linux/net/sunrpc/cache.c
<<
>>
Prefs
   1/*
   2 * net/sunrpc/cache.c
   3 *
   4 * Generic code for various authentication-related caches
   5 * used by sunrpc clients and servers.
   6 *
   7 * Copyright (C) 2002 Neil Brown <neilb@cse.unsw.edu.au>
   8 *
   9 * Released under terms in GPL version 2.  See COPYING.
  10 *
  11 */
  12
  13#include <linux/types.h>
  14#include <linux/fs.h>
  15#include <linux/file.h>
  16#include <linux/slab.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kmod.h>
  20#include <linux/list.h>
  21#include <linux/module.h>
  22#include <linux/ctype.h>
  23#include <asm/uaccess.h>
  24#include <linux/poll.h>
  25#include <linux/seq_file.h>
  26#include <linux/proc_fs.h>
  27#include <linux/net.h>
  28#include <linux/workqueue.h>
  29#include <linux/mutex.h>
  30#include <asm/ioctls.h>
  31#include <linux/sunrpc/types.h>
  32#include <linux/sunrpc/cache.h>
  33#include <linux/sunrpc/stats.h>
  34
  35#define  RPCDBG_FACILITY RPCDBG_CACHE
  36
  37static int cache_defer_req(struct cache_req *req, struct cache_head *item);
  38static void cache_revisit_request(struct cache_head *item);
  39
  40static void cache_init(struct cache_head *h)
  41{
  42        time_t now = get_seconds();
  43        h->next = NULL;
  44        h->flags = 0;
  45        kref_init(&h->ref);
  46        h->expiry_time = now + CACHE_NEW_EXPIRY;
  47        h->last_refresh = now;
  48}
  49
  50struct cache_head *sunrpc_cache_lookup(struct cache_detail *detail,
  51                                       struct cache_head *key, int hash)
  52{
  53        struct cache_head **head,  **hp;
  54        struct cache_head *new = NULL;
  55
  56        head = &detail->hash_table[hash];
  57
  58        read_lock(&detail->hash_lock);
  59
  60        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  61                struct cache_head *tmp = *hp;
  62                if (detail->match(tmp, key)) {
  63                        cache_get(tmp);
  64                        read_unlock(&detail->hash_lock);
  65                        return tmp;
  66                }
  67        }
  68        read_unlock(&detail->hash_lock);
  69        /* Didn't find anything, insert an empty entry */
  70
  71        new = detail->alloc();
  72        if (!new)
  73                return NULL;
  74        /* must fully initialise 'new', else
  75         * we might get lose if we need to
  76         * cache_put it soon.
  77         */
  78        cache_init(new);
  79        detail->init(new, key);
  80
  81        write_lock(&detail->hash_lock);
  82
  83        /* check if entry appeared while we slept */
  84        for (hp=head; *hp != NULL ; hp = &(*hp)->next) {
  85                struct cache_head *tmp = *hp;
  86                if (detail->match(tmp, key)) {
  87                        cache_get(tmp);
  88                        write_unlock(&detail->hash_lock);
  89                        cache_put(new, detail);
  90                        return tmp;
  91                }
  92        }
  93        new->next = *head;
  94        *head = new;
  95        detail->entries++;
  96        cache_get(new);
  97        write_unlock(&detail->hash_lock);
  98
  99        return new;
 100}
 101EXPORT_SYMBOL(sunrpc_cache_lookup);
 102
 103
 104static void queue_loose(struct cache_detail *detail, struct cache_head *ch);
 105
 106static int cache_fresh_locked(struct cache_head *head, time_t expiry)
 107{
 108        head->expiry_time = expiry;
 109        head->last_refresh = get_seconds();
 110        return !test_and_set_bit(CACHE_VALID, &head->flags);
 111}
 112
 113static void cache_fresh_unlocked(struct cache_head *head,
 114                        struct cache_detail *detail, int new)
 115{
 116        if (new)
 117                cache_revisit_request(head);
 118        if (test_and_clear_bit(CACHE_PENDING, &head->flags)) {
 119                cache_revisit_request(head);
 120                queue_loose(detail, head);
 121        }
 122}
 123
 124struct cache_head *sunrpc_cache_update(struct cache_detail *detail,
 125                                       struct cache_head *new, struct cache_head *old, int hash)
 126{
 127        /* The 'old' entry is to be replaced by 'new'.
 128         * If 'old' is not VALID, we update it directly,
 129         * otherwise we need to replace it
 130         */
 131        struct cache_head **head;
 132        struct cache_head *tmp;
 133        int is_new;
 134
 135        if (!test_bit(CACHE_VALID, &old->flags)) {
 136                write_lock(&detail->hash_lock);
 137                if (!test_bit(CACHE_VALID, &old->flags)) {
 138                        if (test_bit(CACHE_NEGATIVE, &new->flags))
 139                                set_bit(CACHE_NEGATIVE, &old->flags);
 140                        else
 141                                detail->update(old, new);
 142                        is_new = cache_fresh_locked(old, new->expiry_time);
 143                        write_unlock(&detail->hash_lock);
 144                        cache_fresh_unlocked(old, detail, is_new);
 145                        return old;
 146                }
 147                write_unlock(&detail->hash_lock);
 148        }
 149        /* We need to insert a new entry */
 150        tmp = detail->alloc();
 151        if (!tmp) {
 152                cache_put(old, detail);
 153                return NULL;
 154        }
 155        cache_init(tmp);
 156        detail->init(tmp, old);
 157        head = &detail->hash_table[hash];
 158
 159        write_lock(&detail->hash_lock);
 160        if (test_bit(CACHE_NEGATIVE, &new->flags))
 161                set_bit(CACHE_NEGATIVE, &tmp->flags);
 162        else
 163                detail->update(tmp, new);
 164        tmp->next = *head;
 165        *head = tmp;
 166        detail->entries++;
 167        cache_get(tmp);
 168        is_new = cache_fresh_locked(tmp, new->expiry_time);
 169        cache_fresh_locked(old, 0);
 170        write_unlock(&detail->hash_lock);
 171        cache_fresh_unlocked(tmp, detail, is_new);
 172        cache_fresh_unlocked(old, detail, 0);
 173        cache_put(old, detail);
 174        return tmp;
 175}
 176EXPORT_SYMBOL(sunrpc_cache_update);
 177
 178static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h);
 179/*
 180 * This is the generic cache management routine for all
 181 * the authentication caches.
 182 * It checks the currency of a cache item and will (later)
 183 * initiate an upcall to fill it if needed.
 184 *
 185 *
 186 * Returns 0 if the cache_head can be used, or cache_puts it and returns
 187 * -EAGAIN if upcall is pending,
 188 * -ETIMEDOUT if upcall failed and should be retried,
 189 * -ENOENT if cache entry was negative
 190 */
 191int cache_check(struct cache_detail *detail,
 192                    struct cache_head *h, struct cache_req *rqstp)
 193{
 194        int rv;
 195        long refresh_age, age;
 196
 197        /* First decide return status as best we can */
 198        if (!test_bit(CACHE_VALID, &h->flags) ||
 199            h->expiry_time < get_seconds())
 200                rv = -EAGAIN;
 201        else if (detail->flush_time > h->last_refresh)
 202                rv = -EAGAIN;
 203        else {
 204                /* entry is valid */
 205                if (test_bit(CACHE_NEGATIVE, &h->flags))
 206                        rv = -ENOENT;
 207                else rv = 0;
 208        }
 209
 210        /* now see if we want to start an upcall */
 211        refresh_age = (h->expiry_time - h->last_refresh);
 212        age = get_seconds() - h->last_refresh;
 213
 214        if (rqstp == NULL) {
 215                if (rv == -EAGAIN)
 216                        rv = -ENOENT;
 217        } else if (rv == -EAGAIN || age > refresh_age/2) {
 218                dprintk("RPC:       Want update, refage=%ld, age=%ld\n",
 219                                refresh_age, age);
 220                if (!test_and_set_bit(CACHE_PENDING, &h->flags)) {
 221                        switch (cache_make_upcall(detail, h)) {
 222                        case -EINVAL:
 223                                clear_bit(CACHE_PENDING, &h->flags);
 224                                if (rv == -EAGAIN) {
 225                                        set_bit(CACHE_NEGATIVE, &h->flags);
 226                                        cache_fresh_unlocked(h, detail,
 227                                             cache_fresh_locked(h, get_seconds()+CACHE_NEW_EXPIRY));
 228                                        rv = -ENOENT;
 229                                }
 230                                break;
 231
 232                        case -EAGAIN:
 233                                clear_bit(CACHE_PENDING, &h->flags);
 234                                cache_revisit_request(h);
 235                                break;
 236                        }
 237                }
 238        }
 239
 240        if (rv == -EAGAIN)
 241                if (cache_defer_req(rqstp, h) != 0)
 242                        rv = -ETIMEDOUT;
 243
 244        if (rv)
 245                cache_put(h, detail);
 246        return rv;
 247}
 248
 249/*
 250 * caches need to be periodically cleaned.
 251 * For this we maintain a list of cache_detail and
 252 * a current pointer into that list and into the table
 253 * for that entry.
 254 *
 255 * Each time clean_cache is called it finds the next non-empty entry
 256 * in the current table and walks the list in that entry
 257 * looking for entries that can be removed.
 258 *
 259 * An entry gets removed if:
 260 * - The expiry is before current time
 261 * - The last_refresh time is before the flush_time for that cache
 262 *
 263 * later we might drop old entries with non-NEVER expiry if that table
 264 * is getting 'full' for some definition of 'full'
 265 *
 266 * The question of "how often to scan a table" is an interesting one
 267 * and is answered in part by the use of the "nextcheck" field in the
 268 * cache_detail.
 269 * When a scan of a table begins, the nextcheck field is set to a time
 270 * that is well into the future.
 271 * While scanning, if an expiry time is found that is earlier than the
 272 * current nextcheck time, nextcheck is set to that expiry time.
 273 * If the flush_time is ever set to a time earlier than the nextcheck
 274 * time, the nextcheck time is then set to that flush_time.
 275 *
 276 * A table is then only scanned if the current time is at least
 277 * the nextcheck time.
 278 *
 279 */
 280
 281static LIST_HEAD(cache_list);
 282static DEFINE_SPINLOCK(cache_list_lock);
 283static struct cache_detail *current_detail;
 284static int current_index;
 285
 286static const struct file_operations cache_file_operations;
 287static const struct file_operations content_file_operations;
 288static const struct file_operations cache_flush_operations;
 289
 290static void do_cache_clean(struct work_struct *work);
 291static DECLARE_DELAYED_WORK(cache_cleaner, do_cache_clean);
 292
 293void cache_register(struct cache_detail *cd)
 294{
 295        cd->proc_ent = proc_mkdir(cd->name, proc_net_rpc);
 296        if (cd->proc_ent) {
 297                struct proc_dir_entry *p;
 298                cd->proc_ent->owner = cd->owner;
 299                cd->channel_ent = cd->content_ent = NULL;
 300
 301                p = create_proc_entry("flush", S_IFREG|S_IRUSR|S_IWUSR,
 302                                      cd->proc_ent);
 303                cd->flush_ent =  p;
 304                if (p) {
 305                        p->proc_fops = &cache_flush_operations;
 306                        p->owner = cd->owner;
 307                        p->data = cd;
 308                }
 309
 310                if (cd->cache_request || cd->cache_parse) {
 311                        p = create_proc_entry("channel", S_IFREG|S_IRUSR|S_IWUSR,
 312                                              cd->proc_ent);
 313                        cd->channel_ent = p;
 314                        if (p) {
 315                                p->proc_fops = &cache_file_operations;
 316                                p->owner = cd->owner;
 317                                p->data = cd;
 318                        }
 319                }
 320                if (cd->cache_show) {
 321                        p = create_proc_entry("content", S_IFREG|S_IRUSR|S_IWUSR,
 322                                              cd->proc_ent);
 323                        cd->content_ent = p;
 324                        if (p) {
 325                                p->proc_fops = &content_file_operations;
 326                                p->owner = cd->owner;
 327                                p->data = cd;
 328                        }
 329                }
 330        }
 331        rwlock_init(&cd->hash_lock);
 332        INIT_LIST_HEAD(&cd->queue);
 333        spin_lock(&cache_list_lock);
 334        cd->nextcheck = 0;
 335        cd->entries = 0;
 336        atomic_set(&cd->readers, 0);
 337        cd->last_close = 0;
 338        cd->last_warn = -1;
 339        list_add(&cd->others, &cache_list);
 340        spin_unlock(&cache_list_lock);
 341
 342        /* start the cleaning process */
 343        schedule_delayed_work(&cache_cleaner, 0);
 344}
 345
 346int cache_unregister(struct cache_detail *cd)
 347{
 348        cache_purge(cd);
 349        spin_lock(&cache_list_lock);
 350        write_lock(&cd->hash_lock);
 351        if (cd->entries || atomic_read(&cd->inuse)) {
 352                write_unlock(&cd->hash_lock);
 353                spin_unlock(&cache_list_lock);
 354                return -EBUSY;
 355        }
 356        if (current_detail == cd)
 357                current_detail = NULL;
 358        list_del_init(&cd->others);
 359        write_unlock(&cd->hash_lock);
 360        spin_unlock(&cache_list_lock);
 361        if (cd->proc_ent) {
 362                if (cd->flush_ent)
 363                        remove_proc_entry("flush", cd->proc_ent);
 364                if (cd->channel_ent)
 365                        remove_proc_entry("channel", cd->proc_ent);
 366                if (cd->content_ent)
 367                        remove_proc_entry("content", cd->proc_ent);
 368
 369                cd->proc_ent = NULL;
 370                remove_proc_entry(cd->name, proc_net_rpc);
 371        }
 372        if (list_empty(&cache_list)) {
 373                /* module must be being unloaded so its safe to kill the worker */
 374                cancel_delayed_work_sync(&cache_cleaner);
 375        }
 376        return 0;
 377}
 378
 379/* clean cache tries to find something to clean
 380 * and cleans it.
 381 * It returns 1 if it cleaned something,
 382 *            0 if it didn't find anything this time
 383 *           -1 if it fell off the end of the list.
 384 */
 385static int cache_clean(void)
 386{
 387        int rv = 0;
 388        struct list_head *next;
 389
 390        spin_lock(&cache_list_lock);
 391
 392        /* find a suitable table if we don't already have one */
 393        while (current_detail == NULL ||
 394            current_index >= current_detail->hash_size) {
 395                if (current_detail)
 396                        next = current_detail->others.next;
 397                else
 398                        next = cache_list.next;
 399                if (next == &cache_list) {
 400                        current_detail = NULL;
 401                        spin_unlock(&cache_list_lock);
 402                        return -1;
 403                }
 404                current_detail = list_entry(next, struct cache_detail, others);
 405                if (current_detail->nextcheck > get_seconds())
 406                        current_index = current_detail->hash_size;
 407                else {
 408                        current_index = 0;
 409                        current_detail->nextcheck = get_seconds()+30*60;
 410                }
 411        }
 412
 413        /* find a non-empty bucket in the table */
 414        while (current_detail &&
 415               current_index < current_detail->hash_size &&
 416               current_detail->hash_table[current_index] == NULL)
 417                current_index++;
 418
 419        /* find a cleanable entry in the bucket and clean it, or set to next bucket */
 420
 421        if (current_detail && current_index < current_detail->hash_size) {
 422                struct cache_head *ch, **cp;
 423                struct cache_detail *d;
 424
 425                write_lock(&current_detail->hash_lock);
 426
 427                /* Ok, now to clean this strand */
 428
 429                cp = & current_detail->hash_table[current_index];
 430                ch = *cp;
 431                for (; ch; cp= & ch->next, ch= *cp) {
 432                        if (current_detail->nextcheck > ch->expiry_time)
 433                                current_detail->nextcheck = ch->expiry_time+1;
 434                        if (ch->expiry_time >= get_seconds()
 435                            && ch->last_refresh >= current_detail->flush_time
 436                                )
 437                                continue;
 438                        if (test_and_clear_bit(CACHE_PENDING, &ch->flags))
 439                                queue_loose(current_detail, ch);
 440
 441                        if (atomic_read(&ch->ref.refcount) == 1)
 442                                break;
 443                }
 444                if (ch) {
 445                        *cp = ch->next;
 446                        ch->next = NULL;
 447                        current_detail->entries--;
 448                        rv = 1;
 449                }
 450                write_unlock(&current_detail->hash_lock);
 451                d = current_detail;
 452                if (!ch)
 453                        current_index ++;
 454                spin_unlock(&cache_list_lock);
 455                if (ch)
 456                        cache_put(ch, d);
 457        } else
 458                spin_unlock(&cache_list_lock);
 459
 460        return rv;
 461}
 462
 463/*
 464 * We want to regularly clean the cache, so we need to schedule some work ...
 465 */
 466static void do_cache_clean(struct work_struct *work)
 467{
 468        int delay = 5;
 469        if (cache_clean() == -1)
 470                delay = 30*HZ;
 471
 472        if (list_empty(&cache_list))
 473                delay = 0;
 474
 475        if (delay)
 476                schedule_delayed_work(&cache_cleaner, delay);
 477}
 478
 479
 480/*
 481 * Clean all caches promptly.  This just calls cache_clean
 482 * repeatedly until we are sure that every cache has had a chance to
 483 * be fully cleaned
 484 */
 485void cache_flush(void)
 486{
 487        while (cache_clean() != -1)
 488                cond_resched();
 489        while (cache_clean() != -1)
 490                cond_resched();
 491}
 492
 493void cache_purge(struct cache_detail *detail)
 494{
 495        detail->flush_time = LONG_MAX;
 496        detail->nextcheck = get_seconds();
 497        cache_flush();
 498        detail->flush_time = 1;
 499}
 500
 501
 502
 503/*
 504 * Deferral and Revisiting of Requests.
 505 *
 506 * If a cache lookup finds a pending entry, we
 507 * need to defer the request and revisit it later.
 508 * All deferred requests are stored in a hash table,
 509 * indexed by "struct cache_head *".
 510 * As it may be wasteful to store a whole request
 511 * structure, we allow the request to provide a
 512 * deferred form, which must contain a
 513 * 'struct cache_deferred_req'
 514 * This cache_deferred_req contains a method to allow
 515 * it to be revisited when cache info is available
 516 */
 517
 518#define DFR_HASHSIZE    (PAGE_SIZE/sizeof(struct list_head))
 519#define DFR_HASH(item)  ((((long)item)>>4 ^ (((long)item)>>13)) % DFR_HASHSIZE)
 520
 521#define DFR_MAX 300     /* ??? */
 522
 523static DEFINE_SPINLOCK(cache_defer_lock);
 524static LIST_HEAD(cache_defer_list);
 525static struct list_head cache_defer_hash[DFR_HASHSIZE];
 526static int cache_defer_cnt;
 527
 528static int cache_defer_req(struct cache_req *req, struct cache_head *item)
 529{
 530        struct cache_deferred_req *dreq;
 531        int hash = DFR_HASH(item);
 532
 533        if (cache_defer_cnt >= DFR_MAX) {
 534                /* too much in the cache, randomly drop this one,
 535                 * or continue and drop the oldest below
 536                 */
 537                if (net_random()&1)
 538                        return -ETIMEDOUT;
 539        }
 540        dreq = req->defer(req);
 541        if (dreq == NULL)
 542                return -ETIMEDOUT;
 543
 544        dreq->item = item;
 545        dreq->recv_time = get_seconds();
 546
 547        spin_lock(&cache_defer_lock);
 548
 549        list_add(&dreq->recent, &cache_defer_list);
 550
 551        if (cache_defer_hash[hash].next == NULL)
 552                INIT_LIST_HEAD(&cache_defer_hash[hash]);
 553        list_add(&dreq->hash, &cache_defer_hash[hash]);
 554
 555        /* it is in, now maybe clean up */
 556        dreq = NULL;
 557        if (++cache_defer_cnt > DFR_MAX) {
 558                dreq = list_entry(cache_defer_list.prev,
 559                                  struct cache_deferred_req, recent);
 560                list_del(&dreq->recent);
 561                list_del(&dreq->hash);
 562                cache_defer_cnt--;
 563        }
 564        spin_unlock(&cache_defer_lock);
 565
 566        if (dreq) {
 567                /* there was one too many */
 568                dreq->revisit(dreq, 1);
 569        }
 570        if (!test_bit(CACHE_PENDING, &item->flags)) {
 571                /* must have just been validated... */
 572                cache_revisit_request(item);
 573        }
 574        return 0;
 575}
 576
 577static void cache_revisit_request(struct cache_head *item)
 578{
 579        struct cache_deferred_req *dreq;
 580        struct list_head pending;
 581
 582        struct list_head *lp;
 583        int hash = DFR_HASH(item);
 584
 585        INIT_LIST_HEAD(&pending);
 586        spin_lock(&cache_defer_lock);
 587
 588        lp = cache_defer_hash[hash].next;
 589        if (lp) {
 590                while (lp != &cache_defer_hash[hash]) {
 591                        dreq = list_entry(lp, struct cache_deferred_req, hash);
 592                        lp = lp->next;
 593                        if (dreq->item == item) {
 594                                list_del(&dreq->hash);
 595                                list_move(&dreq->recent, &pending);
 596                                cache_defer_cnt--;
 597                        }
 598                }
 599        }
 600        spin_unlock(&cache_defer_lock);
 601
 602        while (!list_empty(&pending)) {
 603                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 604                list_del_init(&dreq->recent);
 605                dreq->revisit(dreq, 0);
 606        }
 607}
 608
 609void cache_clean_deferred(void *owner)
 610{
 611        struct cache_deferred_req *dreq, *tmp;
 612        struct list_head pending;
 613
 614
 615        INIT_LIST_HEAD(&pending);
 616        spin_lock(&cache_defer_lock);
 617
 618        list_for_each_entry_safe(dreq, tmp, &cache_defer_list, recent) {
 619                if (dreq->owner == owner) {
 620                        list_del(&dreq->hash);
 621                        list_move(&dreq->recent, &pending);
 622                        cache_defer_cnt--;
 623                }
 624        }
 625        spin_unlock(&cache_defer_lock);
 626
 627        while (!list_empty(&pending)) {
 628                dreq = list_entry(pending.next, struct cache_deferred_req, recent);
 629                list_del_init(&dreq->recent);
 630                dreq->revisit(dreq, 1);
 631        }
 632}
 633
 634/*
 635 * communicate with user-space
 636 *
 637 * We have a magic /proc file - /proc/sunrpc/cache
 638 * On read, you get a full request, or block
 639 * On write, an update request is processed
 640 * Poll works if anything to read, and always allows write
 641 *
 642 * Implemented by linked list of requests.  Each open file has
 643 * a ->private that also exists in this list.  New request are added
 644 * to the end and may wakeup and preceding readers.
 645 * New readers are added to the head.  If, on read, an item is found with
 646 * CACHE_UPCALLING clear, we free it from the list.
 647 *
 648 */
 649
 650static DEFINE_SPINLOCK(queue_lock);
 651static DEFINE_MUTEX(queue_io_mutex);
 652
 653struct cache_queue {
 654        struct list_head        list;
 655        int                     reader; /* if 0, then request */
 656};
 657struct cache_request {
 658        struct cache_queue      q;
 659        struct cache_head       *item;
 660        char                    * buf;
 661        int                     len;
 662        int                     readers;
 663};
 664struct cache_reader {
 665        struct cache_queue      q;
 666        int                     offset; /* if non-0, we have a refcnt on next request */
 667};
 668
 669static ssize_t
 670cache_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
 671{
 672        struct cache_reader *rp = filp->private_data;
 673        struct cache_request *rq;
 674        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
 675        int err;
 676
 677        if (count == 0)
 678                return 0;
 679
 680        mutex_lock(&queue_io_mutex); /* protect against multiple concurrent
 681                              * readers on this file */
 682 again:
 683        spin_lock(&queue_lock);
 684        /* need to find next request */
 685        while (rp->q.list.next != &cd->queue &&
 686               list_entry(rp->q.list.next, struct cache_queue, list)
 687               ->reader) {
 688                struct list_head *next = rp->q.list.next;
 689                list_move(&rp->q.list, next);
 690        }
 691        if (rp->q.list.next == &cd->queue) {
 692                spin_unlock(&queue_lock);
 693                mutex_unlock(&queue_io_mutex);
 694                BUG_ON(rp->offset);
 695                return 0;
 696        }
 697        rq = container_of(rp->q.list.next, struct cache_request, q.list);
 698        BUG_ON(rq->q.reader);
 699        if (rp->offset == 0)
 700                rq->readers++;
 701        spin_unlock(&queue_lock);
 702
 703        if (rp->offset == 0 && !test_bit(CACHE_PENDING, &rq->item->flags)) {
 704                err = -EAGAIN;
 705                spin_lock(&queue_lock);
 706                list_move(&rp->q.list, &rq->q.list);
 707                spin_unlock(&queue_lock);
 708        } else {
 709                if (rp->offset + count > rq->len)
 710                        count = rq->len - rp->offset;
 711                err = -EFAULT;
 712                if (copy_to_user(buf, rq->buf + rp->offset, count))
 713                        goto out;
 714                rp->offset += count;
 715                if (rp->offset >= rq->len) {
 716                        rp->offset = 0;
 717                        spin_lock(&queue_lock);
 718                        list_move(&rp->q.list, &rq->q.list);
 719                        spin_unlock(&queue_lock);
 720                }
 721                err = 0;
 722        }
 723 out:
 724        if (rp->offset == 0) {
 725                /* need to release rq */
 726                spin_lock(&queue_lock);
 727                rq->readers--;
 728                if (rq->readers == 0 &&
 729                    !test_bit(CACHE_PENDING, &rq->item->flags)) {
 730                        list_del(&rq->q.list);
 731                        spin_unlock(&queue_lock);
 732                        cache_put(rq->item, cd);
 733                        kfree(rq->buf);
 734                        kfree(rq);
 735                } else
 736                        spin_unlock(&queue_lock);
 737        }
 738        if (err == -EAGAIN)
 739                goto again;
 740        mutex_unlock(&queue_io_mutex);
 741        return err ? err :  count;
 742}
 743
 744static char write_buf[8192]; /* protected by queue_io_mutex */
 745
 746static ssize_t
 747cache_write(struct file *filp, const char __user *buf, size_t count,
 748            loff_t *ppos)
 749{
 750        int err;
 751        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
 752
 753        if (count == 0)
 754                return 0;
 755        if (count >= sizeof(write_buf))
 756                return -EINVAL;
 757
 758        mutex_lock(&queue_io_mutex);
 759
 760        if (copy_from_user(write_buf, buf, count)) {
 761                mutex_unlock(&queue_io_mutex);
 762                return -EFAULT;
 763        }
 764        write_buf[count] = '\0';
 765        if (cd->cache_parse)
 766                err = cd->cache_parse(cd, write_buf, count);
 767        else
 768                err = -EINVAL;
 769
 770        mutex_unlock(&queue_io_mutex);
 771        return err ? err : count;
 772}
 773
 774static DECLARE_WAIT_QUEUE_HEAD(queue_wait);
 775
 776static unsigned int
 777cache_poll(struct file *filp, poll_table *wait)
 778{
 779        unsigned int mask;
 780        struct cache_reader *rp = filp->private_data;
 781        struct cache_queue *cq;
 782        struct cache_detail *cd = PDE(filp->f_path.dentry->d_inode)->data;
 783
 784        poll_wait(filp, &queue_wait, wait);
 785
 786        /* alway allow write */
 787        mask = POLL_OUT | POLLWRNORM;
 788
 789        if (!rp)
 790                return mask;
 791
 792        spin_lock(&queue_lock);
 793
 794        for (cq= &rp->q; &cq->list != &cd->queue;
 795             cq = list_entry(cq->list.next, struct cache_queue, list))
 796                if (!cq->reader) {
 797                        mask |= POLLIN | POLLRDNORM;
 798                        break;
 799                }
 800        spin_unlock(&queue_lock);
 801        return mask;
 802}
 803
 804static int
 805cache_ioctl(struct inode *ino, struct file *filp,
 806            unsigned int cmd, unsigned long arg)
 807{
 808        int len = 0;
 809        struct cache_reader *rp = filp->private_data;
 810        struct cache_queue *cq;
 811        struct cache_detail *cd = PDE(ino)->data;
 812
 813        if (cmd != FIONREAD || !rp)
 814                return -EINVAL;
 815
 816        spin_lock(&queue_lock);
 817
 818        /* only find the length remaining in current request,
 819         * or the length of the next request
 820         */
 821        for (cq= &rp->q; &cq->list != &cd->queue;
 822             cq = list_entry(cq->list.next, struct cache_queue, list))
 823                if (!cq->reader) {
 824                        struct cache_request *cr =
 825                                container_of(cq, struct cache_request, q);
 826                        len = cr->len - rp->offset;
 827                        break;
 828                }
 829        spin_unlock(&queue_lock);
 830
 831        return put_user(len, (int __user *)arg);
 832}
 833
 834static int
 835cache_open(struct inode *inode, struct file *filp)
 836{
 837        struct cache_reader *rp = NULL;
 838
 839        nonseekable_open(inode, filp);
 840        if (filp->f_mode & FMODE_READ) {
 841                struct cache_detail *cd = PDE(inode)->data;
 842
 843                rp = kmalloc(sizeof(*rp), GFP_KERNEL);
 844                if (!rp)
 845                        return -ENOMEM;
 846                rp->offset = 0;
 847                rp->q.reader = 1;
 848                atomic_inc(&cd->readers);
 849                spin_lock(&queue_lock);
 850                list_add(&rp->q.list, &cd->queue);
 851                spin_unlock(&queue_lock);
 852        }
 853        filp->private_data = rp;
 854        return 0;
 855}
 856
 857static int
 858cache_release(struct inode *inode, struct file *filp)
 859{
 860        struct cache_reader *rp = filp->private_data;
 861        struct cache_detail *cd = PDE(inode)->data;
 862
 863        if (rp) {
 864                spin_lock(&queue_lock);
 865                if (rp->offset) {
 866                        struct cache_queue *cq;
 867                        for (cq= &rp->q; &cq->list != &cd->queue;
 868                             cq = list_entry(cq->list.next, struct cache_queue, list))
 869                                if (!cq->reader) {
 870                                        container_of(cq, struct cache_request, q)
 871                                                ->readers--;
 872                                        break;
 873                                }
 874                        rp->offset = 0;
 875                }
 876                list_del(&rp->q.list);
 877                spin_unlock(&queue_lock);
 878
 879                filp->private_data = NULL;
 880                kfree(rp);
 881
 882                cd->last_close = get_seconds();
 883                atomic_dec(&cd->readers);
 884        }
 885        return 0;
 886}
 887
 888
 889
 890static const struct file_operations cache_file_operations = {
 891        .owner          = THIS_MODULE,
 892        .llseek         = no_llseek,
 893        .read           = cache_read,
 894        .write          = cache_write,
 895        .poll           = cache_poll,
 896        .ioctl          = cache_ioctl, /* for FIONREAD */
 897        .open           = cache_open,
 898        .release        = cache_release,
 899};
 900
 901
 902static void queue_loose(struct cache_detail *detail, struct cache_head *ch)
 903{
 904        struct cache_queue *cq;
 905        spin_lock(&queue_lock);
 906        list_for_each_entry(cq, &detail->queue, list)
 907                if (!cq->reader) {
 908                        struct cache_request *cr = container_of(cq, struct cache_request, q);
 909                        if (cr->item != ch)
 910                                continue;
 911                        if (cr->readers != 0)
 912                                continue;
 913                        list_del(&cr->q.list);
 914                        spin_unlock(&queue_lock);
 915                        cache_put(cr->item, detail);
 916                        kfree(cr->buf);
 917                        kfree(cr);
 918                        return;
 919                }
 920        spin_unlock(&queue_lock);
 921}
 922
 923/*
 924 * Support routines for text-based upcalls.
 925 * Fields are separated by spaces.
 926 * Fields are either mangled to quote space tab newline slosh with slosh
 927 * or a hexified with a leading \x
 928 * Record is terminated with newline.
 929 *
 930 */
 931
 932void qword_add(char **bpp, int *lp, char *str)
 933{
 934        char *bp = *bpp;
 935        int len = *lp;
 936        char c;
 937
 938        if (len < 0) return;
 939
 940        while ((c=*str++) && len)
 941                switch(c) {
 942                case ' ':
 943                case '\t':
 944                case '\n':
 945                case '\\':
 946                        if (len >= 4) {
 947                                *bp++ = '\\';
 948                                *bp++ = '0' + ((c & 0300)>>6);
 949                                *bp++ = '0' + ((c & 0070)>>3);
 950                                *bp++ = '0' + ((c & 0007)>>0);
 951                        }
 952                        len -= 4;
 953                        break;
 954                default:
 955                        *bp++ = c;
 956                        len--;
 957                }
 958        if (c || len <1) len = -1;
 959        else {
 960                *bp++ = ' ';
 961                len--;
 962        }
 963        *bpp = bp;
 964        *lp = len;
 965}
 966
 967void qword_addhex(char **bpp, int *lp, char *buf, int blen)
 968{
 969        char *bp = *bpp;
 970        int len = *lp;
 971
 972        if (len < 0) return;
 973
 974        if (len > 2) {
 975                *bp++ = '\\';
 976                *bp++ = 'x';
 977                len -= 2;
 978                while (blen && len >= 2) {
 979                        unsigned char c = *buf++;
 980                        *bp++ = '0' + ((c&0xf0)>>4) + (c>=0xa0)*('a'-'9'-1);
 981                        *bp++ = '0' + (c&0x0f) + ((c&0x0f)>=0x0a)*('a'-'9'-1);
 982                        len -= 2;
 983                        blen--;
 984                }
 985        }
 986        if (blen || len<1) len = -1;
 987        else {
 988                *bp++ = ' ';
 989                len--;
 990        }
 991        *bpp = bp;
 992        *lp = len;
 993}
 994
 995static void warn_no_listener(struct cache_detail *detail)
 996{
 997        if (detail->last_warn != detail->last_close) {
 998                detail->last_warn = detail->last_close;
 999                if (detail->warn_no_listener)
1000                        detail->warn_no_listener(detail);
1001        }
1002}
1003
1004/*
1005 * register an upcall request to user-space.
1006 * Each request is at most one page long.
1007 */
1008static int cache_make_upcall(struct cache_detail *detail, struct cache_head *h)
1009{
1010
1011        char *buf;
1012        struct cache_request *crq;
1013        char *bp;
1014        int len;
1015
1016        if (detail->cache_request == NULL)
1017                return -EINVAL;
1018
1019        if (atomic_read(&detail->readers) == 0 &&
1020            detail->last_close < get_seconds() - 30) {
1021                        warn_no_listener(detail);
1022                        return -EINVAL;
1023        }
1024
1025        buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1026        if (!buf)
1027                return -EAGAIN;
1028
1029        crq = kmalloc(sizeof (*crq), GFP_KERNEL);
1030        if (!crq) {
1031                kfree(buf);
1032                return -EAGAIN;
1033        }
1034
1035        bp = buf; len = PAGE_SIZE;
1036
1037        detail->cache_request(detail, h, &bp, &len);
1038
1039        if (len < 0) {
1040                kfree(buf);
1041                kfree(crq);
1042                return -EAGAIN;
1043        }
1044        crq->q.reader = 0;
1045        crq->item = cache_get(h);
1046        crq->buf = buf;
1047        crq->len = PAGE_SIZE - len;
1048        crq->readers = 0;
1049        spin_lock(&queue_lock);
1050        list_add_tail(&crq->q.list, &detail->queue);
1051        spin_unlock(&queue_lock);
1052        wake_up(&queue_wait);
1053        return 0;
1054}
1055
1056/*
1057 * parse a message from user-space and pass it
1058 * to an appropriate cache
1059 * Messages are, like requests, separated into fields by
1060 * spaces and dequotes as \xHEXSTRING or embedded \nnn octal
1061 *
1062 * Message is
1063 *   reply cachename expiry key ... content....
1064 *
1065 * key and content are both parsed by cache
1066 */
1067
1068#define isodigit(c) (isdigit(c) && c <= '7')
1069int qword_get(char **bpp, char *dest, int bufsize)
1070{
1071        /* return bytes copied, or -1 on error */
1072        char *bp = *bpp;
1073        int len = 0;
1074
1075        while (*bp == ' ') bp++;
1076
1077        if (bp[0] == '\\' && bp[1] == 'x') {
1078                /* HEX STRING */
1079                bp += 2;
1080                while (isxdigit(bp[0]) && isxdigit(bp[1]) && len < bufsize) {
1081                        int byte = isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1082                        bp++;
1083                        byte <<= 4;
1084                        byte |= isdigit(*bp) ? *bp-'0' : toupper(*bp)-'A'+10;
1085                        *dest++ = byte;
1086                        bp++;
1087                        len++;
1088                }
1089        } else {
1090                /* text with \nnn octal quoting */
1091                while (*bp != ' ' && *bp != '\n' && *bp && len < bufsize-1) {
1092                        if (*bp == '\\' &&
1093                            isodigit(bp[1]) && (bp[1] <= '3') &&
1094                            isodigit(bp[2]) &&
1095                            isodigit(bp[3])) {
1096                                int byte = (*++bp -'0');
1097                                bp++;
1098                                byte = (byte << 3) | (*bp++ - '0');
1099                                byte = (byte << 3) | (*bp++ - '0');
1100                                *dest++ = byte;
1101                                len++;
1102                        } else {
1103                                *dest++ = *bp++;
1104                                len++;
1105                        }
1106                }
1107        }
1108
1109        if (*bp != ' ' && *bp != '\n' && *bp != '\0')
1110                return -1;
1111        while (*bp == ' ') bp++;
1112        *bpp = bp;
1113        *dest = '\0';
1114        return len;
1115}
1116
1117
1118/*
1119 * support /proc/sunrpc/cache/$CACHENAME/content
1120 * as a seqfile.
1121 * We call ->cache_show passing NULL for the item to
1122 * get a header, then pass each real item in the cache
1123 */
1124
1125struct handle {
1126        struct cache_detail *cd;
1127};
1128
1129static void *c_start(struct seq_file *m, loff_t *pos)
1130{
1131        loff_t n = *pos;
1132        unsigned hash, entry;
1133        struct cache_head *ch;
1134        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1135
1136
1137        read_lock(&cd->hash_lock);
1138        if (!n--)
1139                return SEQ_START_TOKEN;
1140        hash = n >> 32;
1141        entry = n & ((1LL<<32) - 1);
1142
1143        for (ch=cd->hash_table[hash]; ch; ch=ch->next)
1144                if (!entry--)
1145                        return ch;
1146        n &= ~((1LL<<32) - 1);
1147        do {
1148                hash++;
1149                n += 1LL<<32;
1150        } while(hash < cd->hash_size &&
1151                cd->hash_table[hash]==NULL);
1152        if (hash >= cd->hash_size)
1153                return NULL;
1154        *pos = n+1;
1155        return cd->hash_table[hash];
1156}
1157
1158static void *c_next(struct seq_file *m, void *p, loff_t *pos)
1159{
1160        struct cache_head *ch = p;
1161        int hash = (*pos >> 32);
1162        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1163
1164        if (p == SEQ_START_TOKEN)
1165                hash = 0;
1166        else if (ch->next == NULL) {
1167                hash++;
1168                *pos += 1LL<<32;
1169        } else {
1170                ++*pos;
1171                return ch->next;
1172        }
1173        *pos &= ~((1LL<<32) - 1);
1174        while (hash < cd->hash_size &&
1175               cd->hash_table[hash] == NULL) {
1176                hash++;
1177                *pos += 1LL<<32;
1178        }
1179        if (hash >= cd->hash_size)
1180                return NULL;
1181        ++*pos;
1182        return cd->hash_table[hash];
1183}
1184
1185static void c_stop(struct seq_file *m, void *p)
1186{
1187        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1188        read_unlock(&cd->hash_lock);
1189}
1190
1191static int c_show(struct seq_file *m, void *p)
1192{
1193        struct cache_head *cp = p;
1194        struct cache_detail *cd = ((struct handle*)m->private)->cd;
1195
1196        if (p == SEQ_START_TOKEN)
1197                return cd->cache_show(m, cd, NULL);
1198
1199        ifdebug(CACHE)
1200                seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n",
1201                           cp->expiry_time, atomic_read(&cp->ref.refcount), cp->flags);
1202        cache_get(cp);
1203        if (cache_check(cd, cp, NULL))
1204                /* cache_check does a cache_put on failure */
1205                seq_printf(m, "# ");
1206        else
1207                cache_put(cp, cd);
1208
1209        return cd->cache_show(m, cd, cp);
1210}
1211
1212static const struct seq_operations cache_content_op = {
1213        .start  = c_start,
1214        .next   = c_next,
1215        .stop   = c_stop,
1216        .show   = c_show,
1217};
1218
1219static int content_open(struct inode *inode, struct file *file)
1220{
1221        struct handle *han;
1222        struct cache_detail *cd = PDE(inode)->data;
1223
1224        han = __seq_open_private(file, &cache_content_op, sizeof(*han));
1225        if (han == NULL)
1226                return -ENOMEM;
1227
1228        han->cd = cd;
1229        return 0;
1230}
1231
1232static const struct file_operations content_file_operations = {
1233        .open           = content_open,
1234        .read           = seq_read,
1235        .llseek         = seq_lseek,
1236        .release        = seq_release_private,
1237};
1238
1239static ssize_t read_flush(struct file *file, char __user *buf,
1240                            size_t count, loff_t *ppos)
1241{
1242        struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1243        char tbuf[20];
1244        unsigned long p = *ppos;
1245        int len;
1246
1247        sprintf(tbuf, "%lu\n", cd->flush_time);
1248        len = strlen(tbuf);
1249        if (p >= len)
1250                return 0;
1251        len -= p;
1252        if (len > count) len = count;
1253        if (copy_to_user(buf, (void*)(tbuf+p), len))
1254                len = -EFAULT;
1255        else
1256                *ppos += len;
1257        return len;
1258}
1259
1260static ssize_t write_flush(struct file * file, const char __user * buf,
1261                             size_t count, loff_t *ppos)
1262{
1263        struct cache_detail *cd = PDE(file->f_path.dentry->d_inode)->data;
1264        char tbuf[20];
1265        char *ep;
1266        long flushtime;
1267        if (*ppos || count > sizeof(tbuf)-1)
1268                return -EINVAL;
1269        if (copy_from_user(tbuf, buf, count))
1270                return -EFAULT;
1271        tbuf[count] = 0;
1272        flushtime = simple_strtoul(tbuf, &ep, 0);
1273        if (*ep && *ep != '\n')
1274                return -EINVAL;
1275
1276        cd->flush_time = flushtime;
1277        cd->nextcheck = get_seconds();
1278        cache_flush();
1279
1280        *ppos += count;
1281        return count;
1282}
1283
1284static const struct file_operations cache_flush_operations = {
1285        .open           = nonseekable_open,
1286        .read           = read_flush,
1287        .write          = write_flush,
1288};
1289