linux/security/security.c
<<
>>
Prefs
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *      This program is free software; you can redistribute it and/or modify
   9 *      it under the terms of the GNU General Public License as published by
  10 *      the Free Software Foundation; either version 2 of the License, or
  11 *      (at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/security.h>
  19
  20
  21/* things that live in dummy.c */
  22extern struct security_operations dummy_security_ops;
  23extern void security_fixup_ops(struct security_operations *ops);
  24
  25struct security_operations *security_ops;       /* Initialized to NULL */
  26unsigned long mmap_min_addr;            /* 0 means no protection */
  27
  28static inline int verify(struct security_operations *ops)
  29{
  30        /* verify the security_operations structure exists */
  31        if (!ops)
  32                return -EINVAL;
  33        security_fixup_ops(ops);
  34        return 0;
  35}
  36
  37static void __init do_security_initcalls(void)
  38{
  39        initcall_t *call;
  40        call = __security_initcall_start;
  41        while (call < __security_initcall_end) {
  42                (*call) ();
  43                call++;
  44        }
  45}
  46
  47/**
  48 * security_init - initializes the security framework
  49 *
  50 * This should be called early in the kernel initialization sequence.
  51 */
  52int __init security_init(void)
  53{
  54        printk(KERN_INFO "Security Framework initialized\n");
  55
  56        if (verify(&dummy_security_ops)) {
  57                printk(KERN_ERR "%s could not verify "
  58                       "dummy_security_ops structure.\n", __FUNCTION__);
  59                return -EIO;
  60        }
  61
  62        security_ops = &dummy_security_ops;
  63        do_security_initcalls();
  64
  65        return 0;
  66}
  67
  68/**
  69 * register_security - registers a security framework with the kernel
  70 * @ops: a pointer to the struct security_options that is to be registered
  71 *
  72 * This function is to allow a security module to register itself with the
  73 * kernel security subsystem.  Some rudimentary checking is done on the @ops
  74 * value passed to this function.
  75 *
  76 * If there is already a security module registered with the kernel,
  77 * an error will be returned.  Otherwise 0 is returned on success.
  78 */
  79int register_security(struct security_operations *ops)
  80{
  81        if (verify(ops)) {
  82                printk(KERN_DEBUG "%s could not verify "
  83                       "security_operations structure.\n", __FUNCTION__);
  84                return -EINVAL;
  85        }
  86
  87        if (security_ops != &dummy_security_ops)
  88                return -EAGAIN;
  89
  90        security_ops = ops;
  91
  92        return 0;
  93}
  94
  95/**
  96 * mod_reg_security - allows security modules to be "stacked"
  97 * @name: a pointer to a string with the name of the security_options to be registered
  98 * @ops: a pointer to the struct security_options that is to be registered
  99 *
 100 * This function allows security modules to be stacked if the currently loaded
 101 * security module allows this to happen.  It passes the @name and @ops to the
 102 * register_security function of the currently loaded security module.
 103 *
 104 * The return value depends on the currently loaded security module, with 0 as
 105 * success.
 106 */
 107int mod_reg_security(const char *name, struct security_operations *ops)
 108{
 109        if (verify(ops)) {
 110                printk(KERN_INFO "%s could not verify "
 111                       "security operations.\n", __FUNCTION__);
 112                return -EINVAL;
 113        }
 114
 115        if (ops == security_ops) {
 116                printk(KERN_INFO "%s security operations "
 117                       "already registered.\n", __FUNCTION__);
 118                return -EINVAL;
 119        }
 120
 121        return security_ops->register_security(name, ops);
 122}
 123
 124/* Security operations */
 125
 126int security_ptrace(struct task_struct *parent, struct task_struct *child)
 127{
 128        return security_ops->ptrace(parent, child);
 129}
 130
 131int security_capget(struct task_struct *target,
 132                     kernel_cap_t *effective,
 133                     kernel_cap_t *inheritable,
 134                     kernel_cap_t *permitted)
 135{
 136        return security_ops->capget(target, effective, inheritable, permitted);
 137}
 138
 139int security_capset_check(struct task_struct *target,
 140                           kernel_cap_t *effective,
 141                           kernel_cap_t *inheritable,
 142                           kernel_cap_t *permitted)
 143{
 144        return security_ops->capset_check(target, effective, inheritable, permitted);
 145}
 146
 147void security_capset_set(struct task_struct *target,
 148                          kernel_cap_t *effective,
 149                          kernel_cap_t *inheritable,
 150                          kernel_cap_t *permitted)
 151{
 152        security_ops->capset_set(target, effective, inheritable, permitted);
 153}
 154
 155int security_capable(struct task_struct *tsk, int cap)
 156{
 157        return security_ops->capable(tsk, cap);
 158}
 159
 160int security_acct(struct file *file)
 161{
 162        return security_ops->acct(file);
 163}
 164
 165int security_sysctl(struct ctl_table *table, int op)
 166{
 167        return security_ops->sysctl(table, op);
 168}
 169
 170int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 171{
 172        return security_ops->quotactl(cmds, type, id, sb);
 173}
 174
 175int security_quota_on(struct dentry *dentry)
 176{
 177        return security_ops->quota_on(dentry);
 178}
 179
 180int security_syslog(int type)
 181{
 182        return security_ops->syslog(type);
 183}
 184
 185int security_settime(struct timespec *ts, struct timezone *tz)
 186{
 187        return security_ops->settime(ts, tz);
 188}
 189
 190int security_vm_enough_memory(long pages)
 191{
 192        return security_ops->vm_enough_memory(current->mm, pages);
 193}
 194
 195int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 196{
 197        return security_ops->vm_enough_memory(mm, pages);
 198}
 199
 200int security_bprm_alloc(struct linux_binprm *bprm)
 201{
 202        return security_ops->bprm_alloc_security(bprm);
 203}
 204
 205void security_bprm_free(struct linux_binprm *bprm)
 206{
 207        security_ops->bprm_free_security(bprm);
 208}
 209
 210void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
 211{
 212        security_ops->bprm_apply_creds(bprm, unsafe);
 213}
 214
 215void security_bprm_post_apply_creds(struct linux_binprm *bprm)
 216{
 217        security_ops->bprm_post_apply_creds(bprm);
 218}
 219
 220int security_bprm_set(struct linux_binprm *bprm)
 221{
 222        return security_ops->bprm_set_security(bprm);
 223}
 224
 225int security_bprm_check(struct linux_binprm *bprm)
 226{
 227        return security_ops->bprm_check_security(bprm);
 228}
 229
 230int security_bprm_secureexec(struct linux_binprm *bprm)
 231{
 232        return security_ops->bprm_secureexec(bprm);
 233}
 234
 235int security_sb_alloc(struct super_block *sb)
 236{
 237        return security_ops->sb_alloc_security(sb);
 238}
 239
 240void security_sb_free(struct super_block *sb)
 241{
 242        security_ops->sb_free_security(sb);
 243}
 244
 245int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
 246{
 247        return security_ops->sb_copy_data(type, orig, copy);
 248}
 249
 250int security_sb_kern_mount(struct super_block *sb, void *data)
 251{
 252        return security_ops->sb_kern_mount(sb, data);
 253}
 254
 255int security_sb_statfs(struct dentry *dentry)
 256{
 257        return security_ops->sb_statfs(dentry);
 258}
 259
 260int security_sb_mount(char *dev_name, struct nameidata *nd,
 261                       char *type, unsigned long flags, void *data)
 262{
 263        return security_ops->sb_mount(dev_name, nd, type, flags, data);
 264}
 265
 266int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
 267{
 268        return security_ops->sb_check_sb(mnt, nd);
 269}
 270
 271int security_sb_umount(struct vfsmount *mnt, int flags)
 272{
 273        return security_ops->sb_umount(mnt, flags);
 274}
 275
 276void security_sb_umount_close(struct vfsmount *mnt)
 277{
 278        security_ops->sb_umount_close(mnt);
 279}
 280
 281void security_sb_umount_busy(struct vfsmount *mnt)
 282{
 283        security_ops->sb_umount_busy(mnt);
 284}
 285
 286void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
 287{
 288        security_ops->sb_post_remount(mnt, flags, data);
 289}
 290
 291void security_sb_post_mountroot(void)
 292{
 293        security_ops->sb_post_mountroot();
 294}
 295
 296void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
 297{
 298        security_ops->sb_post_addmount(mnt, mountpoint_nd);
 299}
 300
 301int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
 302{
 303        return security_ops->sb_pivotroot(old_nd, new_nd);
 304}
 305
 306void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
 307{
 308        security_ops->sb_post_pivotroot(old_nd, new_nd);
 309}
 310
 311int security_inode_alloc(struct inode *inode)
 312{
 313        inode->i_security = NULL;
 314        return security_ops->inode_alloc_security(inode);
 315}
 316
 317void security_inode_free(struct inode *inode)
 318{
 319        security_ops->inode_free_security(inode);
 320}
 321
 322int security_inode_init_security(struct inode *inode, struct inode *dir,
 323                                  char **name, void **value, size_t *len)
 324{
 325        if (unlikely(IS_PRIVATE(inode)))
 326                return -EOPNOTSUPP;
 327        return security_ops->inode_init_security(inode, dir, name, value, len);
 328}
 329EXPORT_SYMBOL(security_inode_init_security);
 330
 331int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
 332{
 333        if (unlikely(IS_PRIVATE(dir)))
 334                return 0;
 335        return security_ops->inode_create(dir, dentry, mode);
 336}
 337
 338int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 339                         struct dentry *new_dentry)
 340{
 341        if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 342                return 0;
 343        return security_ops->inode_link(old_dentry, dir, new_dentry);
 344}
 345
 346int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 347{
 348        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 349                return 0;
 350        return security_ops->inode_unlink(dir, dentry);
 351}
 352
 353int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 354                            const char *old_name)
 355{
 356        if (unlikely(IS_PRIVATE(dir)))
 357                return 0;
 358        return security_ops->inode_symlink(dir, dentry, old_name);
 359}
 360
 361int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
 362{
 363        if (unlikely(IS_PRIVATE(dir)))
 364                return 0;
 365        return security_ops->inode_mkdir(dir, dentry, mode);
 366}
 367
 368int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 369{
 370        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 371                return 0;
 372        return security_ops->inode_rmdir(dir, dentry);
 373}
 374
 375int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
 376{
 377        if (unlikely(IS_PRIVATE(dir)))
 378                return 0;
 379        return security_ops->inode_mknod(dir, dentry, mode, dev);
 380}
 381
 382int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 383                           struct inode *new_dir, struct dentry *new_dentry)
 384{
 385        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 386            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 387                return 0;
 388        return security_ops->inode_rename(old_dir, old_dentry,
 389                                           new_dir, new_dentry);
 390}
 391
 392int security_inode_readlink(struct dentry *dentry)
 393{
 394        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 395                return 0;
 396        return security_ops->inode_readlink(dentry);
 397}
 398
 399int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 400{
 401        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 402                return 0;
 403        return security_ops->inode_follow_link(dentry, nd);
 404}
 405
 406int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
 407{
 408        if (unlikely(IS_PRIVATE(inode)))
 409                return 0;
 410        return security_ops->inode_permission(inode, mask, nd);
 411}
 412
 413int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 414{
 415        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 416                return 0;
 417        return security_ops->inode_setattr(dentry, attr);
 418}
 419
 420int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 421{
 422        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 423                return 0;
 424        return security_ops->inode_getattr(mnt, dentry);
 425}
 426
 427void security_inode_delete(struct inode *inode)
 428{
 429        if (unlikely(IS_PRIVATE(inode)))
 430                return;
 431        security_ops->inode_delete(inode);
 432}
 433
 434int security_inode_setxattr(struct dentry *dentry, char *name,
 435                             void *value, size_t size, int flags)
 436{
 437        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 438                return 0;
 439        return security_ops->inode_setxattr(dentry, name, value, size, flags);
 440}
 441
 442void security_inode_post_setxattr(struct dentry *dentry, char *name,
 443                                   void *value, size_t size, int flags)
 444{
 445        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 446                return;
 447        security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 448}
 449
 450int security_inode_getxattr(struct dentry *dentry, char *name)
 451{
 452        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 453                return 0;
 454        return security_ops->inode_getxattr(dentry, name);
 455}
 456
 457int security_inode_listxattr(struct dentry *dentry)
 458{
 459        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 460                return 0;
 461        return security_ops->inode_listxattr(dentry);
 462}
 463
 464int security_inode_removexattr(struct dentry *dentry, char *name)
 465{
 466        if (unlikely(IS_PRIVATE(dentry->d_inode)))
 467                return 0;
 468        return security_ops->inode_removexattr(dentry, name);
 469}
 470
 471int security_inode_need_killpriv(struct dentry *dentry)
 472{
 473        return security_ops->inode_need_killpriv(dentry);
 474}
 475
 476int security_inode_killpriv(struct dentry *dentry)
 477{
 478        return security_ops->inode_killpriv(dentry);
 479}
 480
 481int security_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err)
 482{
 483        if (unlikely(IS_PRIVATE(inode)))
 484                return 0;
 485        return security_ops->inode_getsecurity(inode, name, buffer, size, err);
 486}
 487
 488int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 489{
 490        if (unlikely(IS_PRIVATE(inode)))
 491                return 0;
 492        return security_ops->inode_setsecurity(inode, name, value, size, flags);
 493}
 494
 495int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 496{
 497        if (unlikely(IS_PRIVATE(inode)))
 498                return 0;
 499        return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 500}
 501
 502int security_file_permission(struct file *file, int mask)
 503{
 504        return security_ops->file_permission(file, mask);
 505}
 506
 507int security_file_alloc(struct file *file)
 508{
 509        return security_ops->file_alloc_security(file);
 510}
 511
 512void security_file_free(struct file *file)
 513{
 514        security_ops->file_free_security(file);
 515}
 516
 517int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 518{
 519        return security_ops->file_ioctl(file, cmd, arg);
 520}
 521
 522int security_file_mmap(struct file *file, unsigned long reqprot,
 523                        unsigned long prot, unsigned long flags,
 524                        unsigned long addr, unsigned long addr_only)
 525{
 526        return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
 527}
 528
 529int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 530                            unsigned long prot)
 531{
 532        return security_ops->file_mprotect(vma, reqprot, prot);
 533}
 534
 535int security_file_lock(struct file *file, unsigned int cmd)
 536{
 537        return security_ops->file_lock(file, cmd);
 538}
 539
 540int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 541{
 542        return security_ops->file_fcntl(file, cmd, arg);
 543}
 544
 545int security_file_set_fowner(struct file *file)
 546{
 547        return security_ops->file_set_fowner(file);
 548}
 549
 550int security_file_send_sigiotask(struct task_struct *tsk,
 551                                  struct fown_struct *fown, int sig)
 552{
 553        return security_ops->file_send_sigiotask(tsk, fown, sig);
 554}
 555
 556int security_file_receive(struct file *file)
 557{
 558        return security_ops->file_receive(file);
 559}
 560
 561int security_dentry_open(struct file *file)
 562{
 563        return security_ops->dentry_open(file);
 564}
 565
 566int security_task_create(unsigned long clone_flags)
 567{
 568        return security_ops->task_create(clone_flags);
 569}
 570
 571int security_task_alloc(struct task_struct *p)
 572{
 573        return security_ops->task_alloc_security(p);
 574}
 575
 576void security_task_free(struct task_struct *p)
 577{
 578        security_ops->task_free_security(p);
 579}
 580
 581int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
 582{
 583        return security_ops->task_setuid(id0, id1, id2, flags);
 584}
 585
 586int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
 587                               uid_t old_suid, int flags)
 588{
 589        return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
 590}
 591
 592int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
 593{
 594        return security_ops->task_setgid(id0, id1, id2, flags);
 595}
 596
 597int security_task_setpgid(struct task_struct *p, pid_t pgid)
 598{
 599        return security_ops->task_setpgid(p, pgid);
 600}
 601
 602int security_task_getpgid(struct task_struct *p)
 603{
 604        return security_ops->task_getpgid(p);
 605}
 606
 607int security_task_getsid(struct task_struct *p)
 608{
 609        return security_ops->task_getsid(p);
 610}
 611
 612void security_task_getsecid(struct task_struct *p, u32 *secid)
 613{
 614        security_ops->task_getsecid(p, secid);
 615}
 616EXPORT_SYMBOL(security_task_getsecid);
 617
 618int security_task_setgroups(struct group_info *group_info)
 619{
 620        return security_ops->task_setgroups(group_info);
 621}
 622
 623int security_task_setnice(struct task_struct *p, int nice)
 624{
 625        return security_ops->task_setnice(p, nice);
 626}
 627
 628int security_task_setioprio(struct task_struct *p, int ioprio)
 629{
 630        return security_ops->task_setioprio(p, ioprio);
 631}
 632
 633int security_task_getioprio(struct task_struct *p)
 634{
 635        return security_ops->task_getioprio(p);
 636}
 637
 638int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
 639{
 640        return security_ops->task_setrlimit(resource, new_rlim);
 641}
 642
 643int security_task_setscheduler(struct task_struct *p,
 644                                int policy, struct sched_param *lp)
 645{
 646        return security_ops->task_setscheduler(p, policy, lp);
 647}
 648
 649int security_task_getscheduler(struct task_struct *p)
 650{
 651        return security_ops->task_getscheduler(p);
 652}
 653
 654int security_task_movememory(struct task_struct *p)
 655{
 656        return security_ops->task_movememory(p);
 657}
 658
 659int security_task_kill(struct task_struct *p, struct siginfo *info,
 660                        int sig, u32 secid)
 661{
 662        return security_ops->task_kill(p, info, sig, secid);
 663}
 664
 665int security_task_wait(struct task_struct *p)
 666{
 667        return security_ops->task_wait(p);
 668}
 669
 670int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 671                         unsigned long arg4, unsigned long arg5)
 672{
 673        return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 674}
 675
 676void security_task_reparent_to_init(struct task_struct *p)
 677{
 678        security_ops->task_reparent_to_init(p);
 679}
 680
 681void security_task_to_inode(struct task_struct *p, struct inode *inode)
 682{
 683        security_ops->task_to_inode(p, inode);
 684}
 685
 686int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 687{
 688        return security_ops->ipc_permission(ipcp, flag);
 689}
 690
 691int security_msg_msg_alloc(struct msg_msg *msg)
 692{
 693        return security_ops->msg_msg_alloc_security(msg);
 694}
 695
 696void security_msg_msg_free(struct msg_msg *msg)
 697{
 698        security_ops->msg_msg_free_security(msg);
 699}
 700
 701int security_msg_queue_alloc(struct msg_queue *msq)
 702{
 703        return security_ops->msg_queue_alloc_security(msq);
 704}
 705
 706void security_msg_queue_free(struct msg_queue *msq)
 707{
 708        security_ops->msg_queue_free_security(msq);
 709}
 710
 711int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 712{
 713        return security_ops->msg_queue_associate(msq, msqflg);
 714}
 715
 716int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 717{
 718        return security_ops->msg_queue_msgctl(msq, cmd);
 719}
 720
 721int security_msg_queue_msgsnd(struct msg_queue *msq,
 722                               struct msg_msg *msg, int msqflg)
 723{
 724        return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 725}
 726
 727int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 728                               struct task_struct *target, long type, int mode)
 729{
 730        return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 731}
 732
 733int security_shm_alloc(struct shmid_kernel *shp)
 734{
 735        return security_ops->shm_alloc_security(shp);
 736}
 737
 738void security_shm_free(struct shmid_kernel *shp)
 739{
 740        security_ops->shm_free_security(shp);
 741}
 742
 743int security_shm_associate(struct shmid_kernel *shp, int shmflg)
 744{
 745        return security_ops->shm_associate(shp, shmflg);
 746}
 747
 748int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
 749{
 750        return security_ops->shm_shmctl(shp, cmd);
 751}
 752
 753int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
 754{
 755        return security_ops->shm_shmat(shp, shmaddr, shmflg);
 756}
 757
 758int security_sem_alloc(struct sem_array *sma)
 759{
 760        return security_ops->sem_alloc_security(sma);
 761}
 762
 763void security_sem_free(struct sem_array *sma)
 764{
 765        security_ops->sem_free_security(sma);
 766}
 767
 768int security_sem_associate(struct sem_array *sma, int semflg)
 769{
 770        return security_ops->sem_associate(sma, semflg);
 771}
 772
 773int security_sem_semctl(struct sem_array *sma, int cmd)
 774{
 775        return security_ops->sem_semctl(sma, cmd);
 776}
 777
 778int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
 779                        unsigned nsops, int alter)
 780{
 781        return security_ops->sem_semop(sma, sops, nsops, alter);
 782}
 783
 784void security_d_instantiate(struct dentry *dentry, struct inode *inode)
 785{
 786        if (unlikely(inode && IS_PRIVATE(inode)))
 787                return;
 788        security_ops->d_instantiate(dentry, inode);
 789}
 790EXPORT_SYMBOL(security_d_instantiate);
 791
 792int security_getprocattr(struct task_struct *p, char *name, char **value)
 793{
 794        return security_ops->getprocattr(p, name, value);
 795}
 796
 797int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
 798{
 799        return security_ops->setprocattr(p, name, value, size);
 800}
 801
 802int security_netlink_send(struct sock *sk, struct sk_buff *skb)
 803{
 804        return security_ops->netlink_send(sk, skb);
 805}
 806
 807int security_netlink_recv(struct sk_buff *skb, int cap)
 808{
 809        return security_ops->netlink_recv(skb, cap);
 810}
 811EXPORT_SYMBOL(security_netlink_recv);
 812
 813int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
 814{
 815        return security_ops->secid_to_secctx(secid, secdata, seclen);
 816}
 817EXPORT_SYMBOL(security_secid_to_secctx);
 818
 819void security_release_secctx(char *secdata, u32 seclen)
 820{
 821        return security_ops->release_secctx(secdata, seclen);
 822}
 823EXPORT_SYMBOL(security_release_secctx);
 824
 825#ifdef CONFIG_SECURITY_NETWORK
 826
 827int security_unix_stream_connect(struct socket *sock, struct socket *other,
 828                                 struct sock *newsk)
 829{
 830        return security_ops->unix_stream_connect(sock, other, newsk);
 831}
 832EXPORT_SYMBOL(security_unix_stream_connect);
 833
 834int security_unix_may_send(struct socket *sock,  struct socket *other)
 835{
 836        return security_ops->unix_may_send(sock, other);
 837}
 838EXPORT_SYMBOL(security_unix_may_send);
 839
 840int security_socket_create(int family, int type, int protocol, int kern)
 841{
 842        return security_ops->socket_create(family, type, protocol, kern);
 843}
 844
 845int security_socket_post_create(struct socket *sock, int family,
 846                                int type, int protocol, int kern)
 847{
 848        return security_ops->socket_post_create(sock, family, type,
 849                                                protocol, kern);
 850}
 851
 852int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
 853{
 854        return security_ops->socket_bind(sock, address, addrlen);
 855}
 856
 857int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 858{
 859        return security_ops->socket_connect(sock, address, addrlen);
 860}
 861
 862int security_socket_listen(struct socket *sock, int backlog)
 863{
 864        return security_ops->socket_listen(sock, backlog);
 865}
 866
 867int security_socket_accept(struct socket *sock, struct socket *newsock)
 868{
 869        return security_ops->socket_accept(sock, newsock);
 870}
 871
 872void security_socket_post_accept(struct socket *sock, struct socket *newsock)
 873{
 874        security_ops->socket_post_accept(sock, newsock);
 875}
 876
 877int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
 878{
 879        return security_ops->socket_sendmsg(sock, msg, size);
 880}
 881
 882int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
 883                            int size, int flags)
 884{
 885        return security_ops->socket_recvmsg(sock, msg, size, flags);
 886}
 887
 888int security_socket_getsockname(struct socket *sock)
 889{
 890        return security_ops->socket_getsockname(sock);
 891}
 892
 893int security_socket_getpeername(struct socket *sock)
 894{
 895        return security_ops->socket_getpeername(sock);
 896}
 897
 898int security_socket_getsockopt(struct socket *sock, int level, int optname)
 899{
 900        return security_ops->socket_getsockopt(sock, level, optname);
 901}
 902
 903int security_socket_setsockopt(struct socket *sock, int level, int optname)
 904{
 905        return security_ops->socket_setsockopt(sock, level, optname);
 906}
 907
 908int security_socket_shutdown(struct socket *sock, int how)
 909{
 910        return security_ops->socket_shutdown(sock, how);
 911}
 912
 913int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
 914{
 915        return security_ops->socket_sock_rcv_skb(sk, skb);
 916}
 917EXPORT_SYMBOL(security_sock_rcv_skb);
 918
 919int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
 920                                      int __user *optlen, unsigned len)
 921{
 922        return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
 923}
 924
 925int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
 926{
 927        return security_ops->socket_getpeersec_dgram(sock, skb, secid);
 928}
 929EXPORT_SYMBOL(security_socket_getpeersec_dgram);
 930
 931int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
 932{
 933        return security_ops->sk_alloc_security(sk, family, priority);
 934}
 935
 936void security_sk_free(struct sock *sk)
 937{
 938        return security_ops->sk_free_security(sk);
 939}
 940
 941void security_sk_clone(const struct sock *sk, struct sock *newsk)
 942{
 943        return security_ops->sk_clone_security(sk, newsk);
 944}
 945
 946void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
 947{
 948        security_ops->sk_getsecid(sk, &fl->secid);
 949}
 950EXPORT_SYMBOL(security_sk_classify_flow);
 951
 952void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
 953{
 954        security_ops->req_classify_flow(req, fl);
 955}
 956EXPORT_SYMBOL(security_req_classify_flow);
 957
 958void security_sock_graft(struct sock *sk, struct socket *parent)
 959{
 960        security_ops->sock_graft(sk, parent);
 961}
 962EXPORT_SYMBOL(security_sock_graft);
 963
 964int security_inet_conn_request(struct sock *sk,
 965                        struct sk_buff *skb, struct request_sock *req)
 966{
 967        return security_ops->inet_conn_request(sk, skb, req);
 968}
 969EXPORT_SYMBOL(security_inet_conn_request);
 970
 971void security_inet_csk_clone(struct sock *newsk,
 972                        const struct request_sock *req)
 973{
 974        security_ops->inet_csk_clone(newsk, req);
 975}
 976
 977void security_inet_conn_established(struct sock *sk,
 978                        struct sk_buff *skb)
 979{
 980        security_ops->inet_conn_established(sk, skb);
 981}
 982
 983#endif  /* CONFIG_SECURITY_NETWORK */
 984
 985#ifdef CONFIG_SECURITY_NETWORK_XFRM
 986
 987int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
 988{
 989        return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
 990}
 991EXPORT_SYMBOL(security_xfrm_policy_alloc);
 992
 993int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
 994{
 995        return security_ops->xfrm_policy_clone_security(old, new);
 996}
 997
 998void security_xfrm_policy_free(struct xfrm_policy *xp)
 999{
1000        security_ops->xfrm_policy_free_security(xp);
1001}
1002EXPORT_SYMBOL(security_xfrm_policy_free);
1003
1004int security_xfrm_policy_delete(struct xfrm_policy *xp)
1005{
1006        return security_ops->xfrm_policy_delete_security(xp);
1007}
1008
1009int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1010{
1011        return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1012}
1013EXPORT_SYMBOL(security_xfrm_state_alloc);
1014
1015int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1016                                      struct xfrm_sec_ctx *polsec, u32 secid)
1017{
1018        if (!polsec)
1019                return 0;
1020        /*
1021         * We want the context to be taken from secid which is usually
1022         * from the sock.
1023         */
1024        return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1025}
1026
1027int security_xfrm_state_delete(struct xfrm_state *x)
1028{
1029        return security_ops->xfrm_state_delete_security(x);
1030}
1031EXPORT_SYMBOL(security_xfrm_state_delete);
1032
1033void security_xfrm_state_free(struct xfrm_state *x)
1034{
1035        security_ops->xfrm_state_free_security(x);
1036}
1037
1038int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1039{
1040        return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1041}
1042
1043int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1044                                       struct xfrm_policy *xp, struct flowi *fl)
1045{
1046        return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1047}
1048
1049int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1050{
1051        return security_ops->xfrm_decode_session(skb, secid, 1);
1052}
1053
1054void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1055{
1056        int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1057
1058        BUG_ON(rc);
1059}
1060EXPORT_SYMBOL(security_skb_classify_flow);
1061
1062#endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1063
1064#ifdef CONFIG_KEYS
1065
1066int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1067{
1068        return security_ops->key_alloc(key, tsk, flags);
1069}
1070
1071void security_key_free(struct key *key)
1072{
1073        security_ops->key_free(key);
1074}
1075
1076int security_key_permission(key_ref_t key_ref,
1077                            struct task_struct *context, key_perm_t perm)
1078{
1079        return security_ops->key_permission(key_ref, context, perm);
1080}
1081
1082#endif  /* CONFIG_KEYS */
1083