linux/arch/arm/mach-sa1100/cpu-sa1100.c
<<
>>
Prefs
   1/*
   2 * cpu-sa1100.c: clock scaling for the SA1100
   3 *
   4 * Copyright (C) 2000 2001, The Delft University of Technology
   5 *
   6 * Authors:
   7 * - Johan Pouwelse (J.A.Pouwelse@its.tudelft.nl): initial version
   8 * - Erik Mouw (J.A.K.Mouw@its.tudelft.nl):
   9 *   - major rewrite for linux-2.3.99
  10 *   - rewritten for the more generic power management scheme in
  11 *     linux-2.4.5-rmk1
  12 *
  13 * This software has been developed while working on the LART
  14 * computing board (http://www.lartmaker.nl/), which is
  15 * sponsored by the Mobile Multi-media Communications
  16 * (http://www.mmc.tudelft.nl/) and Ubiquitous Communications
  17 * (http://www.ubicom.tudelft.nl/) projects.
  18 *
  19 * The authors can be reached at:
  20 *
  21 *  Erik Mouw
  22 *  Information and Communication Theory Group
  23 *  Faculty of Information Technology and Systems
  24 *  Delft University of Technology
  25 *  P.O. Box 5031
  26 *  2600 GA Delft
  27 *  The Netherlands
  28 *
  29 *
  30 * This program is free software; you can redistribute it and/or modify
  31 * it under the terms of the GNU General Public License as published by
  32 * the Free Software Foundation; either version 2 of the License, or
  33 * (at your option) any later version.
  34 *
  35 * This program is distributed in the hope that it will be useful,
  36 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  37 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  38 * GNU General Public License for more details.
  39 *
  40 * You should have received a copy of the GNU General Public License
  41 * along with this program; if not, write to the Free Software
  42 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  43 *
  44 *
  45 * Theory of operations
  46 * ====================
  47 *
  48 * Clock scaling can be used to lower the power consumption of the CPU
  49 * core. This will give you a somewhat longer running time.
  50 *
  51 * The SA-1100 has a single register to change the core clock speed:
  52 *
  53 *   PPCR      0x90020014    PLL config
  54 *
  55 * However, the DRAM timings are closely related to the core clock
  56 * speed, so we need to change these, too. The used registers are:
  57 *
  58 *   MDCNFG    0xA0000000    DRAM config
  59 *   MDCAS0    0xA0000004    Access waveform
  60 *   MDCAS1    0xA0000008    Access waveform
  61 *   MDCAS2    0xA000000C    Access waveform
  62 *
  63 * Care must be taken to change the DRAM parameters the correct way,
  64 * because otherwise the DRAM becomes unusable and the kernel will
  65 * crash.
  66 *
  67 * The simple solution to avoid a kernel crash is to put the actual
  68 * clock change in ROM and jump to that code from the kernel. The main
  69 * disadvantage is that the ROM has to be modified, which is not
  70 * possible on all SA-1100 platforms. Another disadvantage is that
  71 * jumping to ROM makes clock switching unecessary complicated.
  72 *
  73 * The idea behind this driver is that the memory configuration can be
  74 * changed while running from DRAM (even with interrupts turned on!)
  75 * as long as all re-configuration steps yield a valid DRAM
  76 * configuration. The advantages are clear: it will run on all SA-1100
  77 * platforms, and the code is very simple.
  78 *
  79 * If you really want to understand what is going on in
  80 * sa1100_update_dram_timings(), you'll have to read sections 8.2,
  81 * 9.5.7.3, and 10.2 from the "Intel StrongARM SA-1100 Microprocessor
  82 * Developers Manual" (available for free from Intel).
  83 *
  84 */
  85
  86#include <linux/kernel.h>
  87#include <linux/types.h>
  88#include <linux/init.h>
  89#include <linux/cpufreq.h>
  90
  91#include <asm/cputype.h>
  92
  93#include <mach/hardware.h>
  94
  95#include "generic.h"
  96
  97typedef struct {
  98        int speed;
  99        u32 mdcnfg;
 100        u32 mdcas0;
 101        u32 mdcas1;
 102        u32 mdcas2;
 103} sa1100_dram_regs_t;
 104
 105
 106static struct cpufreq_driver sa1100_driver;
 107
 108static sa1100_dram_regs_t sa1100_dram_settings[] =
 109{
 110        /* speed,     mdcnfg,     mdcas0,     mdcas1,     mdcas2  clock frequency */
 111        {  59000, 0x00dc88a3, 0xcccccccf, 0xfffffffc, 0xffffffff }, /*  59.0 MHz */
 112        {  73700, 0x011490a3, 0xcccccccf, 0xfffffffc, 0xffffffff }, /*  73.7 MHz */
 113        {  88500, 0x014e90a3, 0xcccccccf, 0xfffffffc, 0xffffffff }, /*  88.5 MHz */
 114        { 103200, 0x01889923, 0xcccccccf, 0xfffffffc, 0xffffffff }, /* 103.2 MHz */
 115        { 118000, 0x01c29923, 0x9999998f, 0xfffffff9, 0xffffffff }, /* 118.0 MHz */
 116        { 132700, 0x01fb2123, 0x9999998f, 0xfffffff9, 0xffffffff }, /* 132.7 MHz */
 117        { 147500, 0x02352123, 0x3333330f, 0xfffffff3, 0xffffffff }, /* 147.5 MHz */
 118        { 162200, 0x026b29a3, 0x38e38e1f, 0xfff8e38e, 0xffffffff }, /* 162.2 MHz */
 119        { 176900, 0x02a329a3, 0x71c71c1f, 0xfff1c71c, 0xffffffff }, /* 176.9 MHz */
 120        { 191700, 0x02dd31a3, 0xe38e383f, 0xffe38e38, 0xffffffff }, /* 191.7 MHz */
 121        { 206400, 0x03153223, 0xc71c703f, 0xffc71c71, 0xffffffff }, /* 206.4 MHz */
 122        { 221200, 0x034fba23, 0xc71c703f, 0xffc71c71, 0xffffffff }, /* 221.2 MHz */
 123        { 235900, 0x03853a23, 0xe1e1e07f, 0xe1e1e1e1, 0xffffffe1 }, /* 235.9 MHz */
 124        { 250700, 0x03bf3aa3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3 }, /* 250.7 MHz */
 125        { 265400, 0x03f7c2a3, 0xc3c3c07f, 0xc3c3c3c3, 0xffffffc3 }, /* 265.4 MHz */
 126        { 280200, 0x0431c2a3, 0x878780ff, 0x87878787, 0xffffff87 }, /* 280.2 MHz */
 127        { 0, 0, 0, 0, 0 } /* last entry */
 128};
 129
 130static void sa1100_update_dram_timings(int current_speed, int new_speed)
 131{
 132        sa1100_dram_regs_t *settings = sa1100_dram_settings;
 133
 134        /* find speed */
 135        while (settings->speed != 0) {
 136                if(new_speed == settings->speed)
 137                        break;
 138                
 139                settings++;
 140        }
 141
 142        if (settings->speed == 0) {
 143                panic("%s: couldn't find dram setting for speed %d\n",
 144                      __func__, new_speed);
 145        }
 146
 147        /* No risk, no fun: run with interrupts on! */
 148        if (new_speed > current_speed) {
 149                /* We're going FASTER, so first relax the memory
 150                 * timings before changing the core frequency
 151                 */
 152                
 153                /* Half the memory access clock */
 154                MDCNFG |= MDCNFG_CDB2;
 155
 156                /* The order of these statements IS important, keep 8
 157                 * pulses!!
 158                 */
 159                MDCAS2 = settings->mdcas2;
 160                MDCAS1 = settings->mdcas1;
 161                MDCAS0 = settings->mdcas0;
 162                MDCNFG = settings->mdcnfg;
 163        } else {
 164                /* We're going SLOWER: first decrease the core
 165                 * frequency and then tighten the memory settings.
 166                 */
 167
 168                /* Half the memory access clock */
 169                MDCNFG |= MDCNFG_CDB2;
 170
 171                /* The order of these statements IS important, keep 8
 172                 * pulses!!
 173                 */
 174                MDCAS0 = settings->mdcas0;
 175                MDCAS1 = settings->mdcas1;
 176                MDCAS2 = settings->mdcas2;
 177                MDCNFG = settings->mdcnfg;
 178        }
 179}
 180
 181static int sa1100_target(struct cpufreq_policy *policy,
 182                         unsigned int target_freq,
 183                         unsigned int relation)
 184{
 185        unsigned int cur = sa11x0_getspeed(0);
 186        unsigned int new_ppcr;
 187
 188        struct cpufreq_freqs freqs;
 189        switch(relation){
 190        case CPUFREQ_RELATION_L:
 191                new_ppcr = sa11x0_freq_to_ppcr(target_freq);
 192                if (sa11x0_ppcr_to_freq(new_ppcr) > policy->max)
 193                        new_ppcr--;
 194                break;
 195        case CPUFREQ_RELATION_H:
 196                new_ppcr = sa11x0_freq_to_ppcr(target_freq);
 197                if ((sa11x0_ppcr_to_freq(new_ppcr) > target_freq) &&
 198                    (sa11x0_ppcr_to_freq(new_ppcr - 1) >= policy->min))
 199                        new_ppcr--;
 200                break;
 201        }
 202
 203        freqs.old = cur;
 204        freqs.new = sa11x0_ppcr_to_freq(new_ppcr);
 205        freqs.cpu = 0;
 206
 207        cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
 208
 209        if (freqs.new > cur)
 210                sa1100_update_dram_timings(cur, freqs.new);
 211
 212        PPCR = new_ppcr;
 213
 214        if (freqs.new < cur)
 215                sa1100_update_dram_timings(cur, freqs.new);
 216
 217        cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
 218
 219        return 0;
 220}
 221
 222static int __init sa1100_cpu_init(struct cpufreq_policy *policy)
 223{
 224        if (policy->cpu != 0)
 225                return -EINVAL;
 226        policy->cur = policy->min = policy->max = sa11x0_getspeed(0);
 227        policy->cpuinfo.min_freq = 59000;
 228        policy->cpuinfo.max_freq = 287000;
 229        policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
 230        return 0;
 231}
 232
 233static struct cpufreq_driver sa1100_driver = {
 234        .flags          = CPUFREQ_STICKY,
 235        .verify         = sa11x0_verify_speed,
 236        .target         = sa1100_target,
 237        .get            = sa11x0_getspeed,
 238        .init           = sa1100_cpu_init,
 239        .name           = "sa1100",
 240};
 241
 242static int __init sa1100_dram_init(void)
 243{
 244        if (cpu_is_sa1100())
 245                return cpufreq_register_driver(&sa1100_driver);
 246        else
 247                return -ENODEV;
 248}
 249
 250arch_initcall(sa1100_dram_init);
 251