linux/arch/alpha/kernel/time.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/alpha/kernel/time.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
   5 *
   6 * This file contains the PC-specific time handling details:
   7 * reading the RTC at bootup, etc..
   8 * 1994-07-02    Alan Modra
   9 *      fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
  10 * 1995-03-26    Markus Kuhn
  11 *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
  12 *      precision CMOS clock update
  13 * 1997-09-10   Updated NTP code according to technical memorandum Jan '96
  14 *              "A Kernel Model for Precision Timekeeping" by Dave Mills
  15 * 1997-01-09    Adrian Sun
  16 *      use interval timer if CONFIG_RTC=y
  17 * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
  18 *      fixed tick loss calculation in timer_interrupt
  19 *      (round system clock to nearest tick instead of truncating)
  20 *      fixed algorithm in time_init for getting time from CMOS clock
  21 * 1999-04-16   Thorsten Kranzkowski (dl8bcu@gmx.net)
  22 *      fixed algorithm in do_gettimeofday() for calculating the precise time
  23 *      from processor cycle counter (now taking lost_ticks into account)
  24 * 2000-08-13   Jan-Benedict Glaw <jbglaw@lug-owl.de>
  25 *      Fixed time_init to be aware of epoches != 1900. This prevents
  26 *      booting up in 2048 for me;) Code is stolen from rtc.c.
  27 * 2003-06-03   R. Scott Bailey <scott.bailey@eds.com>
  28 *      Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
  29 */
  30#include <linux/errno.h>
  31#include <linux/module.h>
  32#include <linux/sched.h>
  33#include <linux/kernel.h>
  34#include <linux/param.h>
  35#include <linux/string.h>
  36#include <linux/mm.h>
  37#include <linux/delay.h>
  38#include <linux/ioport.h>
  39#include <linux/irq.h>
  40#include <linux/interrupt.h>
  41#include <linux/init.h>
  42#include <linux/bcd.h>
  43#include <linux/profile.h>
  44
  45#include <asm/uaccess.h>
  46#include <asm/io.h>
  47#include <asm/hwrpb.h>
  48#include <asm/8253pit.h>
  49#include <asm/rtc.h>
  50
  51#include <linux/mc146818rtc.h>
  52#include <linux/time.h>
  53#include <linux/timex.h>
  54
  55#include "proto.h"
  56#include "irq_impl.h"
  57
  58static int set_rtc_mmss(unsigned long);
  59
  60DEFINE_SPINLOCK(rtc_lock);
  61EXPORT_SYMBOL(rtc_lock);
  62
  63#define TICK_SIZE (tick_nsec / 1000)
  64
  65/*
  66 * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
  67 * by 48 gives us 16 bits for HZ while keeping the accuracy good even
  68 * for large CPU clock rates.
  69 */
  70#define FIX_SHIFT       48
  71
  72/* lump static variables together for more efficient access: */
  73static struct {
  74        /* cycle counter last time it got invoked */
  75        __u32 last_time;
  76        /* ticks/cycle * 2^48 */
  77        unsigned long scaled_ticks_per_cycle;
  78        /* last time the CMOS clock got updated */
  79        time_t last_rtc_update;
  80        /* partial unused tick */
  81        unsigned long partial_tick;
  82} state;
  83
  84unsigned long est_cycle_freq;
  85
  86
  87static inline __u32 rpcc(void)
  88{
  89    __u32 result;
  90    asm volatile ("rpcc %0" : "=r"(result));
  91    return result;
  92}
  93
  94/*
  95 * timer_interrupt() needs to keep up the real-time clock,
  96 * as well as call the "do_timer()" routine every clocktick
  97 */
  98irqreturn_t timer_interrupt(int irq, void *dev)
  99{
 100        unsigned long delta;
 101        __u32 now;
 102        long nticks;
 103
 104#ifndef CONFIG_SMP
 105        /* Not SMP, do kernel PC profiling here.  */
 106        profile_tick(CPU_PROFILING);
 107#endif
 108
 109        write_seqlock(&xtime_lock);
 110
 111        /*
 112         * Calculate how many ticks have passed since the last update,
 113         * including any previous partial leftover.  Save any resulting
 114         * fraction for the next pass.
 115         */
 116        now = rpcc();
 117        delta = now - state.last_time;
 118        state.last_time = now;
 119        delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
 120        state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 
 121        nticks = delta >> FIX_SHIFT;
 122
 123        if (nticks)
 124                do_timer(nticks);
 125
 126        /*
 127         * If we have an externally synchronized Linux clock, then update
 128         * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
 129         * called as close as possible to 500 ms before the new second starts.
 130         */
 131        if (ntp_synced()
 132            && xtime.tv_sec > state.last_rtc_update + 660
 133            && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
 134            && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
 135                int tmp = set_rtc_mmss(xtime.tv_sec);
 136                state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
 137        }
 138
 139        write_sequnlock(&xtime_lock);
 140
 141#ifndef CONFIG_SMP
 142        while (nticks--)
 143                update_process_times(user_mode(get_irq_regs()));
 144#endif
 145
 146        return IRQ_HANDLED;
 147}
 148
 149void __init
 150common_init_rtc(void)
 151{
 152        unsigned char x;
 153
 154        /* Reset periodic interrupt frequency.  */
 155        x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
 156        /* Test includes known working values on various platforms
 157           where 0x26 is wrong; we refuse to change those. */
 158        if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
 159                printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
 160                CMOS_WRITE(0x26, RTC_FREQ_SELECT);
 161        }
 162
 163        /* Turn on periodic interrupts.  */
 164        x = CMOS_READ(RTC_CONTROL);
 165        if (!(x & RTC_PIE)) {
 166                printk("Turning on RTC interrupts.\n");
 167                x |= RTC_PIE;
 168                x &= ~(RTC_AIE | RTC_UIE);
 169                CMOS_WRITE(x, RTC_CONTROL);
 170        }
 171        (void) CMOS_READ(RTC_INTR_FLAGS);
 172
 173        outb(0x36, 0x43);       /* pit counter 0: system timer */
 174        outb(0x00, 0x40);
 175        outb(0x00, 0x40);
 176
 177        outb(0xb6, 0x43);       /* pit counter 2: speaker */
 178        outb(0x31, 0x42);
 179        outb(0x13, 0x42);
 180
 181        init_rtc_irq();
 182}
 183
 184unsigned int common_get_rtc_time(struct rtc_time *time)
 185{
 186        return __get_rtc_time(time);
 187}
 188
 189int common_set_rtc_time(struct rtc_time *time)
 190{
 191        return __set_rtc_time(time);
 192}
 193
 194/* Validate a computed cycle counter result against the known bounds for
 195   the given processor core.  There's too much brokenness in the way of
 196   timing hardware for any one method to work everywhere.  :-(
 197
 198   Return 0 if the result cannot be trusted, otherwise return the argument.  */
 199
 200static unsigned long __init
 201validate_cc_value(unsigned long cc)
 202{
 203        static struct bounds {
 204                unsigned int min, max;
 205        } cpu_hz[] __initdata = {
 206                [EV3_CPU]    = {   50000000,  200000000 },      /* guess */
 207                [EV4_CPU]    = {  100000000,  300000000 },
 208                [LCA4_CPU]   = {  100000000,  300000000 },      /* guess */
 209                [EV45_CPU]   = {  200000000,  300000000 },
 210                [EV5_CPU]    = {  250000000,  433000000 },
 211                [EV56_CPU]   = {  333000000,  667000000 },
 212                [PCA56_CPU]  = {  400000000,  600000000 },      /* guess */
 213                [PCA57_CPU]  = {  500000000,  600000000 },      /* guess */
 214                [EV6_CPU]    = {  466000000,  600000000 },
 215                [EV67_CPU]   = {  600000000,  750000000 },
 216                [EV68AL_CPU] = {  750000000,  940000000 },
 217                [EV68CB_CPU] = { 1000000000, 1333333333 },
 218                /* None of the following are shipping as of 2001-11-01.  */
 219                [EV68CX_CPU] = { 1000000000, 1700000000 },      /* guess */
 220                [EV69_CPU]   = { 1000000000, 1700000000 },      /* guess */
 221                [EV7_CPU]    = {  800000000, 1400000000 },      /* guess */
 222                [EV79_CPU]   = { 1000000000, 2000000000 },      /* guess */
 223        };
 224
 225        /* Allow for some drift in the crystal.  10MHz is more than enough.  */
 226        const unsigned int deviation = 10000000;
 227
 228        struct percpu_struct *cpu;
 229        unsigned int index;
 230
 231        cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
 232        index = cpu->type & 0xffffffff;
 233
 234        /* If index out of bounds, no way to validate.  */
 235        if (index >= ARRAY_SIZE(cpu_hz))
 236                return cc;
 237
 238        /* If index contains no data, no way to validate.  */
 239        if (cpu_hz[index].max == 0)
 240                return cc;
 241
 242        if (cc < cpu_hz[index].min - deviation
 243            || cc > cpu_hz[index].max + deviation)
 244                return 0;
 245
 246        return cc;
 247}
 248
 249
 250/*
 251 * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
 252 * arch/i386/time.c.
 253 */
 254
 255#define CALIBRATE_LATCH 0xffff
 256#define TIMEOUT_COUNT   0x100000
 257
 258static unsigned long __init
 259calibrate_cc_with_pit(void)
 260{
 261        int cc, count = 0;
 262
 263        /* Set the Gate high, disable speaker */
 264        outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 265
 266        /*
 267         * Now let's take care of CTC channel 2
 268         *
 269         * Set the Gate high, program CTC channel 2 for mode 0,
 270         * (interrupt on terminal count mode), binary count,
 271         * load 5 * LATCH count, (LSB and MSB) to begin countdown.
 272         */
 273        outb(0xb0, 0x43);               /* binary, mode 0, LSB/MSB, Ch 2 */
 274        outb(CALIBRATE_LATCH & 0xff, 0x42);     /* LSB of count */
 275        outb(CALIBRATE_LATCH >> 8, 0x42);       /* MSB of count */
 276
 277        cc = rpcc();
 278        do {
 279                count++;
 280        } while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
 281        cc = rpcc() - cc;
 282
 283        /* Error: ECTCNEVERSET or ECPUTOOFAST.  */
 284        if (count <= 1 || count == TIMEOUT_COUNT)
 285                return 0;
 286
 287        return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
 288}
 289
 290/* The Linux interpretation of the CMOS clock register contents:
 291   When the Update-In-Progress (UIP) flag goes from 1 to 0, the
 292   RTC registers show the second which has precisely just started.
 293   Let's hope other operating systems interpret the RTC the same way.  */
 294
 295static unsigned long __init
 296rpcc_after_update_in_progress(void)
 297{
 298        do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
 299        do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 300
 301        return rpcc();
 302}
 303
 304void __init
 305time_init(void)
 306{
 307        unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
 308        unsigned long cycle_freq, tolerance;
 309        long diff;
 310
 311        /* Calibrate CPU clock -- attempt #1.  */
 312        if (!est_cycle_freq)
 313                est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
 314
 315        cc1 = rpcc();
 316
 317        /* Calibrate CPU clock -- attempt #2.  */
 318        if (!est_cycle_freq) {
 319                cc1 = rpcc_after_update_in_progress();
 320                cc2 = rpcc_after_update_in_progress();
 321                est_cycle_freq = validate_cc_value(cc2 - cc1);
 322                cc1 = cc2;
 323        }
 324
 325        cycle_freq = hwrpb->cycle_freq;
 326        if (est_cycle_freq) {
 327                /* If the given value is within 250 PPM of what we calculated,
 328                   accept it.  Otherwise, use what we found.  */
 329                tolerance = cycle_freq / 4000;
 330                diff = cycle_freq - est_cycle_freq;
 331                if (diff < 0)
 332                        diff = -diff;
 333                if ((unsigned long)diff > tolerance) {
 334                        cycle_freq = est_cycle_freq;
 335                        printk("HWRPB cycle frequency bogus.  "
 336                               "Estimated %lu Hz\n", cycle_freq);
 337                } else {
 338                        est_cycle_freq = 0;
 339                }
 340        } else if (! validate_cc_value (cycle_freq)) {
 341                printk("HWRPB cycle frequency bogus, "
 342                       "and unable to estimate a proper value!\n");
 343        }
 344
 345        /* From John Bowman <bowman@math.ualberta.ca>: allow the values
 346           to settle, as the Update-In-Progress bit going low isn't good
 347           enough on some hardware.  2ms is our guess; we haven't found 
 348           bogomips yet, but this is close on a 500Mhz box.  */
 349        __delay(1000000);
 350
 351        sec = CMOS_READ(RTC_SECONDS);
 352        min = CMOS_READ(RTC_MINUTES);
 353        hour = CMOS_READ(RTC_HOURS);
 354        day = CMOS_READ(RTC_DAY_OF_MONTH);
 355        mon = CMOS_READ(RTC_MONTH);
 356        year = CMOS_READ(RTC_YEAR);
 357
 358        if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 359                sec = bcd2bin(sec);
 360                min = bcd2bin(min);
 361                hour = bcd2bin(hour);
 362                day = bcd2bin(day);
 363                mon = bcd2bin(mon);
 364                year = bcd2bin(year);
 365        }
 366
 367        /* PC-like is standard; used for year >= 70 */
 368        epoch = 1900;
 369        if (year < 20)
 370                epoch = 2000;
 371        else if (year >= 20 && year < 48)
 372                /* NT epoch */
 373                epoch = 1980;
 374        else if (year >= 48 && year < 70)
 375                /* Digital UNIX epoch */
 376                epoch = 1952;
 377
 378        printk(KERN_INFO "Using epoch = %d\n", epoch);
 379
 380        if ((year += epoch) < 1970)
 381                year += 100;
 382
 383        xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
 384        xtime.tv_nsec = 0;
 385
 386        wall_to_monotonic.tv_sec -= xtime.tv_sec;
 387        wall_to_monotonic.tv_nsec = 0;
 388
 389        if (HZ > (1<<16)) {
 390                extern void __you_loose (void);
 391                __you_loose();
 392        }
 393
 394        state.last_time = cc1;
 395        state.scaled_ticks_per_cycle
 396                = ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
 397        state.last_rtc_update = 0;
 398        state.partial_tick = 0L;
 399
 400        /* Startup the timer source. */
 401        alpha_mv.init_rtc();
 402}
 403
 404/*
 405 * Use the cycle counter to estimate an displacement from the last time
 406 * tick.  Unfortunately the Alpha designers made only the low 32-bits of
 407 * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
 408 * part.  So we can't do the "find absolute time in terms of cycles" thing
 409 * that the other ports do.
 410 */
 411u32 arch_gettimeoffset(void)
 412{
 413#ifdef CONFIG_SMP
 414        /* Until and unless we figure out how to get cpu cycle counters
 415           in sync and keep them there, we can't use the rpcc tricks.  */
 416        return 0;
 417#else
 418        unsigned long delta_cycles, delta_usec, partial_tick;
 419
 420        delta_cycles = rpcc() - state.last_time;
 421        partial_tick = state.partial_tick;
 422        /*
 423         * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
 424         *      = cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
 425         *      = cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
 426         *
 427         * which, given a 600MHz cycle and a 1024Hz tick, has a
 428         * dynamic range of about 1.7e17, which is less than the
 429         * 1.8e19 in an unsigned long, so we are safe from overflow.
 430         *
 431         * Round, but with .5 up always, since .5 to even is harder
 432         * with no clear gain.
 433         */
 434
 435        delta_usec = (delta_cycles * state.scaled_ticks_per_cycle 
 436                      + partial_tick) * 15625;
 437        delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
 438        return delta_usec * 1000;
 439#endif
 440}
 441
 442/*
 443 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
 444 * called 500 ms after the second nowtime has started, because when
 445 * nowtime is written into the registers of the CMOS clock, it will
 446 * jump to the next second precisely 500 ms later. Check the Motorola
 447 * MC146818A or Dallas DS12887 data sheet for details.
 448 *
 449 * BUG: This routine does not handle hour overflow properly; it just
 450 *      sets the minutes. Usually you won't notice until after reboot!
 451 */
 452
 453
 454static int
 455set_rtc_mmss(unsigned long nowtime)
 456{
 457        int retval = 0;
 458        int real_seconds, real_minutes, cmos_minutes;
 459        unsigned char save_control, save_freq_select;
 460
 461        /* irq are locally disabled here */
 462        spin_lock(&rtc_lock);
 463        /* Tell the clock it's being set */
 464        save_control = CMOS_READ(RTC_CONTROL);
 465        CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 466
 467        /* Stop and reset prescaler */
 468        save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
 469        CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 470
 471        cmos_minutes = CMOS_READ(RTC_MINUTES);
 472        if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 473                cmos_minutes = bcd2bin(cmos_minutes);
 474
 475        /*
 476         * since we're only adjusting minutes and seconds,
 477         * don't interfere with hour overflow. This avoids
 478         * messing with unknown time zones but requires your
 479         * RTC not to be off by more than 15 minutes
 480         */
 481        real_seconds = nowtime % 60;
 482        real_minutes = nowtime / 60;
 483        if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
 484                /* correct for half hour time zone */
 485                real_minutes += 30;
 486        }
 487        real_minutes %= 60;
 488
 489        if (abs(real_minutes - cmos_minutes) < 30) {
 490                if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 491                        real_seconds = bin2bcd(real_seconds);
 492                        real_minutes = bin2bcd(real_minutes);
 493                }
 494                CMOS_WRITE(real_seconds,RTC_SECONDS);
 495                CMOS_WRITE(real_minutes,RTC_MINUTES);
 496        } else {
 497                printk(KERN_WARNING
 498                       "set_rtc_mmss: can't update from %d to %d\n",
 499                       cmos_minutes, real_minutes);
 500                retval = -1;
 501        }
 502
 503        /* The following flags have to be released exactly in this order,
 504         * otherwise the DS12887 (popular MC146818A clone with integrated
 505         * battery and quartz) will not reset the oscillator and will not
 506         * update precisely 500 ms later. You won't find this mentioned in
 507         * the Dallas Semiconductor data sheets, but who believes data
 508         * sheets anyway ...                           -- Markus Kuhn
 509         */
 510        CMOS_WRITE(save_control, RTC_CONTROL);
 511        CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 512        spin_unlock(&rtc_lock);
 513
 514        return retval;
 515}
 516