linux/security/commoncap.c
<<
>>
Prefs
   1/* Common capabilities, needed by capability.o and root_plug.o 
   2 *
   3 *      This program is free software; you can redistribute it and/or modify
   4 *      it under the terms of the GNU General Public License as published by
   5 *      the Free Software Foundation; either version 2 of the License, or
   6 *      (at your option) any later version.
   7 *
   8 */
   9
  10#include <linux/capability.h>
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/kernel.h>
  14#include <linux/security.h>
  15#include <linux/file.h>
  16#include <linux/mm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/skbuff.h>
  21#include <linux/netlink.h>
  22#include <linux/ptrace.h>
  23#include <linux/xattr.h>
  24#include <linux/hugetlb.h>
  25#include <linux/mount.h>
  26#include <linux/sched.h>
  27
  28#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
  29/*
  30 * Because of the reduced scope of CAP_SETPCAP when filesystem
  31 * capabilities are in effect, it is safe to allow this capability to
  32 * be available in the default configuration.
  33 */
  34# define CAP_INIT_BSET  CAP_FULL_SET
  35#else /* ie. ndef CONFIG_SECURITY_FILE_CAPABILITIES */
  36# define CAP_INIT_BSET  CAP_INIT_EFF_SET
  37#endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
  38
  39kernel_cap_t cap_bset = CAP_INIT_BSET;    /* systemwide capability bound */
  40EXPORT_SYMBOL(cap_bset);
  41
  42/* Global security state */
  43
  44unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
  45EXPORT_SYMBOL(securebits);
  46
  47int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
  48{
  49        NETLINK_CB(skb).eff_cap = current->cap_effective;
  50        return 0;
  51}
  52
  53int cap_netlink_recv(struct sk_buff *skb, int cap)
  54{
  55        if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
  56                return -EPERM;
  57        return 0;
  58}
  59
  60EXPORT_SYMBOL(cap_netlink_recv);
  61
  62/*
  63 * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
  64 * function.  That is, it has the reverse semantics: cap_capable()
  65 * returns 0 when a task has a capability, but the kernel's capable()
  66 * returns 1 for this case.
  67 */
  68int cap_capable (struct task_struct *tsk, int cap)
  69{
  70        /* Derived from include/linux/sched.h:capable. */
  71        if (cap_raised(tsk->cap_effective, cap))
  72                return 0;
  73        return -EPERM;
  74}
  75
  76int cap_settime(struct timespec *ts, struct timezone *tz)
  77{
  78        if (!capable(CAP_SYS_TIME))
  79                return -EPERM;
  80        return 0;
  81}
  82
  83int cap_ptrace (struct task_struct *parent, struct task_struct *child)
  84{
  85        /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
  86        if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
  87            !__capable(parent, CAP_SYS_PTRACE))
  88                return -EPERM;
  89        return 0;
  90}
  91
  92int cap_capget (struct task_struct *target, kernel_cap_t *effective,
  93                kernel_cap_t *inheritable, kernel_cap_t *permitted)
  94{
  95        /* Derived from kernel/capability.c:sys_capget. */
  96        *effective = cap_t (target->cap_effective);
  97        *inheritable = cap_t (target->cap_inheritable);
  98        *permitted = cap_t (target->cap_permitted);
  99        return 0;
 100}
 101
 102#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
 103
 104static inline int cap_block_setpcap(struct task_struct *target)
 105{
 106        /*
 107         * No support for remote process capability manipulation with
 108         * filesystem capability support.
 109         */
 110        return (target != current);
 111}
 112
 113static inline int cap_inh_is_capped(void)
 114{
 115        /*
 116         * Return 1 if changes to the inheritable set are limited
 117         * to the old permitted set. That is, if the current task
 118         * does *not* possess the CAP_SETPCAP capability.
 119         */
 120        return (cap_capable(current, CAP_SETPCAP) != 0);
 121}
 122
 123#else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
 124
 125static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
 126static inline int cap_inh_is_capped(void) { return 1; }
 127
 128#endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
 129
 130int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
 131                      kernel_cap_t *inheritable, kernel_cap_t *permitted)
 132{
 133        if (cap_block_setpcap(target)) {
 134                return -EPERM;
 135        }
 136        if (cap_inh_is_capped()
 137            && !cap_issubset(*inheritable,
 138                             cap_combine(target->cap_inheritable,
 139                                         current->cap_permitted))) {
 140                /* incapable of using this inheritable set */
 141                return -EPERM;
 142        }
 143
 144        /* verify restrictions on target's new Permitted set */
 145        if (!cap_issubset (*permitted,
 146                           cap_combine (target->cap_permitted,
 147                                        current->cap_permitted))) {
 148                return -EPERM;
 149        }
 150
 151        /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
 152        if (!cap_issubset (*effective, *permitted)) {
 153                return -EPERM;
 154        }
 155
 156        return 0;
 157}
 158
 159void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
 160                     kernel_cap_t *inheritable, kernel_cap_t *permitted)
 161{
 162        target->cap_effective = *effective;
 163        target->cap_inheritable = *inheritable;
 164        target->cap_permitted = *permitted;
 165}
 166
 167static inline void bprm_clear_caps(struct linux_binprm *bprm)
 168{
 169        cap_clear(bprm->cap_inheritable);
 170        cap_clear(bprm->cap_permitted);
 171        bprm->cap_effective = false;
 172}
 173
 174#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
 175
 176int cap_inode_need_killpriv(struct dentry *dentry)
 177{
 178        struct inode *inode = dentry->d_inode;
 179        int error;
 180
 181        if (!inode->i_op || !inode->i_op->getxattr)
 182               return 0;
 183
 184        error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
 185        if (error <= 0)
 186                return 0;
 187        return 1;
 188}
 189
 190int cap_inode_killpriv(struct dentry *dentry)
 191{
 192        struct inode *inode = dentry->d_inode;
 193
 194        if (!inode->i_op || !inode->i_op->removexattr)
 195               return 0;
 196
 197        return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
 198}
 199
 200static inline int cap_from_disk(struct vfs_cap_data *caps,
 201                                struct linux_binprm *bprm,
 202                                int size)
 203{
 204        __u32 magic_etc;
 205
 206        if (size != XATTR_CAPS_SZ)
 207                return -EINVAL;
 208
 209        magic_etc = le32_to_cpu(caps->magic_etc);
 210
 211        switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
 212        case VFS_CAP_REVISION:
 213                if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
 214                        bprm->cap_effective = true;
 215                else
 216                        bprm->cap_effective = false;
 217                bprm->cap_permitted = to_cap_t(le32_to_cpu(caps->permitted));
 218                bprm->cap_inheritable = to_cap_t(le32_to_cpu(caps->inheritable));
 219                return 0;
 220        default:
 221                return -EINVAL;
 222        }
 223}
 224
 225/* Locate any VFS capabilities: */
 226static int get_file_caps(struct linux_binprm *bprm)
 227{
 228        struct dentry *dentry;
 229        int rc = 0;
 230        struct vfs_cap_data incaps;
 231        struct inode *inode;
 232
 233        if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
 234                bprm_clear_caps(bprm);
 235                return 0;
 236        }
 237
 238        dentry = dget(bprm->file->f_dentry);
 239        inode = dentry->d_inode;
 240        if (!inode->i_op || !inode->i_op->getxattr)
 241                goto out;
 242
 243        rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
 244        if (rc > 0) {
 245                if (rc == XATTR_CAPS_SZ)
 246                        rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS,
 247                                                &incaps, XATTR_CAPS_SZ);
 248                else
 249                        rc = -EINVAL;
 250        }
 251        if (rc == -ENODATA || rc == -EOPNOTSUPP) {
 252                /* no data, that's ok */
 253                rc = 0;
 254                goto out;
 255        }
 256        if (rc < 0)
 257                goto out;
 258
 259        rc = cap_from_disk(&incaps, bprm, rc);
 260        if (rc)
 261                printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
 262                        __FUNCTION__, rc, bprm->filename);
 263
 264out:
 265        dput(dentry);
 266        if (rc)
 267                bprm_clear_caps(bprm);
 268
 269        return rc;
 270}
 271
 272#else
 273int cap_inode_need_killpriv(struct dentry *dentry)
 274{
 275        return 0;
 276}
 277
 278int cap_inode_killpriv(struct dentry *dentry)
 279{
 280        return 0;
 281}
 282
 283static inline int get_file_caps(struct linux_binprm *bprm)
 284{
 285        bprm_clear_caps(bprm);
 286        return 0;
 287}
 288#endif
 289
 290int cap_bprm_set_security (struct linux_binprm *bprm)
 291{
 292        int ret;
 293
 294        ret = get_file_caps(bprm);
 295        if (ret)
 296                printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n",
 297                        __FUNCTION__, ret, bprm->filename);
 298
 299        /*  To support inheritance of root-permissions and suid-root
 300         *  executables under compatibility mode, we raise all three
 301         *  capability sets for the file.
 302         *
 303         *  If only the real uid is 0, we only raise the inheritable
 304         *  and permitted sets of the executable file.
 305         */
 306
 307        if (!issecure (SECURE_NOROOT)) {
 308                if (bprm->e_uid == 0 || current->uid == 0) {
 309                        cap_set_full (bprm->cap_inheritable);
 310                        cap_set_full (bprm->cap_permitted);
 311                }
 312                if (bprm->e_uid == 0)
 313                        bprm->cap_effective = true;
 314        }
 315
 316        return ret;
 317}
 318
 319void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
 320{
 321        /* Derived from fs/exec.c:compute_creds. */
 322        kernel_cap_t new_permitted, working;
 323
 324        new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
 325        working = cap_intersect (bprm->cap_inheritable,
 326                                 current->cap_inheritable);
 327        new_permitted = cap_combine (new_permitted, working);
 328
 329        if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
 330            !cap_issubset (new_permitted, current->cap_permitted)) {
 331                set_dumpable(current->mm, suid_dumpable);
 332                current->pdeath_signal = 0;
 333
 334                if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
 335                        if (!capable(CAP_SETUID)) {
 336                                bprm->e_uid = current->uid;
 337                                bprm->e_gid = current->gid;
 338                        }
 339                        if (!capable (CAP_SETPCAP)) {
 340                                new_permitted = cap_intersect (new_permitted,
 341                                                        current->cap_permitted);
 342                        }
 343                }
 344        }
 345
 346        current->suid = current->euid = current->fsuid = bprm->e_uid;
 347        current->sgid = current->egid = current->fsgid = bprm->e_gid;
 348
 349        /* For init, we want to retain the capabilities set
 350         * in the init_task struct. Thus we skip the usual
 351         * capability rules */
 352        if (!is_global_init(current)) {
 353                current->cap_permitted = new_permitted;
 354                current->cap_effective = bprm->cap_effective ?
 355                                new_permitted : 0;
 356        }
 357
 358        /* AUD: Audit candidate if current->cap_effective is set */
 359
 360        current->keep_capabilities = 0;
 361}
 362
 363int cap_bprm_secureexec (struct linux_binprm *bprm)
 364{
 365        if (current->uid != 0) {
 366                if (bprm->cap_effective)
 367                        return 1;
 368                if (!cap_isclear(bprm->cap_permitted))
 369                        return 1;
 370                if (!cap_isclear(bprm->cap_inheritable))
 371                        return 1;
 372        }
 373
 374        return (current->euid != current->uid ||
 375                current->egid != current->gid);
 376}
 377
 378int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
 379                       size_t size, int flags)
 380{
 381        if (!strcmp(name, XATTR_NAME_CAPS)) {
 382                if (!capable(CAP_SETFCAP))
 383                        return -EPERM;
 384                return 0;
 385        } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
 386                     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
 387            !capable(CAP_SYS_ADMIN))
 388                return -EPERM;
 389        return 0;
 390}
 391
 392int cap_inode_removexattr(struct dentry *dentry, char *name)
 393{
 394        if (!strcmp(name, XATTR_NAME_CAPS)) {
 395                if (!capable(CAP_SETFCAP))
 396                        return -EPERM;
 397                return 0;
 398        } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
 399                     sizeof(XATTR_SECURITY_PREFIX) - 1)  &&
 400            !capable(CAP_SYS_ADMIN))
 401                return -EPERM;
 402        return 0;
 403}
 404
 405/* moved from kernel/sys.c. */
 406/* 
 407 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
 408 * a process after a call to setuid, setreuid, or setresuid.
 409 *
 410 *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
 411 *  {r,e,s}uid != 0, the permitted and effective capabilities are
 412 *  cleared.
 413 *
 414 *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
 415 *  capabilities of the process are cleared.
 416 *
 417 *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
 418 *  capabilities are set to the permitted capabilities.
 419 *
 420 *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should 
 421 *  never happen.
 422 *
 423 *  -astor 
 424 *
 425 * cevans - New behaviour, Oct '99
 426 * A process may, via prctl(), elect to keep its capabilities when it
 427 * calls setuid() and switches away from uid==0. Both permitted and
 428 * effective sets will be retained.
 429 * Without this change, it was impossible for a daemon to drop only some
 430 * of its privilege. The call to setuid(!=0) would drop all privileges!
 431 * Keeping uid 0 is not an option because uid 0 owns too many vital
 432 * files..
 433 * Thanks to Olaf Kirch and Peter Benie for spotting this.
 434 */
 435static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
 436                                        int old_suid)
 437{
 438        if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
 439            (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
 440            !current->keep_capabilities) {
 441                cap_clear (current->cap_permitted);
 442                cap_clear (current->cap_effective);
 443        }
 444        if (old_euid == 0 && current->euid != 0) {
 445                cap_clear (current->cap_effective);
 446        }
 447        if (old_euid != 0 && current->euid == 0) {
 448                current->cap_effective = current->cap_permitted;
 449        }
 450}
 451
 452int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
 453                          int flags)
 454{
 455        switch (flags) {
 456        case LSM_SETID_RE:
 457        case LSM_SETID_ID:
 458        case LSM_SETID_RES:
 459                /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
 460                if (!issecure (SECURE_NO_SETUID_FIXUP)) {
 461                        cap_emulate_setxuid (old_ruid, old_euid, old_suid);
 462                }
 463                break;
 464        case LSM_SETID_FS:
 465                {
 466                        uid_t old_fsuid = old_ruid;
 467
 468                        /* Copied from kernel/sys.c:setfsuid. */
 469
 470                        /*
 471                         * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
 472                         *          if not, we might be a bit too harsh here.
 473                         */
 474
 475                        if (!issecure (SECURE_NO_SETUID_FIXUP)) {
 476                                if (old_fsuid == 0 && current->fsuid != 0) {
 477                                        cap_t (current->cap_effective) &=
 478                                            ~CAP_FS_MASK;
 479                                }
 480                                if (old_fsuid != 0 && current->fsuid == 0) {
 481                                        cap_t (current->cap_effective) |=
 482                                            (cap_t (current->cap_permitted) &
 483                                             CAP_FS_MASK);
 484                                }
 485                        }
 486                        break;
 487                }
 488        default:
 489                return -EINVAL;
 490        }
 491
 492        return 0;
 493}
 494
 495#ifdef CONFIG_SECURITY_FILE_CAPABILITIES
 496/*
 497 * Rationale: code calling task_setscheduler, task_setioprio, and
 498 * task_setnice, assumes that
 499 *   . if capable(cap_sys_nice), then those actions should be allowed
 500 *   . if not capable(cap_sys_nice), but acting on your own processes,
 501 *      then those actions should be allowed
 502 * This is insufficient now since you can call code without suid, but
 503 * yet with increased caps.
 504 * So we check for increased caps on the target process.
 505 */
 506static inline int cap_safe_nice(struct task_struct *p)
 507{
 508        if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
 509            !__capable(current, CAP_SYS_NICE))
 510                return -EPERM;
 511        return 0;
 512}
 513
 514int cap_task_setscheduler (struct task_struct *p, int policy,
 515                           struct sched_param *lp)
 516{
 517        return cap_safe_nice(p);
 518}
 519
 520int cap_task_setioprio (struct task_struct *p, int ioprio)
 521{
 522        return cap_safe_nice(p);
 523}
 524
 525int cap_task_setnice (struct task_struct *p, int nice)
 526{
 527        return cap_safe_nice(p);
 528}
 529
 530int cap_task_kill(struct task_struct *p, struct siginfo *info,
 531                                int sig, u32 secid)
 532{
 533        if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
 534                return 0;
 535
 536        /*
 537         * Running a setuid root program raises your capabilities.
 538         * Killing your own setuid root processes was previously
 539         * allowed.
 540         * We must preserve legacy signal behavior in this case.
 541         */
 542        if (p->euid == 0 && p->uid == current->uid)
 543                return 0;
 544
 545        /* sigcont is permitted within same session */
 546        if (sig == SIGCONT && (task_session_nr(current) == task_session_nr(p)))
 547                return 0;
 548
 549        if (secid)
 550                /*
 551                 * Signal sent as a particular user.
 552                 * Capabilities are ignored.  May be wrong, but it's the
 553                 * only thing we can do at the moment.
 554                 * Used only by usb drivers?
 555                 */
 556                return 0;
 557        if (cap_issubset(p->cap_permitted, current->cap_permitted))
 558                return 0;
 559        if (capable(CAP_KILL))
 560                return 0;
 561
 562        return -EPERM;
 563}
 564#else
 565int cap_task_setscheduler (struct task_struct *p, int policy,
 566                           struct sched_param *lp)
 567{
 568        return 0;
 569}
 570int cap_task_setioprio (struct task_struct *p, int ioprio)
 571{
 572        return 0;
 573}
 574int cap_task_setnice (struct task_struct *p, int nice)
 575{
 576        return 0;
 577}
 578int cap_task_kill(struct task_struct *p, struct siginfo *info,
 579                                int sig, u32 secid)
 580{
 581        return 0;
 582}
 583#endif
 584
 585void cap_task_reparent_to_init (struct task_struct *p)
 586{
 587        p->cap_effective = CAP_INIT_EFF_SET;
 588        p->cap_inheritable = CAP_INIT_INH_SET;
 589        p->cap_permitted = CAP_FULL_SET;
 590        p->keep_capabilities = 0;
 591        return;
 592}
 593
 594int cap_syslog (int type)
 595{
 596        if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
 597                return -EPERM;
 598        return 0;
 599}
 600
 601int cap_vm_enough_memory(struct mm_struct *mm, long pages)
 602{
 603        int cap_sys_admin = 0;
 604
 605        if (cap_capable(current, CAP_SYS_ADMIN) == 0)
 606                cap_sys_admin = 1;
 607        return __vm_enough_memory(mm, pages, cap_sys_admin);
 608}
 609
 610