linux/arch/arm/kernel/kprobes.c
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/kprobes.c
   3 *
   4 * Kprobes on ARM
   5 *
   6 * Abhishek Sagar <sagar.abhishek@gmail.com>
   7 * Copyright (C) 2006, 2007 Motorola Inc.
   8 *
   9 * Nicolas Pitre <nico@marvell.com>
  10 * Copyright (C) 2007 Marvell Ltd.
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  19 * General Public License for more details.
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/kprobes.h>
  24#include <linux/module.h>
  25#include <linux/stop_machine.h>
  26#include <linux/stringify.h>
  27#include <asm/traps.h>
  28#include <asm/cacheflush.h>
  29
  30#define MIN_STACK_SIZE(addr)                            \
  31        min((unsigned long)MAX_STACK_SIZE,              \
  32            (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
  33
  34#define flush_insns(addr, cnt)                          \
  35        flush_icache_range((unsigned long)(addr),       \
  36                           (unsigned long)(addr) +      \
  37                           sizeof(kprobe_opcode_t) * (cnt))
  38
  39/* Used as a marker in ARM_pc to note when we're in a jprobe. */
  40#define JPROBE_MAGIC_ADDR               0xffffffff
  41
  42DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
  43DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
  44
  45
  46int __kprobes arch_prepare_kprobe(struct kprobe *p)
  47{
  48        kprobe_opcode_t insn;
  49        kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
  50        unsigned long addr = (unsigned long)p->addr;
  51        int is;
  52
  53        if (addr & 0x3 || in_exception_text(addr))
  54                return -EINVAL;
  55
  56        insn = *p->addr;
  57        p->opcode = insn;
  58        p->ainsn.insn = tmp_insn;
  59
  60        switch (arm_kprobe_decode_insn(insn, &p->ainsn)) {
  61        case INSN_REJECTED:     /* not supported */
  62                return -EINVAL;
  63
  64        case INSN_GOOD:         /* instruction uses slot */
  65                p->ainsn.insn = get_insn_slot();
  66                if (!p->ainsn.insn)
  67                        return -ENOMEM;
  68                for (is = 0; is < MAX_INSN_SIZE; ++is)
  69                        p->ainsn.insn[is] = tmp_insn[is];
  70                flush_insns(p->ainsn.insn, MAX_INSN_SIZE);
  71                break;
  72
  73        case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */
  74                p->ainsn.insn = NULL;
  75                break;
  76        }
  77
  78        return 0;
  79}
  80
  81void __kprobes arch_arm_kprobe(struct kprobe *p)
  82{
  83        *p->addr = KPROBE_BREAKPOINT_INSTRUCTION;
  84        flush_insns(p->addr, 1);
  85}
  86
  87/*
  88 * The actual disarming is done here on each CPU and synchronized using
  89 * stop_machine. This synchronization is necessary on SMP to avoid removing
  90 * a probe between the moment the 'Undefined Instruction' exception is raised
  91 * and the moment the exception handler reads the faulting instruction from
  92 * memory.
  93 */
  94int __kprobes __arch_disarm_kprobe(void *p)
  95{
  96        struct kprobe *kp = p;
  97        *kp->addr = kp->opcode;
  98        flush_insns(kp->addr, 1);
  99        return 0;
 100}
 101
 102void __kprobes arch_disarm_kprobe(struct kprobe *p)
 103{
 104        stop_machine(__arch_disarm_kprobe, p, &cpu_online_map);
 105}
 106
 107void __kprobes arch_remove_kprobe(struct kprobe *p)
 108{
 109        if (p->ainsn.insn) {
 110                free_insn_slot(p->ainsn.insn, 0);
 111                p->ainsn.insn = NULL;
 112        }
 113}
 114
 115static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
 116{
 117        kcb->prev_kprobe.kp = kprobe_running();
 118        kcb->prev_kprobe.status = kcb->kprobe_status;
 119}
 120
 121static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
 122{
 123        __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
 124        kcb->kprobe_status = kcb->prev_kprobe.status;
 125}
 126
 127static void __kprobes set_current_kprobe(struct kprobe *p)
 128{
 129        __get_cpu_var(current_kprobe) = p;
 130}
 131
 132static void __kprobes singlestep(struct kprobe *p, struct pt_regs *regs,
 133                                 struct kprobe_ctlblk *kcb)
 134{
 135        regs->ARM_pc += 4;
 136        p->ainsn.insn_handler(p, regs);
 137}
 138
 139/*
 140 * Called with IRQs disabled. IRQs must remain disabled from that point
 141 * all the way until processing this kprobe is complete.  The current
 142 * kprobes implementation cannot process more than one nested level of
 143 * kprobe, and that level is reserved for user kprobe handlers, so we can't
 144 * risk encountering a new kprobe in an interrupt handler.
 145 */
 146void __kprobes kprobe_handler(struct pt_regs *regs)
 147{
 148        struct kprobe *p, *cur;
 149        struct kprobe_ctlblk *kcb;
 150        kprobe_opcode_t *addr = (kprobe_opcode_t *)regs->ARM_pc;
 151
 152        kcb = get_kprobe_ctlblk();
 153        cur = kprobe_running();
 154        p = get_kprobe(addr);
 155
 156        if (p) {
 157                if (cur) {
 158                        /* Kprobe is pending, so we're recursing. */
 159                        switch (kcb->kprobe_status) {
 160                        case KPROBE_HIT_ACTIVE:
 161                        case KPROBE_HIT_SSDONE:
 162                                /* A pre- or post-handler probe got us here. */
 163                                kprobes_inc_nmissed_count(p);
 164                                save_previous_kprobe(kcb);
 165                                set_current_kprobe(p);
 166                                kcb->kprobe_status = KPROBE_REENTER;
 167                                singlestep(p, regs, kcb);
 168                                restore_previous_kprobe(kcb);
 169                                break;
 170                        default:
 171                                /* impossible cases */
 172                                BUG();
 173                        }
 174                } else {
 175                        set_current_kprobe(p);
 176                        kcb->kprobe_status = KPROBE_HIT_ACTIVE;
 177
 178                        /*
 179                         * If we have no pre-handler or it returned 0, we
 180                         * continue with normal processing.  If we have a
 181                         * pre-handler and it returned non-zero, it prepped
 182                         * for calling the break_handler below on re-entry,
 183                         * so get out doing nothing more here.
 184                         */
 185                        if (!p->pre_handler || !p->pre_handler(p, regs)) {
 186                                kcb->kprobe_status = KPROBE_HIT_SS;
 187                                singlestep(p, regs, kcb);
 188                                if (p->post_handler) {
 189                                        kcb->kprobe_status = KPROBE_HIT_SSDONE;
 190                                        p->post_handler(p, regs, 0);
 191                                }
 192                                reset_current_kprobe();
 193                        }
 194                }
 195        } else if (cur) {
 196                /* We probably hit a jprobe.  Call its break handler. */
 197                if (cur->break_handler && cur->break_handler(cur, regs)) {
 198                        kcb->kprobe_status = KPROBE_HIT_SS;
 199                        singlestep(cur, regs, kcb);
 200                        if (cur->post_handler) {
 201                                kcb->kprobe_status = KPROBE_HIT_SSDONE;
 202                                cur->post_handler(cur, regs, 0);
 203                        }
 204                }
 205                reset_current_kprobe();
 206        } else {
 207                /*
 208                 * The probe was removed and a race is in progress.
 209                 * There is nothing we can do about it.  Let's restart
 210                 * the instruction.  By the time we can restart, the
 211                 * real instruction will be there.
 212                 */
 213        }
 214}
 215
 216static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
 217{
 218        unsigned long flags;
 219        local_irq_save(flags);
 220        kprobe_handler(regs);
 221        local_irq_restore(flags);
 222        return 0;
 223}
 224
 225int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
 226{
 227        struct kprobe *cur = kprobe_running();
 228        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 229
 230        switch (kcb->kprobe_status) {
 231        case KPROBE_HIT_SS:
 232        case KPROBE_REENTER:
 233                /*
 234                 * We are here because the instruction being single
 235                 * stepped caused a page fault. We reset the current
 236                 * kprobe and the PC to point back to the probe address
 237                 * and allow the page fault handler to continue as a
 238                 * normal page fault.
 239                 */
 240                regs->ARM_pc = (long)cur->addr;
 241                if (kcb->kprobe_status == KPROBE_REENTER) {
 242                        restore_previous_kprobe(kcb);
 243                } else {
 244                        reset_current_kprobe();
 245                }
 246                break;
 247
 248        case KPROBE_HIT_ACTIVE:
 249        case KPROBE_HIT_SSDONE:
 250                /*
 251                 * We increment the nmissed count for accounting,
 252                 * we can also use npre/npostfault count for accounting
 253                 * these specific fault cases.
 254                 */
 255                kprobes_inc_nmissed_count(cur);
 256
 257                /*
 258                 * We come here because instructions in the pre/post
 259                 * handler caused the page_fault, this could happen
 260                 * if handler tries to access user space by
 261                 * copy_from_user(), get_user() etc. Let the
 262                 * user-specified handler try to fix it.
 263                 */
 264                if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
 265                        return 1;
 266                break;
 267
 268        default:
 269                break;
 270        }
 271
 272        return 0;
 273}
 274
 275int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 276                                       unsigned long val, void *data)
 277{
 278        /*
 279         * notify_die() is currently never called on ARM,
 280         * so this callback is currently empty.
 281         */
 282        return NOTIFY_DONE;
 283}
 284
 285/*
 286 * When a retprobed function returns, trampoline_handler() is called,
 287 * calling the kretprobe's handler. We construct a struct pt_regs to
 288 * give a view of registers r0-r11 to the user return-handler.  This is
 289 * not a complete pt_regs structure, but that should be plenty sufficient
 290 * for kretprobe handlers which should normally be interested in r0 only
 291 * anyway.
 292 */
 293void __naked __kprobes kretprobe_trampoline(void)
 294{
 295        __asm__ __volatile__ (
 296                "stmdb  sp!, {r0 - r11}         \n\t"
 297                "mov    r0, sp                  \n\t"
 298                "bl     trampoline_handler      \n\t"
 299                "mov    lr, r0                  \n\t"
 300                "ldmia  sp!, {r0 - r11}         \n\t"
 301                "mov    pc, lr                  \n\t"
 302                : : : "memory");
 303}
 304
 305/* Called from kretprobe_trampoline */
 306static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
 307{
 308        struct kretprobe_instance *ri = NULL;
 309        struct hlist_head *head, empty_rp;
 310        struct hlist_node *node, *tmp;
 311        unsigned long flags, orig_ret_address = 0;
 312        unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
 313
 314        INIT_HLIST_HEAD(&empty_rp);
 315        kretprobe_hash_lock(current, &head, &flags);
 316
 317        /*
 318         * It is possible to have multiple instances associated with a given
 319         * task either because multiple functions in the call path have
 320         * a return probe installed on them, and/or more than one return
 321         * probe was registered for a target function.
 322         *
 323         * We can handle this because:
 324         *     - instances are always inserted at the head of the list
 325         *     - when multiple return probes are registered for the same
 326         *       function, the first instance's ret_addr will point to the
 327         *       real return address, and all the rest will point to
 328         *       kretprobe_trampoline
 329         */
 330        hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
 331                if (ri->task != current)
 332                        /* another task is sharing our hash bucket */
 333                        continue;
 334
 335                if (ri->rp && ri->rp->handler) {
 336                        __get_cpu_var(current_kprobe) = &ri->rp->kp;
 337                        get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
 338                        ri->rp->handler(ri, regs);
 339                        __get_cpu_var(current_kprobe) = NULL;
 340                }
 341
 342                orig_ret_address = (unsigned long)ri->ret_addr;
 343                recycle_rp_inst(ri, &empty_rp);
 344
 345                if (orig_ret_address != trampoline_address)
 346                        /*
 347                         * This is the real return address. Any other
 348                         * instances associated with this task are for
 349                         * other calls deeper on the call stack
 350                         */
 351                        break;
 352        }
 353
 354        kretprobe_assert(ri, orig_ret_address, trampoline_address);
 355        kretprobe_hash_unlock(current, &flags);
 356
 357        hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
 358                hlist_del(&ri->hlist);
 359                kfree(ri);
 360        }
 361
 362        return (void *)orig_ret_address;
 363}
 364
 365void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
 366                                      struct pt_regs *regs)
 367{
 368        ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
 369
 370        /* Replace the return addr with trampoline addr. */
 371        regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
 372}
 373
 374int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 375{
 376        struct jprobe *jp = container_of(p, struct jprobe, kp);
 377        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 378        long sp_addr = regs->ARM_sp;
 379
 380        kcb->jprobe_saved_regs = *regs;
 381        memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
 382        regs->ARM_pc = (long)jp->entry;
 383        regs->ARM_cpsr |= PSR_I_BIT;
 384        preempt_disable();
 385        return 1;
 386}
 387
 388void __kprobes jprobe_return(void)
 389{
 390        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 391
 392        __asm__ __volatile__ (
 393                /*
 394                 * Setup an empty pt_regs. Fill SP and PC fields as
 395                 * they're needed by longjmp_break_handler.
 396                 */
 397                "sub    sp, %0, %1              \n\t"
 398                "ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
 399                "str    %0, [sp, %2]            \n\t"
 400                "str    r0, [sp, %3]            \n\t"
 401                "mov    r0, sp                  \n\t"
 402                "bl     kprobe_handler          \n\t"
 403
 404                /*
 405                 * Return to the context saved by setjmp_pre_handler
 406                 * and restored by longjmp_break_handler.
 407                 */
 408                "ldr    r0, [sp, %4]            \n\t"
 409                "msr    cpsr_cxsf, r0           \n\t"
 410                "ldmia  sp, {r0 - pc}           \n\t"
 411                :
 412                : "r" (kcb->jprobe_saved_regs.ARM_sp),
 413                  "I" (sizeof(struct pt_regs)),
 414                  "J" (offsetof(struct pt_regs, ARM_sp)),
 415                  "J" (offsetof(struct pt_regs, ARM_pc)),
 416                  "J" (offsetof(struct pt_regs, ARM_cpsr))
 417                : "memory", "cc");
 418}
 419
 420int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 421{
 422        struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
 423        long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
 424        long orig_sp = regs->ARM_sp;
 425        struct jprobe *jp = container_of(p, struct jprobe, kp);
 426
 427        if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
 428                if (orig_sp != stack_addr) {
 429                        struct pt_regs *saved_regs =
 430                                (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
 431                        printk("current sp %lx does not match saved sp %lx\n",
 432                               orig_sp, stack_addr);
 433                        printk("Saved registers for jprobe %p\n", jp);
 434                        show_regs(saved_regs);
 435                        printk("Current registers\n");
 436                        show_regs(regs);
 437                        BUG();
 438                }
 439                *regs = kcb->jprobe_saved_regs;
 440                memcpy((void *)stack_addr, kcb->jprobes_stack,
 441                       MIN_STACK_SIZE(stack_addr));
 442                preempt_enable_no_resched();
 443                return 1;
 444        }
 445        return 0;
 446}
 447
 448int __kprobes arch_trampoline_kprobe(struct kprobe *p)
 449{
 450        return 0;
 451}
 452
 453static struct undef_hook kprobes_break_hook = {
 454        .instr_mask     = 0xffffffff,
 455        .instr_val      = KPROBE_BREAKPOINT_INSTRUCTION,
 456        .cpsr_mask      = MODE_MASK,
 457        .cpsr_val       = SVC_MODE,
 458        .fn             = kprobe_trap_handler,
 459};
 460
 461int __init arch_init_kprobes()
 462{
 463        arm_kprobe_decode_init();
 464        register_undef_hook(&kprobes_break_hook);
 465        return 0;
 466}
 467