linux/arch/blackfin/mm/sram-alloc.c
<<
>>
Prefs
   1/*
   2 * SRAM allocator for Blackfin on-chip memory
   3 *
   4 * Copyright 2004-2009 Analog Devices Inc.
   5 *
   6 * Licensed under the GPL-2 or later.
   7 */
   8
   9#include <linux/module.h>
  10#include <linux/kernel.h>
  11#include <linux/types.h>
  12#include <linux/miscdevice.h>
  13#include <linux/ioport.h>
  14#include <linux/fcntl.h>
  15#include <linux/init.h>
  16#include <linux/poll.h>
  17#include <linux/proc_fs.h>
  18#include <linux/spinlock.h>
  19#include <linux/rtc.h>
  20#include <asm/blackfin.h>
  21#include <asm/mem_map.h>
  22#include "blackfin_sram.h"
  23
  24/* the data structure for L1 scratchpad and DATA SRAM */
  25struct sram_piece {
  26        void *paddr;
  27        int size;
  28        pid_t pid;
  29        struct sram_piece *next;
  30};
  31
  32static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
  33static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
  34static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
  35
  36#if L1_DATA_A_LENGTH != 0
  37static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
  38static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
  39#endif
  40
  41#if L1_DATA_B_LENGTH != 0
  42static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
  43static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
  44#endif
  45
  46#if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
  47static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
  48#endif
  49
  50#if L1_CODE_LENGTH != 0
  51static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
  52static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
  53static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
  54#endif
  55
  56#if L2_LENGTH != 0
  57static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
  58static struct sram_piece free_l2_sram_head, used_l2_sram_head;
  59#endif
  60
  61static struct kmem_cache *sram_piece_cache;
  62
  63/* L1 Scratchpad SRAM initialization function */
  64static void __init l1sram_init(void)
  65{
  66        unsigned int cpu;
  67        unsigned long reserve;
  68
  69#ifdef CONFIG_SMP
  70        reserve = 0;
  71#else
  72        reserve = sizeof(struct l1_scratch_task_info);
  73#endif
  74
  75        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
  76                per_cpu(free_l1_ssram_head, cpu).next =
  77                        kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
  78                if (!per_cpu(free_l1_ssram_head, cpu).next) {
  79                        printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
  80                        return;
  81                }
  82
  83                per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
  84                per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
  85                per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
  86                per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
  87
  88                per_cpu(used_l1_ssram_head, cpu).next = NULL;
  89
  90                /* mutex initialize */
  91                spin_lock_init(&per_cpu(l1sram_lock, cpu));
  92                printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
  93                        L1_SCRATCH_LENGTH >> 10);
  94        }
  95}
  96
  97static void __init l1_data_sram_init(void)
  98{
  99#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
 100        unsigned int cpu;
 101#endif
 102#if L1_DATA_A_LENGTH != 0
 103        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 104                per_cpu(free_l1_data_A_sram_head, cpu).next =
 105                        kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 106                if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
 107                        printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
 108                        return;
 109                }
 110
 111                per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
 112                        (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
 113                per_cpu(free_l1_data_A_sram_head, cpu).next->size =
 114                        L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
 115                per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
 116                per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
 117
 118                per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
 119
 120                printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
 121                        L1_DATA_A_LENGTH >> 10,
 122                        per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
 123        }
 124#endif
 125#if L1_DATA_B_LENGTH != 0
 126        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 127                per_cpu(free_l1_data_B_sram_head, cpu).next =
 128                        kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 129                if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
 130                        printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
 131                        return;
 132                }
 133
 134                per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
 135                        (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
 136                per_cpu(free_l1_data_B_sram_head, cpu).next->size =
 137                        L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
 138                per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
 139                per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
 140
 141                per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
 142
 143                printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
 144                        L1_DATA_B_LENGTH >> 10,
 145                        per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
 146                /* mutex initialize */
 147        }
 148#endif
 149
 150#if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
 151        for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
 152                spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
 153#endif
 154}
 155
 156static void __init l1_inst_sram_init(void)
 157{
 158#if L1_CODE_LENGTH != 0
 159        unsigned int cpu;
 160        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 161                per_cpu(free_l1_inst_sram_head, cpu).next =
 162                        kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 163                if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
 164                        printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
 165                        return;
 166                }
 167
 168                per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
 169                        (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
 170                per_cpu(free_l1_inst_sram_head, cpu).next->size =
 171                        L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
 172                per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
 173                per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
 174
 175                per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
 176
 177                printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
 178                        L1_CODE_LENGTH >> 10,
 179                        per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
 180
 181                /* mutex initialize */
 182                spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
 183        }
 184#endif
 185}
 186
 187static void __init l2_sram_init(void)
 188{
 189#if L2_LENGTH != 0
 190        free_l2_sram_head.next =
 191                kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 192        if (!free_l2_sram_head.next) {
 193                printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
 194                return;
 195        }
 196
 197        free_l2_sram_head.next->paddr =
 198                (void *)L2_START + (_ebss_l2 - _stext_l2);
 199        free_l2_sram_head.next->size =
 200                L2_LENGTH - (_ebss_l2 - _stext_l2);
 201        free_l2_sram_head.next->pid = 0;
 202        free_l2_sram_head.next->next = NULL;
 203
 204        used_l2_sram_head.next = NULL;
 205
 206        printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
 207                L2_LENGTH >> 10,
 208                free_l2_sram_head.next->size >> 10);
 209
 210        /* mutex initialize */
 211        spin_lock_init(&l2_sram_lock);
 212#endif
 213}
 214
 215static int __init bfin_sram_init(void)
 216{
 217        sram_piece_cache = kmem_cache_create("sram_piece_cache",
 218                                sizeof(struct sram_piece),
 219                                0, SLAB_PANIC, NULL);
 220
 221        l1sram_init();
 222        l1_data_sram_init();
 223        l1_inst_sram_init();
 224        l2_sram_init();
 225
 226        return 0;
 227}
 228pure_initcall(bfin_sram_init);
 229
 230/* SRAM allocate function */
 231static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
 232                struct sram_piece *pused_head)
 233{
 234        struct sram_piece *pslot, *plast, *pavail;
 235
 236        if (size <= 0 || !pfree_head || !pused_head)
 237                return NULL;
 238
 239        /* Align the size */
 240        size = (size + 3) & ~3;
 241
 242        pslot = pfree_head->next;
 243        plast = pfree_head;
 244
 245        /* search an available piece slot */
 246        while (pslot != NULL && size > pslot->size) {
 247                plast = pslot;
 248                pslot = pslot->next;
 249        }
 250
 251        if (!pslot)
 252                return NULL;
 253
 254        if (pslot->size == size) {
 255                plast->next = pslot->next;
 256                pavail = pslot;
 257        } else {
 258                pavail = kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
 259
 260                if (!pavail)
 261                        return NULL;
 262
 263                pavail->paddr = pslot->paddr;
 264                pavail->size = size;
 265                pslot->paddr += size;
 266                pslot->size -= size;
 267        }
 268
 269        pavail->pid = current->pid;
 270
 271        pslot = pused_head->next;
 272        plast = pused_head;
 273
 274        /* insert new piece into used piece list !!! */
 275        while (pslot != NULL && pavail->paddr < pslot->paddr) {
 276                plast = pslot;
 277                pslot = pslot->next;
 278        }
 279
 280        pavail->next = pslot;
 281        plast->next = pavail;
 282
 283        return pavail->paddr;
 284}
 285
 286/* Allocate the largest available block.  */
 287static void *_sram_alloc_max(struct sram_piece *pfree_head,
 288                                struct sram_piece *pused_head,
 289                                unsigned long *psize)
 290{
 291        struct sram_piece *pslot, *pmax;
 292
 293        if (!pfree_head || !pused_head)
 294                return NULL;
 295
 296        pmax = pslot = pfree_head->next;
 297
 298        /* search an available piece slot */
 299        while (pslot != NULL) {
 300                if (pslot->size > pmax->size)
 301                        pmax = pslot;
 302                pslot = pslot->next;
 303        }
 304
 305        if (!pmax)
 306                return NULL;
 307
 308        *psize = pmax->size;
 309
 310        return _sram_alloc(*psize, pfree_head, pused_head);
 311}
 312
 313/* SRAM free function */
 314static int _sram_free(const void *addr,
 315                        struct sram_piece *pfree_head,
 316                        struct sram_piece *pused_head)
 317{
 318        struct sram_piece *pslot, *plast, *pavail;
 319
 320        if (!pfree_head || !pused_head)
 321                return -1;
 322
 323        /* search the relevant memory slot */
 324        pslot = pused_head->next;
 325        plast = pused_head;
 326
 327        /* search an available piece slot */
 328        while (pslot != NULL && pslot->paddr != addr) {
 329                plast = pslot;
 330                pslot = pslot->next;
 331        }
 332
 333        if (!pslot)
 334                return -1;
 335
 336        plast->next = pslot->next;
 337        pavail = pslot;
 338        pavail->pid = 0;
 339
 340        /* insert free pieces back to the free list */
 341        pslot = pfree_head->next;
 342        plast = pfree_head;
 343
 344        while (pslot != NULL && addr > pslot->paddr) {
 345                plast = pslot;
 346                pslot = pslot->next;
 347        }
 348
 349        if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
 350                plast->size += pavail->size;
 351                kmem_cache_free(sram_piece_cache, pavail);
 352        } else {
 353                pavail->next = plast->next;
 354                plast->next = pavail;
 355                plast = pavail;
 356        }
 357
 358        if (pslot && plast->paddr + plast->size == pslot->paddr) {
 359                plast->size += pslot->size;
 360                plast->next = pslot->next;
 361                kmem_cache_free(sram_piece_cache, pslot);
 362        }
 363
 364        return 0;
 365}
 366
 367int sram_free(const void *addr)
 368{
 369
 370#if L1_CODE_LENGTH != 0
 371        if (addr >= (void *)get_l1_code_start()
 372                 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
 373                return l1_inst_sram_free(addr);
 374        else
 375#endif
 376#if L1_DATA_A_LENGTH != 0
 377        if (addr >= (void *)get_l1_data_a_start()
 378                 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
 379                return l1_data_A_sram_free(addr);
 380        else
 381#endif
 382#if L1_DATA_B_LENGTH != 0
 383        if (addr >= (void *)get_l1_data_b_start()
 384                 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
 385                return l1_data_B_sram_free(addr);
 386        else
 387#endif
 388#if L2_LENGTH != 0
 389        if (addr >= (void *)L2_START
 390                 && addr < (void *)(L2_START + L2_LENGTH))
 391                return l2_sram_free(addr);
 392        else
 393#endif
 394                return -1;
 395}
 396EXPORT_SYMBOL(sram_free);
 397
 398void *l1_data_A_sram_alloc(size_t size)
 399{
 400#if L1_DATA_A_LENGTH != 0
 401        unsigned long flags;
 402        void *addr;
 403        unsigned int cpu;
 404
 405        cpu = get_cpu();
 406        /* add mutex operation */
 407        spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 408
 409        addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
 410                        &per_cpu(used_l1_data_A_sram_head, cpu));
 411
 412        /* add mutex operation */
 413        spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 414        put_cpu();
 415
 416        pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
 417                 (long unsigned int)addr, size);
 418
 419        return addr;
 420#else
 421        return NULL;
 422#endif
 423}
 424EXPORT_SYMBOL(l1_data_A_sram_alloc);
 425
 426int l1_data_A_sram_free(const void *addr)
 427{
 428#if L1_DATA_A_LENGTH != 0
 429        unsigned long flags;
 430        int ret;
 431        unsigned int cpu;
 432
 433        cpu = get_cpu();
 434        /* add mutex operation */
 435        spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 436
 437        ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
 438                        &per_cpu(used_l1_data_A_sram_head, cpu));
 439
 440        /* add mutex operation */
 441        spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 442        put_cpu();
 443
 444        return ret;
 445#else
 446        return -1;
 447#endif
 448}
 449EXPORT_SYMBOL(l1_data_A_sram_free);
 450
 451void *l1_data_B_sram_alloc(size_t size)
 452{
 453#if L1_DATA_B_LENGTH != 0
 454        unsigned long flags;
 455        void *addr;
 456        unsigned int cpu;
 457
 458        cpu = get_cpu();
 459        /* add mutex operation */
 460        spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 461
 462        addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
 463                        &per_cpu(used_l1_data_B_sram_head, cpu));
 464
 465        /* add mutex operation */
 466        spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 467        put_cpu();
 468
 469        pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
 470                 (long unsigned int)addr, size);
 471
 472        return addr;
 473#else
 474        return NULL;
 475#endif
 476}
 477EXPORT_SYMBOL(l1_data_B_sram_alloc);
 478
 479int l1_data_B_sram_free(const void *addr)
 480{
 481#if L1_DATA_B_LENGTH != 0
 482        unsigned long flags;
 483        int ret;
 484        unsigned int cpu;
 485
 486        cpu = get_cpu();
 487        /* add mutex operation */
 488        spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
 489
 490        ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
 491                        &per_cpu(used_l1_data_B_sram_head, cpu));
 492
 493        /* add mutex operation */
 494        spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
 495        put_cpu();
 496
 497        return ret;
 498#else
 499        return -1;
 500#endif
 501}
 502EXPORT_SYMBOL(l1_data_B_sram_free);
 503
 504void *l1_data_sram_alloc(size_t size)
 505{
 506        void *addr = l1_data_A_sram_alloc(size);
 507
 508        if (!addr)
 509                addr = l1_data_B_sram_alloc(size);
 510
 511        return addr;
 512}
 513EXPORT_SYMBOL(l1_data_sram_alloc);
 514
 515void *l1_data_sram_zalloc(size_t size)
 516{
 517        void *addr = l1_data_sram_alloc(size);
 518
 519        if (addr)
 520                memset(addr, 0x00, size);
 521
 522        return addr;
 523}
 524EXPORT_SYMBOL(l1_data_sram_zalloc);
 525
 526int l1_data_sram_free(const void *addr)
 527{
 528        int ret;
 529        ret = l1_data_A_sram_free(addr);
 530        if (ret == -1)
 531                ret = l1_data_B_sram_free(addr);
 532        return ret;
 533}
 534EXPORT_SYMBOL(l1_data_sram_free);
 535
 536void *l1_inst_sram_alloc(size_t size)
 537{
 538#if L1_CODE_LENGTH != 0
 539        unsigned long flags;
 540        void *addr;
 541        unsigned int cpu;
 542
 543        cpu = get_cpu();
 544        /* add mutex operation */
 545        spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
 546
 547        addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
 548                        &per_cpu(used_l1_inst_sram_head, cpu));
 549
 550        /* add mutex operation */
 551        spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
 552        put_cpu();
 553
 554        pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
 555                 (long unsigned int)addr, size);
 556
 557        return addr;
 558#else
 559        return NULL;
 560#endif
 561}
 562EXPORT_SYMBOL(l1_inst_sram_alloc);
 563
 564int l1_inst_sram_free(const void *addr)
 565{
 566#if L1_CODE_LENGTH != 0
 567        unsigned long flags;
 568        int ret;
 569        unsigned int cpu;
 570
 571        cpu = get_cpu();
 572        /* add mutex operation */
 573        spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
 574
 575        ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
 576                        &per_cpu(used_l1_inst_sram_head, cpu));
 577
 578        /* add mutex operation */
 579        spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
 580        put_cpu();
 581
 582        return ret;
 583#else
 584        return -1;
 585#endif
 586}
 587EXPORT_SYMBOL(l1_inst_sram_free);
 588
 589/* L1 Scratchpad memory allocate function */
 590void *l1sram_alloc(size_t size)
 591{
 592        unsigned long flags;
 593        void *addr;
 594        unsigned int cpu;
 595
 596        cpu = get_cpu();
 597        /* add mutex operation */
 598        spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 599
 600        addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
 601                        &per_cpu(used_l1_ssram_head, cpu));
 602
 603        /* add mutex operation */
 604        spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 605        put_cpu();
 606
 607        return addr;
 608}
 609
 610/* L1 Scratchpad memory allocate function */
 611void *l1sram_alloc_max(size_t *psize)
 612{
 613        unsigned long flags;
 614        void *addr;
 615        unsigned int cpu;
 616
 617        cpu = get_cpu();
 618        /* add mutex operation */
 619        spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 620
 621        addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
 622                        &per_cpu(used_l1_ssram_head, cpu), psize);
 623
 624        /* add mutex operation */
 625        spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 626        put_cpu();
 627
 628        return addr;
 629}
 630
 631/* L1 Scratchpad memory free function */
 632int l1sram_free(const void *addr)
 633{
 634        unsigned long flags;
 635        int ret;
 636        unsigned int cpu;
 637
 638        cpu = get_cpu();
 639        /* add mutex operation */
 640        spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
 641
 642        ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
 643                        &per_cpu(used_l1_ssram_head, cpu));
 644
 645        /* add mutex operation */
 646        spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
 647        put_cpu();
 648
 649        return ret;
 650}
 651
 652void *l2_sram_alloc(size_t size)
 653{
 654#if L2_LENGTH != 0
 655        unsigned long flags;
 656        void *addr;
 657
 658        /* add mutex operation */
 659        spin_lock_irqsave(&l2_sram_lock, flags);
 660
 661        addr = _sram_alloc(size, &free_l2_sram_head,
 662                        &used_l2_sram_head);
 663
 664        /* add mutex operation */
 665        spin_unlock_irqrestore(&l2_sram_lock, flags);
 666
 667        pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
 668                 (long unsigned int)addr, size);
 669
 670        return addr;
 671#else
 672        return NULL;
 673#endif
 674}
 675EXPORT_SYMBOL(l2_sram_alloc);
 676
 677void *l2_sram_zalloc(size_t size)
 678{
 679        void *addr = l2_sram_alloc(size);
 680
 681        if (addr)
 682                memset(addr, 0x00, size);
 683
 684        return addr;
 685}
 686EXPORT_SYMBOL(l2_sram_zalloc);
 687
 688int l2_sram_free(const void *addr)
 689{
 690#if L2_LENGTH != 0
 691        unsigned long flags;
 692        int ret;
 693
 694        /* add mutex operation */
 695        spin_lock_irqsave(&l2_sram_lock, flags);
 696
 697        ret = _sram_free(addr, &free_l2_sram_head,
 698                        &used_l2_sram_head);
 699
 700        /* add mutex operation */
 701        spin_unlock_irqrestore(&l2_sram_lock, flags);
 702
 703        return ret;
 704#else
 705        return -1;
 706#endif
 707}
 708EXPORT_SYMBOL(l2_sram_free);
 709
 710int sram_free_with_lsl(const void *addr)
 711{
 712        struct sram_list_struct *lsl, **tmp;
 713        struct mm_struct *mm = current->mm;
 714
 715        for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
 716                if ((*tmp)->addr == addr)
 717                        goto found;
 718        return -1;
 719found:
 720        lsl = *tmp;
 721        sram_free(addr);
 722        *tmp = lsl->next;
 723        kfree(lsl);
 724
 725        return 0;
 726}
 727EXPORT_SYMBOL(sram_free_with_lsl);
 728
 729/* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
 730 * tracked.  These are designed for userspace so that when a process exits,
 731 * we can safely reap their resources.
 732 */
 733void *sram_alloc_with_lsl(size_t size, unsigned long flags)
 734{
 735        void *addr = NULL;
 736        struct sram_list_struct *lsl = NULL;
 737        struct mm_struct *mm = current->mm;
 738
 739        lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
 740        if (!lsl)
 741                return NULL;
 742
 743        if (flags & L1_INST_SRAM)
 744                addr = l1_inst_sram_alloc(size);
 745
 746        if (addr == NULL && (flags & L1_DATA_A_SRAM))
 747                addr = l1_data_A_sram_alloc(size);
 748
 749        if (addr == NULL && (flags & L1_DATA_B_SRAM))
 750                addr = l1_data_B_sram_alloc(size);
 751
 752        if (addr == NULL && (flags & L2_SRAM))
 753                addr = l2_sram_alloc(size);
 754
 755        if (addr == NULL) {
 756                kfree(lsl);
 757                return NULL;
 758        }
 759        lsl->addr = addr;
 760        lsl->length = size;
 761        lsl->next = mm->context.sram_list;
 762        mm->context.sram_list = lsl;
 763        return addr;
 764}
 765EXPORT_SYMBOL(sram_alloc_with_lsl);
 766
 767#ifdef CONFIG_PROC_FS
 768/* Once we get a real allocator, we'll throw all of this away.
 769 * Until then, we need some sort of visibility into the L1 alloc.
 770 */
 771/* Need to keep line of output the same.  Currently, that is 44 bytes
 772 * (including newline).
 773 */
 774static int _sram_proc_read(char *buf, int *len, int count, const char *desc,
 775                struct sram_piece *pfree_head,
 776                struct sram_piece *pused_head)
 777{
 778        struct sram_piece *pslot;
 779
 780        if (!pfree_head || !pused_head)
 781                return -1;
 782
 783        *len += sprintf(&buf[*len], "--- SRAM %-14s Size   PID State     \n", desc);
 784
 785        /* search the relevant memory slot */
 786        pslot = pused_head->next;
 787
 788        while (pslot != NULL) {
 789                *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
 790                        pslot->paddr, pslot->paddr + pslot->size,
 791                        pslot->size, pslot->pid, "ALLOCATED");
 792
 793                pslot = pslot->next;
 794        }
 795
 796        pslot = pfree_head->next;
 797
 798        while (pslot != NULL) {
 799                *len += sprintf(&buf[*len], "%p-%p %10i %5i %-10s\n",
 800                        pslot->paddr, pslot->paddr + pslot->size,
 801                        pslot->size, pslot->pid, "FREE");
 802
 803                pslot = pslot->next;
 804        }
 805
 806        return 0;
 807}
 808static int sram_proc_read(char *buf, char **start, off_t offset, int count,
 809                int *eof, void *data)
 810{
 811        int len = 0;
 812        unsigned int cpu;
 813
 814        for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
 815                if (_sram_proc_read(buf, &len, count, "Scratchpad",
 816                        &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
 817                        goto not_done;
 818#if L1_DATA_A_LENGTH != 0
 819                if (_sram_proc_read(buf, &len, count, "L1 Data A",
 820                        &per_cpu(free_l1_data_A_sram_head, cpu),
 821                        &per_cpu(used_l1_data_A_sram_head, cpu)))
 822                        goto not_done;
 823#endif
 824#if L1_DATA_B_LENGTH != 0
 825                if (_sram_proc_read(buf, &len, count, "L1 Data B",
 826                        &per_cpu(free_l1_data_B_sram_head, cpu),
 827                        &per_cpu(used_l1_data_B_sram_head, cpu)))
 828                        goto not_done;
 829#endif
 830#if L1_CODE_LENGTH != 0
 831                if (_sram_proc_read(buf, &len, count, "L1 Instruction",
 832                        &per_cpu(free_l1_inst_sram_head, cpu),
 833                        &per_cpu(used_l1_inst_sram_head, cpu)))
 834                        goto not_done;
 835#endif
 836        }
 837#if L2_LENGTH != 0
 838        if (_sram_proc_read(buf, &len, count, "L2", &free_l2_sram_head,
 839                &used_l2_sram_head))
 840                goto not_done;
 841#endif
 842        *eof = 1;
 843 not_done:
 844        return len;
 845}
 846
 847static int __init sram_proc_init(void)
 848{
 849        struct proc_dir_entry *ptr;
 850        ptr = create_proc_entry("sram", S_IFREG | S_IRUGO, NULL);
 851        if (!ptr) {
 852                printk(KERN_WARNING "unable to create /proc/sram\n");
 853                return -1;
 854        }
 855        ptr->read_proc = sram_proc_read;
 856        return 0;
 857}
 858late_initcall(sram_proc_init);
 859#endif
 860