ASYNC_WAITDATA, &sock->flags))
1063                        break;
1064                goto call_kill;
1065        case 2:
1066                if (!test_and_clear_bit(SOCK_ASYNC_NOSPACE, &sock->flags))
1067                        break;
1068                /* fall through */
1069        case 0:
1070call_kill:
1071                __kill_fasync(sock->fasync_list, SIGIO, band);
1072                break;
1073        case 3:
1074                __kill_fasync(sock->fasync_list, SIGURG, band);
1075        }
1076        return 0;
1077}
1078
1079static int __sock_create(struct net *net, int family, int type, int protocol,
1080                         struct socket **res, int kern)
1081{
1082        int err;
1083        struct socket *sock;
1084        const struct net_proto_family *pf;
1085
1086        /*
1087         *      Check protocol is in range
1088         */
1089        if (family < 0 || family >= NPROTO)
1090                return -EAFNOSUPPORT;
1091        if (type < 0 || type >= SOCK_MAX)
1092                return -EINVAL;
1093
1094        /* Compatibility.
1095
1096           This uglymoron is moved from INET layer to here to avoid
1097           deadlock in module load.
1098         */
1099        if (family == PF_INET && type == SOCK_PACKET) {
1100                static int warned;
1101                if (!warned) {
1102                        warned = 1;
1103                        printk(KERN_INFO "%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1104                               current->comm);
1105                }
1106                family = PF_PACKET;
1107        }
1108
1109        err = security_socket_create(family, type, protocol, kern);
1110        if (err)
1111                return err;
1112
1113        /*
1114         *      Allocate the socket and allow the family to set things up. if
1115         *      the protocol is 0, the family is instructed to select an appropriate
1116         *      default.
1117         */
1118        sock = sock_alloc();
1119        if (!sock) {
1120                if (net_ratelimit())
1121                        printk(KERN_WARNING "socket: no more sockets\n");
1122                return -ENFILE; /* Not exactly a match, but its the
1123                                   closest posix thing */
1124        }
1125
1126        sock->type = type;
1127
1128#if defined(CONFIG_KMOD)
1129        /* Attempt to load a protocol module if the find failed.
1130         *
1131         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1132         * requested real, full-featured networking support upon configuration.
1133         * Otherwise module support will break!
1134         */
1135        if (net_families[family] == NULL)
1136                request_module("net-pf-%d", family);
1137#endif
1138
1139        rcu_read_lock();
1140        pf = rcu_dereference(net_families[family]);
1141        err = -EAFNOSUPPORT;
1142        if (!pf)
1143                goto out_release;
1144
1145        /*
1146         * We will call the ->create function, that possibly is in a loadable
1147         * module, so we have to bump that loadable module refcnt first.
1148         */
1149        if (!try_module_get(pf->owner))
1150                goto out_release;
1151
1152        /* Now protected by module ref count */
1153        rcu_read_unlock();
1154
1155        err = pf->create(net, sock, protocol);
1156        if (err < 0)
1157                goto out_module_put;
1158
1159        /*
1160         * Now to bump the refcnt of the [loadable] module that owns this
1161         * socket at sock_release time we decrement its refcnt.
1162         */
1163        if (!try_module_get(sock->ops->owner))
1164                goto out_module_busy;
1165
1166        /*
1167         * Now that we're done with the ->create function, the [loadable]
1168         * module can have its refcnt decremented
1169         */
1170        module_put(pf->owner);
1171        err = security_socket_post_create(sock, family, type, protocol, kern);
1172        if (err)
1173                goto out_sock_release;
1174        *res = sock;
1175
1176        return 0;
1177
1178out_module_busy:
1179        err = -EAFNOSUPPORT;
1180out_module_put:
1181        sock->ops = NULL;
1182        module_put(pf->owner);
1183out_sock_release:
1184        sock_release(sock);
1185        return err;
1186
1187out_release:
1188        rcu_read_unlock();
1189        goto out_sock_release;
1190}
1191
1192int sock_create(int family, int type, int protocol, struct socket **res)
1193{
1194        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1195}
1196
1197int sock_create_kern(int family, int type, int protocol, struct socket **res)
1198{
1199        return __sock_create(&init_net, family, type, protocol, res, 1);
1200}
1201
1202asmlinkage long sys_socket(int family, int type, int protocol)
1203{
1204        int retval;
1205        struct socket *sock;
1206
1207        retval = sock_create(family, type, protocol, &sock);
1208        if (retval < 0)
1209                goto out;
1210
1211        retval = sock_map_fd(sock);
1212        if (retval < 0)
1213                goto out_release;
1214
1215out:
1216        /* It may be already another descriptor 8) Not kernel problem. */
1217        return retval;
1218
1219out_release:
1220        sock_release(sock);
1221        return retval;
1222}
1223
1224/*
1225 *      Create a pair of connected sockets.
1226 */
1227
1228asmlinkage long sys_socketpair(int family, int type, int protocol,
1229                               int __user *usockvec)
1230{
1231        struct socket *sock1, *sock2;
1232        int fd1, fd2, err;
1233        struct file *newfile1, *newfile2;
1234
1235        /*
1236         * Obtain the first socket and check if the underlying protocol
1237         * supports the socketpair call.
1238         */
1239
1240        err = sock_create(family, type, protocol, &sock1);
1241        if (err < 0)
1242                goto out;
1243
1244        err = sock_create(family, type, protocol, &sock2);
1245        if (err < 0)
1246                goto out_release_1;
1247
1248        err = sock1->ops->socketpair(sock1, sock2);
1249        if (err < 0)
1250                goto out_release_both;
1251
1252        fd1 = sock_alloc_fd(&newfile1);
1253        if (unlikely(fd1 < 0)) {
1254                err = fd1;
1255                goto out_release_both;
1256        }
1257
1258        fd2 = sock_alloc_fd(&newfile2);
1259        if (unlikely(fd2 < 0)) {
1260                err = fd2;
1261                put_filp(newfile1);
1262                put_unused_fd(fd1);
1263                goto out_release_both;
1264        }
1265
1266        err = sock_attach_fd(sock1, newfile1);
1267        if (unlikely(err < 0)) {
1268                goto out_fd2;
1269        }
1270
1271        err = sock_attach_fd(sock2, newfile2);
1272        if (unlikely(err < 0)) {
1273                fput(newfile1);
1274                goto out_fd1;
1275        }
1276
1277        err = audit_fd_pair(fd1, fd2);
1278        if (err < 0) {
1279                fput(newfile1);
1280                fput(newfile2);
1281                goto out_fd;
1282        }
1283
1284        fd_install(fd1, newfile1);
1285        fd_install(fd2, newfile2);
1286        /* fd1 and fd2 may be already another descriptors.
1287         * Not kernel problem.
1288         */
1289
1290        err = put_user(fd1, &usockvec[0]);
1291        if (!err)
1292                err = put_user(fd2, &usockvec[1]);
1293        if (!err)
1294                return 0;
1295
1296        sys_close(fd2);
1297        sys_close(fd1);
1298        return err;
1299
1300out_release_both:
1301        sock_release(sock2);
1302out_release_1:
1303        sock_release(sock1);
1304out:
1305        return err;
1306
1307out_fd2:
1308        put_filp(newfile1);
1309        sock_release(sock1);
1310out_fd1:
1311        put_filp(newfile2);
1312        sock_release(sock2);
1313out_fd:
1314        put_unused_fd(fd1);
1315        put_unused_fd(fd2);
1316        goto out;
1317}
1318
1319/*
1320 *      Bind a name to a socket. Nothing much to do here since it's
1321 *      the protocol's responsibility to handle the local address.
1322 *
1323 *      We move the socket address to kernel space before we call
1324 *      the protocol layer (having also checked the address is ok).
1325 */
1326
1327asmlinkage long sys_bind(int fd, struct sockaddr __user *umyaddr, int addrlen)
1328{
1329        struct socket *sock;
1330        char address[MAX_SOCK_ADDR];
1331        int err, fput_needed;
1332
1333        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1334        if (sock) {
1335                err = move_addr_to_kernel(umyaddr, addrlen, address);
1336                if (err >= 0) {
1337                        err = security_socket_bind(sock,
1338                                                   (struct sockaddr *)address,
1339                                                   addrlen);
1340                        if (!err)
1341                                err = sock->ops->bind(sock,
1342                                                      (struct sockaddr *)
1343                                                      address, addrlen);
1344                }
1345                fput_light(sock->file, fput_needed);
1346        }
1347        return err;
1348}
1349
1350/*
1351 *      Perform a listen. Basically, we allow the protocol to do anything
1352 *      necessary for a listen, and if that works, we mark the socket as
1353 *      ready for listening.
1354 */
1355
1356int sysctl_somaxconn __read_mostly = SOMAXCONN;
1357
1358asmlinkage long sys_listen(int fd, int backlog)
1359{
1360        struct socket *sock;
1361        int err, fput_needed;
1362
1363        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1364        if (sock) {
1365                if ((unsigned)backlog > sysctl_somaxconn)
1366                        backlog = sysctl_somaxconn;
1367
1368                err = security_socket_listen(sock, backlog);
1369                if (!err)
1370                        err = sock->ops->listen(sock, backlog);
1371
1372                fput_light(sock->file, fput_needed);
1373        }
1374        return err;
1375}
1376
1377/*
1378 *      For accept, we attempt to create a new socket, set up the link
1379 *      with the client, wake up the client, then return the new
1380 *      connected fd. We collect the address of the connector in kernel
1381 *      space and move it to user at the very end. This is unclean because
1382 *      we open the socket then return an error.
1383 *
1384 *      1003.1g adds the ability to recvmsg() to query connection pending
1385 *      status to recvmsg. We need to add that support in a way thats
1386 *      clean when we restucture accept also.
1387 */
1388
1389asmlinkage long sys_accept(int fd, struct sockaddr __user *upeer_sockaddr,
1390                           int __user *upeer_addrlen)
1391{
1392        struct socket *sock, *newsock;
1393        struct file *newfile;
1394        int err, len, newfd, fput_needed;
1395        char address[MAX_SOCK_ADDR];
1396
1397        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1398        if (!sock)
1399                goto out;
1400
1401        err = -ENFILE;
1402        if (!(newsock = sock_alloc()))
1403                goto out_put;
1404
1405        newsock->type = sock->type;
1406        newsock->ops = sock->ops;
1407
1408        /*
1409         * We don't need try_module_get here, as the listening socket (sock)
1410         * has the protocol module (sock->ops->owner) held.
1411         */
1412        __module_get(newsock->ops->owner);
1413
1414        newfd = sock_alloc_fd(&newfile);
1415        if (unlikely(newfd < 0)) {
1416                err = newfd;
1417                sock_release(newsock);
1418                goto out_put;
1419        }
1420
1421        err = sock_attach_fd(newsock, newfile);
1422        if (err < 0)
1423                goto out_fd_simple;
1424
1425        err = security_socket_accept(sock, newsock);
1426        if (err)
1427                goto out_fd;
1428
1429        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1430        if (err < 0)
1431                goto out_fd;
1432
1433        if (upeer_sockaddr) {
1434                if (newsock->ops->getname(newsock, (struct sockaddr *)address,
1435                                          &len, 2) < 0) {
1436                        err = -ECONNABORTED;
1437                        goto out_fd;
1438                }
1439                err = move_addr_to_user(address, len, upeer_sockaddr,
1440                                        upeer_addrlen);
1441                if (err < 0)
1442                        goto out_fd;
1443        }
1444
1445        /* File flags are not inherited via accept() unlike another OSes. */
1446
1447        fd_install(newfd, newfile);
1448        err = newfd;
1449
1450        security_socket_post_accept(sock, newsock);
1451
1452out_put:
1453        fput_light(sock->file, fput_needed);
1454out:
1455        return err;
1456out_fd_simple:
1457        sock_release(newsock);
1458        put_filp(newfile);
1459        put_unused_fd(newfd);
1460        goto out_put;
1461out_fd:
1462        fput(newfile);
1463        put_unused_fd(newfd);
1464        goto out_put;
1465}
1466
1467/*
1468 *      Attempt to connect to a socket with the server address.  The address
1469 *      is in user space so we verify it is OK and move it to kernel space.
1470 *
1471 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1472 *      break bindings
1473 *
1474 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1475 *      other SEQPACKET protocols that take time to connect() as it doesn't
1476 *      include the -EINPROGRESS status for such sockets.
1477 */
1478
1479asmlinkage long sys_connect(int fd, struct sockaddr __user *uservaddr,
1480                            int addrlen)
1481{
1482        struct socket *sock;
1483        char address[MAX_SOCK_ADDR];
1484        int err, fput_needed;
1485
1486        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1487        if (!sock)
1488                goto out;
1489        err = move_addr_to_kernel(uservaddr, addrlen, address);
1490        if (err < 0)
1491                goto out_put;
1492
1493        err =
1494            security_socket_connect(sock, (struct sockaddr *)address, addrlen);
1495        if (err)
1496                goto out_put;
1497
1498        err = sock->ops->connect(sock, (struct sockaddr *)address, addrlen,
1499                                 sock->file->f_flags);
1500out_put:
1501        fput_light(sock->file, fput_needed);
1502out:
1503        return err;
1504}
1505
1506/*
1507 *      Get the local address ('name') of a socket object. Move the obtained
1508 *      name to user space.
1509 */
1510
1511asmlinkage long sys_getsockname(int fd, struct sockaddr __user *usockaddr,
1512                                int __user *usockaddr_len)
1513{
1514        struct socket *sock;
1515        char address[MAX_SOCK_ADDR];
1516        int len, err, fput_needed;
1517
1518        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1519        if (!sock)
1520                goto out;
1521
1522        err = security_socket_getsockname(sock);
1523        if (err)
1524                goto out_put;
1525
1526        err = sock->ops->getname(sock, (struct sockaddr *)address, &len, 0);
1527        if (err)
1528                goto out_put;
1529        err = move_addr_to_user(address, len, usockaddr, usockaddr_len);
1530
1531out_put:
1532        fput_light(sock->file, fput_needed);
1533out:
1534        return err;
1535}
1536
1537/*
1538 *      Get the remote address ('name') of a socket object. Move the obtained
1539 *      name to user space.
1540 */
1541
1542asmlinkage long sys_getpeername(int fd, struct sockaddr __user *usockaddr,
1543                                int __user *usockaddr_len)
1544{
1545        struct socket *sock;
1546        char address[MAX_SOCK_ADDR];
1547        int len, err, fput_needed;
1548
1549        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1550        if (sock != NULL) {
1551                err = security_socket_getpeername(sock);
1552                if (err) {
1553                        fput_light(sock->file, fput_needed);
1554                        return err;
1555                }
1556
1557                err =
1558                    sock->ops->getname(sock, (struct sockaddr *)address, &len,
1559                                       1);
1560                if (!err)
1561                        err = move_addr_to_user(address, len, usockaddr,
1562                                                usockaddr_len);
1563                fput_light(sock->file, fput_needed);
1564        }
1565        return err;
1566}
1567
1568/*
1569 *      Send a datagram to a given address. We move the address into kernel
1570 *      space and check the user space data area is readable before invoking
1571 *      the protocol.
1572 */
1573
1574asmlinkage long sys_sendto(int fd, void __user *buff, size_t len,
1575                           unsigned flags, struct sockaddr __user *addr,
1576                           int addr_len)
1577{
1578        struct socket *sock;
1579        char address[MAX_SOCK_ADDR];
1580        int err;
1581        struct msghdr msg;
1582        struct iovec iov;
1583        int fput_needed;
1584        struct file *sock_file;
1585
1586        sock_file = fget_light(fd, &fput_needed);
1587        err = -EBADF;
1588        if (!sock_file)
1589                goto out;
1590
1591        sock = sock_from_file(sock_file, &err);
1592        if (!sock)
1593                goto out_put;
1594        iov.iov_base = buff;
1595        iov.iov_len = len;
1596        msg.msg_name = NULL;
1597        msg.msg_iov = &iov;
1598        msg.msg_iovlen = 1;
1599        msg.msg_control = NULL;
1600        msg.msg_controllen = 0;
1601        msg.msg_namelen = 0;
1602        if (addr) {
1603                err = move_addr_to_kernel(addr, addr_len, address);
1604                if (err < 0)
1605                        goto out_put;
1606                msg.msg_name = address;
1607                msg.msg_namelen = addr_len;
1608        }
1609        if (sock->file->f_flags & O_NONBLOCK)
1610                flags |= MSG_DONTWAIT;
1611        msg.msg_flags = flags;
1612        err = sock_sendmsg(sock, &msg, len);
1613
1614out_put:
1615        fput_light(sock_file, fput_needed);
1616out:
1617        return err;
1618}
1619
1620/*
1621 *      Send a datagram down a socket.
1622 */
1623
1624asmlinkage long sys_send(int fd, void __user *buff, size_t len, unsigned flags)
1625{
1626        return sys_sendto(fd, buff, len, flags, NULL, 0);
1627}
1628
1629/*
1630 *      Receive a frame from the socket and optionally record the address of the
1631 *      sender. We verify the buffers are writable and if needed move the
1632 *      sender address from kernel to user space.
1633 */
1634
1635asmlinkage long sys_recvfrom(int fd, void __user *ubuf, size_t size,
1636                             unsigned flags, struct sockaddr __user *addr,
1637                             int __user *addr_len)
1638{
1639        struct socket *sock;
1640        struct iovec iov;
1641        struct msghdr msg;
1642        char address[MAX_SOCK_ADDR];
1643        int err, err2;
1644        struct file *sock_file;
1645        int fput_needed;
1646
1647        sock_file = fget_light(fd, &fput_needed);
1648        err = -EBADF;
1649        if (!sock_file)
1650                goto out;
1651
1652        sock = sock_from_file(sock_file, &err);
1653        if (!sock)
1654                goto out_put;
1655
1656        msg.msg_control = NULL;
1657        msg.msg_controllen = 0;
1658        msg.msg_iovlen = 1;
1659        msg.msg_iov = &iov;
1660        iov.iov_len = size;
1661        iov.iov_base = ubuf;
1662        msg.msg_name = address;
1663        msg.msg_namelen = MAX_SOCK_ADDR;
1664        if (sock->file->f_flags & O_NONBLOCK)
1665                flags |= MSG_DONTWAIT;
1666        err = sock_recvmsg(sock, &msg, size, flags);
1667
1668        if (err >= 0 && addr != NULL) {
1669                err2 = move_addr_to_user(address, msg.msg_namelen, addr, addr_len);
1670                if (err2 < 0)
1671                        err = err2;
1672        }
1673out_put:
1674        fput_light(sock_file, fput_needed);
1675out:
1676        return err;
1677}
1678
1679/*
1680 *      Receive a datagram from a socket.
1681 */
1682
1683asmlinkage long sys_recv(int fd, void __user *ubuf, size_t size,
1684                         unsigned flags)
1685{
1686        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1687}
1688
1689/*
1690 *      Set a socket option. Because we don't know the option lengths we have
1691 *      to pass the user mode parameter for the protocols to sort out.
1692 */
1693
1694asmlinkage long sys_setsockopt(int fd, int level, int optname,
1695                               char __user *optval, int optlen)
1696{
1697        int err, fput_needed;
1698        struct socket *sock;
1699
1700        if (optlen < 0)
1701                return -EINVAL;
1702
1703        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1704        if (sock != NULL) {
1705                err = security_socket_setsockopt(sock, level, optname);
1706                if (err)
1707                        goto out_put;
1708
1709                if (level == SOL_SOCKET)
1710                        err =
1711                            sock_setsockopt(sock, level, optname, optval,
1712                                            optlen);
1713                else
1714                        err =
1715                            sock->ops->setsockopt(sock, level, optname, optval,
1716                                                  optlen);
1717out_put:
1718                fput_light(sock->file, fput_needed);
1719        }
1720        return err;
1721}
1722
1723/*
1724 *      Get a socket option. Because we don't know the option lengths we have
1725 *      to pass a user mode parameter for the protocols to sort out.
1726 */
1727
1728asmlinkage long sys_getsockopt(int fd, int level, int optname,
1729                               char __user *optval, int __user *optlen)
1730{
1731        int err, fput_needed;
1732        struct socket *sock;
1733
1734        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1735        if (sock != NULL) {
1736                err = security_socket_getsockopt(sock, level, optname);
1737                if (err)
1738                        goto out_put;
1739
1740                if (level == SOL_SOCKET)
1741                        err =
1742                            sock_getsockopt(sock, level, optname, optval,
1743                                            optlen);
1744                else
1745                        err =
1746                            sock->ops->getsockopt(sock, level, optname, optval,
1747                                                  optlen);
1748out_put:
1749                fput_light(sock->file, fput_needed);
1750        }
1751        return err;
1752}
1753
1754/*
1755 *      Shutdown a socket.
1756 */
1757
1758asmlinkage long sys_shutdown(int fd, int how)
1759{
1760        int err, fput_needed;
1761        struct socket *sock;
1762
1763        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1764        if (sock != NULL) {
1765                err = security_socket_shutdown(sock, how);
1766                if (!err)
1767                        err = sock->ops->shutdown(sock, how);
1768                fput_light(sock->file, fput_needed);
1769        }
1770        return err;
1771}
1772
1773/* A couple of helpful macros for getting the address of the 32/64 bit
1774 * fields which are the same type (int / unsigned) on our platforms.
1775 */
1776#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1777#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1778#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1779
1780/*
1781 *      BSD sendmsg interface
1782 */
1783
1784asmlinkage long sys_sendmsg(int fd, struct msghdr __user *msg, unsigned flags)
1785{
1786        struct compat_msghdr __user *msg_compat =
1787            (struct compat_msghdr __user *)msg;
1788        struct socket *sock;
1789        char address[MAX_SOCK_ADDR];
1790        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1791        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1792            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1793        /* 20 is size of ipv6_pktinfo */
1794        unsigned char *ctl_buf = ctl;
1795        struct msghdr msg_sys;
1796        int err, ctl_len, iov_size, total_len;
1797        int fput_needed;
1798
1799        err = -EFAULT;
1800        if (MSG_CMSG_COMPAT & flags) {
1801                if (get_compat_msghdr(&msg_sys, msg_compat))
1802                        return -EFAULT;
1803        }
1804        else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1805                return -EFAULT;
1806
1807        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1808        if (!sock)
1809                goto out;
1810
1811        /* do not move before msg_sys is valid */
1812        err = -EMSGSIZE;
1813        if (msg_sys.msg_iovlen > UIO_MAXIOV)
1814                goto out_put;
1815
1816        /* Check whether to allocate the iovec area */
1817        err = -ENOMEM;
1818        iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1819        if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1820                iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1821                if (!iov)
1822                        goto out_put;
1823        }
1824
1825        /* This will also move the address data into kernel space */
1826        if (MSG_CMSG_COMPAT & flags) {
1827                err = verify_compat_iovec(&msg_sys, iov, address, VERIFY_READ);
1828        } else
1829                err = verify_iovec(&msg_sys, iov, address, VERIFY_READ);
1830        if (err < 0)
1831                goto out_freeiov;
1832        total_len = err;
1833
1834        err = -ENOBUFS;
1835
1836        if (msg_sys.msg_controllen > INT_MAX)
1837                goto out_freeiov;
1838        ctl_len = msg_sys.msg_controllen;
1839        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1840                err =
1841                    cmsghdr_from_user_compat_to_kern(&msg_sys, sock->sk, ctl,
1842                                                     sizeof(ctl));
1843                if (err)
1844                        goto out_freeiov;
1845                ctl_buf = msg_sys.msg_control;
1846                ctl_len = msg_sys.msg_controllen;
1847        } else if (ctl_len) {
1848                if (ctl_len > sizeof(ctl)) {
1849                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1850                        if (ctl_buf == NULL)
1851                                goto out_freeiov;
1852                }
1853                err = -EFAULT;
1854                /*
1855                 * Careful! Before this, msg_sys.msg_control contains a user pointer.
1856                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1857                 * checking falls down on this.
1858                 */
1859                if (copy_from_user(ctl_buf, (void __user *)msg_sys.msg_control,
1860                                   ctl_len))
1861                        goto out_freectl;
1862                msg_sys.msg_control = ctl_buf;
1863        }
1864        msg_sys.msg_flags = flags;
1865
1866        if (sock->file->f_flags & O_NONBLOCK)
1867                msg_sys.msg_flags |= MSG_DONTWAIT;
1868        err = sock_sendmsg(sock, &msg_sys, total_len);
1869
1870out_freectl:
1871        if (ctl_buf != ctl)
1872                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1873out_freeiov:
1874        if (iov != iovstack)
1875                sock_kfree_s(sock->sk, iov, iov_size);
1876out_put:
1877        fput_light(sock->file, fput_needed);
1878out:
1879        return err;
1880}
1881
1882/*
1883 *      BSD recvmsg interface
1884 */
1885
1886asmlinkage long sys_recvmsg(int fd, struct msghdr __user *msg,
1887                            unsigned int flags)
1888{
1889        struct compat_msghdr __user *msg_compat =
1890            (struct compat_msghdr __user *)msg;
1891        struct socket *sock;
1892        struct iovec iovstack[UIO_FASTIOV];
1893        struct iovec *iov = iovstack;
1894        struct msghdr msg_sys;
1895        unsigned long cmsg_ptr;
1896        int err, iov_size, total_len, len;
1897        int fput_needed;
1898
1899        /* kernel mode address */
1900        char addr[MAX_SOCK_ADDR];
1901
1902        /* user mode address pointers */
1903        struct sockaddr __user *uaddr;
1904        int __user *uaddr_len;
1905
1906        if (MSG_CMSG_COMPAT & flags) {
1907                if (get_compat_msghdr(&msg_sys, msg_compat))
1908                        return -EFAULT;
1909        }
1910        else if (copy_from_user(&msg_sys, msg, sizeof(struct msghdr)))
1911                return -EFAULT;
1912
1913        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1914        if (!sock)
1915                goto out;
1916
1917        err = -EMSGSIZE;
1918        if (msg_sys.msg_iovlen > UIO_MAXIOV)
1919                goto out_put;
1920
1921        /* Check whether to allocate the iovec area */
1922        err = -ENOMEM;
1923        iov_size = msg_sys.msg_iovlen * sizeof(struct iovec);
1924        if (msg_sys.msg_iovlen > UIO_FASTIOV) {
1925                iov = sock_kmalloc(sock->sk, iov_size, GFP_KERNEL);
1926                if (!iov)
1927                        goto out_put;
1928        }
1929
1930        /*
1931         *      Save the user-mode address (verify_iovec will change the
1932         *      kernel msghdr to use the kernel address space)
1933         */
1934
1935        uaddr = (__force void __user *)msg_sys.msg_name;
1936        uaddr_len = COMPAT_NAMELEN(msg);
1937        if (MSG_CMSG_COMPAT & flags) {
1938                err = verify_compat_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1939        } else
1940                err = verify_iovec(&msg_sys, iov, addr, VERIFY_WRITE);
1941        if (err < 0)
1942                goto out_freeiov;
1943        total_len = err;
1944
1945        cmsg_ptr = (unsigned long)msg_sys.msg_control;
1946        msg_sys.msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
1947
1948        if (sock->file->f_flags & O_NONBLOCK)
1949                flags |= MSG_DONTWAIT;
1950        err = sock_recvmsg(sock, &msg_sys, total_len, flags);
1951        if (err < 0)
1952                goto out_freeiov;
1953        len = err;
1954
1955        if (uaddr != NULL) {
1956                err = move_addr_to_user(addr, msg_sys.msg_namelen, uaddr,
1957                                        uaddr_len);
1958                if (err < 0)
1959                        goto out_freeiov;
1960        }
1961        err = __put_user((msg_sys.msg_flags & ~MSG_CMSG_COMPAT),
1962                         COMPAT_FLAGS(msg));
1963        if (err)
1964                goto out_freeiov;
1965        if (MSG_CMSG_COMPAT & flags)
1966                err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1967                                 &msg_compat->msg_controllen);
1968        else
1969                err = __put_user((unsigned long)msg_sys.msg_control - cmsg_ptr,
1970                                 &msg->msg_controllen);
1971        if (err)
1972                goto out_freeiov;
1973        err = len;
1974
1975out_freeiov:
1976        if (iov != iovstack)
1977                sock_kfree_s(sock->sk, iov, iov_size);
1978out_put:
1979        fput_light(sock->file, fput_needed);
1980out:
1981        return err;
1982}
1983
1984#ifdef __ARCH_WANT_SYS_SOCKETCALL
1985
1986/* Argument list sizes for sys_socketcall */
1987#define AL(x) ((x) * sizeof(unsigned long))
1988static const unsigned char nargs[18]={
1989        AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
1990        AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
1991        AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)
1992};
1993
1994#undef AL
1995
1996/*
1997 *      System call vectors.
1998 *
1999 *      Argument checking cleaned up. Saved 20% in size.
2000 *  This function doesn't need to set the kernel lock because
2001 *  it is set by the callees.
2002 */
2003
2004asmlinkage long sys_socketcall(int call, unsigned long __user *args)
2005{
2006        unsigned long a[6];
2007        unsigned long a0, a1;
2008        int err;
2009
2010        if (call < 1 || call > SYS_RECVMSG)
2011                return -EINVAL;
2012
2013        /* copy_from_user should be SMP safe. */
2014        if (copy_from_user(a, args, nargs[call]))
2015                return -EFAULT;
2016
2017        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2018        if (err)
2019                return err;
2020
2021        a0 = a[0];
2022        a1 = a[1];
2023
2024        switch (call) {
2025        case SYS_SOCKET:
2026                err = sys_socket(a0, a1, a[2]);
2027                break;
2028        case SYS_BIND:
2029                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2030                break;
2031        case SYS_CONNECT:
2032                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2033                break;
2034        case SYS_LISTEN:
2035                err = sys_listen(a0, a1);
2036                break;
2037        case SYS_ACCEPT:
2038                err =
2039                    sys_accept(a0, (struct sockaddr __user *)a1,
2040                               (int __user *)a[2]);
2041                break;
2042        case SYS_GETSOCKNAME:
2043                err =
2044                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2045                                    (int __user *)a[2]);
2046                break;
2047        case SYS_GETPEERNAME:
2048                err =
2049                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2050                                    (int __user *)a[2]);
2051                break;
2052        case SYS_SOCKETPAIR:
2053                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2054                break;
2055        case SYS_SEND:
2056                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2057                break;
2058        case SYS_SENDTO:
2059                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2060                                 (struct sockaddr __user *)a[4], a[5]);
2061                break;
2062        case SYS_RECV:
2063                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2064                break;
2065        case SYS_RECVFROM:
2066                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2067                                   (struct sockaddr __user *)a[4],
2068                                   (int __user *)a[5]);
2069                break;
2070        case SYS_SHUTDOWN:
2071                err = sys_shutdown(a0, a1);
2072                break;
2073        case SYS_SETSOCKOPT:
2074                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2075                break;
2076        case SYS_GETSOCKOPT:
2077                err =
2078                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2079                                   (int __user *)a[4]);
2080                break;
2081        case SYS_SENDMSG:
2082                err = sys_sendmsg(a0, (struct msghdr __user *)a1, a[2]);
2083                break;
2084        case SYS_RECVMSG:
2085                err = sys_recvmsg(a0, (struct msghdr __user *)a1, a[2]);
2086                break;
2087        default:
2088                err = -EINVAL;
2089                break;
2090        }
2091        return err;
2092}
2093
2094#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2095
2096/**
2097 *      sock_register - add a socket protocol handler
2098 *      @ops: description of protocol
2099 *
2100 *      This function is called by a protocol handler that wants to
2101 *      advertise its address family, and have it linked into the
2102 *      socket interface. The value ops->family coresponds to the
2103 *      socket system call protocol family.
2104 */
2105int sock_register(const struct net_proto_family *ops)
2106{
2107        int err;
2108
2109        if (ops->family >= NPROTO) {
2110                printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n", ops->family,
2111                       NPROTO);
2112                return -ENOBUFS;
2113        }
2114
2115        spin_lock(&net_family_lock);
2116        if (net_families[ops->family])
2117                err = -EEXIST;
2118        else {
2119                net_families[ops->family] = ops;
2120                err = 0;
2121        }
2122        spin_unlock(&net_family_lock);
2123
2124        printk(KERN_INFO "NET: Registered protocol family %d\n", ops->family);
2125        return err;
2126}
2127
2128/**
2129 *      sock_unregister - remove a protocol handler
2130 *      @family: protocol family to remove
2131 *
2132 *      This function is called by a protocol handler that wants to
2133 *      remove its address family, and have it unlinked from the
2134 *      new socket creation.
2135 *
2136 *      If protocol handler is a module, then it can use module reference
2137 *      counts to protect against new references. If protocol handler is not
2138 *      a module then it needs to provide its own protection in
2139 *      the ops->create routine.
2140 */
2141void sock_unregister(int family)
2142{
2143        BUG_ON(family < 0 || family >= NPROTO);
2144
2145        spin_lock(&net_family_lock);
2146        net_families[family] = NULL;
2147        spin_unlock(&net_family_lock);
2148
2149        synchronize_rcu();
2150
2151        printk(KERN_INFO "NET: Unregistered protocol family %d\n", family);
2152}
2153
2154static int __init sock_init(void)
2155{
2156        /*
2157         *      Initialize sock SLAB cache.
2158         */
2159
2160        sk_init();
2161
2162        /*
2163         *      Initialize skbuff SLAB cache
2164         */
2165        skb_init();
2166
2167        /*
2168         *      Initialize the protocols module.
2169         */
2170
2171        init_inodecache();
2172        register_filesystem(&sock_fs_type);
2173        sock_mnt = kern_mount(&sock_fs_type);
2174
2175        /* The real protocol initialization is performed in later initcalls.
2176         */
2177
2178#ifdef CONFIG_NETFILTER
2179        netfilter_init();
2180#endif
2181
2182        return 0;
2183}
2184
2185core_initcall(sock_init);       /* early initcall */
2186
2187#ifdef CONFIG_PROC_FS
2188void socket_seq_show(struct seq_file *seq)
2189{
2190        int cpu;
2191        int counter = 0;
2192
2193        for_each_possible_cpu(cpu)
2194            counter += per_cpu(sockets_in_use, cpu);
2195
2196        /* It can be negative, by the way. 8) */
2197        if (counter < 0)
2198                counter = 0;
2199
2200        seq_printf(seq, "sockets: used %d\n", counter);
2201}
2202#endif                          /* CONFIG_PROC_FS */
2203
2204#ifdef CONFIG_COMPAT
2205static long compat_sock_ioctl(struct file *file, unsigned cmd,
2206                              unsigned long arg)
2207{
2208        struct socket *sock = file->private_data;
2209        int ret = -ENOIOCTLCMD;
2210
2211        if (sock->ops->compat_ioctl)
2212                ret = sock->ops->compat_ioctl(sock, cmd, arg);
2213
2214        return ret;
2215}
2216#endif
2217
2218int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
2219{
2220        return sock->ops->bind(sock, addr, addrlen);
2221}
2222
2223int kernel_listen(struct socket *sock, int backlog)
2224{
2225        return sock->ops->listen(sock, backlog);
2226}
2227
2228int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
2229{
2230        struct sock *sk = sock->sk;
2231        int err;
2232
2233        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
2234                               newsock);
2235        if (err < 0)
2236                goto done;
2237
2238        err = sock->ops->accept(sock, *newsock, flags);
2239        if (err < 0) {
2240                sock_release(*newsock);
2241                *newsock = NULL;
2242                goto done;
2243        }
2244
2245        (*newsock)->ops = sock->ops;
2246
2247done:
2248        return err;
2249}
2250
2251int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
2252                   int flags)
2253{
2254        return sock->ops->connect(sock, addr, addrlen, flags);
2255}
2256
2257int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
2258                         int *addrlen)
2259{
2260        return sock->ops->getname(sock, addr, addrlen, 0);
2261}
2262
2263int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
2264                         int *addrlen)
2265{
2266        return sock->ops->getname(sock, addr, addrlen, 1);
2267}
2268
2269int kernel_getsockopt(struct socket *sock, int level, int optname,
2270                        char *optval, int *optlen)
2271{
2272        mm_segment_t oldfs = get_fs();
2273        int err;
2274
2275        set_fs(KERNEL_DS);
2276        if (level == SOL_SOCKET)
2277                err = sock_getsockopt(sock, level, optname, optval, optlen);
2278        else
2279                err = sock->ops->getsockopt(sock, level, optname, optval,
2280                                            optlen);
2281        set_fs(oldfs);
2282        return err;
2283}
2284
2285int kernel_setsockopt(struct socket *sock, int level, int optname,
2286                        char *optval, int optlen)
2287{
2288        mm_segment_t oldfs = get_fs();
2289        int err;
2290
2291        set_fs(KERNEL_DS);
2292        if (level == SOL_SOCKET)
2293                err = sock_setsockopt(sock, level, optname, optval, optlen);
2294        else
2295                err = sock->ops->setsockopt(sock, level, optname, optval,
2296                                            optlen);
2297        set_fs(oldfs);
2298        return err;
2299}
2300
2301int kernel_sendpage(struct socket *sock, struct page *page, int offset,
2302                    size_t size, int flags)
2303{
2304        if (sock->ops->sendpage)
2305                return sock->ops->sendpage(sock, page, offset, size, flags);
2306
2307        return sock_no_sendpage(sock, page, offset, size, flags);
2308}
2309
2310int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
2311{
2312        mm_segment_t oldfs = get_fs();
2313        int err;
2314
2315        set_fs(KERNEL_DS);
2316        err = sock->ops->ioctl(sock, cmd, arg);
2317        set_fs(oldfs);
2318
2319        return err;
2320}
2321
2322int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
2323{
2324        return sock->ops->shutdown(sock, how);
2325}
2326
2327/* ABI emulation layers need these two */
2328EXPORT_SYMBOL(move_addr_to_kernel);
2329EXPORT_SYMBOL(move_addr_to_user);
2330EXPORT_SYMBOL(sock_create);
2331EXPORT_SYMBOL(sock_create_kern);
2332EXPORT_SYMBOL(sock_create_lite);
2333EXPORT_SYMBOL(sock_map_fd);
2334EXPORT_SYMBOL(sock_recvmsg);
2335EXPORT_SYMBOL(sock_register);
2336EXPORT_SYMBOL(sock_release);
2337EXPORT_SYMBOL(sock_sendmsg);
2338EXPORT_SYMBOL(sock_unregister);
2339EXPORT_SYMBOL(sock_wake_async);
2340EXPORT_SYMBOL(sockfd_lookup);
2341EXPORT_SYMBOL(kernel_sendmsg);
2342EXPORT_SYMBOL(kernel_recvmsg);
2343EXPORT_SYMBOL(kernel_bind);
2344EXPORT_SYMBOL(kernel_listen);
2345EXPORT_SYMBOL(kernel_accept);
2346EXPORT_SYMBOL(kernel_connect);
2347EXPORT_SYMBOL(kernel_getsockname);
2348EXPORT_SYMBOL(kernel_getpeername);
2349EXPORT_SYMBOL(kernel_getsockopt);
2350EXPORT_SYMBOL(kernel_setsockopt);
2351EXPORT_SYMBOL(kernel_sendpage);
2352EXPORT_SYMBOL(kernel_sock_ioctl);
2353EXPORT_SYMBOL(kernel_sock_shutdown);
2354