linux/sound/core/memalloc.c
<<
>>
Prefs
   1/*
   2 *  Copyright (c) by Jaroslav Kysela <perex@perex.cz>
   3 *                   Takashi Iwai <tiwai@suse.de>
   4 * 
   5 *  Generic memory allocators
   6 *
   7 *
   8 *   This program is free software; you can redistribute it and/or modify
   9 *   it under the terms of the GNU General Public License as published by
  10 *   the Free Software Foundation; either version 2 of the License, or
  11 *   (at your option) any later version.
  12 *
  13 *   This program is distributed in the hope that it will be useful,
  14 *   but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 *   GNU General Public License for more details.
  17 *
  18 *   You should have received a copy of the GNU General Public License
  19 *   along with this program; if not, write to the Free Software
  20 *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  21 *
  22 */
  23
  24#include <linux/module.h>
  25#include <linux/proc_fs.h>
  26#include <linux/init.h>
  27#include <linux/pci.h>
  28#include <linux/slab.h>
  29#include <linux/mm.h>
  30#include <linux/seq_file.h>
  31#include <asm/uaccess.h>
  32#include <linux/dma-mapping.h>
  33#include <linux/moduleparam.h>
  34#include <linux/mutex.h>
  35#include <sound/memalloc.h>
  36#ifdef CONFIG_SBUS
  37#include <asm/sbus.h>
  38#endif
  39
  40
  41MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@perex.cz>");
  42MODULE_DESCRIPTION("Memory allocator for ALSA system.");
  43MODULE_LICENSE("GPL");
  44
  45
  46/*
  47 */
  48
  49void *snd_malloc_sgbuf_pages(struct device *device,
  50                             size_t size, struct snd_dma_buffer *dmab,
  51                             size_t *res_size);
  52int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
  53
  54/*
  55 */
  56
  57static DEFINE_MUTEX(list_mutex);
  58static LIST_HEAD(mem_list_head);
  59
  60/* buffer preservation list */
  61struct snd_mem_list {
  62        struct snd_dma_buffer buffer;
  63        unsigned int id;
  64        struct list_head list;
  65};
  66
  67/* id for pre-allocated buffers */
  68#define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
  69
  70#ifdef CONFIG_SND_DEBUG
  71#define __ASTRING__(x) #x
  72#define snd_assert(expr, args...) do {\
  73        if (!(expr)) {\
  74                printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
  75                args;\
  76        }\
  77} while (0)
  78#else
  79#define snd_assert(expr, args...) /**/
  80#endif
  81
  82/*
  83 *  Hacks
  84 */
  85
  86#if defined(__i386__)
  87/*
  88 * A hack to allocate large buffers via dma_alloc_coherent()
  89 *
  90 * since dma_alloc_coherent always tries GFP_DMA when the requested
  91 * pci memory region is below 32bit, it happens quite often that even
  92 * 2 order of pages cannot be allocated.
  93 *
  94 * so in the following, we allocate at first without dma_mask, so that
  95 * allocation will be done without GFP_DMA.  if the area doesn't match
  96 * with the requested region, then realloate with the original dma_mask
  97 * again.
  98 *
  99 * Really, we want to move this type of thing into dma_alloc_coherent()
 100 * so dma_mask doesn't have to be messed with.
 101 */
 102
 103static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
 104                                         dma_addr_t *dma_handle,
 105                                         gfp_t flags)
 106{
 107        void *ret;
 108        u64 dma_mask, coherent_dma_mask;
 109
 110        if (dev == NULL || !dev->dma_mask)
 111                return dma_alloc_coherent(dev, size, dma_handle, flags);
 112        dma_mask = *dev->dma_mask;
 113        coherent_dma_mask = dev->coherent_dma_mask;
 114        *dev->dma_mask = 0xffffffff;    /* do without masking */
 115        dev->coherent_dma_mask = 0xffffffff;    /* do without masking */
 116        ret = dma_alloc_coherent(dev, size, dma_handle, flags);
 117        *dev->dma_mask = dma_mask;      /* restore */
 118        dev->coherent_dma_mask = coherent_dma_mask;     /* restore */
 119        if (ret) {
 120                /* obtained address is out of range? */
 121                if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
 122                        /* reallocate with the proper mask */
 123                        dma_free_coherent(dev, size, ret, *dma_handle);
 124                        ret = dma_alloc_coherent(dev, size, dma_handle, flags);
 125                }
 126        } else {
 127                /* wish to success now with the proper mask... */
 128                if (dma_mask != 0xffffffffUL) {
 129                        /* allocation with GFP_ATOMIC to avoid the long stall */
 130                        flags &= ~GFP_KERNEL;
 131                        flags |= GFP_ATOMIC;
 132                        ret = dma_alloc_coherent(dev, size, dma_handle, flags);
 133                }
 134        }
 135        return ret;
 136}
 137
 138/* redefine dma_alloc_coherent for some architectures */
 139#undef dma_alloc_coherent
 140#define dma_alloc_coherent snd_dma_hack_alloc_coherent
 141
 142#endif /* arch */
 143
 144/*
 145 *
 146 *  Generic memory allocators
 147 *
 148 */
 149
 150static long snd_allocated_pages; /* holding the number of allocated pages */
 151
 152static inline void inc_snd_pages(int order)
 153{
 154        snd_allocated_pages += 1 << order;
 155}
 156
 157static inline void dec_snd_pages(int order)
 158{
 159        snd_allocated_pages -= 1 << order;
 160}
 161
 162/**
 163 * snd_malloc_pages - allocate pages with the given size
 164 * @size: the size to allocate in bytes
 165 * @gfp_flags: the allocation conditions, GFP_XXX
 166 *
 167 * Allocates the physically contiguous pages with the given size.
 168 *
 169 * Returns the pointer of the buffer, or NULL if no enoguh memory.
 170 */
 171void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
 172{
 173        int pg;
 174        void *res;
 175
 176        snd_assert(size > 0, return NULL);
 177        snd_assert(gfp_flags != 0, return NULL);
 178        gfp_flags |= __GFP_COMP;        /* compound page lets parts be mapped */
 179        pg = get_order(size);
 180        if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
 181                inc_snd_pages(pg);
 182        return res;
 183}
 184
 185/**
 186 * snd_free_pages - release the pages
 187 * @ptr: the buffer pointer to release
 188 * @size: the allocated buffer size
 189 *
 190 * Releases the buffer allocated via snd_malloc_pages().
 191 */
 192void snd_free_pages(void *ptr, size_t size)
 193{
 194        int pg;
 195
 196        if (ptr == NULL)
 197                return;
 198        pg = get_order(size);
 199        dec_snd_pages(pg);
 200        free_pages((unsigned long) ptr, pg);
 201}
 202
 203/*
 204 *
 205 *  Bus-specific memory allocators
 206 *
 207 */
 208
 209#ifdef CONFIG_HAS_DMA
 210/* allocate the coherent DMA pages */
 211static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
 212{
 213        int pg;
 214        void *res;
 215        gfp_t gfp_flags;
 216
 217        snd_assert(size > 0, return NULL);
 218        snd_assert(dma != NULL, return NULL);
 219        pg = get_order(size);
 220        gfp_flags = GFP_KERNEL
 221                | __GFP_COMP    /* compound page lets parts be mapped */
 222                | __GFP_NORETRY /* don't trigger OOM-killer */
 223                | __GFP_NOWARN; /* no stack trace print - this call is non-critical */
 224        res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
 225        if (res != NULL)
 226                inc_snd_pages(pg);
 227
 228        return res;
 229}
 230
 231/* free the coherent DMA pages */
 232static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
 233                               dma_addr_t dma)
 234{
 235        int pg;
 236
 237        if (ptr == NULL)
 238                return;
 239        pg = get_order(size);
 240        dec_snd_pages(pg);
 241        dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
 242}
 243#endif /* CONFIG_HAS_DMA */
 244
 245#ifdef CONFIG_SBUS
 246
 247static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
 248                                   dma_addr_t *dma_addr)
 249{
 250        struct sbus_dev *sdev = (struct sbus_dev *)dev;
 251        int pg;
 252        void *res;
 253
 254        snd_assert(size > 0, return NULL);
 255        snd_assert(dma_addr != NULL, return NULL);
 256        pg = get_order(size);
 257        res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
 258        if (res != NULL)
 259                inc_snd_pages(pg);
 260        return res;
 261}
 262
 263static void snd_free_sbus_pages(struct device *dev, size_t size,
 264                                void *ptr, dma_addr_t dma_addr)
 265{
 266        struct sbus_dev *sdev = (struct sbus_dev *)dev;
 267        int pg;
 268
 269        if (ptr == NULL)
 270                return;
 271        pg = get_order(size);
 272        dec_snd_pages(pg);
 273        sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
 274}
 275
 276#endif /* CONFIG_SBUS */
 277
 278/*
 279 *
 280 *  ALSA generic memory management
 281 *
 282 */
 283
 284
 285/**
 286 * snd_dma_alloc_pages - allocate the buffer area according to the given type
 287 * @type: the DMA buffer type
 288 * @device: the device pointer
 289 * @size: the buffer size to allocate
 290 * @dmab: buffer allocation record to store the allocated data
 291 *
 292 * Calls the memory-allocator function for the corresponding
 293 * buffer type.
 294 * 
 295 * Returns zero if the buffer with the given size is allocated successfuly,
 296 * other a negative value at error.
 297 */
 298int snd_dma_alloc_pages(int type, struct device *device, size_t size,
 299                        struct snd_dma_buffer *dmab)
 300{
 301        snd_assert(size > 0, return -ENXIO);
 302        snd_assert(dmab != NULL, return -ENXIO);
 303
 304        dmab->dev.type = type;
 305        dmab->dev.dev = device;
 306        dmab->bytes = 0;
 307        switch (type) {
 308        case SNDRV_DMA_TYPE_CONTINUOUS:
 309                dmab->area = snd_malloc_pages(size, (unsigned long)device);
 310                dmab->addr = 0;
 311                break;
 312#ifdef CONFIG_SBUS
 313        case SNDRV_DMA_TYPE_SBUS:
 314                dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
 315                break;
 316#endif
 317#ifdef CONFIG_HAS_DMA
 318        case SNDRV_DMA_TYPE_DEV:
 319                dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
 320                break;
 321        case SNDRV_DMA_TYPE_DEV_SG:
 322                snd_malloc_sgbuf_pages(device, size, dmab, NULL);
 323                break;
 324#endif
 325        default:
 326                printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
 327                dmab->area = NULL;
 328                dmab->addr = 0;
 329                return -ENXIO;
 330        }
 331        if (! dmab->area)
 332                return -ENOMEM;
 333        dmab->bytes = size;
 334        return 0;
 335}
 336
 337/**
 338 * snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
 339 * @type: the DMA buffer type
 340 * @device: the device pointer
 341 * @size: the buffer size to allocate
 342 * @dmab: buffer allocation record to store the allocated data
 343 *
 344 * Calls the memory-allocator function for the corresponding
 345 * buffer type.  When no space is left, this function reduces the size and
 346 * tries to allocate again.  The size actually allocated is stored in
 347 * res_size argument.
 348 * 
 349 * Returns zero if the buffer with the given size is allocated successfuly,
 350 * other a negative value at error.
 351 */
 352int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
 353                                 struct snd_dma_buffer *dmab)
 354{
 355        int err;
 356
 357        snd_assert(size > 0, return -ENXIO);
 358        snd_assert(dmab != NULL, return -ENXIO);
 359
 360        while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
 361                if (err != -ENOMEM)
 362                        return err;
 363                size >>= 1;
 364                if (size <= PAGE_SIZE)
 365                        return -ENOMEM;
 366        }
 367        if (! dmab->area)
 368                return -ENOMEM;
 369        return 0;
 370}
 371
 372
 373/**
 374 * snd_dma_free_pages - release the allocated buffer
 375 * @dmab: the buffer allocation record to release
 376 *
 377 * Releases the allocated buffer via snd_dma_alloc_pages().
 378 */
 379void snd_dma_free_pages(struct snd_dma_buffer *dmab)
 380{
 381        switch (dmab->dev.type) {
 382        case SNDRV_DMA_TYPE_CONTINUOUS:
 383                snd_free_pages(dmab->area, dmab->bytes);
 384                break;
 385#ifdef CONFIG_SBUS
 386        case SNDRV_DMA_TYPE_SBUS:
 387                snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
 388                break;
 389#endif
 390#ifdef CONFIG_HAS_DMA
 391        case SNDRV_DMA_TYPE_DEV:
 392                snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
 393                break;
 394        case SNDRV_DMA_TYPE_DEV_SG:
 395                snd_free_sgbuf_pages(dmab);
 396                break;
 397#endif
 398        default:
 399                printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
 400        }
 401}
 402
 403
 404/**
 405 * snd_dma_get_reserved - get the reserved buffer for the given device
 406 * @dmab: the buffer allocation record to store
 407 * @id: the buffer id
 408 *
 409 * Looks for the reserved-buffer list and re-uses if the same buffer
 410 * is found in the list.  When the buffer is found, it's removed from the free list.
 411 *
 412 * Returns the size of buffer if the buffer is found, or zero if not found.
 413 */
 414size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
 415{
 416        struct snd_mem_list *mem;
 417
 418        snd_assert(dmab, return 0);
 419
 420        mutex_lock(&list_mutex);
 421        list_for_each_entry(mem, &mem_list_head, list) {
 422                if (mem->id == id &&
 423                    (mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
 424                     ! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
 425                        struct device *dev = dmab->dev.dev;
 426                        list_del(&mem->list);
 427                        *dmab = mem->buffer;
 428                        if (dmab->dev.dev == NULL)
 429                                dmab->dev.dev = dev;
 430                        kfree(mem);
 431                        mutex_unlock(&list_mutex);
 432                        return dmab->bytes;
 433                }
 434        }
 435        mutex_unlock(&list_mutex);
 436        return 0;
 437}
 438
 439/**
 440 * snd_dma_reserve_buf - reserve the buffer
 441 * @dmab: the buffer to reserve
 442 * @id: the buffer id
 443 *
 444 * Reserves the given buffer as a reserved buffer.
 445 * 
 446 * Returns zero if successful, or a negative code at error.
 447 */
 448int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
 449{
 450        struct snd_mem_list *mem;
 451
 452        snd_assert(dmab, return -EINVAL);
 453        mem = kmalloc(sizeof(*mem), GFP_KERNEL);
 454        if (! mem)
 455                return -ENOMEM;
 456        mutex_lock(&list_mutex);
 457        mem->buffer = *dmab;
 458        mem->id = id;
 459        list_add_tail(&mem->list, &mem_list_head);
 460        mutex_unlock(&list_mutex);
 461        return 0;
 462}
 463
 464/*
 465 * purge all reserved buffers
 466 */
 467static void free_all_reserved_pages(void)
 468{
 469        struct list_head *p;
 470        struct snd_mem_list *mem;
 471
 472        mutex_lock(&list_mutex);
 473        while (! list_empty(&mem_list_head)) {
 474                p = mem_list_head.next;
 475                mem = list_entry(p, struct snd_mem_list, list);
 476                list_del(p);
 477                snd_dma_free_pages(&mem->buffer);
 478                kfree(mem);
 479        }
 480        mutex_unlock(&list_mutex);
 481}
 482
 483
 484#ifdef CONFIG_PROC_FS
 485/*
 486 * proc file interface
 487 */
 488#define SND_MEM_PROC_FILE       "driver/snd-page-alloc"
 489static struct proc_dir_entry *snd_mem_proc;
 490
 491static int snd_mem_proc_read(struct seq_file *seq, void *offset)
 492{
 493        long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
 494        struct snd_mem_list *mem;
 495        int devno;
 496        static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
 497
 498        mutex_lock(&list_mutex);
 499        seq_printf(seq, "pages  : %li bytes (%li pages per %likB)\n",
 500                   pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
 501        devno = 0;
 502        list_for_each_entry(mem, &mem_list_head, list) {
 503                devno++;
 504                seq_printf(seq, "buffer %d : ID %08x : type %s\n",
 505                           devno, mem->id, types[mem->buffer.dev.type]);
 506                seq_printf(seq, "  addr = 0x%lx, size = %d bytes\n",
 507                           (unsigned long)mem->buffer.addr,
 508                           (int)mem->buffer.bytes);
 509        }
 510        mutex_unlock(&list_mutex);
 511        return 0;
 512}
 513
 514static int snd_mem_proc_open(struct inode *inode, struct file *file)
 515{
 516        return single_open(file, snd_mem_proc_read, NULL);
 517}
 518
 519/* FIXME: for pci only - other bus? */
 520#ifdef CONFIG_PCI
 521#define gettoken(bufp) strsep(bufp, " \t\n")
 522
 523static ssize_t snd_mem_proc_write(struct file *file, const char __user * buffer,
 524                                  size_t count, loff_t * ppos)
 525{
 526        char buf[128];
 527        char *token, *p;
 528
 529        if (count > sizeof(buf) - 1)
 530                return -EINVAL;
 531        if (copy_from_user(buf, buffer, count))
 532                return -EFAULT;
 533        buf[count] = '\0';
 534
 535        p = buf;
 536        token = gettoken(&p);
 537        if (! token || *token == '#')
 538                return count;
 539        if (strcmp(token, "add") == 0) {
 540                char *endp;
 541                int vendor, device, size, buffers;
 542                long mask;
 543                int i, alloced;
 544                struct pci_dev *pci;
 545
 546                if ((token = gettoken(&p)) == NULL ||
 547                    (vendor = simple_strtol(token, NULL, 0)) <= 0 ||
 548                    (token = gettoken(&p)) == NULL ||
 549                    (device = simple_strtol(token, NULL, 0)) <= 0 ||
 550                    (token = gettoken(&p)) == NULL ||
 551                    (mask = simple_strtol(token, NULL, 0)) < 0 ||
 552                    (token = gettoken(&p)) == NULL ||
 553                    (size = memparse(token, &endp)) < 64*1024 ||
 554                    size > 16*1024*1024 /* too big */ ||
 555                    (token = gettoken(&p)) == NULL ||
 556                    (buffers = simple_strtol(token, NULL, 0)) <= 0 ||
 557                    buffers > 4) {
 558                        printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
 559                        return count;
 560                }
 561                vendor &= 0xffff;
 562                device &= 0xffff;
 563
 564                alloced = 0;
 565                pci = NULL;
 566                while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
 567                        if (mask > 0 && mask < 0xffffffff) {
 568                                if (pci_set_dma_mask(pci, mask) < 0 ||
 569                                    pci_set_consistent_dma_mask(pci, mask) < 0) {
 570                                        printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
 571                                        return count;
 572                                }
 573                        }
 574                        for (i = 0; i < buffers; i++) {
 575                                struct snd_dma_buffer dmab;
 576                                memset(&dmab, 0, sizeof(dmab));
 577                                if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
 578                                                        size, &dmab) < 0) {
 579                                        printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
 580                                        pci_dev_put(pci);
 581                                        return count;
 582                                }
 583                                snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
 584                        }
 585                        alloced++;
 586                }
 587                if (! alloced) {
 588                        for (i = 0; i < buffers; i++) {
 589                                struct snd_dma_buffer dmab;
 590                                memset(&dmab, 0, sizeof(dmab));
 591                                /* FIXME: We can allocate only in ZONE_DMA
 592                                 * without a device pointer!
 593                                 */
 594                                if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
 595                                                        size, &dmab) < 0) {
 596                                        printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
 597                                        break;
 598                                }
 599                                snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
 600                        }
 601                }
 602        } else if (strcmp(token, "erase") == 0)
 603                /* FIXME: need for releasing each buffer chunk? */
 604                free_all_reserved_pages();
 605        else
 606                printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
 607        return count;
 608}
 609#endif /* CONFIG_PCI */
 610
 611static const struct file_operations snd_mem_proc_fops = {
 612        .owner          = THIS_MODULE,
 613        .open           = snd_mem_proc_open,
 614        .read           = seq_read,
 615#ifdef CONFIG_PCI
 616        .write          = snd_mem_proc_write,
 617#endif
 618        .llseek         = seq_lseek,
 619        .release        = single_release,
 620};
 621
 622#endif /* CONFIG_PROC_FS */
 623
 624/*
 625 * module entry
 626 */
 627
 628static int __init snd_mem_init(void)
 629{
 630#ifdef CONFIG_PROC_FS
 631        snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
 632        if (snd_mem_proc)
 633                snd_mem_proc->proc_fops = &snd_mem_proc_fops;
 634#endif
 635        return 0;
 636}
 637
 638static void __exit snd_mem_exit(void)
 639{
 640        remove_proc_entry(SND_MEM_PROC_FILE, NULL);
 641        free_all_reserved_pages();
 642        if (snd_allocated_pages > 0)
 643                printk(KERN_ERR "snd-malloc: Memory leak?  pages not freed = %li\n", snd_allocated_pages);
 644}
 645
 646
 647module_init(snd_mem_init)
 648module_exit(snd_mem_exit)
 649
 650
 651/*
 652 * exports
 653 */
 654EXPORT_SYMBOL(snd_dma_alloc_pages);
 655EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
 656EXPORT_SYMBOL(snd_dma_free_pages);
 657
 658EXPORT_SYMBOL(snd_dma_get_reserved_buf);
 659EXPORT_SYMBOL(snd_dma_reserve_buf);
 660
 661EXPORT_SYMBOL(snd_malloc_pages);
 662EXPORT_SYMBOL(snd_free_pages);
 663