linux/sound/sparc/dbri.c
<<
>>
Prefs
   1/*
   2 * Driver for DBRI sound chip found on Sparcs.
   3 * Copyright (C) 2004, 2005 Martin Habets (mhabets@users.sourceforge.net)
   4 *
   5 * Converted to ring buffered version by Krzysztof Helt (krzysztof.h1@wp.pl)
   6 *
   7 * Based entirely upon drivers/sbus/audio/dbri.c which is:
   8 * Copyright (C) 1997 Rudolf Koenig (rfkoenig@immd4.informatik.uni-erlangen.de)
   9 * Copyright (C) 1998, 1999 Brent Baccala (baccala@freesoft.org)
  10 *
  11 * This is the low level driver for the DBRI & MMCODEC duo used for ISDN & AUDIO
  12 * on Sun SPARCStation 10, 20, LX and Voyager models.
  13 *
  14 * - DBRI: AT&T T5900FX Dual Basic Rates ISDN Interface. It is a 32 channel
  15 *   data time multiplexer with ISDN support (aka T7259)
  16 *   Interfaces: SBus,ISDN NT & TE, CHI, 4 bits parallel.
  17 *   CHI: (spelled ki) Concentration Highway Interface (AT&T or Intel bus ?).
  18 *   Documentation:
  19 *   - "STP 4000SBus Dual Basic Rate ISDN (DBRI) Transceiver" from
  20 *     Sparc Technology Business (courtesy of Sun Support)
  21 *   - Data sheet of the T7903, a newer but very similar ISA bus equivalent
  22 *     available from the Lucent (formerly AT&T microelectronics) home
  23 *     page.
  24 *   - http://www.freesoft.org/Linux/DBRI/
  25 * - MMCODEC: Crystal Semiconductor CS4215 16 bit Multimedia Audio Codec
  26 *   Interfaces: CHI, Audio In & Out, 2 bits parallel
  27 *   Documentation: from the Crystal Semiconductor home page.
  28 *
  29 * The DBRI is a 32 pipe machine, each pipe can transfer some bits between
  30 * memory and a serial device (long pipes, no. 0-15) or between two serial
  31 * devices (short pipes, no. 16-31), or simply send a fixed data to a serial
  32 * device (short pipes).
  33 * A timeslot defines the bit-offset and no. of bits read from a serial device.
  34 * The timeslots are linked to 6 circular lists, one for each direction for
  35 * each serial device (NT,TE,CHI). A timeslot is associated to 1 or 2 pipes
  36 * (the second one is a monitor/tee pipe, valid only for serial input).
  37 *
  38 * The mmcodec is connected via the CHI bus and needs the data & some
  39 * parameters (volume, output selection) time multiplexed in 8 byte
  40 * chunks. It also has a control mode, which serves for audio format setting.
  41 *
  42 * Looking at the CS4215 data sheet it is easy to set up 2 or 4 codecs on
  43 * the same CHI bus, so I thought perhaps it is possible to use the on-board
  44 * & the speakerbox codec simultaneously, giving 2 (not very independent :-)
  45 * audio devices. But the SUN HW group decided against it, at least on my
  46 * LX the speakerbox connector has at least 1 pin missing and 1 wrongly
  47 * connected.
  48 *
  49 * I've tried to stick to the following function naming conventions:
  50 * snd_*        ALSA stuff
  51 * cs4215_*     CS4215 codec specific stuff
  52 * dbri_*       DBRI high-level stuff
  53 * other        DBRI low-level stuff
  54 */
  55
  56#include <sound/driver.h>
  57#include <linux/interrupt.h>
  58#include <linux/delay.h>
  59#include <linux/irq.h>
  60#include <linux/io.h>
  61
  62#include <sound/core.h>
  63#include <sound/pcm.h>
  64#include <sound/pcm_params.h>
  65#include <sound/info.h>
  66#include <sound/control.h>
  67#include <sound/initval.h>
  68
  69#include <linux/of.h>
  70#include <asm/sbus.h>
  71#include <asm/atomic.h>
  72
  73MODULE_AUTHOR("Rudolf Koenig, Brent Baccala and Martin Habets");
  74MODULE_DESCRIPTION("Sun DBRI");
  75MODULE_LICENSE("GPL");
  76MODULE_SUPPORTED_DEVICE("{{Sun,DBRI}}");
  77
  78static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;      /* Index 0-MAX */
  79static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;       /* ID for this card */
  80/* Enable this card */
  81static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;
  82
  83module_param_array(index, int, NULL, 0444);
  84MODULE_PARM_DESC(index, "Index value for Sun DBRI soundcard.");
  85module_param_array(id, charp, NULL, 0444);
  86MODULE_PARM_DESC(id, "ID string for Sun DBRI soundcard.");
  87module_param_array(enable, bool, NULL, 0444);
  88MODULE_PARM_DESC(enable, "Enable Sun DBRI soundcard.");
  89
  90#undef DBRI_DEBUG
  91
  92#define D_INT   (1<<0)
  93#define D_GEN   (1<<1)
  94#define D_CMD   (1<<2)
  95#define D_MM    (1<<3)
  96#define D_USR   (1<<4)
  97#define D_DESC  (1<<5)
  98
  99static int dbri_debug;
 100module_param(dbri_debug, int, 0644);
 101MODULE_PARM_DESC(dbri_debug, "Debug value for Sun DBRI soundcard.");
 102
 103#ifdef DBRI_DEBUG
 104static char *cmds[] = {
 105        "WAIT", "PAUSE", "JUMP", "IIQ", "REX", "SDP", "CDP", "DTS",
 106        "SSP", "CHI", "NT", "TE", "CDEC", "TEST", "CDM", "RESRV"
 107};
 108
 109#define dprintk(a, x...) if (dbri_debug & a) printk(KERN_DEBUG x)
 110
 111#else
 112#define dprintk(a, x...) do { } while (0)
 113
 114#endif                          /* DBRI_DEBUG */
 115
 116#define DBRI_CMD(cmd, intr, value) ((cmd << 28) |       \
 117                                    (intr << 27) |      \
 118                                    value)
 119
 120/***************************************************************************
 121        CS4215 specific definitions and structures
 122****************************************************************************/
 123
 124struct cs4215 {
 125        __u8 data[4];           /* Data mode: Time slots 5-8 */
 126        __u8 ctrl[4];           /* Ctrl mode: Time slots 1-4 */
 127        __u8 onboard;
 128        __u8 offset;            /* Bit offset from frame sync to time slot 1 */
 129        volatile __u32 status;
 130        volatile __u32 version;
 131        __u8 precision;         /* In bits, either 8 or 16 */
 132        __u8 channels;          /* 1 or 2 */
 133};
 134
 135/*
 136 * Control mode first
 137 */
 138
 139/* Time Slot 1, Status register */
 140#define CS4215_CLB      (1<<2)  /* Control Latch Bit */
 141#define CS4215_OLB      (1<<3)  /* 1: line: 2.0V, speaker 4V */
 142                                /* 0: line: 2.8V, speaker 8V */
 143#define CS4215_MLB      (1<<4)  /* 1: Microphone: 20dB gain disabled */
 144#define CS4215_RSRVD_1  (1<<5)
 145
 146/* Time Slot 2, Data Format Register */
 147#define CS4215_DFR_LINEAR16     0
 148#define CS4215_DFR_ULAW         1
 149#define CS4215_DFR_ALAW         2
 150#define CS4215_DFR_LINEAR8      3
 151#define CS4215_DFR_STEREO       (1<<2)
 152static struct {
 153        unsigned short freq;
 154        unsigned char xtal;
 155        unsigned char csval;
 156} CS4215_FREQ[] = {
 157        {  8000, (1 << 4), (0 << 3) },
 158        { 16000, (1 << 4), (1 << 3) },
 159        { 27429, (1 << 4), (2 << 3) },  /* Actually 24428.57 */
 160        { 32000, (1 << 4), (3 << 3) },
 161     /* {    NA, (1 << 4), (4 << 3) }, */
 162     /* {    NA, (1 << 4), (5 << 3) }, */
 163        { 48000, (1 << 4), (6 << 3) },
 164        {  9600, (1 << 4), (7 << 3) },
 165        {  5512, (2 << 4), (0 << 3) },  /* Actually 5512.5 */
 166        { 11025, (2 << 4), (1 << 3) },
 167        { 18900, (2 << 4), (2 << 3) },
 168        { 22050, (2 << 4), (3 << 3) },
 169        { 37800, (2 << 4), (4 << 3) },
 170        { 44100, (2 << 4), (5 << 3) },
 171        { 33075, (2 << 4), (6 << 3) },
 172        {  6615, (2 << 4), (7 << 3) },
 173        { 0, 0, 0}
 174};
 175
 176#define CS4215_HPF      (1<<7)  /* High Pass Filter, 1: Enabled */
 177
 178#define CS4215_12_MASK  0xfcbf  /* Mask off reserved bits in slot 1 & 2 */
 179
 180/* Time Slot 3, Serial Port Control register */
 181#define CS4215_XEN      (1<<0)  /* 0: Enable serial output */
 182#define CS4215_XCLK     (1<<1)  /* 1: Master mode: Generate SCLK */
 183#define CS4215_BSEL_64  (0<<2)  /* Bitrate: 64 bits per frame */
 184#define CS4215_BSEL_128 (1<<2)
 185#define CS4215_BSEL_256 (2<<2)
 186#define CS4215_MCK_MAST (0<<4)  /* Master clock */
 187#define CS4215_MCK_XTL1 (1<<4)  /* 24.576 MHz clock source */
 188#define CS4215_MCK_XTL2 (2<<4)  /* 16.9344 MHz clock source */
 189#define CS4215_MCK_CLK1 (3<<4)  /* Clockin, 256 x Fs */
 190#define CS4215_MCK_CLK2 (4<<4)  /* Clockin, see DFR */
 191
 192/* Time Slot 4, Test Register */
 193#define CS4215_DAD      (1<<0)  /* 0:Digital-Dig loop, 1:Dig-Analog-Dig loop */
 194#define CS4215_ENL      (1<<1)  /* Enable Loopback Testing */
 195
 196/* Time Slot 5, Parallel Port Register */
 197/* Read only here and the same as the in data mode */
 198
 199/* Time Slot 6, Reserved  */
 200
 201/* Time Slot 7, Version Register  */
 202#define CS4215_VERSION_MASK 0xf /* Known versions 0/C, 1/D, 2/E */
 203
 204/* Time Slot 8, Reserved  */
 205
 206/*
 207 * Data mode
 208 */
 209/* Time Slot 1-2: Left Channel Data, 2-3: Right Channel Data  */
 210
 211/* Time Slot 5, Output Setting  */
 212#define CS4215_LO(v)    v       /* Left Output Attenuation 0x3f: -94.5 dB */
 213#define CS4215_LE       (1<<6)  /* Line Out Enable */
 214#define CS4215_HE       (1<<7)  /* Headphone Enable */
 215
 216/* Time Slot 6, Output Setting  */
 217#define CS4215_RO(v)    v       /* Right Output Attenuation 0x3f: -94.5 dB */
 218#define CS4215_SE       (1<<6)  /* Speaker Enable */
 219#define CS4215_ADI      (1<<7)  /* A/D Data Invalid: Busy in calibration */
 220
 221/* Time Slot 7, Input Setting */
 222#define CS4215_LG(v)    v       /* Left Gain Setting 0xf: 22.5 dB */
 223#define CS4215_IS       (1<<4)  /* Input Select: 1=Microphone, 0=Line */
 224#define CS4215_OVR      (1<<5)  /* 1: Over range condition occurred */
 225#define CS4215_PIO0     (1<<6)  /* Parallel I/O 0 */
 226#define CS4215_PIO1     (1<<7)
 227
 228/* Time Slot 8, Input Setting */
 229#define CS4215_RG(v)    v       /* Right Gain Setting 0xf: 22.5 dB */
 230#define CS4215_MA(v)    (v<<4)  /* Monitor Path Attenuation 0xf: mute */
 231
 232/***************************************************************************
 233                DBRI specific definitions and structures
 234****************************************************************************/
 235
 236/* DBRI main registers */
 237#define REG0    0x00            /* Status and Control */
 238#define REG1    0x04            /* Mode and Interrupt */
 239#define REG2    0x08            /* Parallel IO */
 240#define REG3    0x0c            /* Test */
 241#define REG8    0x20            /* Command Queue Pointer */
 242#define REG9    0x24            /* Interrupt Queue Pointer */
 243
 244#define DBRI_NO_CMDS    64
 245#define DBRI_INT_BLK    64
 246#define DBRI_NO_DESCS   64
 247#define DBRI_NO_PIPES   32
 248#define DBRI_MAX_PIPE   (DBRI_NO_PIPES - 1)
 249
 250#define DBRI_REC        0
 251#define DBRI_PLAY       1
 252#define DBRI_NO_STREAMS 2
 253
 254/* One transmit/receive descriptor */
 255/* When ba != 0 descriptor is used */
 256struct dbri_mem {
 257        volatile __u32 word1;
 258        __u32 ba;       /* Transmit/Receive Buffer Address */
 259        __u32 nda;      /* Next Descriptor Address */
 260        volatile __u32 word4;
 261};
 262
 263/* This structure is in a DMA region where it can accessed by both
 264 * the CPU and the DBRI
 265 */
 266struct dbri_dma {
 267        s32 cmd[DBRI_NO_CMDS];                  /* Place for commands */
 268        volatile s32 intr[DBRI_INT_BLK];        /* Interrupt field  */
 269        struct dbri_mem desc[DBRI_NO_DESCS];    /* Xmit/receive descriptors */
 270};
 271
 272#define dbri_dma_off(member, elem)      \
 273        ((u32)(unsigned long)           \
 274         (&(((struct dbri_dma *)0)->member[elem])))
 275
 276enum in_or_out { PIPEinput, PIPEoutput };
 277
 278struct dbri_pipe {
 279        u32 sdp;                /* SDP command word */
 280        int nextpipe;           /* Next pipe in linked list */
 281        int length;             /* Length of timeslot (bits) */
 282        int first_desc;         /* Index of first descriptor */
 283        int desc;               /* Index of active descriptor */
 284        volatile __u32 *recv_fixed_ptr; /* Ptr to receive fixed data */
 285};
 286
 287/* Per stream (playback or record) information */
 288struct dbri_streaminfo {
 289        struct snd_pcm_substream *substream;
 290        u32 dvma_buffer;        /* Device view of ALSA DMA buffer */
 291        int size;               /* Size of DMA buffer             */
 292        size_t offset;          /* offset in user buffer          */
 293        int pipe;               /* Data pipe used                 */
 294        int left_gain;          /* mixer elements                 */
 295        int right_gain;
 296};
 297
 298/* This structure holds the information for both chips (DBRI & CS4215) */
 299struct snd_dbri {
 300        int regs_size, irq;     /* Needed for unload */
 301        struct sbus_dev *sdev;  /* SBUS device info */
 302        spinlock_t lock;
 303
 304        struct dbri_dma *dma;   /* Pointer to our DMA block */
 305        u32 dma_dvma;           /* DBRI visible DMA address */
 306
 307        void __iomem *regs;     /* dbri HW regs */
 308        int dbri_irqp;          /* intr queue pointer */
 309
 310        struct dbri_pipe pipes[DBRI_NO_PIPES];  /* DBRI's 32 data pipes */
 311        int next_desc[DBRI_NO_DESCS];           /* Index of next desc, or -1 */
 312        spinlock_t cmdlock;     /* Protects cmd queue accesses */
 313        s32 *cmdptr;            /* Pointer to the last queued cmd */
 314
 315        int chi_bpf;
 316
 317        struct cs4215 mm;       /* mmcodec special info */
 318                                /* per stream (playback/record) info */
 319        struct dbri_streaminfo stream_info[DBRI_NO_STREAMS];
 320};
 321
 322#define DBRI_MAX_VOLUME         63      /* Output volume */
 323#define DBRI_MAX_GAIN           15      /* Input gain */
 324
 325/* DBRI Reg0 - Status Control Register - defines. (Page 17) */
 326#define D_P             (1<<15) /* Program command & queue pointer valid */
 327#define D_G             (1<<14) /* Allow 4-Word SBus Burst */
 328#define D_S             (1<<13) /* Allow 16-Word SBus Burst */
 329#define D_E             (1<<12) /* Allow 8-Word SBus Burst */
 330#define D_X             (1<<7)  /* Sanity Timer Disable */
 331#define D_T             (1<<6)  /* Permit activation of the TE interface */
 332#define D_N             (1<<5)  /* Permit activation of the NT interface */
 333#define D_C             (1<<4)  /* Permit activation of the CHI interface */
 334#define D_F             (1<<3)  /* Force Sanity Timer Time-Out */
 335#define D_D             (1<<2)  /* Disable Master Mode */
 336#define D_H             (1<<1)  /* Halt for Analysis */
 337#define D_R             (1<<0)  /* Soft Reset */
 338
 339/* DBRI Reg1 - Mode and Interrupt Register - defines. (Page 18) */
 340#define D_LITTLE_END    (1<<8)  /* Byte Order */
 341#define D_BIG_END       (0<<8)  /* Byte Order */
 342#define D_MRR           (1<<4)  /* Multiple Error Ack on SBus (read only) */
 343#define D_MLE           (1<<3)  /* Multiple Late Error on SBus (read only) */
 344#define D_LBG           (1<<2)  /* Lost Bus Grant on SBus (read only) */
 345#define D_MBE           (1<<1)  /* Burst Error on SBus (read only) */
 346#define D_IR            (1<<0)  /* Interrupt Indicator (read only) */
 347
 348/* DBRI Reg2 - Parallel IO Register - defines. (Page 18) */
 349#define D_ENPIO3        (1<<7)  /* Enable Pin 3 */
 350#define D_ENPIO2        (1<<6)  /* Enable Pin 2 */
 351#define D_ENPIO1        (1<<5)  /* Enable Pin 1 */
 352#define D_ENPIO0        (1<<4)  /* Enable Pin 0 */
 353#define D_ENPIO         (0xf0)  /* Enable all the pins */
 354#define D_PIO3          (1<<3)  /* Pin 3: 1: Data mode, 0: Ctrl mode */
 355#define D_PIO2          (1<<2)  /* Pin 2: 1: Onboard PDN */
 356#define D_PIO1          (1<<1)  /* Pin 1: 0: Reset */
 357#define D_PIO0          (1<<0)  /* Pin 0: 1: Speakerbox PDN */
 358
 359/* DBRI Commands (Page 20) */
 360#define D_WAIT          0x0     /* Stop execution */
 361#define D_PAUSE         0x1     /* Flush long pipes */
 362#define D_JUMP          0x2     /* New command queue */
 363#define D_IIQ           0x3     /* Initialize Interrupt Queue */
 364#define D_REX           0x4     /* Report command execution via interrupt */
 365#define D_SDP           0x5     /* Setup Data Pipe */
 366#define D_CDP           0x6     /* Continue Data Pipe (reread NULL Pointer) */
 367#define D_DTS           0x7     /* Define Time Slot */
 368#define D_SSP           0x8     /* Set short Data Pipe */
 369#define D_CHI           0x9     /* Set CHI Global Mode */
 370#define D_NT            0xa     /* NT Command */
 371#define D_TE            0xb     /* TE Command */
 372#define D_CDEC          0xc     /* Codec setup */
 373#define D_TEST          0xd     /* No comment */
 374#define D_CDM           0xe     /* CHI Data mode command */
 375
 376/* Special bits for some commands */
 377#define D_PIPE(v)      ((v)<<0) /* Pipe No.: 0-15 long, 16-21 short */
 378
 379/* Setup Data Pipe */
 380/* IRM */
 381#define D_SDP_2SAME     (1<<18) /* Report 2nd time in a row value received */
 382#define D_SDP_CHANGE    (2<<18) /* Report any changes */
 383#define D_SDP_EVERY     (3<<18) /* Report any changes */
 384#define D_SDP_EOL       (1<<17) /* EOL interrupt enable */
 385#define D_SDP_IDLE      (1<<16) /* HDLC idle interrupt enable */
 386
 387/* Pipe data MODE */
 388#define D_SDP_MEM       (0<<13) /* To/from memory */
 389#define D_SDP_HDLC      (2<<13)
 390#define D_SDP_HDLC_D    (3<<13) /* D Channel (prio control) */
 391#define D_SDP_SER       (4<<13) /* Serial to serial */
 392#define D_SDP_FIXED     (6<<13) /* Short only */
 393#define D_SDP_MODE(v)   ((v)&(7<<13))
 394
 395#define D_SDP_TO_SER    (1<<12) /* Direction */
 396#define D_SDP_FROM_SER  (0<<12) /* Direction */
 397#define D_SDP_MSB       (1<<11) /* Bit order within Byte */
 398#define D_SDP_LSB       (0<<11) /* Bit order within Byte */
 399#define D_SDP_P         (1<<10) /* Pointer Valid */
 400#define D_SDP_A         (1<<8)  /* Abort */
 401#define D_SDP_C         (1<<7)  /* Clear */
 402
 403/* Define Time Slot */
 404#define D_DTS_VI        (1<<17) /* Valid Input Time-Slot Descriptor */
 405#define D_DTS_VO        (1<<16) /* Valid Output Time-Slot Descriptor */
 406#define D_DTS_INS       (1<<15) /* Insert Time Slot */
 407#define D_DTS_DEL       (0<<15) /* Delete Time Slot */
 408#define D_DTS_PRVIN(v) ((v)<<10)        /* Previous In Pipe */
 409#define D_DTS_PRVOUT(v)        ((v)<<5) /* Previous Out Pipe */
 410
 411/* Time Slot defines */
 412#define D_TS_LEN(v)     ((v)<<24)       /* Number of bits in this time slot */
 413#define D_TS_CYCLE(v)   ((v)<<14)       /* Bit Count at start of TS */
 414#define D_TS_DI         (1<<13) /* Data Invert */
 415#define D_TS_1CHANNEL   (0<<10) /* Single Channel / Normal mode */
 416#define D_TS_MONITOR    (2<<10) /* Monitor pipe */
 417#define D_TS_NONCONTIG  (3<<10) /* Non contiguous mode */
 418#define D_TS_ANCHOR     (7<<10) /* Starting short pipes */
 419#define D_TS_MON(v)    ((v)<<5) /* Monitor Pipe */
 420#define D_TS_NEXT(v)   ((v)<<0) /* Pipe no.: 0-15 long, 16-21 short */
 421
 422/* Concentration Highway Interface Modes */
 423#define D_CHI_CHICM(v)  ((v)<<16)       /* Clock mode */
 424#define D_CHI_IR        (1<<15) /* Immediate Interrupt Report */
 425#define D_CHI_EN        (1<<14) /* CHIL Interrupt enabled */
 426#define D_CHI_OD        (1<<13) /* Open Drain Enable */
 427#define D_CHI_FE        (1<<12) /* Sample CHIFS on Rising Frame Edge */
 428#define D_CHI_FD        (1<<11) /* Frame Drive */
 429#define D_CHI_BPF(v)    ((v)<<0)        /* Bits per Frame */
 430
 431/* NT: These are here for completeness */
 432#define D_NT_FBIT       (1<<17) /* Frame Bit */
 433#define D_NT_NBF        (1<<16) /* Number of bad frames to loose framing */
 434#define D_NT_IRM_IMM    (1<<15) /* Interrupt Report & Mask: Immediate */
 435#define D_NT_IRM_EN     (1<<14) /* Interrupt Report & Mask: Enable */
 436#define D_NT_ISNT       (1<<13) /* Configure interface as NT */
 437#define D_NT_FT         (1<<12) /* Fixed Timing */
 438#define D_NT_EZ         (1<<11) /* Echo Channel is Zeros */
 439#define D_NT_IFA        (1<<10) /* Inhibit Final Activation */
 440#define D_NT_ACT        (1<<9)  /* Activate Interface */
 441#define D_NT_MFE        (1<<8)  /* Multiframe Enable */
 442#define D_NT_RLB(v)     ((v)<<5)        /* Remote Loopback */
 443#define D_NT_LLB(v)     ((v)<<2)        /* Local Loopback */
 444#define D_NT_FACT       (1<<1)  /* Force Activation */
 445#define D_NT_ABV        (1<<0)  /* Activate Bipolar Violation */
 446
 447/* Codec Setup */
 448#define D_CDEC_CK(v)    ((v)<<24)       /* Clock Select */
 449#define D_CDEC_FED(v)   ((v)<<12)       /* FSCOD Falling Edge Delay */
 450#define D_CDEC_RED(v)   ((v)<<0)        /* FSCOD Rising Edge Delay */
 451
 452/* Test */
 453#define D_TEST_RAM(v)   ((v)<<16)       /* RAM Pointer */
 454#define D_TEST_SIZE(v)  ((v)<<11)       /* */
 455#define D_TEST_ROMONOFF 0x5     /* Toggle ROM opcode monitor on/off */
 456#define D_TEST_PROC     0x6     /* Microprocessor test */
 457#define D_TEST_SER      0x7     /* Serial-Controller test */
 458#define D_TEST_RAMREAD  0x8     /* Copy from Ram to system memory */
 459#define D_TEST_RAMWRITE 0x9     /* Copy into Ram from system memory */
 460#define D_TEST_RAMBIST  0xa     /* RAM Built-In Self Test */
 461#define D_TEST_MCBIST   0xb     /* Microcontroller Built-In Self Test */
 462#define D_TEST_DUMP     0xe     /* ROM Dump */
 463
 464/* CHI Data Mode */
 465#define D_CDM_THI       (1 << 8)        /* Transmit Data on CHIDR Pin */
 466#define D_CDM_RHI       (1 << 7)        /* Receive Data on CHIDX Pin */
 467#define D_CDM_RCE       (1 << 6)        /* Receive on Rising Edge of CHICK */
 468#define D_CDM_XCE       (1 << 2) /* Transmit Data on Rising Edge of CHICK */
 469#define D_CDM_XEN       (1 << 1)        /* Transmit Highway Enable */
 470#define D_CDM_REN       (1 << 0)        /* Receive Highway Enable */
 471
 472/* The Interrupts */
 473#define D_INTR_BRDY     1       /* Buffer Ready for processing */
 474#define D_INTR_MINT     2       /* Marked Interrupt in RD/TD */
 475#define D_INTR_IBEG     3       /* Flag to idle transition detected (HDLC) */
 476#define D_INTR_IEND     4       /* Idle to flag transition detected (HDLC) */
 477#define D_INTR_EOL      5       /* End of List */
 478#define D_INTR_CMDI     6       /* Command has bean read */
 479#define D_INTR_XCMP     8       /* Transmission of frame complete */
 480#define D_INTR_SBRI     9       /* BRI status change info */
 481#define D_INTR_FXDT     10      /* Fixed data change */
 482#define D_INTR_CHIL     11      /* CHI lost frame sync (channel 36 only) */
 483#define D_INTR_COLL     11      /* Unrecoverable D-Channel collision */
 484#define D_INTR_DBYT     12      /* Dropped by frame slip */
 485#define D_INTR_RBYT     13      /* Repeated by frame slip */
 486#define D_INTR_LINT     14      /* Lost Interrupt */
 487#define D_INTR_UNDR     15      /* DMA underrun */
 488
 489#define D_INTR_TE       32
 490#define D_INTR_NT       34
 491#define D_INTR_CHI      36
 492#define D_INTR_CMD      38
 493
 494#define D_INTR_GETCHAN(v)       (((v) >> 24) & 0x3f)
 495#define D_INTR_GETCODE(v)       (((v) >> 20) & 0xf)
 496#define D_INTR_GETCMD(v)        (((v) >> 16) & 0xf)
 497#define D_INTR_GETVAL(v)        ((v) & 0xffff)
 498#define D_INTR_GETRVAL(v)       ((v) & 0xfffff)
 499
 500#define D_P_0           0       /* TE receive anchor */
 501#define D_P_1           1       /* TE transmit anchor */
 502#define D_P_2           2       /* NT transmit anchor */
 503#define D_P_3           3       /* NT receive anchor */
 504#define D_P_4           4       /* CHI send data */
 505#define D_P_5           5       /* CHI receive data */
 506#define D_P_6           6       /* */
 507#define D_P_7           7       /* */
 508#define D_P_8           8       /* */
 509#define D_P_9           9       /* */
 510#define D_P_10          10      /* */
 511#define D_P_11          11      /* */
 512#define D_P_12          12      /* */
 513#define D_P_13          13      /* */
 514#define D_P_14          14      /* */
 515#define D_P_15          15      /* */
 516#define D_P_16          16      /* CHI anchor pipe */
 517#define D_P_17          17      /* CHI send */
 518#define D_P_18          18      /* CHI receive */
 519#define D_P_19          19      /* CHI receive */
 520#define D_P_20          20      /* CHI receive */
 521#define D_P_21          21      /* */
 522#define D_P_22          22      /* */
 523#define D_P_23          23      /* */
 524#define D_P_24          24      /* */
 525#define D_P_25          25      /* */
 526#define D_P_26          26      /* */
 527#define D_P_27          27      /* */
 528#define D_P_28          28      /* */
 529#define D_P_29          29      /* */
 530#define D_P_30          30      /* */
 531#define D_P_31          31      /* */
 532
 533/* Transmit descriptor defines */
 534#define DBRI_TD_F       (1 << 31)       /* End of Frame */
 535#define DBRI_TD_D       (1 << 30)       /* Do not append CRC */
 536#define DBRI_TD_CNT(v)  ((v) << 16) /* Number of valid bytes in the buffer */
 537#define DBRI_TD_B       (1 << 15)       /* Final interrupt */
 538#define DBRI_TD_M       (1 << 14)       /* Marker interrupt */
 539#define DBRI_TD_I       (1 << 13)       /* Transmit Idle Characters */
 540#define DBRI_TD_FCNT(v) (v)             /* Flag Count */
 541#define DBRI_TD_UNR     (1 << 3) /* Underrun: transmitter is out of data */
 542#define DBRI_TD_ABT     (1 << 2)        /* Abort: frame aborted */
 543#define DBRI_TD_TBC     (1 << 0)        /* Transmit buffer Complete */
 544#define DBRI_TD_STATUS(v)       ((v) & 0xff)    /* Transmit status */
 545                        /* Maximum buffer size per TD: almost 8KB */
 546#define DBRI_TD_MAXCNT  ((1 << 13) - 4)
 547
 548/* Receive descriptor defines */
 549#define DBRI_RD_F       (1 << 31)       /* End of Frame */
 550#define DBRI_RD_C       (1 << 30)       /* Completed buffer */
 551#define DBRI_RD_B       (1 << 15)       /* Final interrupt */
 552#define DBRI_RD_M       (1 << 14)       /* Marker interrupt */
 553#define DBRI_RD_BCNT(v) (v)             /* Buffer size */
 554#define DBRI_RD_CRC     (1 << 7)        /* 0: CRC is correct */
 555#define DBRI_RD_BBC     (1 << 6)        /* 1: Bad Byte received */
 556#define DBRI_RD_ABT     (1 << 5)        /* Abort: frame aborted */
 557#define DBRI_RD_OVRN    (1 << 3)        /* Overrun: data lost */
 558#define DBRI_RD_STATUS(v)      ((v) & 0xff)     /* Receive status */
 559#define DBRI_RD_CNT(v) (((v) >> 16) & 0x1fff)   /* Valid bytes in the buffer */
 560
 561/* stream_info[] access */
 562/* Translate the ALSA direction into the array index */
 563#define DBRI_STREAMNO(substream)                                \
 564                (substream->stream ==                           \
 565                 SNDRV_PCM_STREAM_PLAYBACK ? DBRI_PLAY: DBRI_REC)
 566
 567/* Return a pointer to dbri_streaminfo */
 568#define DBRI_STREAM(dbri, substream)    \
 569                &dbri->stream_info[DBRI_STREAMNO(substream)]
 570
 571/*
 572 * Short data pipes transmit LSB first. The CS4215 receives MSB first. Grrr.
 573 * So we have to reverse the bits. Note: not all bit lengths are supported
 574 */
 575static __u32 reverse_bytes(__u32 b, int len)
 576{
 577        switch (len) {
 578        case 32:
 579                b = ((b & 0xffff0000) >> 16) | ((b & 0x0000ffff) << 16);
 580        case 16:
 581                b = ((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8);
 582        case 8:
 583                b = ((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4);
 584        case 4:
 585                b = ((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2);
 586        case 2:
 587                b = ((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1);
 588        case 1:
 589        case 0:
 590                break;
 591        default:
 592                printk(KERN_ERR "DBRI reverse_bytes: unsupported length\n");
 593        };
 594
 595        return b;
 596}
 597
 598/*
 599****************************************************************************
 600************** DBRI initialization and command synchronization *************
 601****************************************************************************
 602
 603Commands are sent to the DBRI by building a list of them in memory,
 604then writing the address of the first list item to DBRI register 8.
 605The list is terminated with a WAIT command, which generates a
 606CPU interrupt to signal completion.
 607
 608Since the DBRI can run in parallel with the CPU, several means of
 609synchronization present themselves. The method implemented here uses
 610the dbri_cmdwait() to wait for execution of batch of sent commands.
 611
 612A circular command buffer is used here. A new command is being added
 613while another can be executed. The scheme works by adding two WAIT commands
 614after each sent batch of commands. When the next batch is prepared it is
 615added after the WAIT commands then the WAITs are replaced with single JUMP
 616command to the new batch. The the DBRI is forced to reread the last WAIT
 617command (replaced by the JUMP by then). If the DBRI is still executing
 618previous commands the request to reread the WAIT command is ignored.
 619
 620Every time a routine wants to write commands to the DBRI, it must
 621first call dbri_cmdlock() and get pointer to a free space in
 622dbri->dma->cmd buffer. After this, the commands can be written to
 623the buffer, and dbri_cmdsend() is called with the final pointer value
 624to send them to the DBRI.
 625
 626*/
 627
 628#define MAXLOOPS 20
 629/*
 630 * Wait for the current command string to execute
 631 */
 632static void dbri_cmdwait(struct snd_dbri *dbri)
 633{
 634        int maxloops = MAXLOOPS;
 635        unsigned long flags;
 636
 637        /* Delay if previous commands are still being processed */
 638        spin_lock_irqsave(&dbri->lock, flags);
 639        while ((--maxloops) > 0 && (sbus_readl(dbri->regs + REG0) & D_P)) {
 640                spin_unlock_irqrestore(&dbri->lock, flags);
 641                msleep_interruptible(1);
 642                spin_lock_irqsave(&dbri->lock, flags);
 643        }
 644        spin_unlock_irqrestore(&dbri->lock, flags);
 645
 646        if (maxloops == 0)
 647                printk(KERN_ERR "DBRI: Chip never completed command buffer\n");
 648        else
 649                dprintk(D_CMD, "Chip completed command buffer (%d)\n",
 650                        MAXLOOPS - maxloops - 1);
 651}
 652/*
 653 * Lock the command queue and return pointer to space for len cmd words
 654 * It locks the cmdlock spinlock.
 655 */
 656static s32 *dbri_cmdlock(struct snd_dbri *dbri, int len)
 657{
 658        /* Space for 2 WAIT cmds (replaced later by 1 JUMP cmd) */
 659        len += 2;
 660        spin_lock(&dbri->cmdlock);
 661        if (dbri->cmdptr - dbri->dma->cmd + len < DBRI_NO_CMDS - 2)
 662                return dbri->cmdptr + 2;
 663        else if (len < sbus_readl(dbri->regs + REG8) - dbri->dma_dvma)
 664                return dbri->dma->cmd;
 665        else
 666                printk(KERN_ERR "DBRI: no space for commands.");
 667
 668        return NULL;
 669}
 670
 671/*
 672 * Send prepared cmd string. It works by writing a JUMP cmd into
 673 * the last WAIT cmd and force DBRI to reread the cmd.
 674 * The JUMP cmd points to the new cmd string.
 675 * It also releases the cmdlock spinlock.
 676 *
 677 * Lock must be held before calling this.
 678 */
 679static void dbri_cmdsend(struct snd_dbri *dbri, s32 *cmd, int len)
 680{
 681        s32 tmp, addr;
 682        static int wait_id = 0;
 683
 684        wait_id++;
 685        wait_id &= 0xffff;      /* restrict it to a 16 bit counter. */
 686        *(cmd) = DBRI_CMD(D_WAIT, 1, wait_id);
 687        *(cmd+1) = DBRI_CMD(D_WAIT, 1, wait_id);
 688
 689        /* Replace the last command with JUMP */
 690        addr = dbri->dma_dvma + (cmd - len - dbri->dma->cmd) * sizeof(s32);
 691        *(dbri->cmdptr+1) = addr;
 692        *(dbri->cmdptr) = DBRI_CMD(D_JUMP, 0, 0);
 693
 694#ifdef DBRI_DEBUG
 695        if (cmd > dbri->cmdptr) {
 696                s32 *ptr;
 697
 698                for (ptr = dbri->cmdptr; ptr < cmd+2; ptr++)
 699                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 700                                (unsigned long)ptr, *ptr);
 701        } else {
 702                s32 *ptr = dbri->cmdptr;
 703
 704                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 705                ptr++;
 706                dprintk(D_CMD, "cmd: %lx:%08x\n", (unsigned long)ptr, *ptr);
 707                for (ptr = dbri->dma->cmd; ptr < cmd+2; ptr++)
 708                        dprintk(D_CMD, "cmd: %lx:%08x\n",
 709                                (unsigned long)ptr, *ptr);
 710        }
 711#endif
 712
 713        /* Reread the last command */
 714        tmp = sbus_readl(dbri->regs + REG0);
 715        tmp |= D_P;
 716        sbus_writel(tmp, dbri->regs + REG0);
 717
 718        dbri->cmdptr = cmd;
 719        spin_unlock(&dbri->cmdlock);
 720}
 721
 722/* Lock must be held when calling this */
 723static void dbri_reset(struct snd_dbri *dbri)
 724{
 725        int i;
 726        u32 tmp;
 727
 728        dprintk(D_GEN, "reset 0:%x 2:%x 8:%x 9:%x\n",
 729                sbus_readl(dbri->regs + REG0),
 730                sbus_readl(dbri->regs + REG2),
 731                sbus_readl(dbri->regs + REG8), sbus_readl(dbri->regs + REG9));
 732
 733        sbus_writel(D_R, dbri->regs + REG0);    /* Soft Reset */
 734        for (i = 0; (sbus_readl(dbri->regs + REG0) & D_R) && i < 64; i++)
 735                udelay(10);
 736
 737        /* A brute approach - DBRI falls back to working burst size by itself
 738         * On SS20 D_S does not work, so do not try so high. */
 739        tmp = sbus_readl(dbri->regs + REG0);
 740        tmp |= D_G | D_E;
 741        tmp &= ~D_S;
 742        sbus_writel(tmp, dbri->regs + REG0);
 743}
 744
 745/* Lock must not be held before calling this */
 746static void __devinit dbri_initialize(struct snd_dbri *dbri)
 747{
 748        s32 *cmd;
 749        u32 dma_addr;
 750        unsigned long flags;
 751        int n;
 752
 753        spin_lock_irqsave(&dbri->lock, flags);
 754
 755        dbri_reset(dbri);
 756
 757        /* Initialize pipes */
 758        for (n = 0; n < DBRI_NO_PIPES; n++)
 759                dbri->pipes[n].desc = dbri->pipes[n].first_desc = -1;
 760
 761        spin_lock_init(&dbri->cmdlock);
 762        /*
 763         * Initialize the interrupt ring buffer.
 764         */
 765        dma_addr = dbri->dma_dvma + dbri_dma_off(intr, 0);
 766        dbri->dma->intr[0] = dma_addr;
 767        dbri->dbri_irqp = 1;
 768        /*
 769         * Set up the interrupt queue
 770         */
 771        spin_lock(&dbri->cmdlock);
 772        cmd = dbri->cmdptr = dbri->dma->cmd;
 773        *(cmd++) = DBRI_CMD(D_IIQ, 0, 0);
 774        *(cmd++) = dma_addr;
 775        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 776        dbri->cmdptr = cmd;
 777        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 778        *(cmd++) = DBRI_CMD(D_WAIT, 1, 0);
 779        dma_addr = dbri->dma_dvma + dbri_dma_off(cmd, 0);
 780        sbus_writel(dma_addr, dbri->regs + REG8);
 781        spin_unlock(&dbri->cmdlock);
 782
 783        spin_unlock_irqrestore(&dbri->lock, flags);
 784        dbri_cmdwait(dbri);
 785}
 786
 787/*
 788****************************************************************************
 789************************** DBRI data pipe management ***********************
 790****************************************************************************
 791
 792While DBRI control functions use the command and interrupt buffers, the
 793main data path takes the form of data pipes, which can be short (command
 794and interrupt driven), or long (attached to DMA buffers).  These functions
 795provide a rudimentary means of setting up and managing the DBRI's pipes,
 796but the calling functions have to make sure they respect the pipes' linked
 797list ordering, among other things.  The transmit and receive functions
 798here interface closely with the transmit and receive interrupt code.
 799
 800*/
 801static inline int pipe_active(struct snd_dbri *dbri, int pipe)
 802{
 803        return ((pipe >= 0) && (dbri->pipes[pipe].desc != -1));
 804}
 805
 806/* reset_pipe(dbri, pipe)
 807 *
 808 * Called on an in-use pipe to clear anything being transmitted or received
 809 * Lock must be held before calling this.
 810 */
 811static void reset_pipe(struct snd_dbri *dbri, int pipe)
 812{
 813        int sdp;
 814        int desc;
 815        s32 *cmd;
 816
 817        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 818                printk(KERN_ERR "DBRI: reset_pipe called with "
 819                        "illegal pipe number\n");
 820                return;
 821        }
 822
 823        sdp = dbri->pipes[pipe].sdp;
 824        if (sdp == 0) {
 825                printk(KERN_ERR "DBRI: reset_pipe called "
 826                        "on uninitialized pipe\n");
 827                return;
 828        }
 829
 830        cmd = dbri_cmdlock(dbri, 3);
 831        *(cmd++) = DBRI_CMD(D_SDP, 0, sdp | D_SDP_C | D_SDP_P);
 832        *(cmd++) = 0;
 833        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 834        dbri_cmdsend(dbri, cmd, 3);
 835
 836        desc = dbri->pipes[pipe].first_desc;
 837        if (desc >= 0)
 838                do {
 839                        dbri->dma->desc[desc].ba = 0;
 840                        dbri->dma->desc[desc].nda = 0;
 841                        desc = dbri->next_desc[desc];
 842                } while (desc != -1 && desc != dbri->pipes[pipe].first_desc);
 843
 844        dbri->pipes[pipe].desc = -1;
 845        dbri->pipes[pipe].first_desc = -1;
 846}
 847
 848/*
 849 * Lock must be held before calling this.
 850 */
 851static void setup_pipe(struct snd_dbri *dbri, int pipe, int sdp)
 852{
 853        if (pipe < 0 || pipe > DBRI_MAX_PIPE) {
 854                printk(KERN_ERR "DBRI: setup_pipe called "
 855                        "with illegal pipe number\n");
 856                return;
 857        }
 858
 859        if ((sdp & 0xf800) != sdp) {
 860                printk(KERN_ERR "DBRI: setup_pipe called "
 861                        "with strange SDP value\n");
 862                /* sdp &= 0xf800; */
 863        }
 864
 865        /* If this is a fixed receive pipe, arrange for an interrupt
 866         * every time its data changes
 867         */
 868        if (D_SDP_MODE(sdp) == D_SDP_FIXED && !(sdp & D_SDP_TO_SER))
 869                sdp |= D_SDP_CHANGE;
 870
 871        sdp |= D_PIPE(pipe);
 872        dbri->pipes[pipe].sdp = sdp;
 873        dbri->pipes[pipe].desc = -1;
 874        dbri->pipes[pipe].first_desc = -1;
 875
 876        reset_pipe(dbri, pipe);
 877}
 878
 879/*
 880 * Lock must be held before calling this.
 881 */
 882static void link_time_slot(struct snd_dbri *dbri, int pipe,
 883                           int prevpipe, int nextpipe,
 884                           int length, int cycle)
 885{
 886        s32 *cmd;
 887        int val;
 888
 889        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 890                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 891                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 892                printk(KERN_ERR
 893                    "DBRI: link_time_slot called with illegal pipe number\n");
 894                return;
 895        }
 896
 897        if (dbri->pipes[pipe].sdp == 0
 898                        || dbri->pipes[prevpipe].sdp == 0
 899                        || dbri->pipes[nextpipe].sdp == 0) {
 900                printk(KERN_ERR "DBRI: link_time_slot called "
 901                        "on uninitialized pipe\n");
 902                return;
 903        }
 904
 905        dbri->pipes[prevpipe].nextpipe = pipe;
 906        dbri->pipes[pipe].nextpipe = nextpipe;
 907        dbri->pipes[pipe].length = length;
 908
 909        cmd = dbri_cmdlock(dbri, 4);
 910
 911        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
 912                /* Deal with CHI special case:
 913                 * "If transmission on edges 0 or 1 is desired, then cycle n
 914                 *  (where n = # of bit times per frame...) must be used."
 915                 *                  - DBRI data sheet, page 11
 916                 */
 917                if (prevpipe == 16 && cycle == 0)
 918                        cycle = dbri->chi_bpf;
 919
 920                val = D_DTS_VO | D_DTS_INS | D_DTS_PRVOUT(prevpipe) | pipe;
 921                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 922                *(cmd++) = 0;
 923                *(cmd++) =
 924                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 925        } else {
 926                val = D_DTS_VI | D_DTS_INS | D_DTS_PRVIN(prevpipe) | pipe;
 927                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 928                *(cmd++) =
 929                    D_TS_LEN(length) | D_TS_CYCLE(cycle) | D_TS_NEXT(nextpipe);
 930                *(cmd++) = 0;
 931        }
 932        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 933
 934        dbri_cmdsend(dbri, cmd, 4);
 935}
 936
 937#if 0
 938/*
 939 * Lock must be held before calling this.
 940 */
 941static void unlink_time_slot(struct snd_dbri *dbri, int pipe,
 942                             enum in_or_out direction, int prevpipe,
 943                             int nextpipe)
 944{
 945        s32 *cmd;
 946        int val;
 947
 948        if (pipe < 0 || pipe > DBRI_MAX_PIPE
 949                        || prevpipe < 0 || prevpipe > DBRI_MAX_PIPE
 950                        || nextpipe < 0 || nextpipe > DBRI_MAX_PIPE) {
 951                printk(KERN_ERR
 952                    "DBRI: unlink_time_slot called with illegal pipe number\n");
 953                return;
 954        }
 955
 956        cmd = dbri_cmdlock(dbri, 4);
 957
 958        if (direction == PIPEinput) {
 959                val = D_DTS_VI | D_DTS_DEL | D_DTS_PRVIN(prevpipe) | pipe;
 960                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 961                *(cmd++) = D_TS_NEXT(nextpipe);
 962                *(cmd++) = 0;
 963        } else {
 964                val = D_DTS_VO | D_DTS_DEL | D_DTS_PRVOUT(prevpipe) | pipe;
 965                *(cmd++) = DBRI_CMD(D_DTS, 0, val);
 966                *(cmd++) = 0;
 967                *(cmd++) = D_TS_NEXT(nextpipe);
 968        }
 969        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
 970
 971        dbri_cmdsend(dbri, cmd, 4);
 972}
 973#endif
 974
 975/* xmit_fixed() / recv_fixed()
 976 *
 977 * Transmit/receive data on a "fixed" pipe - i.e, one whose contents are not
 978 * expected to change much, and which we don't need to buffer.
 979 * The DBRI only interrupts us when the data changes (receive pipes),
 980 * or only changes the data when this function is called (transmit pipes).
 981 * Only short pipes (numbers 16-31) can be used in fixed data mode.
 982 *
 983 * These function operate on a 32-bit field, no matter how large
 984 * the actual time slot is.  The interrupt handler takes care of bit
 985 * ordering and alignment.  An 8-bit time slot will always end up
 986 * in the low-order 8 bits, filled either MSB-first or LSB-first,
 987 * depending on the settings passed to setup_pipe().
 988 *
 989 * Lock must not be held before calling it.
 990 */
 991static void xmit_fixed(struct snd_dbri *dbri, int pipe, unsigned int data)
 992{
 993        s32 *cmd;
 994        unsigned long flags;
 995
 996        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
 997                printk(KERN_ERR "DBRI: xmit_fixed: Illegal pipe number\n");
 998                return;
 999        }
1000
1001        if (D_SDP_MODE(dbri->pipes[pipe].sdp) == 0) {
1002                printk(KERN_ERR "DBRI: xmit_fixed: "
1003                        "Uninitialized pipe %d\n", pipe);
1004                return;
1005        }
1006
1007        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1008                printk(KERN_ERR "DBRI: xmit_fixed: Non-fixed pipe %d\n", pipe);
1009                return;
1010        }
1011
1012        if (!(dbri->pipes[pipe].sdp & D_SDP_TO_SER)) {
1013                printk(KERN_ERR "DBRI: xmit_fixed: Called on receive pipe %d\n",
1014                        pipe);
1015                return;
1016        }
1017
1018        /* DBRI short pipes always transmit LSB first */
1019
1020        if (dbri->pipes[pipe].sdp & D_SDP_MSB)
1021                data = reverse_bytes(data, dbri->pipes[pipe].length);
1022
1023        cmd = dbri_cmdlock(dbri, 3);
1024
1025        *(cmd++) = DBRI_CMD(D_SSP, 0, pipe);
1026        *(cmd++) = data;
1027        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1028
1029        spin_lock_irqsave(&dbri->lock, flags);
1030        dbri_cmdsend(dbri, cmd, 3);
1031        spin_unlock_irqrestore(&dbri->lock, flags);
1032        dbri_cmdwait(dbri);
1033
1034}
1035
1036static void recv_fixed(struct snd_dbri *dbri, int pipe, volatile __u32 *ptr)
1037{
1038        if (pipe < 16 || pipe > DBRI_MAX_PIPE) {
1039                printk(KERN_ERR "DBRI: recv_fixed called with "
1040                        "illegal pipe number\n");
1041                return;
1042        }
1043
1044        if (D_SDP_MODE(dbri->pipes[pipe].sdp) != D_SDP_FIXED) {
1045                printk(KERN_ERR "DBRI: recv_fixed called on "
1046                        "non-fixed pipe %d\n", pipe);
1047                return;
1048        }
1049
1050        if (dbri->pipes[pipe].sdp & D_SDP_TO_SER) {
1051                printk(KERN_ERR "DBRI: recv_fixed called on "
1052                        "transmit pipe %d\n", pipe);
1053                return;
1054        }
1055
1056        dbri->pipes[pipe].recv_fixed_ptr = ptr;
1057}
1058
1059/* setup_descs()
1060 *
1061 * Setup transmit/receive data on a "long" pipe - i.e, one associated
1062 * with a DMA buffer.
1063 *
1064 * Only pipe numbers 0-15 can be used in this mode.
1065 *
1066 * This function takes a stream number pointing to a data buffer,
1067 * and work by building chains of descriptors which identify the
1068 * data buffers.  Buffers too large for a single descriptor will
1069 * be spread across multiple descriptors.
1070 *
1071 * All descriptors create a ring buffer.
1072 *
1073 * Lock must be held before calling this.
1074 */
1075static int setup_descs(struct snd_dbri *dbri, int streamno, unsigned int period)
1076{
1077        struct dbri_streaminfo *info = &dbri->stream_info[streamno];
1078        __u32 dvma_buffer;
1079        int desc;
1080        int len;
1081        int first_desc = -1;
1082        int last_desc = -1;
1083
1084        if (info->pipe < 0 || info->pipe > 15) {
1085                printk(KERN_ERR "DBRI: setup_descs: Illegal pipe number\n");
1086                return -2;
1087        }
1088
1089        if (dbri->pipes[info->pipe].sdp == 0) {
1090                printk(KERN_ERR "DBRI: setup_descs: Uninitialized pipe %d\n",
1091                       info->pipe);
1092                return -2;
1093        }
1094
1095        dvma_buffer = info->dvma_buffer;
1096        len = info->size;
1097
1098        if (streamno == DBRI_PLAY) {
1099                if (!(dbri->pipes[info->pipe].sdp & D_SDP_TO_SER)) {
1100                        printk(KERN_ERR "DBRI: setup_descs: "
1101                                "Called on receive pipe %d\n", info->pipe);
1102                        return -2;
1103                }
1104        } else {
1105                if (dbri->pipes[info->pipe].sdp & D_SDP_TO_SER) {
1106                        printk(KERN_ERR
1107                            "DBRI: setup_descs: Called on transmit pipe %d\n",
1108                             info->pipe);
1109                        return -2;
1110                }
1111                /* Should be able to queue multiple buffers
1112                 * to receive on a pipe
1113                 */
1114                if (pipe_active(dbri, info->pipe)) {
1115                        printk(KERN_ERR "DBRI: recv_on_pipe: "
1116                                "Called on active pipe %d\n", info->pipe);
1117                        return -2;
1118                }
1119
1120                /* Make sure buffer size is multiple of four */
1121                len &= ~3;
1122        }
1123
1124        /* Free descriptors if pipe has any */
1125        desc = dbri->pipes[info->pipe].first_desc;
1126        if (desc >= 0)
1127                do {
1128                        dbri->dma->desc[desc].ba = 0;
1129                        dbri->dma->desc[desc].nda = 0;
1130                        desc = dbri->next_desc[desc];
1131                } while (desc != -1 &&
1132                         desc != dbri->pipes[info->pipe].first_desc);
1133
1134        dbri->pipes[info->pipe].desc = -1;
1135        dbri->pipes[info->pipe].first_desc = -1;
1136
1137        desc = 0;
1138        while (len > 0) {
1139                int mylen;
1140
1141                for (; desc < DBRI_NO_DESCS; desc++) {
1142                        if (!dbri->dma->desc[desc].ba)
1143                                break;
1144                }
1145
1146                if (desc == DBRI_NO_DESCS) {
1147                        printk(KERN_ERR "DBRI: setup_descs: No descriptors\n");
1148                        return -1;
1149                }
1150
1151                if (len > DBRI_TD_MAXCNT)
1152                        mylen = DBRI_TD_MAXCNT; /* 8KB - 4 */
1153                else
1154                        mylen = len;
1155
1156                if (mylen > period)
1157                        mylen = period;
1158
1159                dbri->next_desc[desc] = -1;
1160                dbri->dma->desc[desc].ba = dvma_buffer;
1161                dbri->dma->desc[desc].nda = 0;
1162
1163                if (streamno == DBRI_PLAY) {
1164                        dbri->dma->desc[desc].word1 = DBRI_TD_CNT(mylen);
1165                        dbri->dma->desc[desc].word4 = 0;
1166                        dbri->dma->desc[desc].word1 |= DBRI_TD_F | DBRI_TD_B;
1167                } else {
1168                        dbri->dma->desc[desc].word1 = 0;
1169                        dbri->dma->desc[desc].word4 =
1170                            DBRI_RD_B | DBRI_RD_BCNT(mylen);
1171                }
1172
1173                if (first_desc == -1)
1174                        first_desc = desc;
1175                else {
1176                        dbri->next_desc[last_desc] = desc;
1177                        dbri->dma->desc[last_desc].nda =
1178                            dbri->dma_dvma + dbri_dma_off(desc, desc);
1179                }
1180
1181                last_desc = desc;
1182                dvma_buffer += mylen;
1183                len -= mylen;
1184        }
1185
1186        if (first_desc == -1 || last_desc == -1) {
1187                printk(KERN_ERR "DBRI: setup_descs: "
1188                        " Not enough descriptors available\n");
1189                return -1;
1190        }
1191
1192        dbri->dma->desc[last_desc].nda =
1193            dbri->dma_dvma + dbri_dma_off(desc, first_desc);
1194        dbri->next_desc[last_desc] = first_desc;
1195        dbri->pipes[info->pipe].first_desc = first_desc;
1196        dbri->pipes[info->pipe].desc = first_desc;
1197
1198#ifdef DBRI_DEBUG
1199        for (desc = first_desc; desc != -1;) {
1200                dprintk(D_DESC, "DESC %d: %08x %08x %08x %08x\n",
1201                        desc,
1202                        dbri->dma->desc[desc].word1,
1203                        dbri->dma->desc[desc].ba,
1204                        dbri->dma->desc[desc].nda, dbri->dma->desc[desc].word4);
1205                        desc = dbri->next_desc[desc];
1206                        if (desc == first_desc)
1207                                break;
1208        }
1209#endif
1210        return 0;
1211}
1212
1213/*
1214****************************************************************************
1215************************** DBRI - CHI interface ****************************
1216****************************************************************************
1217
1218The CHI is a four-wire (clock, frame sync, data in, data out) time-division
1219multiplexed serial interface which the DBRI can operate in either master
1220(give clock/frame sync) or slave (take clock/frame sync) mode.
1221
1222*/
1223
1224enum master_or_slave { CHImaster, CHIslave };
1225
1226/*
1227 * Lock must not be held before calling it.
1228 */
1229static void reset_chi(struct snd_dbri *dbri,
1230                      enum master_or_slave master_or_slave,
1231                      int bits_per_frame)
1232{
1233        s32 *cmd;
1234        int val;
1235
1236        /* Set CHI Anchor: Pipe 16 */
1237
1238        cmd = dbri_cmdlock(dbri, 4);
1239        val = D_DTS_VO | D_DTS_VI | D_DTS_INS
1240                | D_DTS_PRVIN(16) | D_PIPE(16) | D_DTS_PRVOUT(16);
1241        *(cmd++) = DBRI_CMD(D_DTS, 0, val);
1242        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1243        *(cmd++) = D_TS_ANCHOR | D_TS_NEXT(16);
1244        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1245        dbri_cmdsend(dbri, cmd, 4);
1246
1247        dbri->pipes[16].sdp = 1;
1248        dbri->pipes[16].nextpipe = 16;
1249
1250        cmd = dbri_cmdlock(dbri, 4);
1251
1252        if (master_or_slave == CHIslave) {
1253                /* Setup DBRI for CHI Slave - receive clock, frame sync (FS)
1254                 *
1255                 * CHICM  = 0 (slave mode, 8 kHz frame rate)
1256                 * IR     = give immediate CHI status interrupt
1257                 * EN     = give CHI status interrupt upon change
1258                 */
1259                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(0));
1260        } else {
1261                /* Setup DBRI for CHI Master - generate clock, FS
1262                 *
1263                 * BPF                          =  bits per 8 kHz frame
1264                 * 12.288 MHz / CHICM_divisor   = clock rate
1265                 * FD = 1 - drive CHIFS on rising edge of CHICK
1266                 */
1267                int clockrate = bits_per_frame * 8;
1268                int divisor = 12288 / clockrate;
1269
1270                if (divisor > 255 || divisor * clockrate != 12288)
1271                        printk(KERN_ERR "DBRI: illegal bits_per_frame "
1272                                "in setup_chi\n");
1273
1274                *(cmd++) = DBRI_CMD(D_CHI, 0, D_CHI_CHICM(divisor) | D_CHI_FD
1275                                    | D_CHI_BPF(bits_per_frame));
1276        }
1277
1278        dbri->chi_bpf = bits_per_frame;
1279
1280        /* CHI Data Mode
1281         *
1282         * RCE   =  0 - receive on falling edge of CHICK
1283         * XCE   =  1 - transmit on rising edge of CHICK
1284         * XEN   =  1 - enable transmitter
1285         * REN   =  1 - enable receiver
1286         */
1287
1288        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1289        *(cmd++) = DBRI_CMD(D_CDM, 0, D_CDM_XCE | D_CDM_XEN | D_CDM_REN);
1290        *(cmd++) = DBRI_CMD(D_PAUSE, 0, 0);
1291
1292        dbri_cmdsend(dbri, cmd, 4);
1293}
1294
1295/*
1296****************************************************************************
1297*********************** CS4215 audio codec management **********************
1298****************************************************************************
1299
1300In the standard SPARC audio configuration, the CS4215 codec is attached
1301to the DBRI via the CHI interface and few of the DBRI's PIO pins.
1302
1303 * Lock must not be held before calling it.
1304
1305*/
1306static __devinit void cs4215_setup_pipes(struct snd_dbri *dbri)
1307{
1308        unsigned long flags;
1309
1310        spin_lock_irqsave(&dbri->lock, flags);
1311        /*
1312         * Data mode:
1313         * Pipe  4: Send timeslots 1-4 (audio data)
1314         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1315         * Pipe  6: Receive timeslots 1-4 (audio data)
1316         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1317         *          interrupt, and the rest of the data (slot 5 and 8) is
1318         *          not relevant for us (only for doublechecking).
1319         *
1320         * Control mode:
1321         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1322         * Pipe 18: Receive timeslot 1 (clb).
1323         * Pipe 19: Receive timeslot 7 (version).
1324         */
1325
1326        setup_pipe(dbri, 4, D_SDP_MEM | D_SDP_TO_SER | D_SDP_MSB);
1327        setup_pipe(dbri, 20, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1328        setup_pipe(dbri, 6, D_SDP_MEM | D_SDP_FROM_SER | D_SDP_MSB);
1329        setup_pipe(dbri, 21, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1330
1331        setup_pipe(dbri, 17, D_SDP_FIXED | D_SDP_TO_SER | D_SDP_MSB);
1332        setup_pipe(dbri, 18, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1333        setup_pipe(dbri, 19, D_SDP_FIXED | D_SDP_FROM_SER | D_SDP_MSB);
1334        spin_unlock_irqrestore(&dbri->lock, flags);
1335
1336        dbri_cmdwait(dbri);
1337}
1338
1339static __devinit int cs4215_init_data(struct cs4215 *mm)
1340{
1341        /*
1342         * No action, memory resetting only.
1343         *
1344         * Data Time Slot 5-8
1345         * Speaker,Line and Headphone enable. Gain set to the half.
1346         * Input is mike.
1347         */
1348        mm->data[0] = CS4215_LO(0x20) | CS4215_HE | CS4215_LE;
1349        mm->data[1] = CS4215_RO(0x20) | CS4215_SE;
1350        mm->data[2] = CS4215_LG(0x8) | CS4215_IS | CS4215_PIO0 | CS4215_PIO1;
1351        mm->data[3] = CS4215_RG(0x8) | CS4215_MA(0xf);
1352
1353        /*
1354         * Control Time Slot 1-4
1355         * 0: Default I/O voltage scale
1356         * 1: 8 bit ulaw, 8kHz, mono, high pass filter disabled
1357         * 2: Serial enable, CHI master, 128 bits per frame, clock 1
1358         * 3: Tests disabled
1359         */
1360        mm->ctrl[0] = CS4215_RSRVD_1 | CS4215_MLB;
1361        mm->ctrl[1] = CS4215_DFR_ULAW | CS4215_FREQ[0].csval;
1362        mm->ctrl[2] = CS4215_XCLK | CS4215_BSEL_128 | CS4215_FREQ[0].xtal;
1363        mm->ctrl[3] = 0;
1364
1365        mm->status = 0;
1366        mm->version = 0xff;
1367        mm->precision = 8;      /* For ULAW */
1368        mm->channels = 1;
1369
1370        return 0;
1371}
1372
1373static void cs4215_setdata(struct snd_dbri *dbri, int muted)
1374{
1375        if (muted) {
1376                dbri->mm.data[0] |= 63;
1377                dbri->mm.data[1] |= 63;
1378                dbri->mm.data[2] &= ~15;
1379                dbri->mm.data[3] &= ~15;
1380        } else {
1381                /* Start by setting the playback attenuation. */
1382                struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1383                int left_gain = info->left_gain & 0x3f;
1384                int right_gain = info->right_gain & 0x3f;
1385
1386                dbri->mm.data[0] &= ~0x3f;      /* Reset the volume bits */
1387                dbri->mm.data[1] &= ~0x3f;
1388                dbri->mm.data[0] |= (DBRI_MAX_VOLUME - left_gain);
1389                dbri->mm.data[1] |= (DBRI_MAX_VOLUME - right_gain);
1390
1391                /* Now set the recording gain. */
1392                info = &dbri->stream_info[DBRI_REC];
1393                left_gain = info->left_gain & 0xf;
1394                right_gain = info->right_gain & 0xf;
1395                dbri->mm.data[2] |= CS4215_LG(left_gain);
1396                dbri->mm.data[3] |= CS4215_RG(right_gain);
1397        }
1398
1399        xmit_fixed(dbri, 20, *(int *)dbri->mm.data);
1400}
1401
1402/*
1403 * Set the CS4215 to data mode.
1404 */
1405static void cs4215_open(struct snd_dbri *dbri)
1406{
1407        int data_width;
1408        u32 tmp;
1409        unsigned long flags;
1410
1411        dprintk(D_MM, "cs4215_open: %d channels, %d bits\n",
1412                dbri->mm.channels, dbri->mm.precision);
1413
1414        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1415         * to make sure this takes.  This avoids clicking noises.
1416         */
1417
1418        cs4215_setdata(dbri, 1);
1419        udelay(125);
1420
1421        /*
1422         * Data mode:
1423         * Pipe  4: Send timeslots 1-4 (audio data)
1424         * Pipe 20: Send timeslots 5-8 (part of ctrl data)
1425         * Pipe  6: Receive timeslots 1-4 (audio data)
1426         * Pipe 21: Receive timeslots 6-7. We can only receive 20 bits via
1427         *          interrupt, and the rest of the data (slot 5 and 8) is
1428         *          not relevant for us (only for doublechecking).
1429         *
1430         * Just like in control mode, the time slots are all offset by eight
1431         * bits.  The CS4215, it seems, observes TSIN (the delayed signal)
1432         * even if it's the CHI master.  Don't ask me...
1433         */
1434        spin_lock_irqsave(&dbri->lock, flags);
1435        tmp = sbus_readl(dbri->regs + REG0);
1436        tmp &= ~(D_C);          /* Disable CHI */
1437        sbus_writel(tmp, dbri->regs + REG0);
1438
1439        /* Switch CS4215 to data mode - set PIO3 to 1 */
1440        sbus_writel(D_ENPIO | D_PIO1 | D_PIO3 |
1441                    (dbri->mm.onboard ? D_PIO0 : D_PIO2), dbri->regs + REG2);
1442
1443        reset_chi(dbri, CHIslave, 128);
1444
1445        /* Note: this next doesn't work for 8-bit stereo, because the two
1446         * channels would be on timeslots 1 and 3, with 2 and 4 idle.
1447         * (See CS4215 datasheet Fig 15)
1448         *
1449         * DBRI non-contiguous mode would be required to make this work.
1450         */
1451        data_width = dbri->mm.channels * dbri->mm.precision;
1452
1453        link_time_slot(dbri, 4, 16, 16, data_width, dbri->mm.offset);
1454        link_time_slot(dbri, 20, 4, 16, 32, dbri->mm.offset + 32);
1455        link_time_slot(dbri, 6, 16, 16, data_width, dbri->mm.offset);
1456        link_time_slot(dbri, 21, 6, 16, 16, dbri->mm.offset + 40);
1457
1458        /* FIXME: enable CHI after _setdata? */
1459        tmp = sbus_readl(dbri->regs + REG0);
1460        tmp |= D_C;             /* Enable CHI */
1461        sbus_writel(tmp, dbri->regs + REG0);
1462        spin_unlock_irqrestore(&dbri->lock, flags);
1463
1464        cs4215_setdata(dbri, 0);
1465}
1466
1467/*
1468 * Send the control information (i.e. audio format)
1469 */
1470static int cs4215_setctrl(struct snd_dbri *dbri)
1471{
1472        int i, val;
1473        u32 tmp;
1474        unsigned long flags;
1475
1476        /* FIXME - let the CPU do something useful during these delays */
1477
1478        /* Temporarily mute outputs, and wait 1/8000 sec (125 us)
1479         * to make sure this takes.  This avoids clicking noises.
1480         */
1481        cs4215_setdata(dbri, 1);
1482        udelay(125);
1483
1484        /*
1485         * Enable Control mode: Set DBRI's PIO3 (4215's D/~C) to 0, then wait
1486         * 12 cycles <= 12/(5512.5*64) sec = 34.01 usec
1487         */
1488        val = D_ENPIO | D_PIO1 | (dbri->mm.onboard ? D_PIO0 : D_PIO2);
1489        sbus_writel(val, dbri->regs + REG2);
1490        dprintk(D_MM, "cs4215_setctrl: reg2=0x%x\n", val);
1491        udelay(34);
1492
1493        /* In Control mode, the CS4215 is a slave device, so the DBRI must
1494         * operate as CHI master, supplying clocking and frame synchronization.
1495         *
1496         * In Data mode, however, the CS4215 must be CHI master to insure
1497         * that its data stream is synchronous with its codec.
1498         *
1499         * The upshot of all this?  We start by putting the DBRI into master
1500         * mode, program the CS4215 in Control mode, then switch the CS4215
1501         * into Data mode and put the DBRI into slave mode.  Various timing
1502         * requirements must be observed along the way.
1503         *
1504         * Oh, and one more thing, on a SPARCStation 20 (and maybe
1505         * others?), the addressing of the CS4215's time slots is
1506         * offset by eight bits, so we add eight to all the "cycle"
1507         * values in the Define Time Slot (DTS) commands.  This is
1508         * done in hardware by a TI 248 that delays the DBRI->4215
1509         * frame sync signal by eight clock cycles.  Anybody know why?
1510         */
1511        spin_lock_irqsave(&dbri->lock, flags);
1512        tmp = sbus_readl(dbri->regs + REG0);
1513        tmp &= ~D_C;            /* Disable CHI */
1514        sbus_writel(tmp, dbri->regs + REG0);
1515
1516        reset_chi(dbri, CHImaster, 128);
1517
1518        /*
1519         * Control mode:
1520         * Pipe 17: Send timeslots 1-4 (slots 5-8 are read only)
1521         * Pipe 18: Receive timeslot 1 (clb).
1522         * Pipe 19: Receive timeslot 7 (version).
1523         */
1524
1525        link_time_slot(dbri, 17, 16, 16, 32, dbri->mm.offset);
1526        link_time_slot(dbri, 18, 16, 16, 8, dbri->mm.offset);
1527        link_time_slot(dbri, 19, 18, 16, 8, dbri->mm.offset + 48);
1528        spin_unlock_irqrestore(&dbri->lock, flags);
1529
1530        /* Wait for the chip to echo back CLB (Control Latch Bit) as zero */
1531        dbri->mm.ctrl[0] &= ~CS4215_CLB;
1532        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1533
1534        spin_lock_irqsave(&dbri->lock, flags);
1535        tmp = sbus_readl(dbri->regs + REG0);
1536        tmp |= D_C;             /* Enable CHI */
1537        sbus_writel(tmp, dbri->regs + REG0);
1538        spin_unlock_irqrestore(&dbri->lock, flags);
1539
1540        for (i = 10; ((dbri->mm.status & 0xe4) != 0x20); --i)
1541                msleep_interruptible(1);
1542
1543        if (i == 0) {
1544                dprintk(D_MM, "CS4215 didn't respond to CLB (0x%02x)\n",
1545                        dbri->mm.status);
1546                return -1;
1547        }
1548
1549        /* Disable changes to our copy of the version number, as we are about
1550         * to leave control mode.
1551         */
1552        recv_fixed(dbri, 19, NULL);
1553
1554        /* Terminate CS4215 control mode - data sheet says
1555         * "Set CLB=1 and send two more frames of valid control info"
1556         */
1557        dbri->mm.ctrl[0] |= CS4215_CLB;
1558        xmit_fixed(dbri, 17, *(int *)dbri->mm.ctrl);
1559
1560        /* Two frames of control info @ 8kHz frame rate = 250 us delay */
1561        udelay(250);
1562
1563        cs4215_setdata(dbri, 0);
1564
1565        return 0;
1566}
1567
1568/*
1569 * Setup the codec with the sampling rate, audio format and number of
1570 * channels.
1571 * As part of the process we resend the settings for the data
1572 * timeslots as well.
1573 */
1574static int cs4215_prepare(struct snd_dbri *dbri, unsigned int rate,
1575                          snd_pcm_format_t format, unsigned int channels)
1576{
1577        int freq_idx;
1578        int ret = 0;
1579
1580        /* Lookup index for this rate */
1581        for (freq_idx = 0; CS4215_FREQ[freq_idx].freq != 0; freq_idx++) {
1582                if (CS4215_FREQ[freq_idx].freq == rate)
1583                        break;
1584        }
1585        if (CS4215_FREQ[freq_idx].freq != rate) {
1586                printk(KERN_WARNING "DBRI: Unsupported rate %d Hz\n", rate);
1587                return -1;
1588        }
1589
1590        switch (format) {
1591        case SNDRV_PCM_FORMAT_MU_LAW:
1592                dbri->mm.ctrl[1] = CS4215_DFR_ULAW;
1593                dbri->mm.precision = 8;
1594                break;
1595        case SNDRV_PCM_FORMAT_A_LAW:
1596                dbri->mm.ctrl[1] = CS4215_DFR_ALAW;
1597                dbri->mm.precision = 8;
1598                break;
1599        case SNDRV_PCM_FORMAT_U8:
1600                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR8;
1601                dbri->mm.precision = 8;
1602                break;
1603        case SNDRV_PCM_FORMAT_S16_BE:
1604                dbri->mm.ctrl[1] = CS4215_DFR_LINEAR16;
1605                dbri->mm.precision = 16;
1606                break;
1607        default:
1608                printk(KERN_WARNING "DBRI: Unsupported format %d\n", format);
1609                return -1;
1610        }
1611
1612        /* Add rate parameters */
1613        dbri->mm.ctrl[1] |= CS4215_FREQ[freq_idx].csval;
1614        dbri->mm.ctrl[2] = CS4215_XCLK |
1615            CS4215_BSEL_128 | CS4215_FREQ[freq_idx].xtal;
1616
1617        dbri->mm.channels = channels;
1618        if (channels == 2)
1619                dbri->mm.ctrl[1] |= CS4215_DFR_STEREO;
1620
1621        ret = cs4215_setctrl(dbri);
1622        if (ret == 0)
1623                cs4215_open(dbri);      /* set codec to data mode */
1624
1625        return ret;
1626}
1627
1628/*
1629 *
1630 */
1631static __devinit int cs4215_init(struct snd_dbri *dbri)
1632{
1633        u32 reg2 = sbus_readl(dbri->regs + REG2);
1634        dprintk(D_MM, "cs4215_init: reg2=0x%x\n", reg2);
1635
1636        /* Look for the cs4215 chips */
1637        if (reg2 & D_PIO2) {
1638                dprintk(D_MM, "Onboard CS4215 detected\n");
1639                dbri->mm.onboard = 1;
1640        }
1641        if (reg2 & D_PIO0) {
1642                dprintk(D_MM, "Speakerbox detected\n");
1643                dbri->mm.onboard = 0;
1644
1645                if (reg2 & D_PIO2) {
1646                        printk(KERN_INFO "DBRI: Using speakerbox / "
1647                               "ignoring onboard mmcodec.\n");
1648                        sbus_writel(D_ENPIO2, dbri->regs + REG2);
1649                }
1650        }
1651
1652        if (!(reg2 & (D_PIO0 | D_PIO2))) {
1653                printk(KERN_ERR "DBRI: no mmcodec found.\n");
1654                return -EIO;
1655        }
1656
1657        cs4215_setup_pipes(dbri);
1658        cs4215_init_data(&dbri->mm);
1659
1660        /* Enable capture of the status & version timeslots. */
1661        recv_fixed(dbri, 18, &dbri->mm.status);
1662        recv_fixed(dbri, 19, &dbri->mm.version);
1663
1664        dbri->mm.offset = dbri->mm.onboard ? 0 : 8;
1665        if (cs4215_setctrl(dbri) == -1 || dbri->mm.version == 0xff) {
1666                dprintk(D_MM, "CS4215 failed probe at offset %d\n",
1667                        dbri->mm.offset);
1668                return -EIO;
1669        }
1670        dprintk(D_MM, "Found CS4215 at offset %d\n", dbri->mm.offset);
1671
1672        return 0;
1673}
1674
1675/*
1676****************************************************************************
1677*************************** DBRI interrupt handler *************************
1678****************************************************************************
1679
1680The DBRI communicates with the CPU mainly via a circular interrupt
1681buffer.  When an interrupt is signaled, the CPU walks through the
1682buffer and calls dbri_process_one_interrupt() for each interrupt word.
1683Complicated interrupts are handled by dedicated functions (which
1684appear first in this file).  Any pending interrupts can be serviced by
1685calling dbri_process_interrupt_buffer(), which works even if the CPU's
1686interrupts are disabled.
1687
1688*/
1689
1690/* xmit_descs()
1691 *
1692 * Starts transmitting the current TD's for recording/playing.
1693 * For playback, ALSA has filled the DMA memory with new data (we hope).
1694 */
1695static void xmit_descs(struct snd_dbri *dbri)
1696{
1697        struct dbri_streaminfo *info;
1698        s32 *cmd;
1699        unsigned long flags;
1700        int first_td;
1701
1702        if (dbri == NULL)
1703                return;         /* Disabled */
1704
1705        info = &dbri->stream_info[DBRI_REC];
1706        spin_lock_irqsave(&dbri->lock, flags);
1707
1708        if (info->pipe >= 0) {
1709                first_td = dbri->pipes[info->pipe].first_desc;
1710
1711                dprintk(D_DESC, "xmit_descs rec @ TD %d\n", first_td);
1712
1713                /* Stream could be closed by the time we run. */
1714                if (first_td >= 0) {
1715                        cmd = dbri_cmdlock(dbri, 2);
1716                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1717                                            dbri->pipes[info->pipe].sdp
1718                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1719                        *(cmd++) = dbri->dma_dvma +
1720                                   dbri_dma_off(desc, first_td);
1721                        dbri_cmdsend(dbri, cmd, 2);
1722
1723                        /* Reset our admin of the pipe. */
1724                        dbri->pipes[info->pipe].desc = first_td;
1725                }
1726        }
1727
1728        info = &dbri->stream_info[DBRI_PLAY];
1729
1730        if (info->pipe >= 0) {
1731                first_td = dbri->pipes[info->pipe].first_desc;
1732
1733                dprintk(D_DESC, "xmit_descs play @ TD %d\n", first_td);
1734
1735                /* Stream could be closed by the time we run. */
1736                if (first_td >= 0) {
1737                        cmd = dbri_cmdlock(dbri, 2);
1738                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1739                                            dbri->pipes[info->pipe].sdp
1740                                            | D_SDP_P | D_SDP_EVERY | D_SDP_C);
1741                        *(cmd++) = dbri->dma_dvma +
1742                                   dbri_dma_off(desc, first_td);
1743                        dbri_cmdsend(dbri, cmd, 2);
1744
1745                        /* Reset our admin of the pipe. */
1746                        dbri->pipes[info->pipe].desc = first_td;
1747                }
1748        }
1749
1750        spin_unlock_irqrestore(&dbri->lock, flags);
1751}
1752
1753/* transmission_complete_intr()
1754 *
1755 * Called by main interrupt handler when DBRI signals transmission complete
1756 * on a pipe (interrupt triggered by the B bit in a transmit descriptor).
1757 *
1758 * Walks through the pipe's list of transmit buffer descriptors and marks
1759 * them as available. Stops when the first descriptor is found without
1760 * TBC (Transmit Buffer Complete) set, or we've run through them all.
1761 *
1762 * The DMA buffers are not released. They form a ring buffer and
1763 * they are filled by ALSA while others are transmitted by DMA.
1764 *
1765 */
1766
1767static void transmission_complete_intr(struct snd_dbri *dbri, int pipe)
1768{
1769        struct dbri_streaminfo *info = &dbri->stream_info[DBRI_PLAY];
1770        int td = dbri->pipes[pipe].desc;
1771        int status;
1772
1773        while (td >= 0) {
1774                if (td >= DBRI_NO_DESCS) {
1775                        printk(KERN_ERR "DBRI: invalid td on pipe %d\n", pipe);
1776                        return;
1777                }
1778
1779                status = DBRI_TD_STATUS(dbri->dma->desc[td].word4);
1780                if (!(status & DBRI_TD_TBC))
1781                        break;
1782
1783                dprintk(D_INT, "TD %d, status 0x%02x\n", td, status);
1784
1785                dbri->dma->desc[td].word4 = 0;  /* Reset it for next time. */
1786                info->offset += DBRI_RD_CNT(dbri->dma->desc[td].word1);
1787
1788                td = dbri->next_desc[td];
1789                dbri->pipes[pipe].desc = td;
1790        }
1791
1792        /* Notify ALSA */
1793        spin_unlock(&dbri->lock);
1794        snd_pcm_period_elapsed(info->substream);
1795        spin_lock(&dbri->lock);
1796}
1797
1798static void reception_complete_intr(struct snd_dbri *dbri, int pipe)
1799{
1800        struct dbri_streaminfo *info;
1801        int rd = dbri->pipes[pipe].desc;
1802        s32 status;
1803
1804        if (rd < 0 || rd >= DBRI_NO_DESCS) {
1805                printk(KERN_ERR "DBRI: invalid rd on pipe %d\n", pipe);
1806                return;
1807        }
1808
1809        dbri->pipes[pipe].desc = dbri->next_desc[rd];
1810        status = dbri->dma->desc[rd].word1;
1811        dbri->dma->desc[rd].word1 = 0;  /* Reset it for next time. */
1812
1813        info = &dbri->stream_info[DBRI_REC];
1814        info->offset += DBRI_RD_CNT(status);
1815
1816        /* FIXME: Check status */
1817
1818        dprintk(D_INT, "Recv RD %d, status 0x%02x, len %d\n",
1819                rd, DBRI_RD_STATUS(status), DBRI_RD_CNT(status));
1820
1821        /* Notify ALSA */
1822        spin_unlock(&dbri->lock);
1823        snd_pcm_period_elapsed(info->substream);
1824        spin_lock(&dbri->lock);
1825}
1826
1827static void dbri_process_one_interrupt(struct snd_dbri *dbri, int x)
1828{
1829        int val = D_INTR_GETVAL(x);
1830        int channel = D_INTR_GETCHAN(x);
1831        int command = D_INTR_GETCMD(x);
1832        int code = D_INTR_GETCODE(x);
1833#ifdef DBRI_DEBUG
1834        int rval = D_INTR_GETRVAL(x);
1835#endif
1836
1837        if (channel == D_INTR_CMD) {
1838                dprintk(D_CMD, "INTR: Command: %-5s  Value:%d\n",
1839                        cmds[command], val);
1840        } else {
1841                dprintk(D_INT, "INTR: Chan:%d Code:%d Val:%#x\n",
1842                        channel, code, rval);
1843        }
1844
1845        switch (code) {
1846        case D_INTR_CMDI:
1847                if (command != D_WAIT)
1848                        printk(KERN_ERR "DBRI: Command read interrupt\n");
1849                break;
1850        case D_INTR_BRDY:
1851                reception_complete_intr(dbri, channel);
1852                break;
1853        case D_INTR_XCMP:
1854        case D_INTR_MINT:
1855                transmission_complete_intr(dbri, channel);
1856                break;
1857        case D_INTR_UNDR:
1858                /* UNDR - Transmission underrun
1859                 * resend SDP command with clear pipe bit (C) set
1860                 */
1861                {
1862        /* FIXME: do something useful in case of underrun */
1863                        printk(KERN_ERR "DBRI: Underrun error\n");
1864#if 0
1865                        s32 *cmd;
1866                        int pipe = channel;
1867                        int td = dbri->pipes[pipe].desc;
1868
1869                        dbri->dma->desc[td].word4 = 0;
1870                        cmd = dbri_cmdlock(dbri, NoGetLock);
1871                        *(cmd++) = DBRI_CMD(D_SDP, 0,
1872                                            dbri->pipes[pipe].sdp
1873                                            | D_SDP_P | D_SDP_C | D_SDP_2SAME);
1874                        *(cmd++) = dbri->dma_dvma + dbri_dma_off(desc, td);
1875                        dbri_cmdsend(dbri, cmd);
1876#endif
1877                }
1878                break;
1879        case D_INTR_FXDT:
1880                /* FXDT - Fixed data change */
1881                if (dbri->pipes[channel].sdp & D_SDP_MSB)
1882                        val = reverse_bytes(val, dbri->pipes[channel].length);
1883
1884                if (dbri->pipes[channel].recv_fixed_ptr)
1885                        *(dbri->pipes[channel].recv_fixed_ptr) = val;
1886                break;
1887        default:
1888                if (channel != D_INTR_CMD)
1889                        printk(KERN_WARNING
1890                               "DBRI: Ignored Interrupt: %d (0x%x)\n", code, x);
1891        }
1892}
1893
1894/* dbri_process_interrupt_buffer advances through the DBRI's interrupt
1895 * buffer until it finds a zero word (indicating nothing more to do
1896 * right now).  Non-zero words require processing and are handed off
1897 * to dbri_process_one_interrupt AFTER advancing the pointer.
1898 */
1899static void dbri_process_interrupt_buffer(struct snd_dbri *dbri)
1900{
1901        s32 x;
1902
1903        while ((x = dbri->dma->intr[dbri->dbri_irqp]) != 0) {
1904                dbri->dma->intr[dbri->dbri_irqp] = 0;
1905                dbri->dbri_irqp++;
1906                if (dbri->dbri_irqp == DBRI_INT_BLK)
1907                        dbri->dbri_irqp = 1;
1908
1909                dbri_process_one_interrupt(dbri, x);
1910        }
1911}
1912
1913static irqreturn_t snd_dbri_interrupt(int irq, void *dev_id)
1914{
1915        struct snd_dbri *dbri = dev_id;
1916        static int errcnt = 0;
1917        int x;
1918
1919        if (dbri == NULL)
1920                return IRQ_NONE;
1921        spin_lock(&dbri->lock);
1922
1923        /*
1924         * Read it, so the interrupt goes away.
1925         */
1926        x = sbus_readl(dbri->regs + REG1);
1927
1928        if (x & (D_MRR | D_MLE | D_LBG | D_MBE)) {
1929                u32 tmp;
1930
1931                if (x & D_MRR)
1932                        printk(KERN_ERR
1933                               "DBRI: Multiple Error Ack on SBus reg1=0x%x\n",
1934                               x);
1935                if (x & D_MLE)
1936                        printk(KERN_ERR
1937                               "DBRI: Multiple Late Error on SBus reg1=0x%x\n",
1938                               x);
1939                if (x & D_LBG)
1940                        printk(KERN_ERR
1941                               "DBRI: Lost Bus Grant on SBus reg1=0x%x\n", x);
1942                if (x & D_MBE)
1943                        printk(KERN_ERR
1944                               "DBRI: Burst Error on SBus reg1=0x%x\n", x);
1945
1946                /* Some of these SBus errors cause the chip's SBus circuitry
1947                 * to be disabled, so just re-enable and try to keep going.
1948                 *
1949                 * The only one I've seen is MRR, which will be triggered
1950                 * if you let a transmit pipe underrun, then try to CDP it.
1951                 *
1952                 * If these things persist, we reset the chip.
1953                 */
1954                if ((++errcnt) % 10 == 0) {
1955                        dprintk(D_INT, "Interrupt errors exceeded.\n");
1956                        dbri_reset(dbri);
1957                } else {
1958                        tmp = sbus_readl(dbri->regs + REG0);
1959                        tmp &= ~(D_D);
1960                        sbus_writel(tmp, dbri->regs + REG0);
1961                }
1962        }
1963
1964        dbri_process_interrupt_buffer(dbri);
1965
1966        spin_unlock(&dbri->lock);
1967
1968        return IRQ_HANDLED;
1969}
1970
1971/****************************************************************************
1972                PCM Interface
1973****************************************************************************/
1974static struct snd_pcm_hardware snd_dbri_pcm_hw = {
1975        .info           = SNDRV_PCM_INFO_MMAP |
1976                          SNDRV_PCM_INFO_INTERLEAVED |
1977                          SNDRV_PCM_INFO_BLOCK_TRANSFER |
1978                          SNDRV_PCM_INFO_MMAP_VALID,
1979        .formats        = SNDRV_PCM_FMTBIT_MU_LAW |
1980                          SNDRV_PCM_FMTBIT_A_LAW |
1981                          SNDRV_PCM_FMTBIT_U8 |
1982                          SNDRV_PCM_FMTBIT_S16_BE,
1983        .rates          = SNDRV_PCM_RATE_8000_48000 | SNDRV_PCM_RATE_5512,
1984        .rate_min               = 5512,
1985        .rate_max               = 48000,
1986        .channels_min           = 1,
1987        .channels_max           = 2,
1988        .buffer_bytes_max       = 64 * 1024,
1989        .period_bytes_min       = 1,
1990        .period_bytes_max       = DBRI_TD_MAXCNT,
1991        .periods_min            = 1,
1992        .periods_max            = 1024,
1993};
1994
1995static int snd_hw_rule_format(struct snd_pcm_hw_params *params,
1996                              struct snd_pcm_hw_rule *rule)
1997{
1998        struct snd_interval *c = hw_param_interval(params,
1999                                SNDRV_PCM_HW_PARAM_CHANNELS);
2000        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2001        struct snd_mask fmt;
2002
2003        snd_mask_any(&fmt);
2004        if (c->min > 1) {
2005                fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_BE;
2006                return snd_mask_refine(f, &fmt);
2007        }
2008        return 0;
2009}
2010
2011static int snd_hw_rule_channels(struct snd_pcm_hw_params *params,
2012                                struct snd_pcm_hw_rule *rule)
2013{
2014        struct snd_interval *c = hw_param_interval(params,
2015                                SNDRV_PCM_HW_PARAM_CHANNELS);
2016        struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT);
2017        struct snd_interval ch;
2018
2019        snd_interval_any(&ch);
2020        if (!(f->bits[0] & SNDRV_PCM_FMTBIT_S16_BE)) {
2021                ch.min = 1;
2022                ch.max = 1;
2023                ch.integer = 1;
2024                return snd_interval_refine(c, &ch);
2025        }
2026        return 0;
2027}
2028
2029static int snd_dbri_open(struct snd_pcm_substream *substream)
2030{
2031        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2032        struct snd_pcm_runtime *runtime = substream->runtime;
2033        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2034        unsigned long flags;
2035
2036        dprintk(D_USR, "open audio output.\n");
2037        runtime->hw = snd_dbri_pcm_hw;
2038
2039        spin_lock_irqsave(&dbri->lock, flags);
2040        info->substream = substream;
2041        info->offset = 0;
2042        info->dvma_buffer = 0;
2043        info->pipe = -1;
2044        spin_unlock_irqrestore(&dbri->lock, flags);
2045
2046        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS,
2047                            snd_hw_rule_format, NULL, SNDRV_PCM_HW_PARAM_FORMAT,
2048                            -1);
2049        snd_pcm_hw_rule_add(runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT,
2050                            snd_hw_rule_channels, NULL,
2051                            SNDRV_PCM_HW_PARAM_CHANNELS,
2052                            -1);
2053
2054        cs4215_open(dbri);
2055
2056        return 0;
2057}
2058
2059static int snd_dbri_close(struct snd_pcm_substream *substream)
2060{
2061        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2062        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2063
2064        dprintk(D_USR, "close audio output.\n");
2065        info->substream = NULL;
2066        info->offset = 0;
2067
2068        return 0;
2069}
2070
2071static int snd_dbri_hw_params(struct snd_pcm_substream *substream,
2072                              struct snd_pcm_hw_params *hw_params)
2073{
2074        struct snd_pcm_runtime *runtime = substream->runtime;
2075        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2076        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2077        int direction;
2078        int ret;
2079
2080        /* set sampling rate, audio format and number of channels */
2081        ret = cs4215_prepare(dbri, params_rate(hw_params),
2082                             params_format(hw_params),
2083                             params_channels(hw_params));
2084        if (ret != 0)
2085                return ret;
2086
2087        if ((ret = snd_pcm_lib_malloc_pages(substream,
2088                                params_buffer_bytes(hw_params))) < 0) {
2089                printk(KERN_ERR "malloc_pages failed with %d\n", ret);
2090                return ret;
2091        }
2092
2093        /* hw_params can get called multiple times. Only map the DMA once.
2094         */
2095        if (info->dvma_buffer == 0) {
2096                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2097                        direction = SBUS_DMA_TODEVICE;
2098                else
2099                        direction = SBUS_DMA_FROMDEVICE;
2100
2101                info->dvma_buffer = sbus_map_single(dbri->sdev,
2102                                        runtime->dma_area,
2103                                        params_buffer_bytes(hw_params),
2104                                        direction);
2105        }
2106
2107        direction = params_buffer_bytes(hw_params);
2108        dprintk(D_USR, "hw_params: %d bytes, dvma=%x\n",
2109                direction, info->dvma_buffer);
2110        return 0;
2111}
2112
2113static int snd_dbri_hw_free(struct snd_pcm_substream *substream)
2114{
2115        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2116        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2117        int direction;
2118
2119        dprintk(D_USR, "hw_free.\n");
2120
2121        /* hw_free can get called multiple times. Only unmap the DMA once.
2122         */
2123        if (info->dvma_buffer) {
2124                if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2125                        direction = SBUS_DMA_TODEVICE;
2126                else
2127                        direction = SBUS_DMA_FROMDEVICE;
2128
2129                sbus_unmap_single(dbri->sdev, info->dvma_buffer,
2130                                  substream->runtime->buffer_size, direction);
2131                info->dvma_buffer = 0;
2132        }
2133        if (info->pipe != -1) {
2134                reset_pipe(dbri, info->pipe);
2135                info->pipe = -1;
2136        }
2137
2138        return snd_pcm_lib_free_pages(substream);
2139}
2140
2141static int snd_dbri_prepare(struct snd_pcm_substream *substream)
2142{
2143        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2144        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2145        int ret;
2146
2147        info->size = snd_pcm_lib_buffer_bytes(substream);
2148        if (DBRI_STREAMNO(substream) == DBRI_PLAY)
2149                info->pipe = 4; /* Send pipe */
2150        else
2151                info->pipe = 6; /* Receive pipe */
2152
2153        spin_lock_irq(&dbri->lock);
2154        info->offset = 0;
2155
2156        /* Setup the all the transmit/receive descriptors to cover the
2157         * whole DMA buffer.
2158         */
2159        ret = setup_descs(dbri, DBRI_STREAMNO(substream),
2160                          snd_pcm_lib_period_bytes(substream));
2161
2162        spin_unlock_irq(&dbri->lock);
2163
2164        dprintk(D_USR, "prepare audio output. %d bytes\n", info->size);
2165        return ret;
2166}
2167
2168static int snd_dbri_trigger(struct snd_pcm_substream *substream, int cmd)
2169{
2170        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2171        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2172        int ret = 0;
2173
2174        switch (cmd) {
2175        case SNDRV_PCM_TRIGGER_START:
2176                dprintk(D_USR, "start audio, period is %d bytes\n",
2177                        (int)snd_pcm_lib_period_bytes(substream));
2178                /* Re-submit the TDs. */
2179                xmit_descs(dbri);
2180                break;
2181        case SNDRV_PCM_TRIGGER_STOP:
2182                dprintk(D_USR, "stop audio.\n");
2183                reset_pipe(dbri, info->pipe);
2184                break;
2185        default:
2186                ret = -EINVAL;
2187        }
2188
2189        return ret;
2190}
2191
2192static snd_pcm_uframes_t snd_dbri_pointer(struct snd_pcm_substream *substream)
2193{
2194        struct snd_dbri *dbri = snd_pcm_substream_chip(substream);
2195        struct dbri_streaminfo *info = DBRI_STREAM(dbri, substream);
2196        snd_pcm_uframes_t ret;
2197
2198        ret = bytes_to_frames(substream->runtime, info->offset)
2199                % substream->runtime->buffer_size;
2200        dprintk(D_USR, "I/O pointer: %ld frames of %ld.\n",
2201                ret, substream->runtime->buffer_size);
2202        return ret;
2203}
2204
2205static struct snd_pcm_ops snd_dbri_ops = {
2206        .open = snd_dbri_open,
2207        .close = snd_dbri_close,
2208        .ioctl = snd_pcm_lib_ioctl,
2209        .hw_params = snd_dbri_hw_params,
2210        .hw_free = snd_dbri_hw_free,
2211        .prepare = snd_dbri_prepare,
2212        .trigger = snd_dbri_trigger,
2213        .pointer = snd_dbri_pointer,
2214};
2215
2216static int __devinit snd_dbri_pcm(struct snd_card *card)
2217{
2218        struct snd_pcm *pcm;
2219        int err;
2220
2221        if ((err = snd_pcm_new(card,
2222                               /* ID */             "sun_dbri",
2223                               /* device */         0,
2224                               /* playback count */ 1,
2225                               /* capture count */  1, &pcm)) < 0)
2226                return err;
2227        snd_assert(pcm != NULL, return -EINVAL);
2228
2229        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_dbri_ops);
2230        snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_dbri_ops);
2231
2232        pcm->private_data = card->private_data;
2233        pcm->info_flags = 0;
2234        strcpy(pcm->name, card->shortname);
2235
2236        if ((err = snd_pcm_lib_preallocate_pages_for_all(pcm,
2237                        SNDRV_DMA_TYPE_CONTINUOUS,
2238                        snd_dma_continuous_data(GFP_KERNEL),
2239                        64 * 1024, 64 * 1024)) < 0)
2240                return err;
2241
2242        return 0;
2243}
2244
2245/*****************************************************************************
2246                        Mixer interface
2247*****************************************************************************/
2248
2249static int snd_cs4215_info_volume(struct snd_kcontrol *kcontrol,
2250                                  struct snd_ctl_elem_info *uinfo)
2251{
2252        uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2253        uinfo->count = 2;
2254        uinfo->value.integer.min = 0;
2255        if (kcontrol->private_value == DBRI_PLAY)
2256                uinfo->value.integer.max = DBRI_MAX_VOLUME;
2257        else
2258                uinfo->value.integer.max = DBRI_MAX_GAIN;
2259        return 0;
2260}
2261
2262static int snd_cs4215_get_volume(struct snd_kcontrol *kcontrol,
2263                                 struct snd_ctl_elem_value *ucontrol)
2264{
2265        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2266        struct dbri_streaminfo *info;
2267        snd_assert(dbri != NULL, return -EINVAL);
2268        info = &dbri->stream_info[kcontrol->private_value];
2269        snd_assert(info != NULL, return -EINVAL);
2270
2271        ucontrol->value.integer.value[0] = info->left_gain;
2272        ucontrol->value.integer.value[1] = info->right_gain;
2273        return 0;
2274}
2275
2276static int snd_cs4215_put_volume(struct snd_kcontrol *kcontrol,
2277                                 struct snd_ctl_elem_value *ucontrol)
2278{
2279        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2280        struct dbri_streaminfo *info =
2281                                &dbri->stream_info[kcontrol->private_value];
2282        int changed = 0;
2283
2284        if (info->left_gain != ucontrol->value.integer.value[0]) {
2285                info->left_gain = ucontrol->value.integer.value[0];
2286                changed = 1;
2287        }
2288        if (info->right_gain != ucontrol->value.integer.value[1]) {
2289                info->right_gain = ucontrol->value.integer.value[1];
2290                changed = 1;
2291        }
2292        if (changed) {
2293                /* First mute outputs, and wait 1/8000 sec (125 us)
2294                 * to make sure this takes.  This avoids clicking noises.
2295                 */
2296                cs4215_setdata(dbri, 1);
2297                udelay(125);
2298                cs4215_setdata(dbri, 0);
2299        }
2300        return changed;
2301}
2302
2303static int snd_cs4215_info_single(struct snd_kcontrol *kcontrol,
2304                                  struct snd_ctl_elem_info *uinfo)
2305{
2306        int mask = (kcontrol->private_value >> 16) & 0xff;
2307
2308        uinfo->type = (mask == 1) ?
2309            SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2310        uinfo->count = 1;
2311        uinfo->value.integer.min = 0;
2312        uinfo->value.integer.max = mask;
2313        return 0;
2314}
2315
2316static int snd_cs4215_get_single(struct snd_kcontrol *kcontrol,
2317                                 struct snd_ctl_elem_value *ucontrol)
2318{
2319        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2320        int elem = kcontrol->private_value & 0xff;
2321        int shift = (kcontrol->private_value >> 8) & 0xff;
2322        int mask = (kcontrol->private_value >> 16) & 0xff;
2323        int invert = (kcontrol->private_value >> 24) & 1;
2324        snd_assert(dbri != NULL, return -EINVAL);
2325
2326        if (elem < 4)
2327                ucontrol->value.integer.value[0] =
2328                    (dbri->mm.data[elem] >> shift) & mask;
2329        else
2330                ucontrol->value.integer.value[0] =
2331                    (dbri->mm.ctrl[elem - 4] >> shift) & mask;
2332
2333        if (invert == 1)
2334                ucontrol->value.integer.value[0] =
2335                    mask - ucontrol->value.integer.value[0];
2336        return 0;
2337}
2338
2339static int snd_cs4215_put_single(struct snd_kcontrol *kcontrol,
2340                                 struct snd_ctl_elem_value *ucontrol)
2341{
2342        struct snd_dbri *dbri = snd_kcontrol_chip(kcontrol);
2343        int elem = kcontrol->private_value & 0xff;
2344        int shift = (kcontrol->private_value >> 8) & 0xff;
2345        int mask = (kcontrol->private_value >> 16) & 0xff;
2346        int invert = (kcontrol->private_value >> 24) & 1;
2347        int changed = 0;
2348        unsigned short val;
2349        snd_assert(dbri != NULL, return -EINVAL);
2350
2351        val = (ucontrol->value.integer.value[0] & mask);
2352        if (invert == 1)
2353                val = mask - val;
2354        val <<= shift;
2355
2356        if (elem < 4) {
2357                dbri->mm.data[elem] = (dbri->mm.data[elem] &
2358                                       ~(mask << shift)) | val;
2359                changed = (val != dbri->mm.data[elem]);
2360        } else {
2361                dbri->mm.ctrl[elem - 4] = (dbri->mm.ctrl[elem - 4] &
2362                                           ~(mask << shift)) | val;
2363                changed = (val != dbri->mm.ctrl[elem - 4]);
2364        }
2365
2366        dprintk(D_GEN, "put_single: mask=0x%x, changed=%d, "
2367                "mixer-value=%ld, mm-value=0x%x\n",
2368                mask, changed, ucontrol->value.integer.value[0],
2369                dbri->mm.data[elem & 3]);
2370
2371        if (changed) {
2372                /* First mute outputs, and wait 1/8000 sec (125 us)
2373                 * to make sure this takes.  This avoids clicking noises.
2374                 */
2375                cs4215_setdata(dbri, 1);
2376                udelay(125);
2377                cs4215_setdata(dbri, 0);
2378        }
2379        return changed;
2380}
2381
2382/* Entries 0-3 map to the 4 data timeslots, entries 4-7 map to the 4 control
2383   timeslots. Shift is the bit offset in the timeslot, mask defines the
2384   number of bits. invert is a boolean for use with attenuation.
2385 */
2386#define CS4215_SINGLE(xname, entry, shift, mask, invert)        \
2387{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = (xname),         \
2388  .info = snd_cs4215_info_single,                               \
2389  .get = snd_cs4215_get_single, .put = snd_cs4215_put_single,   \
2390  .private_value = (entry) | ((shift) << 8) | ((mask) << 16) |  \
2391                        ((invert) << 24) },
2392
2393static struct snd_kcontrol_new dbri_controls[] __devinitdata = {
2394        {
2395         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2396         .name  = "Playback Volume",
2397         .info  = snd_cs4215_info_volume,
2398         .get   = snd_cs4215_get_volume,
2399         .put   = snd_cs4215_put_volume,
2400         .private_value = DBRI_PLAY,
2401         },
2402        CS4215_SINGLE("Headphone switch", 0, 7, 1, 0)
2403        CS4215_SINGLE("Line out switch", 0, 6, 1, 0)
2404        CS4215_SINGLE("Speaker switch", 1, 6, 1, 0)
2405        {
2406         .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2407         .name  = "Capture Volume",
2408         .info  = snd_cs4215_info_volume,
2409         .get   = snd_cs4215_get_volume,
2410         .put   = snd_cs4215_put_volume,
2411         .private_value = DBRI_REC,
2412         },
2413        /* FIXME: mic/line switch */
2414        CS4215_SINGLE("Line in switch", 2, 4, 1, 0)
2415        CS4215_SINGLE("High Pass Filter switch", 5, 7, 1, 0)
2416        CS4215_SINGLE("Monitor Volume", 3, 4, 0xf, 1)
2417        CS4215_SINGLE("Mic boost", 4, 4, 1, 1)
2418};
2419
2420static int __devinit snd_dbri_mixer(struct snd_card *card)
2421{
2422        int idx, err;
2423        struct snd_dbri *dbri;
2424
2425        snd_assert(card != NULL && card->private_data != NULL, return -EINVAL);
2426        dbri = card->private_data;
2427
2428        strcpy(card->mixername, card->shortname);
2429
2430        for (idx = 0; idx < ARRAY_SIZE(dbri_controls); idx++) {
2431                err = snd_ctl_add(card,
2432                                snd_ctl_new1(&dbri_controls[idx], dbri));
2433                if (err < 0)
2434                        return err;
2435        }
2436
2437        for (idx = DBRI_REC; idx < DBRI_NO_STREAMS; idx++) {
2438                dbri->stream_info[idx].left_gain = 0;
2439                dbri->stream_info[idx].right_gain = 0;
2440        }
2441
2442        return 0;
2443}
2444
2445/****************************************************************************
2446                        /proc interface
2447****************************************************************************/
2448static void dbri_regs_read(struct snd_info_entry *entry,
2449                           struct snd_info_buffer *buffer)
2450{
2451        struct snd_dbri *dbri = entry->private_data;
2452
2453        snd_iprintf(buffer, "REG0: 0x%x\n", sbus_readl(dbri->regs + REG0));
2454        snd_iprintf(buffer, "REG2: 0x%x\n", sbus_readl(dbri->regs + REG2));
2455        snd_iprintf(buffer, "REG8: 0x%x\n", sbus_readl(dbri->regs + REG8));
2456        snd_iprintf(buffer, "REG9: 0x%x\n", sbus_readl(dbri->regs + REG9));
2457}
2458
2459#ifdef DBRI_DEBUG
2460static void dbri_debug_read(struct snd_info_entry *entry,
2461                            struct snd_info_buffer *buffer)
2462{
2463        struct snd_dbri *dbri = entry->private_data;
2464        int pipe;
2465        snd_iprintf(buffer, "debug=%d\n", dbri_debug);
2466
2467        for (pipe = 0; pipe < 32; pipe++) {
2468                if (pipe_active(dbri, pipe)) {
2469                        struct dbri_pipe *pptr = &dbri->pipes[pipe];
2470                        snd_iprintf(buffer,
2471                                    "Pipe %d: %s SDP=0x%x desc=%d, "
2472                                    "len=%d next %d\n",
2473                                    pipe,
2474                                   (pptr->sdp & D_SDP_TO_SER) ? "output" :
2475                                                                 "input",
2476                                    pptr->sdp, pptr->desc,
2477                                    pptr->length, pptr->nextpipe);
2478                }
2479        }
2480}
2481#endif
2482
2483void __devinit snd_dbri_proc(struct snd_card *card)
2484{
2485        struct snd_dbri *dbri = card->private_data;
2486        struct snd_info_entry *entry;
2487
2488        if (!snd_card_proc_new(card, "regs", &entry))
2489                snd_info_set_text_ops(entry, dbri, dbri_regs_read);
2490
2491#ifdef DBRI_DEBUG
2492        if (!snd_card_proc_new(card, "debug", &entry)) {
2493                snd_info_set_text_ops(entry, dbri, dbri_debug_read);
2494                entry->mode = S_IFREG | S_IRUGO;        /* Readable only. */
2495        }
2496#endif
2497}
2498
2499/*
2500****************************************************************************
2501**************************** Initialization ********************************
2502****************************************************************************
2503*/
2504static void snd_dbri_free(struct snd_dbri *dbri);
2505
2506static int __devinit snd_dbri_create(struct snd_card *card,
2507                                  struct sbus_dev *sdev,
2508                                  int irq, int dev)
2509{
2510        struct snd_dbri *dbri = card->private_data;
2511        int err;
2512
2513        spin_lock_init(&dbri->lock);
2514        dbri->sdev = sdev;
2515        dbri->irq = irq;
2516
2517        dbri->dma = sbus_alloc_consistent(sdev, sizeof(struct dbri_dma),
2518                                          &dbri->dma_dvma);
2519        memset((void *)dbri->dma, 0, sizeof(struct dbri_dma));
2520
2521        dprintk(D_GEN, "DMA Cmd Block 0x%p (0x%08x)\n",
2522                dbri->dma, dbri->dma_dvma);
2523
2524        /* Map the registers into memory. */
2525        dbri->regs_size = sdev->reg_addrs[0].reg_size;
2526        dbri->regs = sbus_ioremap(&sdev->resource[0], 0,
2527                                  dbri->regs_size, "DBRI Registers");
2528        if (!dbri->regs) {
2529                printk(KERN_ERR "DBRI: could not allocate registers\n");
2530                sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2531                                     (void *)dbri->dma, dbri->dma_dvma);
2532                return -EIO;
2533        }
2534
2535        err = request_irq(dbri->irq, snd_dbri_interrupt, IRQF_SHARED,
2536                          "DBRI audio", dbri);
2537        if (err) {
2538                printk(KERN_ERR "DBRI: Can't get irq %d\n", dbri->irq);
2539                sbus_iounmap(dbri->regs, dbri->regs_size);
2540                sbus_free_consistent(sdev, sizeof(struct dbri_dma),
2541                                     (void *)dbri->dma, dbri->dma_dvma);
2542                return err;
2543        }
2544
2545        /* Do low level initialization of the DBRI and CS4215 chips */
2546        dbri_initialize(dbri);
2547        err = cs4215_init(dbri);
2548        if (err) {
2549                snd_dbri_free(dbri);
2550                return err;
2551        }
2552
2553        return 0;
2554}
2555
2556static void snd_dbri_free(struct snd_dbri *dbri)
2557{
2558        dprintk(D_GEN, "snd_dbri_free\n");
2559        dbri_reset(dbri);
2560
2561        if (dbri->irq)
2562                free_irq(dbri->irq, dbri);
2563
2564        if (dbri->regs)
2565                sbus_iounmap(dbri->regs, dbri->regs_size);
2566
2567        if (dbri->dma)
2568                sbus_free_consistent(dbri->sdev, sizeof(struct dbri_dma),
2569                                     (void *)dbri->dma, dbri->dma_dvma);
2570}
2571
2572static int __devinit dbri_probe(struct of_device *of_dev,
2573                                const struct of_device_id *match)
2574{
2575        struct sbus_dev *sdev = to_sbus_device(&of_dev->dev);
2576        struct snd_dbri *dbri;
2577        int irq;
2578        struct resource *rp;
2579        struct snd_card *card;
2580        static int dev = 0;
2581        int err;
2582
2583        dprintk(D_GEN, "DBRI: Found %s in SBUS slot %d\n",
2584                sdev->prom_name, sdev->slot);
2585
2586        if (dev >= SNDRV_CARDS)
2587                return -ENODEV;
2588        if (!enable[dev]) {
2589                dev++;
2590                return -ENOENT;
2591        }
2592
2593        irq = sdev->irqs[0];
2594        if (irq <= 0) {
2595                printk(KERN_ERR "DBRI-%d: No IRQ.\n", dev);
2596                return -ENODEV;
2597        }
2598
2599        card = snd_card_new(index[dev], id[dev], THIS_MODULE,
2600                            sizeof(struct snd_dbri));
2601        if (card == NULL)
2602                return -ENOMEM;
2603
2604        strcpy(card->driver, "DBRI");
2605        strcpy(card->shortname, "Sun DBRI");
2606        rp = &sdev->resource[0];
2607        sprintf(card->longname, "%s at 0x%02lx:0x%016Lx, irq %d",
2608                card->shortname,
2609                rp->flags & 0xffL, (unsigned long long)rp->start, irq);
2610
2611        err = snd_dbri_create(card, sdev, irq, dev);
2612        if (err < 0) {
2613                snd_card_free(card);
2614                return err;
2615        }
2616
2617        dbri = card->private_data;
2618        err = snd_dbri_pcm(card);
2619        if (err < 0)
2620                goto _err;
2621
2622        err = snd_dbri_mixer(card);
2623        if (err < 0)
2624                goto _err;
2625
2626        /* /proc file handling */
2627        snd_dbri_proc(card);
2628        dev_set_drvdata(&of_dev->dev, card);
2629
2630        err = snd_card_register(card);
2631        if (err < 0)
2632                goto _err;
2633
2634        printk(KERN_INFO "audio%d at %p (irq %d) is DBRI(%c)+CS4215(%d)\n",
2635               dev, dbri->regs,
2636               dbri->irq, sdev->prom_name[9], dbri->mm.version);
2637        dev++;
2638
2639        return 0;
2640
2641_err:
2642        snd_dbri_free(dbri);
2643        snd_card_free(card);
2644        return err;
2645}
2646
2647static int __devexit dbri_remove(struct of_device *dev)
2648{
2649        struct snd_card *card = dev_get_drvdata(&dev->dev);
2650
2651        snd_dbri_free(card->private_data);
2652        snd_card_free(card);
2653
2654        dev_set_drvdata(&dev->dev, NULL);
2655
2656        return 0;
2657}
2658
2659static struct of_device_id dbri_match[] = {
2660        {
2661                .name = "SUNW,DBRIe",
2662        },
2663        {
2664                .name = "SUNW,DBRIf",
2665        },
2666        {},
2667};
2668
2669MODULE_DEVICE_TABLE(of, dbri_match);
2670
2671static struct of_platform_driver dbri_sbus_driver = {
2672        .name           = "dbri",
2673        .match_table    = dbri_match,
2674        .probe          = dbri_probe,
2675        .remove         = __devexit_p(dbri_remove),
2676};
2677
2678/* Probe for the dbri chip and then attach the driver. */
2679static int __init dbri_init(void)
2680{
2681        return of_register_driver(&dbri_sbus_driver, &sbus_bus_type);
2682}
2683
2684static void __exit dbri_exit(void)
2685{
2686        of_unregister_driver(&dbri_sbus_driver);
2687}
2688
2689module_init(dbri_init);
2690module_exit(dbri_exit);
2691