linux/arch/arm/mm/fault-armv.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/mm/fault-armv.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 *  Modifications for ARM processor (c) 1995-2002 Russell King
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/sched.h>
  13#include <linux/kernel.h>
  14#include <linux/mm.h>
  15#include <linux/bitops.h>
  16#include <linux/vmalloc.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19
  20#include <asm/bugs.h>
  21#include <asm/cacheflush.h>
  22#include <asm/cachetype.h>
  23#include <asm/pgtable.h>
  24#include <asm/tlbflush.h>
  25
  26static unsigned long shared_pte_mask = L_PTE_MT_BUFFERABLE;
  27
  28/*
  29 * We take the easy way out of this problem - we make the
  30 * PTE uncacheable.  However, we leave the write buffer on.
  31 *
  32 * Note that the pte lock held when calling update_mmu_cache must also
  33 * guard the pte (somewhere else in the same mm) that we modify here.
  34 * Therefore those configurations which might call adjust_pte (those
  35 * without CONFIG_CPU_CACHE_VIPT) cannot support split page_table_lock.
  36 */
  37static int adjust_pte(struct vm_area_struct *vma, unsigned long address)
  38{
  39        pgd_t *pgd;
  40        pmd_t *pmd;
  41        pte_t *pte, entry;
  42        int ret;
  43
  44        pgd = pgd_offset(vma->vm_mm, address);
  45        if (pgd_none(*pgd))
  46                goto no_pgd;
  47        if (pgd_bad(*pgd))
  48                goto bad_pgd;
  49
  50        pmd = pmd_offset(pgd, address);
  51        if (pmd_none(*pmd))
  52                goto no_pmd;
  53        if (pmd_bad(*pmd))
  54                goto bad_pmd;
  55
  56        pte = pte_offset_map(pmd, address);
  57        entry = *pte;
  58
  59        /*
  60         * If this page is present, it's actually being shared.
  61         */
  62        ret = pte_present(entry);
  63
  64        /*
  65         * If this page isn't present, or is already setup to
  66         * fault (ie, is old), we can safely ignore any issues.
  67         */
  68        if (ret && (pte_val(entry) & L_PTE_MT_MASK) != shared_pte_mask) {
  69                unsigned long pfn = pte_pfn(entry);
  70                flush_cache_page(vma, address, pfn);
  71                outer_flush_range((pfn << PAGE_SHIFT),
  72                                  (pfn << PAGE_SHIFT) + PAGE_SIZE);
  73                pte_val(entry) &= ~L_PTE_MT_MASK;
  74                pte_val(entry) |= shared_pte_mask;
  75                set_pte_at(vma->vm_mm, address, pte, entry);
  76                flush_tlb_page(vma, address);
  77        }
  78        pte_unmap(pte);
  79        return ret;
  80
  81bad_pgd:
  82        pgd_ERROR(*pgd);
  83        pgd_clear(pgd);
  84no_pgd:
  85        return 0;
  86
  87bad_pmd:
  88        pmd_ERROR(*pmd);
  89        pmd_clear(pmd);
  90no_pmd:
  91        return 0;
  92}
  93
  94static void
  95make_coherent(struct address_space *mapping, struct vm_area_struct *vma, unsigned long addr, unsigned long pfn)
  96{
  97        struct mm_struct *mm = vma->vm_mm;
  98        struct vm_area_struct *mpnt;
  99        struct prio_tree_iter iter;
 100        unsigned long offset;
 101        pgoff_t pgoff;
 102        int aliases = 0;
 103
 104        pgoff = vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT);
 105
 106        /*
 107         * If we have any shared mappings that are in the same mm
 108         * space, then we need to handle them specially to maintain
 109         * cache coherency.
 110         */
 111        flush_dcache_mmap_lock(mapping);
 112        vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
 113                /*
 114                 * If this VMA is not in our MM, we can ignore it.
 115                 * Note that we intentionally mask out the VMA
 116                 * that we are fixing up.
 117                 */
 118                if (mpnt->vm_mm != mm || mpnt == vma)
 119                        continue;
 120                if (!(mpnt->vm_flags & VM_MAYSHARE))
 121                        continue;
 122                offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
 123                aliases += adjust_pte(mpnt, mpnt->vm_start + offset);
 124        }
 125        flush_dcache_mmap_unlock(mapping);
 126        if (aliases)
 127                adjust_pte(vma, addr);
 128        else
 129                flush_cache_page(vma, addr, pfn);
 130}
 131
 132/*
 133 * Take care of architecture specific things when placing a new PTE into
 134 * a page table, or changing an existing PTE.  Basically, there are two
 135 * things that we need to take care of:
 136 *
 137 *  1. If PG_dcache_dirty is set for the page, we need to ensure
 138 *     that any cache entries for the kernels virtual memory
 139 *     range are written back to the page.
 140 *  2. If we have multiple shared mappings of the same space in
 141 *     an object, we need to deal with the cache aliasing issues.
 142 *
 143 * Note that the pte lock will be held.
 144 */
 145void update_mmu_cache(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
 146{
 147        unsigned long pfn = pte_pfn(pte);
 148        struct address_space *mapping;
 149        struct page *page;
 150
 151        if (!pfn_valid(pfn))
 152                return;
 153
 154        page = pfn_to_page(pfn);
 155        mapping = page_mapping(page);
 156#ifndef CONFIG_SMP
 157        if (test_and_clear_bit(PG_dcache_dirty, &page->flags))
 158                __flush_dcache_page(mapping, page);
 159#endif
 160        if (mapping) {
 161                if (cache_is_vivt())
 162                        make_coherent(mapping, vma, addr, pfn);
 163                else if (vma->vm_flags & VM_EXEC)
 164                        __flush_icache_all();
 165        }
 166}
 167
 168/*
 169 * Check whether the write buffer has physical address aliasing
 170 * issues.  If it has, we need to avoid them for the case where
 171 * we have several shared mappings of the same object in user
 172 * space.
 173 */
 174static int __init check_writebuffer(unsigned long *p1, unsigned long *p2)
 175{
 176        register unsigned long zero = 0, one = 1, val;
 177
 178        local_irq_disable();
 179        mb();
 180        *p1 = one;
 181        mb();
 182        *p2 = zero;
 183        mb();
 184        val = *p1;
 185        mb();
 186        local_irq_enable();
 187        return val != zero;
 188}
 189
 190void __init check_writebuffer_bugs(void)
 191{
 192        struct page *page;
 193        const char *reason;
 194        unsigned long v = 1;
 195
 196        printk(KERN_INFO "CPU: Testing write buffer coherency: ");
 197
 198        page = alloc_page(GFP_KERNEL);
 199        if (page) {
 200                unsigned long *p1, *p2;
 201                pgprot_t prot = __pgprot(L_PTE_PRESENT|L_PTE_YOUNG|
 202                                         L_PTE_DIRTY|L_PTE_WRITE|
 203                                         L_PTE_MT_BUFFERABLE);
 204
 205                p1 = vmap(&page, 1, VM_IOREMAP, prot);
 206                p2 = vmap(&page, 1, VM_IOREMAP, prot);
 207
 208                if (p1 && p2) {
 209                        v = check_writebuffer(p1, p2);
 210                        reason = "enabling work-around";
 211                } else {
 212                        reason = "unable to map memory\n";
 213                }
 214
 215                vunmap(p1);
 216                vunmap(p2);
 217                put_page(page);
 218        } else {
 219                reason = "unable to grab page\n";
 220        }
 221
 222        if (v) {
 223                printk("failed, %s\n", reason);
 224                shared_pte_mask = L_PTE_MT_UNCACHED;
 225        } else {
 226                printk("ok\n");
 227        }
 228}
 229