linux/arch/cris/arch-v32/kernel/smp.c
<<
>>
Prefs
   1#include <linux/types.h>
   2#include <asm/delay.h>
   3#include <irq.h>
   4#include <hwregs/intr_vect.h>
   5#include <hwregs/intr_vect_defs.h>
   6#include <asm/tlbflush.h>
   7#include <asm/mmu_context.h>
   8#include <hwregs/asm/mmu_defs_asm.h>
   9#include <hwregs/supp_reg.h>
  10#include <asm/atomic.h>
  11
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/timex.h>
  15#include <linux/sched.h>
  16#include <linux/kernel.h>
  17#include <linux/cpumask.h>
  18#include <linux/interrupt.h>
  19#include <linux/module.h>
  20
  21#define IPI_SCHEDULE 1
  22#define IPI_CALL 2
  23#define IPI_FLUSH_TLB 4
  24#define IPI_BOOT 8
  25
  26#define FLUSH_ALL (void*)0xffffffff
  27
  28/* Vector of locks used for various atomic operations */
  29spinlock_t cris_atomic_locks[] = { [0 ... LOCK_COUNT - 1] = SPIN_LOCK_UNLOCKED};
  30
  31/* CPU masks */
  32cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
  33EXPORT_SYMBOL(phys_cpu_present_map);
  34
  35/* Variables used during SMP boot */
  36volatile int cpu_now_booting = 0;
  37volatile struct thread_info *smp_init_current_idle_thread;
  38
  39/* Variables used during IPI */
  40static DEFINE_SPINLOCK(call_lock);
  41static DEFINE_SPINLOCK(tlbstate_lock);
  42
  43struct call_data_struct {
  44        void (*func) (void *info);
  45        void *info;
  46        int wait;
  47};
  48
  49static struct call_data_struct * call_data;
  50
  51static struct mm_struct* flush_mm;
  52static struct vm_area_struct* flush_vma;
  53static unsigned long flush_addr;
  54
  55/* Mode registers */
  56static unsigned long irq_regs[NR_CPUS] = {
  57  regi_irq,
  58  regi_irq2
  59};
  60
  61static irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id);
  62static int send_ipi(int vector, int wait, cpumask_t cpu_mask);
  63static struct irqaction irq_ipi  = {
  64        .handler = crisv32_ipi_interrupt,
  65        .flags = IRQF_DISABLED,
  66        .name = "ipi",
  67};
  68
  69extern void cris_mmu_init(void);
  70extern void cris_timer_init(void);
  71
  72/* SMP initialization */
  73void __init smp_prepare_cpus(unsigned int max_cpus)
  74{
  75        int i;
  76
  77        /* From now on we can expect IPIs so set them up */
  78        setup_irq(IPI_INTR_VECT, &irq_ipi);
  79
  80        /* Mark all possible CPUs as present */
  81        for (i = 0; i < max_cpus; i++)
  82            cpu_set(i, phys_cpu_present_map);
  83}
  84
  85void __devinit smp_prepare_boot_cpu(void)
  86{
  87        /* PGD pointer has moved after per_cpu initialization so
  88         * update the MMU.
  89         */
  90        pgd_t **pgd;
  91        pgd = (pgd_t**)&per_cpu(current_pgd, smp_processor_id());
  92
  93        SUPP_BANK_SEL(1);
  94        SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  95        SUPP_BANK_SEL(2);
  96        SUPP_REG_WR(RW_MM_TLB_PGD, pgd);
  97
  98        set_cpu_online(0, true);
  99        cpu_set(0, phys_cpu_present_map);
 100        set_cpu_possible(0, true);
 101}
 102
 103void __init smp_cpus_done(unsigned int max_cpus)
 104{
 105}
 106
 107/* Bring one cpu online.*/
 108static int __init
 109smp_boot_one_cpu(int cpuid)
 110{
 111        unsigned timeout;
 112        struct task_struct *idle;
 113        cpumask_t cpu_mask = CPU_MASK_NONE;
 114
 115        idle = fork_idle(cpuid);
 116        if (IS_ERR(idle))
 117                panic("SMP: fork failed for CPU:%d", cpuid);
 118
 119        task_thread_info(idle)->cpu = cpuid;
 120
 121        /* Information to the CPU that is about to boot */
 122        smp_init_current_idle_thread = task_thread_info(idle);
 123        cpu_now_booting = cpuid;
 124
 125        /* Kick it */
 126        cpu_set(cpuid, cpu_online_map);
 127        cpu_set(cpuid, cpu_mask);
 128        send_ipi(IPI_BOOT, 0, cpu_mask);
 129        cpu_clear(cpuid, cpu_online_map);
 130
 131        /* Wait for CPU to come online */
 132        for (timeout = 0; timeout < 10000; timeout++) {
 133                if(cpu_online(cpuid)) {
 134                        cpu_now_booting = 0;
 135                        smp_init_current_idle_thread = NULL;
 136                        return 0; /* CPU online */
 137                }
 138                udelay(100);
 139                barrier();
 140        }
 141
 142        put_task_struct(idle);
 143        idle = NULL;
 144
 145        printk(KERN_CRIT "SMP: CPU:%d is stuck.\n", cpuid);
 146        return -1;
 147}
 148
 149/* Secondary CPUs starts using C here. Here we need to setup CPU
 150 * specific stuff such as the local timer and the MMU. */
 151void __init smp_callin(void)
 152{
 153        extern void cpu_idle(void);
 154
 155        int cpu = cpu_now_booting;
 156        reg_intr_vect_rw_mask vect_mask = {0};
 157
 158        /* Initialise the idle task for this CPU */
 159        atomic_inc(&init_mm.mm_count);
 160        current->active_mm = &init_mm;
 161
 162        /* Set up MMU */
 163        cris_mmu_init();
 164        __flush_tlb_all();
 165
 166        /* Setup local timer. */
 167        cris_timer_init();
 168
 169        /* Enable IRQ and idle */
 170        REG_WR(intr_vect, irq_regs[cpu], rw_mask, vect_mask);
 171        unmask_irq(IPI_INTR_VECT);
 172        unmask_irq(TIMER0_INTR_VECT);
 173        preempt_disable();
 174        notify_cpu_starting(cpu);
 175        local_irq_enable();
 176
 177        cpu_set(cpu, cpu_online_map);
 178        cpu_idle();
 179}
 180
 181/* Stop execution on this CPU.*/
 182void stop_this_cpu(void* dummy)
 183{
 184        local_irq_disable();
 185        asm volatile("halt");
 186}
 187
 188/* Other calls */
 189void smp_send_stop(void)
 190{
 191        smp_call_function(stop_this_cpu, NULL, 0);
 192}
 193
 194int setup_profiling_timer(unsigned int multiplier)
 195{
 196        return -EINVAL;
 197}
 198
 199
 200/* cache_decay_ticks is used by the scheduler to decide if a process
 201 * is "hot" on one CPU. A higher value means a higher penalty to move
 202 * a process to another CPU. Our cache is rather small so we report
 203 * 1 tick.
 204 */
 205unsigned long cache_decay_ticks = 1;
 206
 207int __cpuinit __cpu_up(unsigned int cpu)
 208{
 209        smp_boot_one_cpu(cpu);
 210        return cpu_online(cpu) ? 0 : -ENOSYS;
 211}
 212
 213void smp_send_reschedule(int cpu)
 214{
 215        cpumask_t cpu_mask = CPU_MASK_NONE;
 216        cpu_set(cpu, cpu_mask);
 217        send_ipi(IPI_SCHEDULE, 0, cpu_mask);
 218}
 219
 220/* TLB flushing
 221 *
 222 * Flush needs to be done on the local CPU and on any other CPU that
 223 * may have the same mapping. The mm->cpu_vm_mask is used to keep track
 224 * of which CPUs that a specific process has been executed on.
 225 */
 226void flush_tlb_common(struct mm_struct* mm, struct vm_area_struct* vma, unsigned long addr)
 227{
 228        unsigned long flags;
 229        cpumask_t cpu_mask;
 230
 231        spin_lock_irqsave(&tlbstate_lock, flags);
 232        cpu_mask = (mm == FLUSH_ALL ? cpu_all_mask : *mm_cpumask(mm));
 233        cpu_clear(smp_processor_id(), cpu_mask);
 234        flush_mm = mm;
 235        flush_vma = vma;
 236        flush_addr = addr;
 237        send_ipi(IPI_FLUSH_TLB, 1, cpu_mask);
 238        spin_unlock_irqrestore(&tlbstate_lock, flags);
 239}
 240
 241void flush_tlb_all(void)
 242{
 243        __flush_tlb_all();
 244        flush_tlb_common(FLUSH_ALL, FLUSH_ALL, 0);
 245}
 246
 247void flush_tlb_mm(struct mm_struct *mm)
 248{
 249        __flush_tlb_mm(mm);
 250        flush_tlb_common(mm, FLUSH_ALL, 0);
 251        /* No more mappings in other CPUs */
 252        cpumask_clear(mm_cpumask(mm));
 253        cpumask_set_cpu(smp_processor_id(), mm_cpumask(mm));
 254}
 255
 256void flush_tlb_page(struct vm_area_struct *vma,
 257                           unsigned long addr)
 258{
 259        __flush_tlb_page(vma, addr);
 260        flush_tlb_common(vma->vm_mm, vma, addr);
 261}
 262
 263/* Inter processor interrupts
 264 *
 265 * The IPIs are used for:
 266 *   * Force a schedule on a CPU
 267 *   * FLush TLB on other CPUs
 268 *   * Call a function on other CPUs
 269 */
 270
 271int send_ipi(int vector, int wait, cpumask_t cpu_mask)
 272{
 273        int i = 0;
 274        reg_intr_vect_rw_ipi ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
 275        int ret = 0;
 276
 277        /* Calculate CPUs to send to. */
 278        cpus_and(cpu_mask, cpu_mask, cpu_online_map);
 279
 280        /* Send the IPI. */
 281        for_each_cpu_mask(i, cpu_mask)
 282        {
 283                ipi.vector |= vector;
 284                REG_WR(intr_vect, irq_regs[i], rw_ipi, ipi);
 285        }
 286
 287        /* Wait for IPI to finish on other CPUS */
 288        if (wait) {
 289                for_each_cpu_mask(i, cpu_mask) {
 290                        int j;
 291                        for (j = 0 ; j < 1000; j++) {
 292                                ipi = REG_RD(intr_vect, irq_regs[i], rw_ipi);
 293                                if (!ipi.vector)
 294                                        break;
 295                                udelay(100);
 296                        }
 297
 298                        /* Timeout? */
 299                        if (ipi.vector) {
 300                                printk("SMP call timeout from %d to %d\n", smp_processor_id(), i);
 301                                ret = -ETIMEDOUT;
 302                                dump_stack();
 303                        }
 304                }
 305        }
 306        return ret;
 307}
 308
 309/*
 310 * You must not call this function with disabled interrupts or from a
 311 * hardware interrupt handler or from a bottom half handler.
 312 */
 313int smp_call_function(void (*func)(void *info), void *info, int wait)
 314{
 315        cpumask_t cpu_mask = CPU_MASK_ALL;
 316        struct call_data_struct data;
 317        int ret;
 318
 319        cpu_clear(smp_processor_id(), cpu_mask);
 320
 321        WARN_ON(irqs_disabled());
 322
 323        data.func = func;
 324        data.info = info;
 325        data.wait = wait;
 326
 327        spin_lock(&call_lock);
 328        call_data = &data;
 329        ret = send_ipi(IPI_CALL, wait, cpu_mask);
 330        spin_unlock(&call_lock);
 331
 332        return ret;
 333}
 334
 335irqreturn_t crisv32_ipi_interrupt(int irq, void *dev_id)
 336{
 337        void (*func) (void *info) = call_data->func;
 338        void *info = call_data->info;
 339        reg_intr_vect_rw_ipi ipi;
 340
 341        ipi = REG_RD(intr_vect, irq_regs[smp_processor_id()], rw_ipi);
 342
 343        if (ipi.vector & IPI_CALL) {
 344                 func(info);
 345        }
 346        if (ipi.vector & IPI_FLUSH_TLB) {
 347                     if (flush_mm == FLUSH_ALL)
 348                         __flush_tlb_all();
 349                     else if (flush_vma == FLUSH_ALL)
 350                        __flush_tlb_mm(flush_mm);
 351                     else
 352                        __flush_tlb_page(flush_vma, flush_addr);
 353        }
 354
 355        ipi.vector = 0;
 356        REG_WR(intr_vect, irq_regs[smp_processor_id()], rw_ipi, ipi);
 357
 358        return IRQ_HANDLED;
 359}
 360
 361