linux/arch/ia64/kernel/perfmon.c
<<
>>
Prefs
   1/*
   2 * This file implements the perfmon-2 subsystem which is used
   3 * to program the IA-64 Performance Monitoring Unit (PMU).
   4 *
   5 * The initial version of perfmon.c was written by
   6 * Ganesh Venkitachalam, IBM Corp.
   7 *
   8 * Then it was modified for perfmon-1.x by Stephane Eranian and
   9 * David Mosberger, Hewlett Packard Co.
  10 *
  11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
  12 * by Stephane Eranian, Hewlett Packard Co.
  13 *
  14 * Copyright (C) 1999-2005  Hewlett Packard Co
  15 *               Stephane Eranian <eranian@hpl.hp.com>
  16 *               David Mosberger-Tang <davidm@hpl.hp.com>
  17 *
  18 * More information about perfmon available at:
  19 *      http://www.hpl.hp.com/research/linux/perfmon
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/kernel.h>
  24#include <linux/sched.h>
  25#include <linux/interrupt.h>
  26#include <linux/proc_fs.h>
  27#include <linux/seq_file.h>
  28#include <linux/init.h>
  29#include <linux/vmalloc.h>
  30#include <linux/mm.h>
  31#include <linux/sysctl.h>
  32#include <linux/list.h>
  33#include <linux/file.h>
  34#include <linux/poll.h>
  35#include <linux/vfs.h>
  36#include <linux/smp.h>
  37#include <linux/pagemap.h>
  38#include <linux/mount.h>
  39#include <linux/bitops.h>
  40#include <linux/capability.h>
  41#include <linux/rcupdate.h>
  42#include <linux/completion.h>
  43#include <linux/tracehook.h>
  44
  45#include <asm/errno.h>
  46#include <asm/intrinsics.h>
  47#include <asm/page.h>
  48#include <asm/perfmon.h>
  49#include <asm/processor.h>
  50#include <asm/signal.h>
  51#include <asm/system.h>
  52#include <asm/uaccess.h>
  53#include <asm/delay.h>
  54
  55#ifdef CONFIG_PERFMON
  56/*
  57 * perfmon context state
  58 */
  59#define PFM_CTX_UNLOADED        1       /* context is not loaded onto any task */
  60#define PFM_CTX_LOADED          2       /* context is loaded onto a task */
  61#define PFM_CTX_MASKED          3       /* context is loaded but monitoring is masked due to overflow */
  62#define PFM_CTX_ZOMBIE          4       /* owner of the context is closing it */
  63
  64#define PFM_INVALID_ACTIVATION  (~0UL)
  65
  66#define PFM_NUM_PMC_REGS        64      /* PMC save area for ctxsw */
  67#define PFM_NUM_PMD_REGS        64      /* PMD save area for ctxsw */
  68
  69/*
  70 * depth of message queue
  71 */
  72#define PFM_MAX_MSGS            32
  73#define PFM_CTXQ_EMPTY(g)       ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
  74
  75/*
  76 * type of a PMU register (bitmask).
  77 * bitmask structure:
  78 *      bit0   : register implemented
  79 *      bit1   : end marker
  80 *      bit2-3 : reserved
  81 *      bit4   : pmc has pmc.pm
  82 *      bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter
  83 *      bit6-7 : register type
  84 *      bit8-31: reserved
  85 */
  86#define PFM_REG_NOTIMPL         0x0 /* not implemented at all */
  87#define PFM_REG_IMPL            0x1 /* register implemented */
  88#define PFM_REG_END             0x2 /* end marker */
  89#define PFM_REG_MONITOR         (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
  90#define PFM_REG_COUNTING        (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
  91#define PFM_REG_CONTROL         (0x4<<4|PFM_REG_IMPL) /* PMU control register */
  92#define PFM_REG_CONFIG          (0x8<<4|PFM_REG_IMPL) /* configuration register */
  93#define PFM_REG_BUFFER          (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
  94
  95#define PMC_IS_LAST(i)  (pmu_conf->pmc_desc[i].type & PFM_REG_END)
  96#define PMD_IS_LAST(i)  (pmu_conf->pmd_desc[i].type & PFM_REG_END)
  97
  98#define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY)
  99
 100/* i assumed unsigned */
 101#define PMC_IS_IMPL(i)    (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
 102#define PMD_IS_IMPL(i)    (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
 103
 104/* XXX: these assume that register i is implemented */
 105#define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 106#define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
 107#define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR)
 108#define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL)
 109
 110#define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value
 111#define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask
 112#define PMD_PMD_DEP(i)     pmu_conf->pmd_desc[i].dep_pmd[0]
 113#define PMC_PMD_DEP(i)     pmu_conf->pmc_desc[i].dep_pmd[0]
 114
 115#define PFM_NUM_IBRS      IA64_NUM_DBG_REGS
 116#define PFM_NUM_DBRS      IA64_NUM_DBG_REGS
 117
 118#define CTX_OVFL_NOBLOCK(c)     ((c)->ctx_fl_block == 0)
 119#define CTX_HAS_SMPL(c)         ((c)->ctx_fl_is_sampling)
 120#define PFM_CTX_TASK(h)         (h)->ctx_task
 121
 122#define PMU_PMC_OI              5 /* position of pmc.oi bit */
 123
 124/* XXX: does not support more than 64 PMDs */
 125#define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
 126#define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
 127
 128#define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
 129
 130#define CTX_USED_IBR(ctx,n)     (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
 131#define CTX_USED_DBR(ctx,n)     (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
 132#define CTX_USES_DBREGS(ctx)    (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
 133#define PFM_CODE_RR     0       /* requesting code range restriction */
 134#define PFM_DATA_RR     1       /* requestion data range restriction */
 135
 136#define PFM_CPUINFO_CLEAR(v)    pfm_get_cpu_var(pfm_syst_info) &= ~(v)
 137#define PFM_CPUINFO_SET(v)      pfm_get_cpu_var(pfm_syst_info) |= (v)
 138#define PFM_CPUINFO_GET()       pfm_get_cpu_var(pfm_syst_info)
 139
 140#define RDEP(x) (1UL<<(x))
 141
 142/*
 143 * context protection macros
 144 * in SMP:
 145 *      - we need to protect against CPU concurrency (spin_lock)
 146 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 147 * in UP:
 148 *      - we need to protect against PMU overflow interrupts (local_irq_disable)
 149 *
 150 * spin_lock_irqsave()/spin_unlock_irqrestore():
 151 *      in SMP: local_irq_disable + spin_lock
 152 *      in UP : local_irq_disable
 153 *
 154 * spin_lock()/spin_lock():
 155 *      in UP : removed automatically
 156 *      in SMP: protect against context accesses from other CPU. interrupts
 157 *              are not masked. This is useful for the PMU interrupt handler
 158 *              because we know we will not get PMU concurrency in that code.
 159 */
 160#define PROTECT_CTX(c, f) \
 161        do {  \
 162                DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
 163                spin_lock_irqsave(&(c)->ctx_lock, f); \
 164                DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \
 165        } while(0)
 166
 167#define UNPROTECT_CTX(c, f) \
 168        do { \
 169                DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
 170                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 171        } while(0)
 172
 173#define PROTECT_CTX_NOPRINT(c, f) \
 174        do {  \
 175                spin_lock_irqsave(&(c)->ctx_lock, f); \
 176        } while(0)
 177
 178
 179#define UNPROTECT_CTX_NOPRINT(c, f) \
 180        do { \
 181                spin_unlock_irqrestore(&(c)->ctx_lock, f); \
 182        } while(0)
 183
 184
 185#define PROTECT_CTX_NOIRQ(c) \
 186        do {  \
 187                spin_lock(&(c)->ctx_lock); \
 188        } while(0)
 189
 190#define UNPROTECT_CTX_NOIRQ(c) \
 191        do { \
 192                spin_unlock(&(c)->ctx_lock); \
 193        } while(0)
 194
 195
 196#ifdef CONFIG_SMP
 197
 198#define GET_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)
 199#define INC_ACTIVATION()        pfm_get_cpu_var(pmu_activation_number)++
 200#define SET_ACTIVATION(c)       (c)->ctx_last_activation = GET_ACTIVATION()
 201
 202#else /* !CONFIG_SMP */
 203#define SET_ACTIVATION(t)       do {} while(0)
 204#define GET_ACTIVATION(t)       do {} while(0)
 205#define INC_ACTIVATION(t)       do {} while(0)
 206#endif /* CONFIG_SMP */
 207
 208#define SET_PMU_OWNER(t, c)     do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
 209#define GET_PMU_OWNER()         pfm_get_cpu_var(pmu_owner)
 210#define GET_PMU_CTX()           pfm_get_cpu_var(pmu_ctx)
 211
 212#define LOCK_PFS(g)             spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
 213#define UNLOCK_PFS(g)           spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
 214
 215#define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
 216
 217/*
 218 * cmp0 must be the value of pmc0
 219 */
 220#define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL)
 221
 222#define PFMFS_MAGIC 0xa0b4d889
 223
 224/*
 225 * debugging
 226 */
 227#define PFM_DEBUGGING 1
 228#ifdef PFM_DEBUGGING
 229#define DPRINT(a) \
 230        do { \
 231                if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 232        } while (0)
 233
 234#define DPRINT_ovfl(a) \
 235        do { \
 236                if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
 237        } while (0)
 238#endif
 239
 240/*
 241 * 64-bit software counter structure
 242 *
 243 * the next_reset_type is applied to the next call to pfm_reset_regs()
 244 */
 245typedef struct {
 246        unsigned long   val;            /* virtual 64bit counter value */
 247        unsigned long   lval;           /* last reset value */
 248        unsigned long   long_reset;     /* reset value on sampling overflow */
 249        unsigned long   short_reset;    /* reset value on overflow */
 250        unsigned long   reset_pmds[4];  /* which other pmds to reset when this counter overflows */
 251        unsigned long   smpl_pmds[4];   /* which pmds are accessed when counter overflow */
 252        unsigned long   seed;           /* seed for random-number generator */
 253        unsigned long   mask;           /* mask for random-number generator */
 254        unsigned int    flags;          /* notify/do not notify */
 255        unsigned long   eventid;        /* overflow event identifier */
 256} pfm_counter_t;
 257
 258/*
 259 * context flags
 260 */
 261typedef struct {
 262        unsigned int block:1;           /* when 1, task will blocked on user notifications */
 263        unsigned int system:1;          /* do system wide monitoring */
 264        unsigned int using_dbreg:1;     /* using range restrictions (debug registers) */
 265        unsigned int is_sampling:1;     /* true if using a custom format */
 266        unsigned int excl_idle:1;       /* exclude idle task in system wide session */
 267        unsigned int going_zombie:1;    /* context is zombie (MASKED+blocking) */
 268        unsigned int trap_reason:2;     /* reason for going into pfm_handle_work() */
 269        unsigned int no_msg:1;          /* no message sent on overflow */
 270        unsigned int can_restart:1;     /* allowed to issue a PFM_RESTART */
 271        unsigned int reserved:22;
 272} pfm_context_flags_t;
 273
 274#define PFM_TRAP_REASON_NONE            0x0     /* default value */
 275#define PFM_TRAP_REASON_BLOCK           0x1     /* we need to block on overflow */
 276#define PFM_TRAP_REASON_RESET           0x2     /* we need to reset PMDs */
 277
 278
 279/*
 280 * perfmon context: encapsulates all the state of a monitoring session
 281 */
 282
 283typedef struct pfm_context {
 284        spinlock_t              ctx_lock;               /* context protection */
 285
 286        pfm_context_flags_t     ctx_flags;              /* bitmask of flags  (block reason incl.) */
 287        unsigned int            ctx_state;              /* state: active/inactive (no bitfield) */
 288
 289        struct task_struct      *ctx_task;              /* task to which context is attached */
 290
 291        unsigned long           ctx_ovfl_regs[4];       /* which registers overflowed (notification) */
 292
 293        struct completion       ctx_restart_done;       /* use for blocking notification mode */
 294
 295        unsigned long           ctx_used_pmds[4];       /* bitmask of PMD used            */
 296        unsigned long           ctx_all_pmds[4];        /* bitmask of all accessible PMDs */
 297        unsigned long           ctx_reload_pmds[4];     /* bitmask of force reload PMD on ctxsw in */
 298
 299        unsigned long           ctx_all_pmcs[4];        /* bitmask of all accessible PMCs */
 300        unsigned long           ctx_reload_pmcs[4];     /* bitmask of force reload PMC on ctxsw in */
 301        unsigned long           ctx_used_monitors[4];   /* bitmask of monitor PMC being used */
 302
 303        unsigned long           ctx_pmcs[PFM_NUM_PMC_REGS];     /*  saved copies of PMC values */
 304
 305        unsigned int            ctx_used_ibrs[1];               /* bitmask of used IBR (speedup ctxsw in) */
 306        unsigned int            ctx_used_dbrs[1];               /* bitmask of used DBR (speedup ctxsw in) */
 307        unsigned long           ctx_dbrs[IA64_NUM_DBG_REGS];    /* DBR values (cache) when not loaded */
 308        unsigned long           ctx_ibrs[IA64_NUM_DBG_REGS];    /* IBR values (cache) when not loaded */
 309
 310        pfm_counter_t           ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
 311
 312        unsigned long           th_pmcs[PFM_NUM_PMC_REGS];      /* PMC thread save state */
 313        unsigned long           th_pmds[PFM_NUM_PMD_REGS];      /* PMD thread save state */
 314
 315        unsigned long           ctx_saved_psr_up;       /* only contains psr.up value */
 316
 317        unsigned long           ctx_last_activation;    /* context last activation number for last_cpu */
 318        unsigned int            ctx_last_cpu;           /* CPU id of current or last CPU used (SMP only) */
 319        unsigned int            ctx_cpu;                /* cpu to which perfmon is applied (system wide) */
 320
 321        int                     ctx_fd;                 /* file descriptor used my this context */
 322        pfm_ovfl_arg_t          ctx_ovfl_arg;           /* argument to custom buffer format handler */
 323
 324        pfm_buffer_fmt_t        *ctx_buf_fmt;           /* buffer format callbacks */
 325        void                    *ctx_smpl_hdr;          /* points to sampling buffer header kernel vaddr */
 326        unsigned long           ctx_smpl_size;          /* size of sampling buffer */
 327        void                    *ctx_smpl_vaddr;        /* user level virtual address of smpl buffer */
 328
 329        wait_queue_head_t       ctx_msgq_wait;
 330        pfm_msg_t               ctx_msgq[PFM_MAX_MSGS];
 331        int                     ctx_msgq_head;
 332        int                     ctx_msgq_tail;
 333        struct fasync_struct    *ctx_async_queue;
 334
 335        wait_queue_head_t       ctx_zombieq;            /* termination cleanup wait queue */
 336} pfm_context_t;
 337
 338/*
 339 * magic number used to verify that structure is really
 340 * a perfmon context
 341 */
 342#define PFM_IS_FILE(f)          ((f)->f_op == &pfm_file_ops)
 343
 344#define PFM_GET_CTX(t)          ((pfm_context_t *)(t)->thread.pfm_context)
 345
 346#ifdef CONFIG_SMP
 347#define SET_LAST_CPU(ctx, v)    (ctx)->ctx_last_cpu = (v)
 348#define GET_LAST_CPU(ctx)       (ctx)->ctx_last_cpu
 349#else
 350#define SET_LAST_CPU(ctx, v)    do {} while(0)
 351#define GET_LAST_CPU(ctx)       do {} while(0)
 352#endif
 353
 354
 355#define ctx_fl_block            ctx_flags.block
 356#define ctx_fl_system           ctx_flags.system
 357#define ctx_fl_using_dbreg      ctx_flags.using_dbreg
 358#define ctx_fl_is_sampling      ctx_flags.is_sampling
 359#define ctx_fl_excl_idle        ctx_flags.excl_idle
 360#define ctx_fl_going_zombie     ctx_flags.going_zombie
 361#define ctx_fl_trap_reason      ctx_flags.trap_reason
 362#define ctx_fl_no_msg           ctx_flags.no_msg
 363#define ctx_fl_can_restart      ctx_flags.can_restart
 364
 365#define PFM_SET_WORK_PENDING(t, v)      do { (t)->thread.pfm_needs_checking = v; } while(0);
 366#define PFM_GET_WORK_PENDING(t)         (t)->thread.pfm_needs_checking
 367
 368/*
 369 * global information about all sessions
 370 * mostly used to synchronize between system wide and per-process
 371 */
 372typedef struct {
 373        spinlock_t              pfs_lock;                  /* lock the structure */
 374
 375        unsigned int            pfs_task_sessions;         /* number of per task sessions */
 376        unsigned int            pfs_sys_sessions;          /* number of per system wide sessions */
 377        unsigned int            pfs_sys_use_dbregs;        /* incremented when a system wide session uses debug regs */
 378        unsigned int            pfs_ptrace_use_dbregs;     /* incremented when a process uses debug regs */
 379        struct task_struct      *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
 380} pfm_session_t;
 381
 382/*
 383 * information about a PMC or PMD.
 384 * dep_pmd[]: a bitmask of dependent PMD registers
 385 * dep_pmc[]: a bitmask of dependent PMC registers
 386 */
 387typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
 388typedef struct {
 389        unsigned int            type;
 390        int                     pm_pos;
 391        unsigned long           default_value;  /* power-on default value */
 392        unsigned long           reserved_mask;  /* bitmask of reserved bits */
 393        pfm_reg_check_t         read_check;
 394        pfm_reg_check_t         write_check;
 395        unsigned long           dep_pmd[4];
 396        unsigned long           dep_pmc[4];
 397} pfm_reg_desc_t;
 398
 399/* assume cnum is a valid monitor */
 400#define PMC_PM(cnum, val)       (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
 401
 402/*
 403 * This structure is initialized at boot time and contains
 404 * a description of the PMU main characteristics.
 405 *
 406 * If the probe function is defined, detection is based
 407 * on its return value: 
 408 *      - 0 means recognized PMU
 409 *      - anything else means not supported
 410 * When the probe function is not defined, then the pmu_family field
 411 * is used and it must match the host CPU family such that:
 412 *      - cpu->family & config->pmu_family != 0
 413 */
 414typedef struct {
 415        unsigned long  ovfl_val;        /* overflow value for counters */
 416
 417        pfm_reg_desc_t *pmc_desc;       /* detailed PMC register dependencies descriptions */
 418        pfm_reg_desc_t *pmd_desc;       /* detailed PMD register dependencies descriptions */
 419
 420        unsigned int   num_pmcs;        /* number of PMCS: computed at init time */
 421        unsigned int   num_pmds;        /* number of PMDS: computed at init time */
 422        unsigned long  impl_pmcs[4];    /* bitmask of implemented PMCS */
 423        unsigned long  impl_pmds[4];    /* bitmask of implemented PMDS */
 424
 425        char          *pmu_name;        /* PMU family name */
 426        unsigned int  pmu_family;       /* cpuid family pattern used to identify pmu */
 427        unsigned int  flags;            /* pmu specific flags */
 428        unsigned int  num_ibrs;         /* number of IBRS: computed at init time */
 429        unsigned int  num_dbrs;         /* number of DBRS: computed at init time */
 430        unsigned int  num_counters;     /* PMC/PMD counting pairs : computed at init time */
 431        int           (*probe)(void);   /* customized probe routine */
 432        unsigned int  use_rr_dbregs:1;  /* set if debug registers used for range restriction */
 433} pmu_config_t;
 434/*
 435 * PMU specific flags
 436 */
 437#define PFM_PMU_IRQ_RESEND      1       /* PMU needs explicit IRQ resend */
 438
 439/*
 440 * debug register related type definitions
 441 */
 442typedef struct {
 443        unsigned long ibr_mask:56;
 444        unsigned long ibr_plm:4;
 445        unsigned long ibr_ig:3;
 446        unsigned long ibr_x:1;
 447} ibr_mask_reg_t;
 448
 449typedef struct {
 450        unsigned long dbr_mask:56;
 451        unsigned long dbr_plm:4;
 452        unsigned long dbr_ig:2;
 453        unsigned long dbr_w:1;
 454        unsigned long dbr_r:1;
 455} dbr_mask_reg_t;
 456
 457typedef union {
 458        unsigned long  val;
 459        ibr_mask_reg_t ibr;
 460        dbr_mask_reg_t dbr;
 461} dbreg_t;
 462
 463
 464/*
 465 * perfmon command descriptions
 466 */
 467typedef struct {
 468        int             (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 469        char            *cmd_name;
 470        int             cmd_flags;
 471        unsigned int    cmd_narg;
 472        size_t          cmd_argsize;
 473        int             (*cmd_getsize)(void *arg, size_t *sz);
 474} pfm_cmd_desc_t;
 475
 476#define PFM_CMD_FD              0x01    /* command requires a file descriptor */
 477#define PFM_CMD_ARG_READ        0x02    /* command must read argument(s) */
 478#define PFM_CMD_ARG_RW          0x04    /* command must read/write argument(s) */
 479#define PFM_CMD_STOP            0x08    /* command does not work on zombie context */
 480
 481
 482#define PFM_CMD_NAME(cmd)       pfm_cmd_tab[(cmd)].cmd_name
 483#define PFM_CMD_READ_ARG(cmd)   (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
 484#define PFM_CMD_RW_ARG(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
 485#define PFM_CMD_USE_FD(cmd)     (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
 486#define PFM_CMD_STOPPED(cmd)    (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
 487
 488#define PFM_CMD_ARG_MANY        -1 /* cannot be zero */
 489
 490typedef struct {
 491        unsigned long pfm_spurious_ovfl_intr_count;     /* keep track of spurious ovfl interrupts */
 492        unsigned long pfm_replay_ovfl_intr_count;       /* keep track of replayed ovfl interrupts */
 493        unsigned long pfm_ovfl_intr_count;              /* keep track of ovfl interrupts */
 494        unsigned long pfm_ovfl_intr_cycles;             /* cycles spent processing ovfl interrupts */
 495        unsigned long pfm_ovfl_intr_cycles_min;         /* min cycles spent processing ovfl interrupts */
 496        unsigned long pfm_ovfl_intr_cycles_max;         /* max cycles spent processing ovfl interrupts */
 497        unsigned long pfm_smpl_handler_calls;
 498        unsigned long pfm_smpl_handler_cycles;
 499        char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
 500} pfm_stats_t;
 501
 502/*
 503 * perfmon internal variables
 504 */
 505static pfm_stats_t              pfm_stats[NR_CPUS];
 506static pfm_session_t            pfm_sessions;   /* global sessions information */
 507
 508static DEFINE_SPINLOCK(pfm_alt_install_check);
 509static pfm_intr_handler_desc_t  *pfm_alt_intr_handler;
 510
 511static struct proc_dir_entry    *perfmon_dir;
 512static pfm_uuid_t               pfm_null_uuid = {0,};
 513
 514static spinlock_t               pfm_buffer_fmt_lock;
 515static LIST_HEAD(pfm_buffer_fmt_list);
 516
 517static pmu_config_t             *pmu_conf;
 518
 519/* sysctl() controls */
 520pfm_sysctl_t pfm_sysctl;
 521EXPORT_SYMBOL(pfm_sysctl);
 522
 523static ctl_table pfm_ctl_table[]={
 524        {
 525                .ctl_name       = CTL_UNNUMBERED,
 526                .procname       = "debug",
 527                .data           = &pfm_sysctl.debug,
 528                .maxlen         = sizeof(int),
 529                .mode           = 0666,
 530                .proc_handler   = &proc_dointvec,
 531        },
 532        {
 533                .ctl_name       = CTL_UNNUMBERED,
 534                .procname       = "debug_ovfl",
 535                .data           = &pfm_sysctl.debug_ovfl,
 536                .maxlen         = sizeof(int),
 537                .mode           = 0666,
 538                .proc_handler   = &proc_dointvec,
 539        },
 540        {
 541                .ctl_name       = CTL_UNNUMBERED,
 542                .procname       = "fastctxsw",
 543                .data           = &pfm_sysctl.fastctxsw,
 544                .maxlen         = sizeof(int),
 545                .mode           = 0600,
 546                .proc_handler   =  &proc_dointvec,
 547        },
 548        {
 549                .ctl_name       = CTL_UNNUMBERED,
 550                .procname       = "expert_mode",
 551                .data           = &pfm_sysctl.expert_mode,
 552                .maxlen         = sizeof(int),
 553                .mode           = 0600,
 554                .proc_handler   = &proc_dointvec,
 555        },
 556        {}
 557};
 558static ctl_table pfm_sysctl_dir[] = {
 559        {
 560                .ctl_name       = CTL_UNNUMBERED,
 561                .procname       = "perfmon",
 562                .mode           = 0555,
 563                .child          = pfm_ctl_table,
 564        },
 565        {}
 566};
 567static ctl_table pfm_sysctl_root[] = {
 568        {
 569                .ctl_name       = CTL_KERN,
 570                .procname       = "kernel",
 571                .mode           = 0555,
 572                .child          = pfm_sysctl_dir,
 573        },
 574        {}
 575};
 576static struct ctl_table_header *pfm_sysctl_header;
 577
 578static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 579
 580#define pfm_get_cpu_var(v)              __ia64_per_cpu_var(v)
 581#define pfm_get_cpu_data(a,b)           per_cpu(a, b)
 582
 583static inline void
 584pfm_put_task(struct task_struct *task)
 585{
 586        if (task != current) put_task_struct(task);
 587}
 588
 589static inline void
 590pfm_reserve_page(unsigned long a)
 591{
 592        SetPageReserved(vmalloc_to_page((void *)a));
 593}
 594static inline void
 595pfm_unreserve_page(unsigned long a)
 596{
 597        ClearPageReserved(vmalloc_to_page((void*)a));
 598}
 599
 600static inline unsigned long
 601pfm_protect_ctx_ctxsw(pfm_context_t *x)
 602{
 603        spin_lock(&(x)->ctx_lock);
 604        return 0UL;
 605}
 606
 607static inline void
 608pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
 609{
 610        spin_unlock(&(x)->ctx_lock);
 611}
 612
 613static inline unsigned int
 614pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
 615{
 616        return do_munmap(mm, addr, len);
 617}
 618
 619static inline unsigned long 
 620pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
 621{
 622        return get_unmapped_area(file, addr, len, pgoff, flags);
 623}
 624
 625
 626static int
 627pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
 628             struct vfsmount *mnt)
 629{
 630        return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
 631}
 632
 633static struct file_system_type pfm_fs_type = {
 634        .name     = "pfmfs",
 635        .get_sb   = pfmfs_get_sb,
 636        .kill_sb  = kill_anon_super,
 637};
 638
 639DEFINE_PER_CPU(unsigned long, pfm_syst_info);
 640DEFINE_PER_CPU(struct task_struct *, pmu_owner);
 641DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx);
 642DEFINE_PER_CPU(unsigned long, pmu_activation_number);
 643EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
 644
 645
 646/* forward declaration */
 647static const struct file_operations pfm_file_ops;
 648
 649/*
 650 * forward declarations
 651 */
 652#ifndef CONFIG_SMP
 653static void pfm_lazy_save_regs (struct task_struct *ta);
 654#endif
 655
 656void dump_pmu_state(const char *);
 657static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
 658
 659#include "perfmon_itanium.h"
 660#include "perfmon_mckinley.h"
 661#include "perfmon_montecito.h"
 662#include "perfmon_generic.h"
 663
 664static pmu_config_t *pmu_confs[]={
 665        &pmu_conf_mont,
 666        &pmu_conf_mck,
 667        &pmu_conf_ita,
 668        &pmu_conf_gen, /* must be last */
 669        NULL
 670};
 671
 672
 673static int pfm_end_notify_user(pfm_context_t *ctx);
 674
 675static inline void
 676pfm_clear_psr_pp(void)
 677{
 678        ia64_rsm(IA64_PSR_PP);
 679        ia64_srlz_i();
 680}
 681
 682static inline void
 683pfm_set_psr_pp(void)
 684{
 685        ia64_ssm(IA64_PSR_PP);
 686        ia64_srlz_i();
 687}
 688
 689static inline void
 690pfm_clear_psr_up(void)
 691{
 692        ia64_rsm(IA64_PSR_UP);
 693        ia64_srlz_i();
 694}
 695
 696static inline void
 697pfm_set_psr_up(void)
 698{
 699        ia64_ssm(IA64_PSR_UP);
 700        ia64_srlz_i();
 701}
 702
 703static inline unsigned long
 704pfm_get_psr(void)
 705{
 706        unsigned long tmp;
 707        tmp = ia64_getreg(_IA64_REG_PSR);
 708        ia64_srlz_i();
 709        return tmp;
 710}
 711
 712static inline void
 713pfm_set_psr_l(unsigned long val)
 714{
 715        ia64_setreg(_IA64_REG_PSR_L, val);
 716        ia64_srlz_i();
 717}
 718
 719static inline void
 720pfm_freeze_pmu(void)
 721{
 722        ia64_set_pmc(0,1UL);
 723        ia64_srlz_d();
 724}
 725
 726static inline void
 727pfm_unfreeze_pmu(void)
 728{
 729        ia64_set_pmc(0,0UL);
 730        ia64_srlz_d();
 731}
 732
 733static inline void
 734pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
 735{
 736        int i;
 737
 738        for (i=0; i < nibrs; i++) {
 739                ia64_set_ibr(i, ibrs[i]);
 740                ia64_dv_serialize_instruction();
 741        }
 742        ia64_srlz_i();
 743}
 744
 745static inline void
 746pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
 747{
 748        int i;
 749
 750        for (i=0; i < ndbrs; i++) {
 751                ia64_set_dbr(i, dbrs[i]);
 752                ia64_dv_serialize_data();
 753        }
 754        ia64_srlz_d();
 755}
 756
 757/*
 758 * PMD[i] must be a counter. no check is made
 759 */
 760static inline unsigned long
 761pfm_read_soft_counter(pfm_context_t *ctx, int i)
 762{
 763        return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
 764}
 765
 766/*
 767 * PMD[i] must be a counter. no check is made
 768 */
 769static inline void
 770pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
 771{
 772        unsigned long ovfl_val = pmu_conf->ovfl_val;
 773
 774        ctx->ctx_pmds[i].val = val  & ~ovfl_val;
 775        /*
 776         * writing to unimplemented part is ignore, so we do not need to
 777         * mask off top part
 778         */
 779        ia64_set_pmd(i, val & ovfl_val);
 780}
 781
 782static pfm_msg_t *
 783pfm_get_new_msg(pfm_context_t *ctx)
 784{
 785        int idx, next;
 786
 787        next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
 788
 789        DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 790        if (next == ctx->ctx_msgq_head) return NULL;
 791
 792        idx =   ctx->ctx_msgq_tail;
 793        ctx->ctx_msgq_tail = next;
 794
 795        DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
 796
 797        return ctx->ctx_msgq+idx;
 798}
 799
 800static pfm_msg_t *
 801pfm_get_next_msg(pfm_context_t *ctx)
 802{
 803        pfm_msg_t *msg;
 804
 805        DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
 806
 807        if (PFM_CTXQ_EMPTY(ctx)) return NULL;
 808
 809        /*
 810         * get oldest message
 811         */
 812        msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
 813
 814        /*
 815         * and move forward
 816         */
 817        ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
 818
 819        DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
 820
 821        return msg;
 822}
 823
 824static void
 825pfm_reset_msgq(pfm_context_t *ctx)
 826{
 827        ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 828        DPRINT(("ctx=%p msgq reset\n", ctx));
 829}
 830
 831static void *
 832pfm_rvmalloc(unsigned long size)
 833{
 834        void *mem;
 835        unsigned long addr;
 836
 837        size = PAGE_ALIGN(size);
 838        mem  = vmalloc(size);
 839        if (mem) {
 840                //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
 841                memset(mem, 0, size);
 842                addr = (unsigned long)mem;
 843                while (size > 0) {
 844                        pfm_reserve_page(addr);
 845                        addr+=PAGE_SIZE;
 846                        size-=PAGE_SIZE;
 847                }
 848        }
 849        return mem;
 850}
 851
 852static void
 853pfm_rvfree(void *mem, unsigned long size)
 854{
 855        unsigned long addr;
 856
 857        if (mem) {
 858                DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
 859                addr = (unsigned long) mem;
 860                while ((long) size > 0) {
 861                        pfm_unreserve_page(addr);
 862                        addr+=PAGE_SIZE;
 863                        size-=PAGE_SIZE;
 864                }
 865                vfree(mem);
 866        }
 867        return;
 868}
 869
 870static pfm_context_t *
 871pfm_context_alloc(int ctx_flags)
 872{
 873        pfm_context_t *ctx;
 874
 875        /* 
 876         * allocate context descriptor 
 877         * must be able to free with interrupts disabled
 878         */
 879        ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
 880        if (ctx) {
 881                DPRINT(("alloc ctx @%p\n", ctx));
 882
 883                /*
 884                 * init context protection lock
 885                 */
 886                spin_lock_init(&ctx->ctx_lock);
 887
 888                /*
 889                 * context is unloaded
 890                 */
 891                ctx->ctx_state = PFM_CTX_UNLOADED;
 892
 893                /*
 894                 * initialization of context's flags
 895                 */
 896                ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
 897                ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
 898                ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
 899                /*
 900                 * will move to set properties
 901                 * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
 902                 */
 903
 904                /*
 905                 * init restart semaphore to locked
 906                 */
 907                init_completion(&ctx->ctx_restart_done);
 908
 909                /*
 910                 * activation is used in SMP only
 911                 */
 912                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
 913                SET_LAST_CPU(ctx, -1);
 914
 915                /*
 916                 * initialize notification message queue
 917                 */
 918                ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
 919                init_waitqueue_head(&ctx->ctx_msgq_wait);
 920                init_waitqueue_head(&ctx->ctx_zombieq);
 921
 922        }
 923        return ctx;
 924}
 925
 926static void
 927pfm_context_free(pfm_context_t *ctx)
 928{
 929        if (ctx) {
 930                DPRINT(("free ctx @%p\n", ctx));
 931                kfree(ctx);
 932        }
 933}
 934
 935static void
 936pfm_mask_monitoring(struct task_struct *task)
 937{
 938        pfm_context_t *ctx = PFM_GET_CTX(task);
 939        unsigned long mask, val, ovfl_mask;
 940        int i;
 941
 942        DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task)));
 943
 944        ovfl_mask = pmu_conf->ovfl_val;
 945        /*
 946         * monitoring can only be masked as a result of a valid
 947         * counter overflow. In UP, it means that the PMU still
 948         * has an owner. Note that the owner can be different
 949         * from the current task. However the PMU state belongs
 950         * to the owner.
 951         * In SMP, a valid overflow only happens when task is
 952         * current. Therefore if we come here, we know that
 953         * the PMU state belongs to the current task, therefore
 954         * we can access the live registers.
 955         *
 956         * So in both cases, the live register contains the owner's
 957         * state. We can ONLY touch the PMU registers and NOT the PSR.
 958         *
 959         * As a consequence to this call, the ctx->th_pmds[] array
 960         * contains stale information which must be ignored
 961         * when context is reloaded AND monitoring is active (see
 962         * pfm_restart).
 963         */
 964        mask = ctx->ctx_used_pmds[0];
 965        for (i = 0; mask; i++, mask>>=1) {
 966                /* skip non used pmds */
 967                if ((mask & 0x1) == 0) continue;
 968                val = ia64_get_pmd(i);
 969
 970                if (PMD_IS_COUNTING(i)) {
 971                        /*
 972                         * we rebuild the full 64 bit value of the counter
 973                         */
 974                        ctx->ctx_pmds[i].val += (val & ovfl_mask);
 975                } else {
 976                        ctx->ctx_pmds[i].val = val;
 977                }
 978                DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
 979                        i,
 980                        ctx->ctx_pmds[i].val,
 981                        val & ovfl_mask));
 982        }
 983        /*
 984         * mask monitoring by setting the privilege level to 0
 985         * we cannot use psr.pp/psr.up for this, it is controlled by
 986         * the user
 987         *
 988         * if task is current, modify actual registers, otherwise modify
 989         * thread save state, i.e., what will be restored in pfm_load_regs()
 990         */
 991        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
 992        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
 993                if ((mask & 0x1) == 0UL) continue;
 994                ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
 995                ctx->th_pmcs[i] &= ~0xfUL;
 996                DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
 997        }
 998        /*
 999         * make all of this visible
1000         */
1001        ia64_srlz_d();
1002}
1003
1004/*
1005 * must always be done with task == current
1006 *
1007 * context must be in MASKED state when calling
1008 */
1009static void
1010pfm_restore_monitoring(struct task_struct *task)
1011{
1012        pfm_context_t *ctx = PFM_GET_CTX(task);
1013        unsigned long mask, ovfl_mask;
1014        unsigned long psr, val;
1015        int i, is_system;
1016
1017        is_system = ctx->ctx_fl_system;
1018        ovfl_mask = pmu_conf->ovfl_val;
1019
1020        if (task != current) {
1021                printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current));
1022                return;
1023        }
1024        if (ctx->ctx_state != PFM_CTX_MASKED) {
1025                printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1026                        task_pid_nr(task), task_pid_nr(current), ctx->ctx_state);
1027                return;
1028        }
1029        psr = pfm_get_psr();
1030        /*
1031         * monitoring is masked via the PMC.
1032         * As we restore their value, we do not want each counter to
1033         * restart right away. We stop monitoring using the PSR,
1034         * restore the PMC (and PMD) and then re-establish the psr
1035         * as it was. Note that there can be no pending overflow at
1036         * this point, because monitoring was MASKED.
1037         *
1038         * system-wide session are pinned and self-monitoring
1039         */
1040        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1041                /* disable dcr pp */
1042                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1043                pfm_clear_psr_pp();
1044        } else {
1045                pfm_clear_psr_up();
1046        }
1047        /*
1048         * first, we restore the PMD
1049         */
1050        mask = ctx->ctx_used_pmds[0];
1051        for (i = 0; mask; i++, mask>>=1) {
1052                /* skip non used pmds */
1053                if ((mask & 0x1) == 0) continue;
1054
1055                if (PMD_IS_COUNTING(i)) {
1056                        /*
1057                         * we split the 64bit value according to
1058                         * counter width
1059                         */
1060                        val = ctx->ctx_pmds[i].val & ovfl_mask;
1061                        ctx->ctx_pmds[i].val &= ~ovfl_mask;
1062                } else {
1063                        val = ctx->ctx_pmds[i].val;
1064                }
1065                ia64_set_pmd(i, val);
1066
1067                DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1068                        i,
1069                        ctx->ctx_pmds[i].val,
1070                        val));
1071        }
1072        /*
1073         * restore the PMCs
1074         */
1075        mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1076        for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1077                if ((mask & 0x1) == 0UL) continue;
1078                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1079                ia64_set_pmc(i, ctx->th_pmcs[i]);
1080                DPRINT(("[%d] pmc[%d]=0x%lx\n",
1081                                        task_pid_nr(task), i, ctx->th_pmcs[i]));
1082        }
1083        ia64_srlz_d();
1084
1085        /*
1086         * must restore DBR/IBR because could be modified while masked
1087         * XXX: need to optimize 
1088         */
1089        if (ctx->ctx_fl_using_dbreg) {
1090                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1091                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1092        }
1093
1094        /*
1095         * now restore PSR
1096         */
1097        if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1098                /* enable dcr pp */
1099                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1100                ia64_srlz_i();
1101        }
1102        pfm_set_psr_l(psr);
1103}
1104
1105static inline void
1106pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1107{
1108        int i;
1109
1110        ia64_srlz_d();
1111
1112        for (i=0; mask; i++, mask>>=1) {
1113                if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1114        }
1115}
1116
1117/*
1118 * reload from thread state (used for ctxw only)
1119 */
1120static inline void
1121pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1122{
1123        int i;
1124        unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1125
1126        for (i=0; mask; i++, mask>>=1) {
1127                if ((mask & 0x1) == 0) continue;
1128                val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1129                ia64_set_pmd(i, val);
1130        }
1131        ia64_srlz_d();
1132}
1133
1134/*
1135 * propagate PMD from context to thread-state
1136 */
1137static inline void
1138pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1139{
1140        unsigned long ovfl_val = pmu_conf->ovfl_val;
1141        unsigned long mask = ctx->ctx_all_pmds[0];
1142        unsigned long val;
1143        int i;
1144
1145        DPRINT(("mask=0x%lx\n", mask));
1146
1147        for (i=0; mask; i++, mask>>=1) {
1148
1149                val = ctx->ctx_pmds[i].val;
1150
1151                /*
1152                 * We break up the 64 bit value into 2 pieces
1153                 * the lower bits go to the machine state in the
1154                 * thread (will be reloaded on ctxsw in).
1155                 * The upper part stays in the soft-counter.
1156                 */
1157                if (PMD_IS_COUNTING(i)) {
1158                        ctx->ctx_pmds[i].val = val & ~ovfl_val;
1159                         val &= ovfl_val;
1160                }
1161                ctx->th_pmds[i] = val;
1162
1163                DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1164                        i,
1165                        ctx->th_pmds[i],
1166                        ctx->ctx_pmds[i].val));
1167        }
1168}
1169
1170/*
1171 * propagate PMC from context to thread-state
1172 */
1173static inline void
1174pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1175{
1176        unsigned long mask = ctx->ctx_all_pmcs[0];
1177        int i;
1178
1179        DPRINT(("mask=0x%lx\n", mask));
1180
1181        for (i=0; mask; i++, mask>>=1) {
1182                /* masking 0 with ovfl_val yields 0 */
1183                ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1184                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1185        }
1186}
1187
1188
1189
1190static inline void
1191pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1192{
1193        int i;
1194
1195        for (i=0; mask; i++, mask>>=1) {
1196                if ((mask & 0x1) == 0) continue;
1197                ia64_set_pmc(i, pmcs[i]);
1198        }
1199        ia64_srlz_d();
1200}
1201
1202static inline int
1203pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1204{
1205        return memcmp(a, b, sizeof(pfm_uuid_t));
1206}
1207
1208static inline int
1209pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1210{
1211        int ret = 0;
1212        if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1213        return ret;
1214}
1215
1216static inline int
1217pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1218{
1219        int ret = 0;
1220        if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1221        return ret;
1222}
1223
1224
1225static inline int
1226pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1227                     int cpu, void *arg)
1228{
1229        int ret = 0;
1230        if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1231        return ret;
1232}
1233
1234static inline int
1235pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1236                     int cpu, void *arg)
1237{
1238        int ret = 0;
1239        if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1240        return ret;
1241}
1242
1243static inline int
1244pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1245{
1246        int ret = 0;
1247        if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1248        return ret;
1249}
1250
1251static inline int
1252pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1253{
1254        int ret = 0;
1255        if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1256        return ret;
1257}
1258
1259static pfm_buffer_fmt_t *
1260__pfm_find_buffer_fmt(pfm_uuid_t uuid)
1261{
1262        struct list_head * pos;
1263        pfm_buffer_fmt_t * entry;
1264
1265        list_for_each(pos, &pfm_buffer_fmt_list) {
1266                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1267                if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1268                        return entry;
1269        }
1270        return NULL;
1271}
1272 
1273/*
1274 * find a buffer format based on its uuid
1275 */
1276static pfm_buffer_fmt_t *
1277pfm_find_buffer_fmt(pfm_uuid_t uuid)
1278{
1279        pfm_buffer_fmt_t * fmt;
1280        spin_lock(&pfm_buffer_fmt_lock);
1281        fmt = __pfm_find_buffer_fmt(uuid);
1282        spin_unlock(&pfm_buffer_fmt_lock);
1283        return fmt;
1284}
1285 
1286int
1287pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1288{
1289        int ret = 0;
1290
1291        /* some sanity checks */
1292        if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1293
1294        /* we need at least a handler */
1295        if (fmt->fmt_handler == NULL) return -EINVAL;
1296
1297        /*
1298         * XXX: need check validity of fmt_arg_size
1299         */
1300
1301        spin_lock(&pfm_buffer_fmt_lock);
1302
1303        if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1304                printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1305                ret = -EBUSY;
1306                goto out;
1307        } 
1308        list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1309        printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1310
1311out:
1312        spin_unlock(&pfm_buffer_fmt_lock);
1313        return ret;
1314}
1315EXPORT_SYMBOL(pfm_register_buffer_fmt);
1316
1317int
1318pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1319{
1320        pfm_buffer_fmt_t *fmt;
1321        int ret = 0;
1322
1323        spin_lock(&pfm_buffer_fmt_lock);
1324
1325        fmt = __pfm_find_buffer_fmt(uuid);
1326        if (!fmt) {
1327                printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1328                ret = -EINVAL;
1329                goto out;
1330        }
1331        list_del_init(&fmt->fmt_list);
1332        printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1333
1334out:
1335        spin_unlock(&pfm_buffer_fmt_lock);
1336        return ret;
1337
1338}
1339EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1340
1341extern void update_pal_halt_status(int);
1342
1343static int
1344pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1345{
1346        unsigned long flags;
1347        /*
1348         * validity checks on cpu_mask have been done upstream
1349         */
1350        LOCK_PFS(flags);
1351
1352        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1353                pfm_sessions.pfs_sys_sessions,
1354                pfm_sessions.pfs_task_sessions,
1355                pfm_sessions.pfs_sys_use_dbregs,
1356                is_syswide,
1357                cpu));
1358
1359        if (is_syswide) {
1360                /*
1361                 * cannot mix system wide and per-task sessions
1362                 */
1363                if (pfm_sessions.pfs_task_sessions > 0UL) {
1364                        DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1365                                pfm_sessions.pfs_task_sessions));
1366                        goto abort;
1367                }
1368
1369                if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1370
1371                DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1372
1373                pfm_sessions.pfs_sys_session[cpu] = task;
1374
1375                pfm_sessions.pfs_sys_sessions++ ;
1376
1377        } else {
1378                if (pfm_sessions.pfs_sys_sessions) goto abort;
1379                pfm_sessions.pfs_task_sessions++;
1380        }
1381
1382        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1383                pfm_sessions.pfs_sys_sessions,
1384                pfm_sessions.pfs_task_sessions,
1385                pfm_sessions.pfs_sys_use_dbregs,
1386                is_syswide,
1387                cpu));
1388
1389        /*
1390         * disable default_idle() to go to PAL_HALT
1391         */
1392        update_pal_halt_status(0);
1393
1394        UNLOCK_PFS(flags);
1395
1396        return 0;
1397
1398error_conflict:
1399        DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1400                task_pid_nr(pfm_sessions.pfs_sys_session[cpu]),
1401                cpu));
1402abort:
1403        UNLOCK_PFS(flags);
1404
1405        return -EBUSY;
1406
1407}
1408
1409static int
1410pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1411{
1412        unsigned long flags;
1413        /*
1414         * validity checks on cpu_mask have been done upstream
1415         */
1416        LOCK_PFS(flags);
1417
1418        DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1419                pfm_sessions.pfs_sys_sessions,
1420                pfm_sessions.pfs_task_sessions,
1421                pfm_sessions.pfs_sys_use_dbregs,
1422                is_syswide,
1423                cpu));
1424
1425
1426        if (is_syswide) {
1427                pfm_sessions.pfs_sys_session[cpu] = NULL;
1428                /*
1429                 * would not work with perfmon+more than one bit in cpu_mask
1430                 */
1431                if (ctx && ctx->ctx_fl_using_dbreg) {
1432                        if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1433                                printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1434                        } else {
1435                                pfm_sessions.pfs_sys_use_dbregs--;
1436                        }
1437                }
1438                pfm_sessions.pfs_sys_sessions--;
1439        } else {
1440                pfm_sessions.pfs_task_sessions--;
1441        }
1442        DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1443                pfm_sessions.pfs_sys_sessions,
1444                pfm_sessions.pfs_task_sessions,
1445                pfm_sessions.pfs_sys_use_dbregs,
1446                is_syswide,
1447                cpu));
1448
1449        /*
1450         * if possible, enable default_idle() to go into PAL_HALT
1451         */
1452        if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1453                update_pal_halt_status(1);
1454
1455        UNLOCK_PFS(flags);
1456
1457        return 0;
1458}
1459
1460/*
1461 * removes virtual mapping of the sampling buffer.
1462 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1463 * a PROTECT_CTX() section.
1464 */
1465static int
1466pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1467{
1468        int r;
1469
1470        /* sanity checks */
1471        if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1472                printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm);
1473                return -EINVAL;
1474        }
1475
1476        DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1477
1478        /*
1479         * does the actual unmapping
1480         */
1481        down_write(&task->mm->mmap_sem);
1482
1483        DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1484
1485        r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1486
1487        up_write(&task->mm->mmap_sem);
1488        if (r !=0) {
1489                printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size);
1490        }
1491
1492        DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1493
1494        return 0;
1495}
1496
1497/*
1498 * free actual physical storage used by sampling buffer
1499 */
1500#if 0
1501static int
1502pfm_free_smpl_buffer(pfm_context_t *ctx)
1503{
1504        pfm_buffer_fmt_t *fmt;
1505
1506        if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1507
1508        /*
1509         * we won't use the buffer format anymore
1510         */
1511        fmt = ctx->ctx_buf_fmt;
1512
1513        DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1514                ctx->ctx_smpl_hdr,
1515                ctx->ctx_smpl_size,
1516                ctx->ctx_smpl_vaddr));
1517
1518        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1519
1520        /*
1521         * free the buffer
1522         */
1523        pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1524
1525        ctx->ctx_smpl_hdr  = NULL;
1526        ctx->ctx_smpl_size = 0UL;
1527
1528        return 0;
1529
1530invalid_free:
1531        printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current));
1532        return -EINVAL;
1533}
1534#endif
1535
1536static inline void
1537pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1538{
1539        if (fmt == NULL) return;
1540
1541        pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1542
1543}
1544
1545/*
1546 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1547 * no real gain from having the whole whorehouse mounted. So we don't need
1548 * any operations on the root directory. However, we need a non-trivial
1549 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1550 */
1551static struct vfsmount *pfmfs_mnt;
1552
1553static int __init
1554init_pfm_fs(void)
1555{
1556        int err = register_filesystem(&pfm_fs_type);
1557        if (!err) {
1558                pfmfs_mnt = kern_mount(&pfm_fs_type);
1559                err = PTR_ERR(pfmfs_mnt);
1560                if (IS_ERR(pfmfs_mnt))
1561                        unregister_filesystem(&pfm_fs_type);
1562                else
1563                        err = 0;
1564        }
1565        return err;
1566}
1567
1568static ssize_t
1569pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1570{
1571        pfm_context_t *ctx;
1572        pfm_msg_t *msg;
1573        ssize_t ret;
1574        unsigned long flags;
1575        DECLARE_WAITQUEUE(wait, current);
1576        if (PFM_IS_FILE(filp) == 0) {
1577                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1578                return -EINVAL;
1579        }
1580
1581        ctx = (pfm_context_t *)filp->private_data;
1582        if (ctx == NULL) {
1583                printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current));
1584                return -EINVAL;
1585        }
1586
1587        /*
1588         * check even when there is no message
1589         */
1590        if (size < sizeof(pfm_msg_t)) {
1591                DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1592                return -EINVAL;
1593        }
1594
1595        PROTECT_CTX(ctx, flags);
1596
1597        /*
1598         * put ourselves on the wait queue
1599         */
1600        add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1601
1602
1603        for(;;) {
1604                /*
1605                 * check wait queue
1606                 */
1607
1608                set_current_state(TASK_INTERRUPTIBLE);
1609
1610                DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1611
1612                ret = 0;
1613                if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1614
1615                UNPROTECT_CTX(ctx, flags);
1616
1617                /*
1618                 * check non-blocking read
1619                 */
1620                ret = -EAGAIN;
1621                if(filp->f_flags & O_NONBLOCK) break;
1622
1623                /*
1624                 * check pending signals
1625                 */
1626                if(signal_pending(current)) {
1627                        ret = -EINTR;
1628                        break;
1629                }
1630                /*
1631                 * no message, so wait
1632                 */
1633                schedule();
1634
1635                PROTECT_CTX(ctx, flags);
1636        }
1637        DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret));
1638        set_current_state(TASK_RUNNING);
1639        remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1640
1641        if (ret < 0) goto abort;
1642
1643        ret = -EINVAL;
1644        msg = pfm_get_next_msg(ctx);
1645        if (msg == NULL) {
1646                printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current));
1647                goto abort_locked;
1648        }
1649
1650        DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1651
1652        ret = -EFAULT;
1653        if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1654
1655abort_locked:
1656        UNPROTECT_CTX(ctx, flags);
1657abort:
1658        return ret;
1659}
1660
1661static ssize_t
1662pfm_write(struct file *file, const char __user *ubuf,
1663                          size_t size, loff_t *ppos)
1664{
1665        DPRINT(("pfm_write called\n"));
1666        return -EINVAL;
1667}
1668
1669static unsigned int
1670pfm_poll(struct file *filp, poll_table * wait)
1671{
1672        pfm_context_t *ctx;
1673        unsigned long flags;
1674        unsigned int mask = 0;
1675
1676        if (PFM_IS_FILE(filp) == 0) {
1677                printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current));
1678                return 0;
1679        }
1680
1681        ctx = (pfm_context_t *)filp->private_data;
1682        if (ctx == NULL) {
1683                printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current));
1684                return 0;
1685        }
1686
1687
1688        DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1689
1690        poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1691
1692        PROTECT_CTX(ctx, flags);
1693
1694        if (PFM_CTXQ_EMPTY(ctx) == 0)
1695                mask =  POLLIN | POLLRDNORM;
1696
1697        UNPROTECT_CTX(ctx, flags);
1698
1699        DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1700
1701        return mask;
1702}
1703
1704static int
1705pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1706{
1707        DPRINT(("pfm_ioctl called\n"));
1708        return -EINVAL;
1709}
1710
1711/*
1712 * interrupt cannot be masked when coming here
1713 */
1714static inline int
1715pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1716{
1717        int ret;
1718
1719        ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1720
1721        DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1722                task_pid_nr(current),
1723                fd,
1724                on,
1725                ctx->ctx_async_queue, ret));
1726
1727        return ret;
1728}
1729
1730static int
1731pfm_fasync(int fd, struct file *filp, int on)
1732{
1733        pfm_context_t *ctx;
1734        int ret;
1735
1736        if (PFM_IS_FILE(filp) == 0) {
1737                printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current));
1738                return -EBADF;
1739        }
1740
1741        ctx = (pfm_context_t *)filp->private_data;
1742        if (ctx == NULL) {
1743                printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current));
1744                return -EBADF;
1745        }
1746        /*
1747         * we cannot mask interrupts during this call because this may
1748         * may go to sleep if memory is not readily avalaible.
1749         *
1750         * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1751         * done in caller. Serialization of this function is ensured by caller.
1752         */
1753        ret = pfm_do_fasync(fd, filp, ctx, on);
1754
1755
1756        DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1757                fd,
1758                on,
1759                ctx->ctx_async_queue, ret));
1760
1761        return ret;
1762}
1763
1764#ifdef CONFIG_SMP
1765/*
1766 * this function is exclusively called from pfm_close().
1767 * The context is not protected at that time, nor are interrupts
1768 * on the remote CPU. That's necessary to avoid deadlocks.
1769 */
1770static void
1771pfm_syswide_force_stop(void *info)
1772{
1773        pfm_context_t   *ctx = (pfm_context_t *)info;
1774        struct pt_regs *regs = task_pt_regs(current);
1775        struct task_struct *owner;
1776        unsigned long flags;
1777        int ret;
1778
1779        if (ctx->ctx_cpu != smp_processor_id()) {
1780                printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n",
1781                        ctx->ctx_cpu,
1782                        smp_processor_id());
1783                return;
1784        }
1785        owner = GET_PMU_OWNER();
1786        if (owner != ctx->ctx_task) {
1787                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1788                        smp_processor_id(),
1789                        task_pid_nr(owner), task_pid_nr(ctx->ctx_task));
1790                return;
1791        }
1792        if (GET_PMU_CTX() != ctx) {
1793                printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1794                        smp_processor_id(),
1795                        GET_PMU_CTX(), ctx);
1796                return;
1797        }
1798
1799        DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task)));
1800        /*
1801         * the context is already protected in pfm_close(), we simply
1802         * need to mask interrupts to avoid a PMU interrupt race on
1803         * this CPU
1804         */
1805        local_irq_save(flags);
1806
1807        ret = pfm_context_unload(ctx, NULL, 0, regs);
1808        if (ret) {
1809                DPRINT(("context_unload returned %d\n", ret));
1810        }
1811
1812        /*
1813         * unmask interrupts, PMU interrupts are now spurious here
1814         */
1815        local_irq_restore(flags);
1816}
1817
1818static void
1819pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1820{
1821        int ret;
1822
1823        DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1824        ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1);
1825        DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1826}
1827#endif /* CONFIG_SMP */
1828
1829/*
1830 * called for each close(). Partially free resources.
1831 * When caller is self-monitoring, the context is unloaded.
1832 */
1833static int
1834pfm_flush(struct file *filp, fl_owner_t id)
1835{
1836        pfm_context_t *ctx;
1837        struct task_struct *task;
1838        struct pt_regs *regs;
1839        unsigned long flags;
1840        unsigned long smpl_buf_size = 0UL;
1841        void *smpl_buf_vaddr = NULL;
1842        int state, is_system;
1843
1844        if (PFM_IS_FILE(filp) == 0) {
1845                DPRINT(("bad magic for\n"));
1846                return -EBADF;
1847        }
1848
1849        ctx = (pfm_context_t *)filp->private_data;
1850        if (ctx == NULL) {
1851                printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current));
1852                return -EBADF;
1853        }
1854
1855        /*
1856         * remove our file from the async queue, if we use this mode.
1857         * This can be done without the context being protected. We come
1858         * here when the context has become unreachable by other tasks.
1859         *
1860         * We may still have active monitoring at this point and we may
1861         * end up in pfm_overflow_handler(). However, fasync_helper()
1862         * operates with interrupts disabled and it cleans up the
1863         * queue. If the PMU handler is called prior to entering
1864         * fasync_helper() then it will send a signal. If it is
1865         * invoked after, it will find an empty queue and no
1866         * signal will be sent. In both case, we are safe
1867         */
1868        PROTECT_CTX(ctx, flags);
1869
1870        state     = ctx->ctx_state;
1871        is_system = ctx->ctx_fl_system;
1872
1873        task = PFM_CTX_TASK(ctx);
1874        regs = task_pt_regs(task);
1875
1876        DPRINT(("ctx_state=%d is_current=%d\n",
1877                state,
1878                task == current ? 1 : 0));
1879
1880        /*
1881         * if state == UNLOADED, then task is NULL
1882         */
1883
1884        /*
1885         * we must stop and unload because we are losing access to the context.
1886         */
1887        if (task == current) {
1888#ifdef CONFIG_SMP
1889                /*
1890                 * the task IS the owner but it migrated to another CPU: that's bad
1891                 * but we must handle this cleanly. Unfortunately, the kernel does
1892                 * not provide a mechanism to block migration (while the context is loaded).
1893                 *
1894                 * We need to release the resource on the ORIGINAL cpu.
1895                 */
1896                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1897
1898                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1899                        /*
1900                         * keep context protected but unmask interrupt for IPI
1901                         */
1902                        local_irq_restore(flags);
1903
1904                        pfm_syswide_cleanup_other_cpu(ctx);
1905
1906                        /*
1907                         * restore interrupt masking
1908                         */
1909                        local_irq_save(flags);
1910
1911                        /*
1912                         * context is unloaded at this point
1913                         */
1914                } else
1915#endif /* CONFIG_SMP */
1916                {
1917
1918                        DPRINT(("forcing unload\n"));
1919                        /*
1920                        * stop and unload, returning with state UNLOADED
1921                        * and session unreserved.
1922                        */
1923                        pfm_context_unload(ctx, NULL, 0, regs);
1924
1925                        DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1926                }
1927        }
1928
1929        /*
1930         * remove virtual mapping, if any, for the calling task.
1931         * cannot reset ctx field until last user is calling close().
1932         *
1933         * ctx_smpl_vaddr must never be cleared because it is needed
1934         * by every task with access to the context
1935         *
1936         * When called from do_exit(), the mm context is gone already, therefore
1937         * mm is NULL, i.e., the VMA is already gone  and we do not have to
1938         * do anything here
1939         */
1940        if (ctx->ctx_smpl_vaddr && current->mm) {
1941                smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1942                smpl_buf_size  = ctx->ctx_smpl_size;
1943        }
1944
1945        UNPROTECT_CTX(ctx, flags);
1946
1947        /*
1948         * if there was a mapping, then we systematically remove it
1949         * at this point. Cannot be done inside critical section
1950         * because some VM function reenables interrupts.
1951         *
1952         */
1953        if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1954
1955        return 0;
1956}
1957/*
1958 * called either on explicit close() or from exit_files(). 
1959 * Only the LAST user of the file gets to this point, i.e., it is
1960 * called only ONCE.
1961 *
1962 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero 
1963 * (fput()),i.e, last task to access the file. Nobody else can access the 
1964 * file at this point.
1965 *
1966 * When called from exit_files(), the VMA has been freed because exit_mm()
1967 * is executed before exit_files().
1968 *
1969 * When called from exit_files(), the current task is not yet ZOMBIE but we
1970 * flush the PMU state to the context. 
1971 */
1972static int
1973pfm_close(struct inode *inode, struct file *filp)
1974{
1975        pfm_context_t *ctx;
1976        struct task_struct *task;
1977        struct pt_regs *regs;
1978        DECLARE_WAITQUEUE(wait, current);
1979        unsigned long flags;
1980        unsigned long smpl_buf_size = 0UL;
1981        void *smpl_buf_addr = NULL;
1982        int free_possible = 1;
1983        int state, is_system;
1984
1985        DPRINT(("pfm_close called private=%p\n", filp->private_data));
1986
1987        if (PFM_IS_FILE(filp) == 0) {
1988                DPRINT(("bad magic\n"));
1989                return -EBADF;
1990        }
1991        
1992        ctx = (pfm_context_t *)filp->private_data;
1993        if (ctx == NULL) {
1994                printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current));
1995                return -EBADF;
1996        }
1997
1998        PROTECT_CTX(ctx, flags);
1999
2000        state     = ctx->ctx_state;
2001        is_system = ctx->ctx_fl_system;
2002
2003        task = PFM_CTX_TASK(ctx);
2004        regs = task_pt_regs(task);
2005
2006        DPRINT(("ctx_state=%d is_current=%d\n", 
2007                state,
2008                task == current ? 1 : 0));
2009
2010        /*
2011         * if task == current, then pfm_flush() unloaded the context
2012         */
2013        if (state == PFM_CTX_UNLOADED) goto doit;
2014
2015        /*
2016         * context is loaded/masked and task != current, we need to
2017         * either force an unload or go zombie
2018         */
2019
2020        /*
2021         * The task is currently blocked or will block after an overflow.
2022         * we must force it to wakeup to get out of the
2023         * MASKED state and transition to the unloaded state by itself.
2024         *
2025         * This situation is only possible for per-task mode
2026         */
2027        if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2028
2029                /*
2030                 * set a "partial" zombie state to be checked
2031                 * upon return from down() in pfm_handle_work().
2032                 *
2033                 * We cannot use the ZOMBIE state, because it is checked
2034                 * by pfm_load_regs() which is called upon wakeup from down().
2035                 * In such case, it would free the context and then we would
2036                 * return to pfm_handle_work() which would access the
2037                 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2038                 * but visible to pfm_handle_work().
2039                 *
2040                 * For some window of time, we have a zombie context with
2041                 * ctx_state = MASKED  and not ZOMBIE
2042                 */
2043                ctx->ctx_fl_going_zombie = 1;
2044
2045                /*
2046                 * force task to wake up from MASKED state
2047                 */
2048                complete(&ctx->ctx_restart_done);
2049
2050                DPRINT(("waking up ctx_state=%d\n", state));
2051
2052                /*
2053                 * put ourself to sleep waiting for the other
2054                 * task to report completion
2055                 *
2056                 * the context is protected by mutex, therefore there
2057                 * is no risk of being notified of completion before
2058                 * begin actually on the waitq.
2059                 */
2060                set_current_state(TASK_INTERRUPTIBLE);
2061                add_wait_queue(&ctx->ctx_zombieq, &wait);
2062
2063                UNPROTECT_CTX(ctx, flags);
2064
2065                /*
2066                 * XXX: check for signals :
2067                 *      - ok for explicit close
2068                 *      - not ok when coming from exit_files()
2069                 */
2070                schedule();
2071
2072
2073                PROTECT_CTX(ctx, flags);
2074
2075
2076                remove_wait_queue(&ctx->ctx_zombieq, &wait);
2077                set_current_state(TASK_RUNNING);
2078
2079                /*
2080                 * context is unloaded at this point
2081                 */
2082                DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2083        }
2084        else if (task != current) {
2085#ifdef CONFIG_SMP
2086                /*
2087                 * switch context to zombie state
2088                 */
2089                ctx->ctx_state = PFM_CTX_ZOMBIE;
2090
2091                DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task)));
2092                /*
2093                 * cannot free the context on the spot. deferred until
2094                 * the task notices the ZOMBIE state
2095                 */
2096                free_possible = 0;
2097#else
2098                pfm_context_unload(ctx, NULL, 0, regs);
2099#endif
2100        }
2101
2102doit:
2103        /* reload state, may have changed during  opening of critical section */
2104        state = ctx->ctx_state;
2105
2106        /*
2107         * the context is still attached to a task (possibly current)
2108         * we cannot destroy it right now
2109         */
2110
2111        /*
2112         * we must free the sampling buffer right here because
2113         * we cannot rely on it being cleaned up later by the
2114         * monitored task. It is not possible to free vmalloc'ed
2115         * memory in pfm_load_regs(). Instead, we remove the buffer
2116         * now. should there be subsequent PMU overflow originally
2117         * meant for sampling, the will be converted to spurious
2118         * and that's fine because the monitoring tools is gone anyway.
2119         */
2120        if (ctx->ctx_smpl_hdr) {
2121                smpl_buf_addr = ctx->ctx_smpl_hdr;
2122                smpl_buf_size = ctx->ctx_smpl_size;
2123                /* no more sampling */
2124                ctx->ctx_smpl_hdr = NULL;
2125                ctx->ctx_fl_is_sampling = 0;
2126        }
2127
2128        DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2129                state,
2130                free_possible,
2131                smpl_buf_addr,
2132                smpl_buf_size));
2133
2134        if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2135
2136        /*
2137         * UNLOADED that the session has already been unreserved.
2138         */
2139        if (state == PFM_CTX_ZOMBIE) {
2140                pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2141        }
2142
2143        /*
2144         * disconnect file descriptor from context must be done
2145         * before we unlock.
2146         */
2147        filp->private_data = NULL;
2148
2149        /*
2150         * if we free on the spot, the context is now completely unreachable
2151         * from the callers side. The monitored task side is also cut, so we
2152         * can freely cut.
2153         *
2154         * If we have a deferred free, only the caller side is disconnected.
2155         */
2156        UNPROTECT_CTX(ctx, flags);
2157
2158        /*
2159         * All memory free operations (especially for vmalloc'ed memory)
2160         * MUST be done with interrupts ENABLED.
2161         */
2162        if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2163
2164        /*
2165         * return the memory used by the context
2166         */
2167        if (free_possible) pfm_context_free(ctx);
2168
2169        return 0;
2170}
2171
2172static int
2173pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2174{
2175        DPRINT(("pfm_no_open called\n"));
2176        return -ENXIO;
2177}
2178
2179
2180
2181static const struct file_operations pfm_file_ops = {
2182        .llseek   = no_llseek,
2183        .read     = pfm_read,
2184        .write    = pfm_write,
2185        .poll     = pfm_poll,
2186        .ioctl    = pfm_ioctl,
2187        .open     = pfm_no_open,        /* special open code to disallow open via /proc */
2188        .fasync   = pfm_fasync,
2189        .release  = pfm_close,
2190        .flush    = pfm_flush
2191};
2192
2193static int
2194pfmfs_delete_dentry(struct dentry *dentry)
2195{
2196        return 1;
2197}
2198
2199static const struct dentry_operations pfmfs_dentry_operations = {
2200        .d_delete = pfmfs_delete_dentry,
2201};
2202
2203
2204static struct file *
2205pfm_alloc_file(pfm_context_t *ctx)
2206{
2207        struct file *file;
2208        struct inode *inode;
2209        struct dentry *dentry;
2210        char name[32];
2211        struct qstr this;
2212
2213        /*
2214         * allocate a new inode
2215         */
2216        inode = new_inode(pfmfs_mnt->mnt_sb);
2217        if (!inode)
2218                return ERR_PTR(-ENOMEM);
2219
2220        DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2221
2222        inode->i_mode = S_IFCHR|S_IRUGO;
2223        inode->i_uid  = current_fsuid();
2224        inode->i_gid  = current_fsgid();
2225
2226        sprintf(name, "[%lu]", inode->i_ino);
2227        this.name = name;
2228        this.len  = strlen(name);
2229        this.hash = inode->i_ino;
2230
2231        /*
2232         * allocate a new dcache entry
2233         */
2234        dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2235        if (!dentry) {
2236                iput(inode);
2237                return ERR_PTR(-ENOMEM);
2238        }
2239
2240        dentry->d_op = &pfmfs_dentry_operations;
2241        d_add(dentry, inode);
2242
2243        file = alloc_file(pfmfs_mnt, dentry, FMODE_READ, &pfm_file_ops);
2244        if (!file) {
2245                dput(dentry);
2246                return ERR_PTR(-ENFILE);
2247        }
2248
2249        file->f_flags = O_RDONLY;
2250        file->private_data = ctx;
2251
2252        return file;
2253}
2254
2255static int
2256pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2257{
2258        DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2259
2260        while (size > 0) {
2261                unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2262
2263
2264                if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2265                        return -ENOMEM;
2266
2267                addr  += PAGE_SIZE;
2268                buf   += PAGE_SIZE;
2269                size  -= PAGE_SIZE;
2270        }
2271        return 0;
2272}
2273
2274/*
2275 * allocate a sampling buffer and remaps it into the user address space of the task
2276 */
2277static int
2278pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2279{
2280        struct mm_struct *mm = task->mm;
2281        struct vm_area_struct *vma = NULL;
2282        unsigned long size;
2283        void *smpl_buf;
2284
2285
2286        /*
2287         * the fixed header + requested size and align to page boundary
2288         */
2289        size = PAGE_ALIGN(rsize);
2290
2291        DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2292
2293        /*
2294         * check requested size to avoid Denial-of-service attacks
2295         * XXX: may have to refine this test
2296         * Check against address space limit.
2297         *
2298         * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2299         *      return -ENOMEM;
2300         */
2301        if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2302                return -ENOMEM;
2303
2304        /*
2305         * We do the easy to undo allocations first.
2306         *
2307         * pfm_rvmalloc(), clears the buffer, so there is no leak
2308         */
2309        smpl_buf = pfm_rvmalloc(size);
2310        if (smpl_buf == NULL) {
2311                DPRINT(("Can't allocate sampling buffer\n"));
2312                return -ENOMEM;
2313        }
2314
2315        DPRINT(("smpl_buf @%p\n", smpl_buf));
2316
2317        /* allocate vma */
2318        vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2319        if (!vma) {
2320                DPRINT(("Cannot allocate vma\n"));
2321                goto error_kmem;
2322        }
2323
2324        /*
2325         * partially initialize the vma for the sampling buffer
2326         */
2327        vma->vm_mm           = mm;
2328        vma->vm_file         = filp;
2329        vma->vm_flags        = VM_READ| VM_MAYREAD |VM_RESERVED;
2330        vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */
2331
2332        /*
2333         * Now we have everything we need and we can initialize
2334         * and connect all the data structures
2335         */
2336
2337        ctx->ctx_smpl_hdr   = smpl_buf;
2338        ctx->ctx_smpl_size  = size; /* aligned size */
2339
2340        /*
2341         * Let's do the difficult operations next.
2342         *
2343         * now we atomically find some area in the address space and
2344         * remap the buffer in it.
2345         */
2346        down_write(&task->mm->mmap_sem);
2347
2348        /* find some free area in address space, must have mmap sem held */
2349        vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2350        if (vma->vm_start == 0UL) {
2351                DPRINT(("Cannot find unmapped area for size %ld\n", size));
2352                up_write(&task->mm->mmap_sem);
2353                goto error;
2354        }
2355        vma->vm_end = vma->vm_start + size;
2356        vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2357
2358        DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2359
2360        /* can only be applied to current task, need to have the mm semaphore held when called */
2361        if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2362                DPRINT(("Can't remap buffer\n"));
2363                up_write(&task->mm->mmap_sem);
2364                goto error;
2365        }
2366
2367        get_file(filp);
2368
2369        /*
2370         * now insert the vma in the vm list for the process, must be
2371         * done with mmap lock held
2372         */
2373        insert_vm_struct(mm, vma);
2374
2375        mm->total_vm  += size >> PAGE_SHIFT;
2376        vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2377                                                        vma_pages(vma));
2378        up_write(&task->mm->mmap_sem);
2379
2380        /*
2381         * keep track of user level virtual address
2382         */
2383        ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2384        *(unsigned long *)user_vaddr = vma->vm_start;
2385
2386        return 0;
2387
2388error:
2389        kmem_cache_free(vm_area_cachep, vma);
2390error_kmem:
2391        pfm_rvfree(smpl_buf, size);
2392
2393        return -ENOMEM;
2394}
2395
2396/*
2397 * XXX: do something better here
2398 */
2399static int
2400pfm_bad_permissions(struct task_struct *task)
2401{
2402        const struct cred *tcred;
2403        uid_t uid = current_uid();
2404        gid_t gid = current_gid();
2405        int ret;
2406
2407        rcu_read_lock();
2408        tcred = __task_cred(task);
2409
2410        /* inspired by ptrace_attach() */
2411        DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2412                uid,
2413                gid,
2414                tcred->euid,
2415                tcred->suid,
2416                tcred->uid,
2417                tcred->egid,
2418                tcred->sgid));
2419
2420        ret = ((uid != tcred->euid)
2421               || (uid != tcred->suid)
2422               || (uid != tcred->uid)
2423               || (gid != tcred->egid)
2424               || (gid != tcred->sgid)
2425               || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE);
2426
2427        rcu_read_unlock();
2428        return ret;
2429}
2430
2431static int
2432pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2433{
2434        int ctx_flags;
2435
2436        /* valid signal */
2437
2438        ctx_flags = pfx->ctx_flags;
2439
2440        if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2441
2442                /*
2443                 * cannot block in this mode
2444                 */
2445                if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2446                        DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2447                        return -EINVAL;
2448                }
2449        } else {
2450        }
2451        /* probably more to add here */
2452
2453        return 0;
2454}
2455
2456static int
2457pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2458                     unsigned int cpu, pfarg_context_t *arg)
2459{
2460        pfm_buffer_fmt_t *fmt = NULL;
2461        unsigned long size = 0UL;
2462        void *uaddr = NULL;
2463        void *fmt_arg = NULL;
2464        int ret = 0;
2465#define PFM_CTXARG_BUF_ARG(a)   (pfm_buffer_fmt_t *)(a+1)
2466
2467        /* invoke and lock buffer format, if found */
2468        fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2469        if (fmt == NULL) {
2470                DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task)));
2471                return -EINVAL;
2472        }
2473
2474        /*
2475         * buffer argument MUST be contiguous to pfarg_context_t
2476         */
2477        if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2478
2479        ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2480
2481        DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret));
2482
2483        if (ret) goto error;
2484
2485        /* link buffer format and context */
2486        ctx->ctx_buf_fmt = fmt;
2487        ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */
2488
2489        /*
2490         * check if buffer format wants to use perfmon buffer allocation/mapping service
2491         */
2492        ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2493        if (ret) goto error;
2494
2495        if (size) {
2496                /*
2497                 * buffer is always remapped into the caller's address space
2498                 */
2499                ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2500                if (ret) goto error;
2501
2502                /* keep track of user address of buffer */
2503                arg->ctx_smpl_vaddr = uaddr;
2504        }
2505        ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2506
2507error:
2508        return ret;
2509}
2510
2511static void
2512pfm_reset_pmu_state(pfm_context_t *ctx)
2513{
2514        int i;
2515
2516        /*
2517         * install reset values for PMC.
2518         */
2519        for (i=1; PMC_IS_LAST(i) == 0; i++) {
2520                if (PMC_IS_IMPL(i) == 0) continue;
2521                ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2522                DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2523        }
2524        /*
2525         * PMD registers are set to 0UL when the context in memset()
2526         */
2527
2528        /*
2529         * On context switched restore, we must restore ALL pmc and ALL pmd even
2530         * when they are not actively used by the task. In UP, the incoming process
2531         * may otherwise pick up left over PMC, PMD state from the previous process.
2532         * As opposed to PMD, stale PMC can cause harm to the incoming
2533         * process because they may change what is being measured.
2534         * Therefore, we must systematically reinstall the entire
2535         * PMC state. In SMP, the same thing is possible on the
2536         * same CPU but also on between 2 CPUs.
2537         *
2538         * The problem with PMD is information leaking especially
2539         * to user level when psr.sp=0
2540         *
2541         * There is unfortunately no easy way to avoid this problem
2542         * on either UP or SMP. This definitively slows down the
2543         * pfm_load_regs() function.
2544         */
2545
2546         /*
2547          * bitmask of all PMCs accessible to this context
2548          *
2549          * PMC0 is treated differently.
2550          */
2551        ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2552
2553        /*
2554         * bitmask of all PMDs that are accessible to this context
2555         */
2556        ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2557
2558        DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2559
2560        /*
2561         * useful in case of re-enable after disable
2562         */
2563        ctx->ctx_used_ibrs[0] = 0UL;
2564        ctx->ctx_used_dbrs[0] = 0UL;
2565}
2566
2567static int
2568pfm_ctx_getsize(void *arg, size_t *sz)
2569{
2570        pfarg_context_t *req = (pfarg_context_t *)arg;
2571        pfm_buffer_fmt_t *fmt;
2572
2573        *sz = 0;
2574
2575        if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2576
2577        fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2578        if (fmt == NULL) {
2579                DPRINT(("cannot find buffer format\n"));
2580                return -EINVAL;
2581        }
2582        /* get just enough to copy in user parameters */
2583        *sz = fmt->fmt_arg_size;
2584        DPRINT(("arg_size=%lu\n", *sz));
2585
2586        return 0;
2587}
2588
2589
2590
2591/*
2592 * cannot attach if :
2593 *      - kernel task
2594 *      - task not owned by caller
2595 *      - task incompatible with context mode
2596 */
2597static int
2598pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2599{
2600        /*
2601         * no kernel task or task not owner by caller
2602         */
2603        if (task->mm == NULL) {
2604                DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task)));
2605                return -EPERM;
2606        }
2607        if (pfm_bad_permissions(task)) {
2608                DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task)));
2609                return -EPERM;
2610        }
2611        /*
2612         * cannot block in self-monitoring mode
2613         */
2614        if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2615                DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task)));
2616                return -EINVAL;
2617        }
2618
2619        if (task->exit_state == EXIT_ZOMBIE) {
2620                DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task)));
2621                return -EBUSY;
2622        }
2623
2624        /*
2625         * always ok for self
2626         */
2627        if (task == current) return 0;
2628
2629        if (!task_is_stopped_or_traced(task)) {
2630                DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state));
2631                return -EBUSY;
2632        }
2633        /*
2634         * make sure the task is off any CPU
2635         */
2636        wait_task_inactive(task, 0);
2637
2638        /* more to come... */
2639
2640        return 0;
2641}
2642
2643static int
2644pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2645{
2646        struct task_struct *p = current;
2647        int ret;
2648
2649        /* XXX: need to add more checks here */
2650        if (pid < 2) return -EPERM;
2651
2652        if (pid != task_pid_vnr(current)) {
2653
2654                read_lock(&tasklist_lock);
2655
2656                p = find_task_by_vpid(pid);
2657
2658                /* make sure task cannot go away while we operate on it */
2659                if (p) get_task_struct(p);
2660
2661                read_unlock(&tasklist_lock);
2662
2663                if (p == NULL) return -ESRCH;
2664        }
2665
2666        ret = pfm_task_incompatible(ctx, p);
2667        if (ret == 0) {
2668                *task = p;
2669        } else if (p != current) {
2670                pfm_put_task(p);
2671        }
2672        return ret;
2673}
2674
2675
2676
2677static int
2678pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2679{
2680        pfarg_context_t *req = (pfarg_context_t *)arg;
2681        struct file *filp;
2682        struct path path;
2683        int ctx_flags;
2684        int fd;
2685        int ret;
2686
2687        /* let's check the arguments first */
2688        ret = pfarg_is_sane(current, req);
2689        if (ret < 0)
2690                return ret;
2691
2692        ctx_flags = req->ctx_flags;
2693
2694        ret = -ENOMEM;
2695
2696        fd = get_unused_fd();
2697        if (fd < 0)
2698                return fd;
2699
2700        ctx = pfm_context_alloc(ctx_flags);
2701        if (!ctx)
2702                goto error;
2703
2704        filp = pfm_alloc_file(ctx);
2705        if (IS_ERR(filp)) {
2706                ret = PTR_ERR(filp);
2707                goto error_file;
2708        }
2709
2710        req->ctx_fd = ctx->ctx_fd = fd;
2711
2712        /*
2713         * does the user want to sample?
2714         */
2715        if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2716                ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2717                if (ret)
2718                        goto buffer_error;
2719        }
2720
2721        DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2722                ctx,
2723                ctx_flags,
2724                ctx->ctx_fl_system,
2725                ctx->ctx_fl_block,
2726                ctx->ctx_fl_excl_idle,
2727                ctx->ctx_fl_no_msg,
2728                ctx->ctx_fd));
2729
2730        /*
2731         * initialize soft PMU state
2732         */
2733        pfm_reset_pmu_state(ctx);
2734
2735        fd_install(fd, filp);
2736
2737        return 0;
2738
2739buffer_error:
2740        path = filp->f_path;
2741        put_filp(filp);
2742        path_put(&path);
2743
2744        if (ctx->ctx_buf_fmt) {
2745                pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2746        }
2747error_file:
2748        pfm_context_free(ctx);
2749
2750error:
2751        put_unused_fd(fd);
2752        return ret;
2753}
2754
2755static inline unsigned long
2756pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2757{
2758        unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2759        unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2760        extern unsigned long carta_random32 (unsigned long seed);
2761
2762        if (reg->flags & PFM_REGFL_RANDOM) {
2763                new_seed = carta_random32(old_seed);
2764                val -= (old_seed & mask);       /* counter values are negative numbers! */
2765                if ((mask >> 32) != 0)
2766                        /* construct a full 64-bit random value: */
2767                        new_seed |= carta_random32(old_seed >> 32) << 32;
2768                reg->seed = new_seed;
2769        }
2770        reg->lval = val;
2771        return val;
2772}
2773
2774static void
2775pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2776{
2777        unsigned long mask = ovfl_regs[0];
2778        unsigned long reset_others = 0UL;
2779        unsigned long val;
2780        int i;
2781
2782        /*
2783         * now restore reset value on sampling overflowed counters
2784         */
2785        mask >>= PMU_FIRST_COUNTER;
2786        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2787
2788                if ((mask & 0x1UL) == 0UL) continue;
2789
2790                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2791                reset_others        |= ctx->ctx_pmds[i].reset_pmds[0];
2792
2793                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2794        }
2795
2796        /*
2797         * Now take care of resetting the other registers
2798         */
2799        for(i = 0; reset_others; i++, reset_others >>= 1) {
2800
2801                if ((reset_others & 0x1) == 0) continue;
2802
2803                ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2804
2805                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2806                          is_long_reset ? "long" : "short", i, val));
2807        }
2808}
2809
2810static void
2811pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2812{
2813        unsigned long mask = ovfl_regs[0];
2814        unsigned long reset_others = 0UL;
2815        unsigned long val;
2816        int i;
2817
2818        DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2819
2820        if (ctx->ctx_state == PFM_CTX_MASKED) {
2821                pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2822                return;
2823        }
2824
2825        /*
2826         * now restore reset value on sampling overflowed counters
2827         */
2828        mask >>= PMU_FIRST_COUNTER;
2829        for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2830
2831                if ((mask & 0x1UL) == 0UL) continue;
2832
2833                val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2834                reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2835
2836                DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2837
2838                pfm_write_soft_counter(ctx, i, val);
2839        }
2840
2841        /*
2842         * Now take care of resetting the other registers
2843         */
2844        for(i = 0; reset_others; i++, reset_others >>= 1) {
2845
2846                if ((reset_others & 0x1) == 0) continue;
2847
2848                val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2849
2850                if (PMD_IS_COUNTING(i)) {
2851                        pfm_write_soft_counter(ctx, i, val);
2852                } else {
2853                        ia64_set_pmd(i, val);
2854                }
2855                DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2856                          is_long_reset ? "long" : "short", i, val));
2857        }
2858        ia64_srlz_d();
2859}
2860
2861static int
2862pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2863{
2864        struct task_struct *task;
2865        pfarg_reg_t *req = (pfarg_reg_t *)arg;
2866        unsigned long value, pmc_pm;
2867        unsigned long smpl_pmds, reset_pmds, impl_pmds;
2868        unsigned int cnum, reg_flags, flags, pmc_type;
2869        int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2870        int is_monitor, is_counting, state;
2871        int ret = -EINVAL;
2872        pfm_reg_check_t wr_func;
2873#define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2874
2875        state     = ctx->ctx_state;
2876        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2877        is_system = ctx->ctx_fl_system;
2878        task      = ctx->ctx_task;
2879        impl_pmds = pmu_conf->impl_pmds[0];
2880
2881        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2882
2883        if (is_loaded) {
2884                /*
2885                 * In system wide and when the context is loaded, access can only happen
2886                 * when the caller is running on the CPU being monitored by the session.
2887                 * It does not have to be the owner (ctx_task) of the context per se.
2888                 */
2889                if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2890                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2891                        return -EBUSY;
2892                }
2893                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2894        }
2895        expert_mode = pfm_sysctl.expert_mode; 
2896
2897        for (i = 0; i < count; i++, req++) {
2898
2899                cnum       = req->reg_num;
2900                reg_flags  = req->reg_flags;
2901                value      = req->reg_value;
2902                smpl_pmds  = req->reg_smpl_pmds[0];
2903                reset_pmds = req->reg_reset_pmds[0];
2904                flags      = 0;
2905
2906
2907                if (cnum >= PMU_MAX_PMCS) {
2908                        DPRINT(("pmc%u is invalid\n", cnum));
2909                        goto error;
2910                }
2911
2912                pmc_type   = pmu_conf->pmc_desc[cnum].type;
2913                pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2914                is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2915                is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2916
2917                /*
2918                 * we reject all non implemented PMC as well
2919                 * as attempts to modify PMC[0-3] which are used
2920                 * as status registers by the PMU
2921                 */
2922                if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2923                        DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2924                        goto error;
2925                }
2926                wr_func = pmu_conf->pmc_desc[cnum].write_check;
2927                /*
2928                 * If the PMC is a monitor, then if the value is not the default:
2929                 *      - system-wide session: PMCx.pm=1 (privileged monitor)
2930                 *      - per-task           : PMCx.pm=0 (user monitor)
2931                 */
2932                if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2933                        DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2934                                cnum,
2935                                pmc_pm,
2936                                is_system));
2937                        goto error;
2938                }
2939
2940                if (is_counting) {
2941                        /*
2942                         * enforce generation of overflow interrupt. Necessary on all
2943                         * CPUs.
2944                         */
2945                        value |= 1 << PMU_PMC_OI;
2946
2947                        if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2948                                flags |= PFM_REGFL_OVFL_NOTIFY;
2949                        }
2950
2951                        if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2952
2953                        /* verify validity of smpl_pmds */
2954                        if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2955                                DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2956                                goto error;
2957                        }
2958
2959                        /* verify validity of reset_pmds */
2960                        if ((reset_pmds & impl_pmds) != reset_pmds) {
2961                                DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
2962                                goto error;
2963                        }
2964                } else {
2965                        if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
2966                                DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
2967                                goto error;
2968                        }
2969                        /* eventid on non-counting monitors are ignored */
2970                }
2971
2972                /*
2973                 * execute write checker, if any
2974                 */
2975                if (likely(expert_mode == 0 && wr_func)) {
2976                        ret = (*wr_func)(task, ctx, cnum, &value, regs);
2977                        if (ret) goto error;
2978                        ret = -EINVAL;
2979                }
2980
2981                /*
2982                 * no error on this register
2983                 */
2984                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
2985
2986                /*
2987                 * Now we commit the changes to the software state
2988                 */
2989
2990                /*
2991                 * update overflow information
2992                 */
2993                if (is_counting) {
2994                        /*
2995                         * full flag update each time a register is programmed
2996                         */
2997                        ctx->ctx_pmds[cnum].flags = flags;
2998
2999                        ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3000                        ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds;
3001                        ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid;
3002
3003                        /*
3004                         * Mark all PMDS to be accessed as used.
3005                         *
3006                         * We do not keep track of PMC because we have to
3007                         * systematically restore ALL of them.
3008                         *
3009                         * We do not update the used_monitors mask, because
3010                         * if we have not programmed them, then will be in
3011                         * a quiescent state, therefore we will not need to
3012                         * mask/restore then when context is MASKED.
3013                         */
3014                        CTX_USED_PMD(ctx, reset_pmds);
3015                        CTX_USED_PMD(ctx, smpl_pmds);
3016                        /*
3017                         * make sure we do not try to reset on
3018                         * restart because we have established new values
3019                         */
3020                        if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3021                }
3022                /*
3023                 * Needed in case the user does not initialize the equivalent
3024                 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3025                 * possible leak here.
3026                 */
3027                CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3028
3029                /*
3030                 * keep track of the monitor PMC that we are using.
3031                 * we save the value of the pmc in ctx_pmcs[] and if
3032                 * the monitoring is not stopped for the context we also
3033                 * place it in the saved state area so that it will be
3034                 * picked up later by the context switch code.
3035                 *
3036                 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3037                 *
3038                 * The value in th_pmcs[] may be modified on overflow, i.e.,  when
3039                 * monitoring needs to be stopped.
3040                 */
3041                if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3042
3043                /*
3044                 * update context state
3045                 */
3046                ctx->ctx_pmcs[cnum] = value;
3047
3048                if (is_loaded) {
3049                        /*
3050                         * write thread state
3051                         */
3052                        if (is_system == 0) ctx->th_pmcs[cnum] = value;
3053
3054                        /*
3055                         * write hardware register if we can
3056                         */
3057                        if (can_access_pmu) {
3058                                ia64_set_pmc(cnum, value);
3059                        }
3060#ifdef CONFIG_SMP
3061                        else {
3062                                /*
3063                                 * per-task SMP only here
3064                                 *
3065                                 * we are guaranteed that the task is not running on the other CPU,
3066                                 * we indicate that this PMD will need to be reloaded if the task
3067                                 * is rescheduled on the CPU it ran last on.
3068                                 */
3069                                ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3070                        }
3071#endif
3072                }
3073
3074                DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3075                          cnum,
3076                          value,
3077                          is_loaded,
3078                          can_access_pmu,
3079                          flags,
3080                          ctx->ctx_all_pmcs[0],
3081                          ctx->ctx_used_pmds[0],
3082                          ctx->ctx_pmds[cnum].eventid,
3083                          smpl_pmds,
3084                          reset_pmds,
3085                          ctx->ctx_reload_pmcs[0],
3086                          ctx->ctx_used_monitors[0],
3087                          ctx->ctx_ovfl_regs[0]));
3088        }
3089
3090        /*
3091         * make sure the changes are visible
3092         */
3093        if (can_access_pmu) ia64_srlz_d();
3094
3095        return 0;
3096error:
3097        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3098        return ret;
3099}
3100
3101static int
3102pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3103{
3104        struct task_struct *task;
3105        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3106        unsigned long value, hw_value, ovfl_mask;
3107        unsigned int cnum;
3108        int i, can_access_pmu = 0, state;
3109        int is_counting, is_loaded, is_system, expert_mode;
3110        int ret = -EINVAL;
3111        pfm_reg_check_t wr_func;
3112
3113
3114        state     = ctx->ctx_state;
3115        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3116        is_system = ctx->ctx_fl_system;
3117        ovfl_mask = pmu_conf->ovfl_val;
3118        task      = ctx->ctx_task;
3119
3120        if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3121
3122        /*
3123         * on both UP and SMP, we can only write to the PMC when the task is
3124         * the owner of the local PMU.
3125         */
3126        if (likely(is_loaded)) {
3127                /*
3128                 * In system wide and when the context is loaded, access can only happen
3129                 * when the caller is running on the CPU being monitored by the session.
3130                 * It does not have to be the owner (ctx_task) of the context per se.
3131                 */
3132                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3133                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3134                        return -EBUSY;
3135                }
3136                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3137        }
3138        expert_mode = pfm_sysctl.expert_mode; 
3139
3140        for (i = 0; i < count; i++, req++) {
3141
3142                cnum  = req->reg_num;
3143                value = req->reg_value;
3144
3145                if (!PMD_IS_IMPL(cnum)) {
3146                        DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3147                        goto abort_mission;
3148                }
3149                is_counting = PMD_IS_COUNTING(cnum);
3150                wr_func     = pmu_conf->pmd_desc[cnum].write_check;
3151
3152                /*
3153                 * execute write checker, if any
3154                 */
3155                if (unlikely(expert_mode == 0 && wr_func)) {
3156                        unsigned long v = value;
3157
3158                        ret = (*wr_func)(task, ctx, cnum, &v, regs);
3159                        if (ret) goto abort_mission;
3160
3161                        value = v;
3162                        ret   = -EINVAL;
3163                }
3164
3165                /*
3166                 * no error on this register
3167                 */
3168                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3169
3170                /*
3171                 * now commit changes to software state
3172                 */
3173                hw_value = value;
3174
3175                /*
3176                 * update virtualized (64bits) counter
3177                 */
3178                if (is_counting) {
3179                        /*
3180                         * write context state
3181                         */
3182                        ctx->ctx_pmds[cnum].lval = value;
3183
3184                        /*
3185                         * when context is load we use the split value
3186                         */
3187                        if (is_loaded) {
3188                                hw_value = value &  ovfl_mask;
3189                                value    = value & ~ovfl_mask;
3190                        }
3191                }
3192                /*
3193                 * update reset values (not just for counters)
3194                 */
3195                ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset;
3196                ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3197
3198                /*
3199                 * update randomization parameters (not just for counters)
3200                 */
3201                ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3202                ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3203
3204                /*
3205                 * update context value
3206                 */
3207                ctx->ctx_pmds[cnum].val  = value;
3208
3209                /*
3210                 * Keep track of what we use
3211                 *
3212                 * We do not keep track of PMC because we have to
3213                 * systematically restore ALL of them.
3214                 */
3215                CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3216
3217                /*
3218                 * mark this PMD register used as well
3219                 */
3220                CTX_USED_PMD(ctx, RDEP(cnum));
3221
3222                /*
3223                 * make sure we do not try to reset on
3224                 * restart because we have established new values
3225                 */
3226                if (is_counting && state == PFM_CTX_MASKED) {
3227                        ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3228                }
3229
3230                if (is_loaded) {
3231                        /*
3232                         * write thread state
3233                         */
3234                        if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3235
3236                        /*
3237                         * write hardware register if we can
3238                         */
3239                        if (can_access_pmu) {
3240                                ia64_set_pmd(cnum, hw_value);
3241                        } else {
3242#ifdef CONFIG_SMP
3243                                /*
3244                                 * we are guaranteed that the task is not running on the other CPU,
3245                                 * we indicate that this PMD will need to be reloaded if the task
3246                                 * is rescheduled on the CPU it ran last on.
3247                                 */
3248                                ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3249#endif
3250                        }
3251                }
3252
3253                DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx "
3254                          "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3255                        cnum,
3256                        value,
3257                        is_loaded,
3258                        can_access_pmu,
3259                        hw_value,
3260                        ctx->ctx_pmds[cnum].val,
3261                        ctx->ctx_pmds[cnum].short_reset,
3262                        ctx->ctx_pmds[cnum].long_reset,
3263                        PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3264                        ctx->ctx_pmds[cnum].seed,
3265                        ctx->ctx_pmds[cnum].mask,
3266                        ctx->ctx_used_pmds[0],
3267                        ctx->ctx_pmds[cnum].reset_pmds[0],
3268                        ctx->ctx_reload_pmds[0],
3269                        ctx->ctx_all_pmds[0],
3270                        ctx->ctx_ovfl_regs[0]));
3271        }
3272
3273        /*
3274         * make changes visible
3275         */
3276        if (can_access_pmu) ia64_srlz_d();
3277
3278        return 0;
3279
3280abort_mission:
3281        /*
3282         * for now, we have only one possibility for error
3283         */
3284        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3285        return ret;
3286}
3287
3288/*
3289 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3290 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3291 * interrupt is delivered during the call, it will be kept pending until we leave, making
3292 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3293 * guaranteed to return consistent data to the user, it may simply be old. It is not
3294 * trivial to treat the overflow while inside the call because you may end up in
3295 * some module sampling buffer code causing deadlocks.
3296 */
3297static int
3298pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3299{
3300        struct task_struct *task;
3301        unsigned long val = 0UL, lval, ovfl_mask, sval;
3302        pfarg_reg_t *req = (pfarg_reg_t *)arg;
3303        unsigned int cnum, reg_flags = 0;
3304        int i, can_access_pmu = 0, state;
3305        int is_loaded, is_system, is_counting, expert_mode;
3306        int ret = -EINVAL;
3307        pfm_reg_check_t rd_func;
3308
3309        /*
3310         * access is possible when loaded only for
3311         * self-monitoring tasks or in UP mode
3312         */
3313
3314        state     = ctx->ctx_state;
3315        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3316        is_system = ctx->ctx_fl_system;
3317        ovfl_mask = pmu_conf->ovfl_val;
3318        task      = ctx->ctx_task;
3319
3320        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3321
3322        if (likely(is_loaded)) {
3323                /*
3324                 * In system wide and when the context is loaded, access can only happen
3325                 * when the caller is running on the CPU being monitored by the session.
3326                 * It does not have to be the owner (ctx_task) of the context per se.
3327                 */
3328                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3329                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3330                        return -EBUSY;
3331                }
3332                /*
3333                 * this can be true when not self-monitoring only in UP
3334                 */
3335                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3336
3337                if (can_access_pmu) ia64_srlz_d();
3338        }
3339        expert_mode = pfm_sysctl.expert_mode; 
3340
3341        DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3342                is_loaded,
3343                can_access_pmu,
3344                state));
3345
3346        /*
3347         * on both UP and SMP, we can only read the PMD from the hardware register when
3348         * the task is the owner of the local PMU.
3349         */
3350
3351        for (i = 0; i < count; i++, req++) {
3352
3353                cnum        = req->reg_num;
3354                reg_flags   = req->reg_flags;
3355
3356                if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3357                /*
3358                 * we can only read the register that we use. That includes
3359                 * the one we explicitly initialize AND the one we want included
3360                 * in the sampling buffer (smpl_regs).
3361                 *
3362                 * Having this restriction allows optimization in the ctxsw routine
3363                 * without compromising security (leaks)
3364                 */
3365                if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3366
3367                sval        = ctx->ctx_pmds[cnum].val;
3368                lval        = ctx->ctx_pmds[cnum].lval;
3369                is_counting = PMD_IS_COUNTING(cnum);
3370
3371                /*
3372                 * If the task is not the current one, then we check if the
3373                 * PMU state is still in the local live register due to lazy ctxsw.
3374                 * If true, then we read directly from the registers.
3375                 */
3376                if (can_access_pmu){
3377                        val = ia64_get_pmd(cnum);
3378                } else {
3379                        /*
3380                         * context has been saved
3381                         * if context is zombie, then task does not exist anymore.
3382                         * In this case, we use the full value saved in the context (pfm_flush_regs()).
3383                         */
3384                        val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3385                }
3386                rd_func = pmu_conf->pmd_desc[cnum].read_check;
3387
3388                if (is_counting) {
3389                        /*
3390                         * XXX: need to check for overflow when loaded
3391                         */
3392                        val &= ovfl_mask;
3393                        val += sval;
3394                }
3395
3396                /*
3397                 * execute read checker, if any
3398                 */
3399                if (unlikely(expert_mode == 0 && rd_func)) {
3400                        unsigned long v = val;
3401                        ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3402                        if (ret) goto error;
3403                        val = v;
3404                        ret = -EINVAL;
3405                }
3406
3407                PFM_REG_RETFLAG_SET(reg_flags, 0);
3408
3409                DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3410
3411                /*
3412                 * update register return value, abort all if problem during copy.
3413                 * we only modify the reg_flags field. no check mode is fine because
3414                 * access has been verified upfront in sys_perfmonctl().
3415                 */
3416                req->reg_value            = val;
3417                req->reg_flags            = reg_flags;
3418                req->reg_last_reset_val   = lval;
3419        }
3420
3421        return 0;
3422
3423error:
3424        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3425        return ret;
3426}
3427
3428int
3429pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3430{
3431        pfm_context_t *ctx;
3432
3433        if (req == NULL) return -EINVAL;
3434
3435        ctx = GET_PMU_CTX();
3436
3437        if (ctx == NULL) return -EINVAL;
3438
3439        /*
3440         * for now limit to current task, which is enough when calling
3441         * from overflow handler
3442         */
3443        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3444
3445        return pfm_write_pmcs(ctx, req, nreq, regs);
3446}
3447EXPORT_SYMBOL(pfm_mod_write_pmcs);
3448
3449int
3450pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3451{
3452        pfm_context_t *ctx;
3453
3454        if (req == NULL) return -EINVAL;
3455
3456        ctx = GET_PMU_CTX();
3457
3458        if (ctx == NULL) return -EINVAL;
3459
3460        /*
3461         * for now limit to current task, which is enough when calling
3462         * from overflow handler
3463         */
3464        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3465
3466        return pfm_read_pmds(ctx, req, nreq, regs);
3467}
3468EXPORT_SYMBOL(pfm_mod_read_pmds);
3469
3470/*
3471 * Only call this function when a process it trying to
3472 * write the debug registers (reading is always allowed)
3473 */
3474int
3475pfm_use_debug_registers(struct task_struct *task)
3476{
3477        pfm_context_t *ctx = task->thread.pfm_context;
3478        unsigned long flags;
3479        int ret = 0;
3480
3481        if (pmu_conf->use_rr_dbregs == 0) return 0;
3482
3483        DPRINT(("called for [%d]\n", task_pid_nr(task)));
3484
3485        /*
3486         * do it only once
3487         */
3488        if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3489
3490        /*
3491         * Even on SMP, we do not need to use an atomic here because
3492         * the only way in is via ptrace() and this is possible only when the
3493         * process is stopped. Even in the case where the ctxsw out is not totally
3494         * completed by the time we come here, there is no way the 'stopped' process
3495         * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3496         * So this is always safe.
3497         */
3498        if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3499
3500        LOCK_PFS(flags);
3501
3502        /*
3503         * We cannot allow setting breakpoints when system wide monitoring
3504         * sessions are using the debug registers.
3505         */
3506        if (pfm_sessions.pfs_sys_use_dbregs> 0)
3507                ret = -1;
3508        else
3509                pfm_sessions.pfs_ptrace_use_dbregs++;
3510
3511        DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n",
3512                  pfm_sessions.pfs_ptrace_use_dbregs,
3513                  pfm_sessions.pfs_sys_use_dbregs,
3514                  task_pid_nr(task), ret));
3515
3516        UNLOCK_PFS(flags);
3517
3518        return ret;
3519}
3520
3521/*
3522 * This function is called for every task that exits with the
3523 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3524 * able to use the debug registers for debugging purposes via
3525 * ptrace(). Therefore we know it was not using them for
3526 * perfmormance monitoring, so we only decrement the number
3527 * of "ptraced" debug register users to keep the count up to date
3528 */
3529int
3530pfm_release_debug_registers(struct task_struct *task)
3531{
3532        unsigned long flags;
3533        int ret;
3534
3535        if (pmu_conf->use_rr_dbregs == 0) return 0;
3536
3537        LOCK_PFS(flags);
3538        if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3539                printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task));
3540                ret = -1;
3541        }  else {
3542                pfm_sessions.pfs_ptrace_use_dbregs--;
3543                ret = 0;
3544        }
3545        UNLOCK_PFS(flags);
3546
3547        return ret;
3548}
3549
3550static int
3551pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3552{
3553        struct task_struct *task;
3554        pfm_buffer_fmt_t *fmt;
3555        pfm_ovfl_ctrl_t rst_ctrl;
3556        int state, is_system;
3557        int ret = 0;
3558
3559        state     = ctx->ctx_state;
3560        fmt       = ctx->ctx_buf_fmt;
3561        is_system = ctx->ctx_fl_system;
3562        task      = PFM_CTX_TASK(ctx);
3563
3564        switch(state) {
3565                case PFM_CTX_MASKED:
3566                        break;
3567                case PFM_CTX_LOADED: 
3568                        if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3569                        /* fall through */
3570                case PFM_CTX_UNLOADED:
3571                case PFM_CTX_ZOMBIE:
3572                        DPRINT(("invalid state=%d\n", state));
3573                        return -EBUSY;
3574                default:
3575                        DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3576                        return -EINVAL;
3577        }
3578
3579        /*
3580         * In system wide and when the context is loaded, access can only happen
3581         * when the caller is running on the CPU being monitored by the session.
3582         * It does not have to be the owner (ctx_task) of the context per se.
3583         */
3584        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3585                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3586                return -EBUSY;
3587        }
3588
3589        /* sanity check */
3590        if (unlikely(task == NULL)) {
3591                printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current));
3592                return -EINVAL;
3593        }
3594
3595        if (task == current || is_system) {
3596
3597                fmt = ctx->ctx_buf_fmt;
3598
3599                DPRINT(("restarting self %d ovfl=0x%lx\n",
3600                        task_pid_nr(task),
3601                        ctx->ctx_ovfl_regs[0]));
3602
3603                if (CTX_HAS_SMPL(ctx)) {
3604
3605                        prefetch(ctx->ctx_smpl_hdr);
3606
3607                        rst_ctrl.bits.mask_monitoring = 0;
3608                        rst_ctrl.bits.reset_ovfl_pmds = 0;
3609
3610                        if (state == PFM_CTX_LOADED)
3611                                ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3612                        else
3613                                ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3614                } else {
3615                        rst_ctrl.bits.mask_monitoring = 0;
3616                        rst_ctrl.bits.reset_ovfl_pmds = 1;
3617                }
3618
3619                if (ret == 0) {
3620                        if (rst_ctrl.bits.reset_ovfl_pmds)
3621                                pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3622
3623                        if (rst_ctrl.bits.mask_monitoring == 0) {
3624                                DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task)));
3625
3626                                if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3627                        } else {
3628                                DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task)));
3629
3630                                // cannot use pfm_stop_monitoring(task, regs);
3631                        }
3632                }
3633                /*
3634                 * clear overflowed PMD mask to remove any stale information
3635                 */
3636                ctx->ctx_ovfl_regs[0] = 0UL;
3637
3638                /*
3639                 * back to LOADED state
3640                 */
3641                ctx->ctx_state = PFM_CTX_LOADED;
3642
3643                /*
3644                 * XXX: not really useful for self monitoring
3645                 */
3646                ctx->ctx_fl_can_restart = 0;
3647
3648                return 0;
3649        }
3650
3651        /* 
3652         * restart another task
3653         */
3654
3655        /*
3656         * When PFM_CTX_MASKED, we cannot issue a restart before the previous 
3657         * one is seen by the task.
3658         */
3659        if (state == PFM_CTX_MASKED) {
3660                if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3661                /*
3662                 * will prevent subsequent restart before this one is
3663                 * seen by other task
3664                 */
3665                ctx->ctx_fl_can_restart = 0;
3666        }
3667
3668        /*
3669         * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3670         * the task is blocked or on its way to block. That's the normal
3671         * restart path. If the monitoring is not masked, then the task
3672         * can be actively monitoring and we cannot directly intervene.
3673         * Therefore we use the trap mechanism to catch the task and
3674         * force it to reset the buffer/reset PMDs.
3675         *
3676         * if non-blocking, then we ensure that the task will go into
3677         * pfm_handle_work() before returning to user mode.
3678         *
3679         * We cannot explicitly reset another task, it MUST always
3680         * be done by the task itself. This works for system wide because
3681         * the tool that is controlling the session is logically doing 
3682         * "self-monitoring".
3683         */
3684        if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3685                DPRINT(("unblocking [%d] \n", task_pid_nr(task)));
3686                complete(&ctx->ctx_restart_done);
3687        } else {
3688                DPRINT(("[%d] armed exit trap\n", task_pid_nr(task)));
3689
3690                ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3691
3692                PFM_SET_WORK_PENDING(task, 1);
3693
3694                set_notify_resume(task);
3695
3696                /*
3697                 * XXX: send reschedule if task runs on another CPU
3698                 */
3699        }
3700        return 0;
3701}
3702
3703static int
3704pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3705{
3706        unsigned int m = *(unsigned int *)arg;
3707
3708        pfm_sysctl.debug = m == 0 ? 0 : 1;
3709
3710        printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3711
3712        if (m == 0) {
3713                memset(pfm_stats, 0, sizeof(pfm_stats));
3714                for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3715        }
3716        return 0;
3717}
3718
3719/*
3720 * arg can be NULL and count can be zero for this function
3721 */
3722static int
3723pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3724{
3725        struct thread_struct *thread = NULL;
3726        struct task_struct *task;
3727        pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3728        unsigned long flags;
3729        dbreg_t dbreg;
3730        unsigned int rnum;
3731        int first_time;
3732        int ret = 0, state;
3733        int i, can_access_pmu = 0;
3734        int is_system, is_loaded;
3735
3736        if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3737
3738        state     = ctx->ctx_state;
3739        is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3740        is_system = ctx->ctx_fl_system;
3741        task      = ctx->ctx_task;
3742
3743        if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3744
3745        /*
3746         * on both UP and SMP, we can only write to the PMC when the task is
3747         * the owner of the local PMU.
3748         */
3749        if (is_loaded) {
3750                thread = &task->thread;
3751                /*
3752                 * In system wide and when the context is loaded, access can only happen
3753                 * when the caller is running on the CPU being monitored by the session.
3754                 * It does not have to be the owner (ctx_task) of the context per se.
3755                 */
3756                if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3757                        DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3758                        return -EBUSY;
3759                }
3760                can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3761        }
3762
3763        /*
3764         * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3765         * ensuring that no real breakpoint can be installed via this call.
3766         *
3767         * IMPORTANT: regs can be NULL in this function
3768         */
3769
3770        first_time = ctx->ctx_fl_using_dbreg == 0;
3771
3772        /*
3773         * don't bother if we are loaded and task is being debugged
3774         */
3775        if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3776                DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task)));
3777                return -EBUSY;
3778        }
3779
3780        /*
3781         * check for debug registers in system wide mode
3782         *
3783         * If though a check is done in pfm_context_load(),
3784         * we must repeat it here, in case the registers are
3785         * written after the context is loaded
3786         */
3787        if (is_loaded) {
3788                LOCK_PFS(flags);
3789
3790                if (first_time && is_system) {
3791                        if (pfm_sessions.pfs_ptrace_use_dbregs)
3792                                ret = -EBUSY;
3793                        else
3794                                pfm_sessions.pfs_sys_use_dbregs++;
3795                }
3796                UNLOCK_PFS(flags);
3797        }
3798
3799        if (ret != 0) return ret;
3800
3801        /*
3802         * mark ourself as user of the debug registers for
3803         * perfmon purposes.
3804         */
3805        ctx->ctx_fl_using_dbreg = 1;
3806
3807        /*
3808         * clear hardware registers to make sure we don't
3809         * pick up stale state.
3810         *
3811         * for a system wide session, we do not use
3812         * thread.dbr, thread.ibr because this process
3813         * never leaves the current CPU and the state
3814         * is shared by all processes running on it
3815         */
3816        if (first_time && can_access_pmu) {
3817                DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task)));
3818                for (i=0; i < pmu_conf->num_ibrs; i++) {
3819                        ia64_set_ibr(i, 0UL);
3820                        ia64_dv_serialize_instruction();
3821                }
3822                ia64_srlz_i();
3823                for (i=0; i < pmu_conf->num_dbrs; i++) {
3824                        ia64_set_dbr(i, 0UL);
3825                        ia64_dv_serialize_data();
3826                }
3827                ia64_srlz_d();
3828        }
3829
3830        /*
3831         * Now install the values into the registers
3832         */
3833        for (i = 0; i < count; i++, req++) {
3834
3835                rnum      = req->dbreg_num;
3836                dbreg.val = req->dbreg_value;
3837
3838                ret = -EINVAL;
3839
3840                if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3841                        DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3842                                  rnum, dbreg.val, mode, i, count));
3843
3844                        goto abort_mission;
3845                }
3846
3847                /*
3848                 * make sure we do not install enabled breakpoint
3849                 */
3850                if (rnum & 0x1) {
3851                        if (mode == PFM_CODE_RR)
3852                                dbreg.ibr.ibr_x = 0;
3853                        else
3854                                dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3855                }
3856
3857                PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3858
3859                /*
3860                 * Debug registers, just like PMC, can only be modified
3861                 * by a kernel call. Moreover, perfmon() access to those
3862                 * registers are centralized in this routine. The hardware
3863                 * does not modify the value of these registers, therefore,
3864                 * if we save them as they are written, we can avoid having
3865                 * to save them on context switch out. This is made possible
3866                 * by the fact that when perfmon uses debug registers, ptrace()
3867                 * won't be able to modify them concurrently.
3868                 */
3869                if (mode == PFM_CODE_RR) {
3870                        CTX_USED_IBR(ctx, rnum);
3871
3872                        if (can_access_pmu) {
3873                                ia64_set_ibr(rnum, dbreg.val);
3874                                ia64_dv_serialize_instruction();
3875                        }
3876
3877                        ctx->ctx_ibrs[rnum] = dbreg.val;
3878
3879                        DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3880                                rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3881                } else {
3882                        CTX_USED_DBR(ctx, rnum);
3883
3884                        if (can_access_pmu) {
3885                                ia64_set_dbr(rnum, dbreg.val);
3886                                ia64_dv_serialize_data();
3887                        }
3888                        ctx->ctx_dbrs[rnum] = dbreg.val;
3889
3890                        DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3891                                rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3892                }
3893        }
3894
3895        return 0;
3896
3897abort_mission:
3898        /*
3899         * in case it was our first attempt, we undo the global modifications
3900         */
3901        if (first_time) {
3902                LOCK_PFS(flags);
3903                if (ctx->ctx_fl_system) {
3904                        pfm_sessions.pfs_sys_use_dbregs--;
3905                }
3906                UNLOCK_PFS(flags);
3907                ctx->ctx_fl_using_dbreg = 0;
3908        }
3909        /*
3910         * install error return flag
3911         */
3912        PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3913
3914        return ret;
3915}
3916
3917static int
3918pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3919{
3920        return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3921}
3922
3923static int
3924pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3925{
3926        return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3927}
3928
3929int
3930pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3931{
3932        pfm_context_t *ctx;
3933
3934        if (req == NULL) return -EINVAL;
3935
3936        ctx = GET_PMU_CTX();
3937
3938        if (ctx == NULL) return -EINVAL;
3939
3940        /*
3941         * for now limit to current task, which is enough when calling
3942         * from overflow handler
3943         */
3944        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3945
3946        return pfm_write_ibrs(ctx, req, nreq, regs);
3947}
3948EXPORT_SYMBOL(pfm_mod_write_ibrs);
3949
3950int
3951pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3952{
3953        pfm_context_t *ctx;
3954
3955        if (req == NULL) return -EINVAL;
3956
3957        ctx = GET_PMU_CTX();
3958
3959        if (ctx == NULL) return -EINVAL;
3960
3961        /*
3962         * for now limit to current task, which is enough when calling
3963         * from overflow handler
3964         */
3965        if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3966
3967        return pfm_write_dbrs(ctx, req, nreq, regs);
3968}
3969EXPORT_SYMBOL(pfm_mod_write_dbrs);
3970
3971
3972static int
3973pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3974{
3975        pfarg_features_t *req = (pfarg_features_t *)arg;
3976
3977        req->ft_version = PFM_VERSION;
3978        return 0;
3979}
3980
3981static int
3982pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3983{
3984        struct pt_regs *tregs;
3985        struct task_struct *task = PFM_CTX_TASK(ctx);
3986        int state, is_system;
3987
3988        state     = ctx->ctx_state;
3989        is_system = ctx->ctx_fl_system;
3990
3991        /*
3992         * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3993         */
3994        if (state == PFM_CTX_UNLOADED) return -EINVAL;
3995
3996        /*
3997         * In system wide and when the context is loaded, access can only happen
3998         * when the caller is running on the CPU being monitored by the session.
3999         * It does not have to be the owner (ctx_task) of the context per se.
4000         */
4001        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4002                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4003                return -EBUSY;
4004        }
4005        DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4006                task_pid_nr(PFM_CTX_TASK(ctx)),
4007                state,
4008                is_system));
4009        /*
4010         * in system mode, we need to update the PMU directly
4011         * and the user level state of the caller, which may not
4012         * necessarily be the creator of the context.
4013         */
4014        if (is_system) {
4015                /*
4016                 * Update local PMU first
4017                 *
4018                 * disable dcr pp
4019                 */
4020                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4021                ia64_srlz_i();
4022
4023                /*
4024                 * update local cpuinfo
4025                 */
4026                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4027
4028                /*
4029                 * stop monitoring, does srlz.i
4030                 */
4031                pfm_clear_psr_pp();
4032
4033                /*
4034                 * stop monitoring in the caller
4035                 */
4036                ia64_psr(regs)->pp = 0;
4037
4038                return 0;
4039        }
4040        /*
4041         * per-task mode
4042         */
4043
4044        if (task == current) {
4045                /* stop monitoring  at kernel level */
4046                pfm_clear_psr_up();
4047
4048                /*
4049                 * stop monitoring at the user level
4050                 */
4051                ia64_psr(regs)->up = 0;
4052        } else {
4053                tregs = task_pt_regs(task);
4054
4055                /*
4056                 * stop monitoring at the user level
4057                 */
4058                ia64_psr(tregs)->up = 0;
4059
4060                /*
4061                 * monitoring disabled in kernel at next reschedule
4062                 */
4063                ctx->ctx_saved_psr_up = 0;
4064                DPRINT(("task=[%d]\n", task_pid_nr(task)));
4065        }
4066        return 0;
4067}
4068
4069
4070static int
4071pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4072{
4073        struct pt_regs *tregs;
4074        int state, is_system;
4075
4076        state     = ctx->ctx_state;
4077        is_system = ctx->ctx_fl_system;
4078
4079        if (state != PFM_CTX_LOADED) return -EINVAL;
4080
4081        /*
4082         * In system wide and when the context is loaded, access can only happen
4083         * when the caller is running on the CPU being monitored by the session.
4084         * It does not have to be the owner (ctx_task) of the context per se.
4085         */
4086        if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4087                DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4088                return -EBUSY;
4089        }
4090
4091        /*
4092         * in system mode, we need to update the PMU directly
4093         * and the user level state of the caller, which may not
4094         * necessarily be the creator of the context.
4095         */
4096        if (is_system) {
4097
4098                /*
4099                 * set user level psr.pp for the caller
4100                 */
4101                ia64_psr(regs)->pp = 1;
4102
4103                /*
4104                 * now update the local PMU and cpuinfo
4105                 */
4106                PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4107
4108                /*
4109                 * start monitoring at kernel level
4110                 */
4111                pfm_set_psr_pp();
4112
4113                /* enable dcr pp */
4114                ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4115                ia64_srlz_i();
4116
4117                return 0;
4118        }
4119
4120        /*
4121         * per-process mode
4122         */
4123
4124        if (ctx->ctx_task == current) {
4125
4126                /* start monitoring at kernel level */
4127                pfm_set_psr_up();
4128
4129                /*
4130                 * activate monitoring at user level
4131                 */
4132                ia64_psr(regs)->up = 1;
4133
4134        } else {
4135                tregs = task_pt_regs(ctx->ctx_task);
4136
4137                /*
4138                 * start monitoring at the kernel level the next
4139                 * time the task is scheduled
4140                 */
4141                ctx->ctx_saved_psr_up = IA64_PSR_UP;
4142
4143                /*
4144                 * activate monitoring at user level
4145                 */
4146                ia64_psr(tregs)->up = 1;
4147        }
4148        return 0;
4149}
4150
4151static int
4152pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4153{
4154        pfarg_reg_t *req = (pfarg_reg_t *)arg;
4155        unsigned int cnum;
4156        int i;
4157        int ret = -EINVAL;
4158
4159        for (i = 0; i < count; i++, req++) {
4160
4161                cnum = req->reg_num;
4162
4163                if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4164
4165                req->reg_value = PMC_DFL_VAL(cnum);
4166
4167                PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4168
4169                DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4170        }
4171        return 0;
4172
4173abort_mission:
4174        PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4175        return ret;
4176}
4177
4178static int
4179pfm_check_task_exist(pfm_context_t *ctx)
4180{
4181        struct task_struct *g, *t;
4182        int ret = -ESRCH;
4183
4184        read_lock(&tasklist_lock);
4185
4186        do_each_thread (g, t) {
4187                if (t->thread.pfm_context == ctx) {
4188                        ret = 0;
4189                        goto out;
4190                }
4191        } while_each_thread (g, t);
4192out:
4193        read_unlock(&tasklist_lock);
4194
4195        DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4196
4197        return ret;
4198}
4199
4200static int
4201pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4202{
4203        struct task_struct *task;
4204        struct thread_struct *thread;
4205        struct pfm_context_t *old;
4206        unsigned long flags;
4207#ifndef CONFIG_SMP
4208        struct task_struct *owner_task = NULL;
4209#endif
4210        pfarg_load_t *req = (pfarg_load_t *)arg;
4211        unsigned long *pmcs_source, *pmds_source;
4212        int the_cpu;
4213        int ret = 0;
4214        int state, is_system, set_dbregs = 0;
4215
4216        state     = ctx->ctx_state;
4217        is_system = ctx->ctx_fl_system;
4218        /*
4219         * can only load from unloaded or terminated state
4220         */
4221        if (state != PFM_CTX_UNLOADED) {
4222                DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4223                        req->load_pid,
4224                        ctx->ctx_state));
4225                return -EBUSY;
4226        }
4227
4228        DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4229
4230        if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4231                DPRINT(("cannot use blocking mode on self\n"));
4232                return -EINVAL;
4233        }
4234
4235        ret = pfm_get_task(ctx, req->load_pid, &task);
4236        if (ret) {
4237                DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4238                return ret;
4239        }
4240
4241        ret = -EINVAL;
4242
4243        /*
4244         * system wide is self monitoring only
4245         */
4246        if (is_system && task != current) {
4247                DPRINT(("system wide is self monitoring only load_pid=%d\n",
4248                        req->load_pid));
4249                goto error;
4250        }
4251
4252        thread = &task->thread;
4253
4254        ret = 0;
4255        /*
4256         * cannot load a context which is using range restrictions,
4257         * into a task that is being debugged.
4258         */
4259        if (ctx->ctx_fl_using_dbreg) {
4260                if (thread->flags & IA64_THREAD_DBG_VALID) {
4261                        ret = -EBUSY;
4262                        DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4263                        goto error;
4264                }
4265                LOCK_PFS(flags);
4266
4267                if (is_system) {
4268                        if (pfm_sessions.pfs_ptrace_use_dbregs) {
4269                                DPRINT(("cannot load [%d] dbregs in use\n",
4270                                                        task_pid_nr(task)));
4271                                ret = -EBUSY;
4272                        } else {
4273                                pfm_sessions.pfs_sys_use_dbregs++;
4274                                DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs));
4275                                set_dbregs = 1;
4276                        }
4277                }
4278
4279                UNLOCK_PFS(flags);
4280
4281                if (ret) goto error;
4282        }
4283
4284        /*
4285         * SMP system-wide monitoring implies self-monitoring.
4286         *
4287         * The programming model expects the task to
4288         * be pinned on a CPU throughout the session.
4289         * Here we take note of the current CPU at the
4290         * time the context is loaded. No call from
4291         * another CPU will be allowed.
4292         *
4293         * The pinning via shed_setaffinity()
4294         * must be done by the calling task prior
4295         * to this call.
4296         *
4297         * systemwide: keep track of CPU this session is supposed to run on
4298         */
4299        the_cpu = ctx->ctx_cpu = smp_processor_id();
4300
4301        ret = -EBUSY;
4302        /*
4303         * now reserve the session
4304         */
4305        ret = pfm_reserve_session(current, is_system, the_cpu);
4306        if (ret) goto error;
4307
4308        /*
4309         * task is necessarily stopped at this point.
4310         *
4311         * If the previous context was zombie, then it got removed in
4312         * pfm_save_regs(). Therefore we should not see it here.
4313         * If we see a context, then this is an active context
4314         *
4315         * XXX: needs to be atomic
4316         */
4317        DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4318                thread->pfm_context, ctx));
4319
4320        ret = -EBUSY;
4321        old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4322        if (old != NULL) {
4323                DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4324                goto error_unres;
4325        }
4326
4327        pfm_reset_msgq(ctx);
4328
4329        ctx->ctx_state = PFM_CTX_LOADED;
4330
4331        /*
4332         * link context to task
4333         */
4334        ctx->ctx_task = task;
4335
4336        if (is_system) {
4337                /*
4338                 * we load as stopped
4339                 */
4340                PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4341                PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4342
4343                if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4344        } else {
4345                thread->flags |= IA64_THREAD_PM_VALID;
4346        }
4347
4348        /*
4349         * propagate into thread-state
4350         */
4351        pfm_copy_pmds(task, ctx);
4352        pfm_copy_pmcs(task, ctx);
4353
4354        pmcs_source = ctx->th_pmcs;
4355        pmds_source = ctx->th_pmds;
4356
4357        /*
4358         * always the case for system-wide
4359         */
4360        if (task == current) {
4361
4362                if (is_system == 0) {
4363
4364                        /* allow user level control */
4365                        ia64_psr(regs)->sp = 0;
4366                        DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task)));
4367
4368                        SET_LAST_CPU(ctx, smp_processor_id());
4369                        INC_ACTIVATION();
4370                        SET_ACTIVATION(ctx);
4371#ifndef CONFIG_SMP
4372                        /*
4373                         * push the other task out, if any
4374                         */
4375                        owner_task = GET_PMU_OWNER();
4376                        if (owner_task) pfm_lazy_save_regs(owner_task);
4377#endif
4378                }
4379                /*
4380                 * load all PMD from ctx to PMU (as opposed to thread state)
4381                 * restore all PMC from ctx to PMU
4382                 */
4383                pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4384                pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4385
4386                ctx->ctx_reload_pmcs[0] = 0UL;
4387                ctx->ctx_reload_pmds[0] = 0UL;
4388
4389                /*
4390                 * guaranteed safe by earlier check against DBG_VALID
4391                 */
4392                if (ctx->ctx_fl_using_dbreg) {
4393                        pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4394                        pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4395                }
4396                /*
4397                 * set new ownership
4398                 */
4399                SET_PMU_OWNER(task, ctx);
4400
4401                DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task)));
4402        } else {
4403                /*
4404                 * when not current, task MUST be stopped, so this is safe
4405                 */
4406                regs = task_pt_regs(task);
4407
4408                /* force a full reload */
4409                ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4410                SET_LAST_CPU(ctx, -1);
4411
4412                /* initial saved psr (stopped) */
4413                ctx->ctx_saved_psr_up = 0UL;
4414                ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4415        }
4416
4417        ret = 0;
4418
4419error_unres:
4420        if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4421error:
4422        /*
4423         * we must undo the dbregs setting (for system-wide)
4424         */
4425        if (ret && set_dbregs) {
4426                LOCK_PFS(flags);
4427                pfm_sessions.pfs_sys_use_dbregs--;
4428                UNLOCK_PFS(flags);
4429        }
4430        /*
4431         * release task, there is now a link with the context
4432         */
4433        if (is_system == 0 && task != current) {
4434                pfm_put_task(task);
4435
4436                if (ret == 0) {
4437                        ret = pfm_check_task_exist(ctx);
4438                        if (ret) {
4439                                ctx->ctx_state = PFM_CTX_UNLOADED;
4440                                ctx->ctx_task  = NULL;
4441                        }
4442                }
4443        }
4444        return ret;
4445}
4446
4447/*
4448 * in this function, we do not need to increase the use count
4449 * for the task via get_task_struct(), because we hold the
4450 * context lock. If the task were to disappear while having
4451 * a context attached, it would go through pfm_exit_thread()
4452 * which also grabs the context lock  and would therefore be blocked
4453 * until we are here.
4454 */
4455static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4456
4457static int
4458pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4459{
4460        struct task_struct *task = PFM_CTX_TASK(ctx);
4461        struct pt_regs *tregs;
4462        int prev_state, is_system;
4463        int ret;
4464
4465        DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1));
4466
4467        prev_state = ctx->ctx_state;
4468        is_system  = ctx->ctx_fl_system;
4469
4470        /*
4471         * unload only when necessary
4472         */
4473        if (prev_state == PFM_CTX_UNLOADED) {
4474                DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4475                return 0;
4476        }
4477
4478        /*
4479         * clear psr and dcr bits
4480         */
4481        ret = pfm_stop(ctx, NULL, 0, regs);
4482        if (ret) return ret;
4483
4484        ctx->ctx_state = PFM_CTX_UNLOADED;
4485
4486        /*
4487         * in system mode, we need to update the PMU directly
4488         * and the user level state of the caller, which may not
4489         * necessarily be the creator of the context.
4490         */
4491        if (is_system) {
4492
4493                /*
4494                 * Update cpuinfo
4495                 *
4496                 * local PMU is taken care of in pfm_stop()
4497                 */
4498                PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4499                PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4500
4501                /*
4502                 * save PMDs in context
4503                 * release ownership
4504                 */
4505                pfm_flush_pmds(current, ctx);
4506
4507                /*
4508                 * at this point we are done with the PMU
4509                 * so we can unreserve the resource.
4510                 */
4511                if (prev_state != PFM_CTX_ZOMBIE) 
4512                        pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4513
4514                /*
4515                 * disconnect context from task
4516                 */
4517                task->thread.pfm_context = NULL;
4518                /*
4519                 * disconnect task from context
4520                 */
4521                ctx->ctx_task = NULL;
4522
4523                /*
4524                 * There is nothing more to cleanup here.
4525                 */
4526                return 0;
4527        }
4528
4529        /*
4530         * per-task mode
4531         */
4532        tregs = task == current ? regs : task_pt_regs(task);
4533
4534        if (task == current) {
4535                /*
4536                 * cancel user level control
4537                 */
4538                ia64_psr(regs)->sp = 1;
4539
4540                DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task)));
4541        }
4542        /*
4543         * save PMDs to context
4544         * release ownership
4545         */
4546        pfm_flush_pmds(task, ctx);
4547
4548        /*
4549         * at this point we are done with the PMU
4550         * so we can unreserve the resource.
4551         *
4552         * when state was ZOMBIE, we have already unreserved.
4553         */
4554        if (prev_state != PFM_CTX_ZOMBIE) 
4555                pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4556
4557        /*
4558         * reset activation counter and psr
4559         */
4560        ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4561        SET_LAST_CPU(ctx, -1);
4562
4563        /*
4564         * PMU state will not be restored
4565         */
4566        task->thread.flags &= ~IA64_THREAD_PM_VALID;
4567
4568        /*
4569         * break links between context and task
4570         */
4571        task->thread.pfm_context  = NULL;
4572        ctx->ctx_task             = NULL;
4573
4574        PFM_SET_WORK_PENDING(task, 0);
4575
4576        ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE;
4577        ctx->ctx_fl_can_restart  = 0;
4578        ctx->ctx_fl_going_zombie = 0;
4579
4580        DPRINT(("disconnected [%d] from context\n", task_pid_nr(task)));
4581
4582        return 0;
4583}
4584
4585
4586/*
4587 * called only from exit_thread(): task == current
4588 * we come here only if current has a context attached (loaded or masked)
4589 */
4590void
4591pfm_exit_thread(struct task_struct *task)
4592{
4593        pfm_context_t *ctx;
4594        unsigned long flags;
4595        struct pt_regs *regs = task_pt_regs(task);
4596        int ret, state;
4597        int free_ok = 0;
4598
4599        ctx = PFM_GET_CTX(task);
4600
4601        PROTECT_CTX(ctx, flags);
4602
4603        DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task)));
4604
4605        state = ctx->ctx_state;
4606        switch(state) {
4607                case PFM_CTX_UNLOADED:
4608                        /*
4609                         * only comes to this function if pfm_context is not NULL, i.e., cannot
4610                         * be in unloaded state
4611                         */
4612                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task));
4613                        break;
4614                case PFM_CTX_LOADED:
4615                case PFM_CTX_MASKED:
4616                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4617                        if (ret) {
4618                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4619                        }
4620                        DPRINT(("ctx unloaded for current state was %d\n", state));
4621
4622                        pfm_end_notify_user(ctx);
4623                        break;
4624                case PFM_CTX_ZOMBIE:
4625                        ret = pfm_context_unload(ctx, NULL, 0, regs);
4626                        if (ret) {
4627                                printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret);
4628                        }
4629                        free_ok = 1;
4630                        break;
4631                default:
4632                        printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state);
4633                        break;
4634        }
4635        UNPROTECT_CTX(ctx, flags);
4636
4637        { u64 psr = pfm_get_psr();
4638          BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4639          BUG_ON(GET_PMU_OWNER());
4640          BUG_ON(ia64_psr(regs)->up);
4641          BUG_ON(ia64_psr(regs)->pp);
4642        }
4643
4644        /*
4645         * All memory free operations (especially for vmalloc'ed memory)
4646         * MUST be done with interrupts ENABLED.
4647         */
4648        if (free_ok) pfm_context_free(ctx);
4649}
4650
4651/*
4652 * functions MUST be listed in the increasing order of their index (see permfon.h)
4653 */
4654#define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4655#define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4656#define PFM_CMD_PCLRWS  (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4657#define PFM_CMD_PCLRW   (PFM_CMD_FD|PFM_CMD_ARG_RW)
4658#define PFM_CMD_NONE    { NULL, "no-cmd", 0, 0, 0, NULL}
4659
4660static pfm_cmd_desc_t pfm_cmd_tab[]={
4661/* 0  */PFM_CMD_NONE,
4662/* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4663/* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4664/* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4665/* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4666/* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4667/* 6  */PFM_CMD_NONE,
4668/* 7  */PFM_CMD_NONE,
4669/* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4670/* 9  */PFM_CMD_NONE,
4671/* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4672/* 11 */PFM_CMD_NONE,
4673/* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4674/* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4675/* 14 */PFM_CMD_NONE,
4676/* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4677/* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4678/* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4679/* 18 */PFM_CMD_NONE,
4680/* 19 */PFM_CMD_NONE,
4681/* 20 */PFM_CMD_NONE,
4682/* 21 */PFM_CMD_NONE,
4683/* 22 */PFM_CMD_NONE,
4684/* 23 */PFM_CMD_NONE,
4685/* 24 */PFM_CMD_NONE,
4686/* 25 */PFM_CMD_NONE,
4687/* 26 */PFM_CMD_NONE,
4688/* 27 */PFM_CMD_NONE,
4689/* 28 */PFM_CMD_NONE,
4690/* 29 */PFM_CMD_NONE,
4691/* 30 */PFM_CMD_NONE,
4692/* 31 */PFM_CMD_NONE,
4693/* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4694/* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4695};
4696#define PFM_CMD_COUNT   (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4697
4698static int
4699pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4700{
4701        struct task_struct *task;
4702        int state, old_state;
4703
4704recheck:
4705        state = ctx->ctx_state;
4706        task  = ctx->ctx_task;
4707
4708        if (task == NULL) {
4709                DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4710                return 0;
4711        }
4712
4713        DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4714                ctx->ctx_fd,
4715                state,
4716                task_pid_nr(task),
4717                task->state, PFM_CMD_STOPPED(cmd)));
4718
4719        /*
4720         * self-monitoring always ok.
4721         *
4722         * for system-wide the caller can either be the creator of the
4723         * context (to one to which the context is attached to) OR
4724         * a task running on the same CPU as the session.
4725         */
4726        if (task == current || ctx->ctx_fl_system) return 0;
4727
4728        /*
4729         * we are monitoring another thread
4730         */
4731        switch(state) {
4732                case PFM_CTX_UNLOADED:
4733                        /*
4734                         * if context is UNLOADED we are safe to go
4735                         */
4736                        return 0;
4737                case PFM_CTX_ZOMBIE:
4738                        /*
4739                         * no command can operate on a zombie context
4740                         */
4741                        DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4742                        return -EINVAL;
4743                case PFM_CTX_MASKED:
4744                        /*
4745                         * PMU state has been saved to software even though
4746                         * the thread may still be running.
4747                         */
4748                        if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4749        }
4750
4751        /*
4752         * context is LOADED or MASKED. Some commands may need to have 
4753         * the task stopped.
4754         *
4755         * We could lift this restriction for UP but it would mean that
4756         * the user has no guarantee the task would not run between
4757         * two successive calls to perfmonctl(). That's probably OK.
4758         * If this user wants to ensure the task does not run, then
4759         * the task must be stopped.
4760         */
4761        if (PFM_CMD_STOPPED(cmd)) {
4762                if (!task_is_stopped_or_traced(task)) {
4763                        DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task)));
4764                        return -EBUSY;
4765                }
4766                /*
4767                 * task is now stopped, wait for ctxsw out
4768                 *
4769                 * This is an interesting point in the code.
4770                 * We need to unprotect the context because
4771                 * the pfm_save_regs() routines needs to grab
4772                 * the same lock. There are danger in doing
4773                 * this because it leaves a window open for
4774                 * another task to get access to the context
4775                 * and possibly change its state. The one thing
4776                 * that is not possible is for the context to disappear
4777                 * because we are protected by the VFS layer, i.e.,
4778                 * get_fd()/put_fd().
4779                 */
4780                old_state = state;
4781
4782                UNPROTECT_CTX(ctx, flags);
4783
4784                wait_task_inactive(task, 0);
4785
4786                PROTECT_CTX(ctx, flags);
4787
4788                /*
4789                 * we must recheck to verify if state has changed
4790                 */
4791                if (ctx->ctx_state != old_state) {
4792                        DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4793                        goto recheck;
4794                }
4795        }
4796        return 0;
4797}
4798
4799/*
4800 * system-call entry point (must return long)
4801 */
4802asmlinkage long
4803sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4804{
4805        struct file *file = NULL;
4806        pfm_context_t *ctx = NULL;
4807        unsigned long flags = 0UL;
4808        void *args_k = NULL;
4809        long ret; /* will expand int return types */
4810        size_t base_sz, sz, xtra_sz = 0;
4811        int narg, completed_args = 0, call_made = 0, cmd_flags;
4812        int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4813        int (*getsize)(void *arg, size_t *sz);
4814#define PFM_MAX_ARGSIZE 4096
4815
4816        /*
4817         * reject any call if perfmon was disabled at initialization
4818         */
4819        if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4820
4821        if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4822                DPRINT(("invalid cmd=%d\n", cmd));
4823                return -EINVAL;
4824        }
4825
4826        func      = pfm_cmd_tab[cmd].cmd_func;
4827        narg      = pfm_cmd_tab[cmd].cmd_narg;
4828        base_sz   = pfm_cmd_tab[cmd].cmd_argsize;
4829        getsize   = pfm_cmd_tab[cmd].cmd_getsize;
4830        cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4831
4832        if (unlikely(func == NULL)) {
4833                DPRINT(("invalid cmd=%d\n", cmd));
4834                return -EINVAL;
4835        }
4836
4837        DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4838                PFM_CMD_NAME(cmd),
4839                cmd,
4840                narg,
4841                base_sz,
4842                count));
4843
4844        /*
4845         * check if number of arguments matches what the command expects
4846         */
4847        if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4848                return -EINVAL;
4849
4850restart_args:
4851        sz = xtra_sz + base_sz*count;
4852        /*
4853         * limit abuse to min page size
4854         */
4855        if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4856                printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz);
4857                return -E2BIG;
4858        }
4859
4860        /*
4861         * allocate default-sized argument buffer
4862         */
4863        if (likely(count && args_k == NULL)) {
4864                args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4865                if (args_k == NULL) return -ENOMEM;
4866        }
4867
4868        ret = -EFAULT;
4869
4870        /*
4871         * copy arguments
4872         *
4873         * assume sz = 0 for command without parameters
4874         */
4875        if (sz && copy_from_user(args_k, arg, sz)) {
4876                DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4877                goto error_args;
4878        }
4879
4880        /*
4881         * check if command supports extra parameters
4882         */
4883        if (completed_args == 0 && getsize) {
4884                /*
4885                 * get extra parameters size (based on main argument)
4886                 */
4887                ret = (*getsize)(args_k, &xtra_sz);
4888                if (ret) goto error_args;
4889
4890                completed_args = 1;
4891
4892                DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4893
4894                /* retry if necessary */
4895                if (likely(xtra_sz)) goto restart_args;
4896        }
4897
4898        if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4899
4900        ret = -EBADF;
4901
4902        file = fget(fd);
4903        if (unlikely(file == NULL)) {
4904                DPRINT(("invalid fd %d\n", fd));
4905                goto error_args;
4906        }
4907        if (unlikely(PFM_IS_FILE(file) == 0)) {
4908                DPRINT(("fd %d not related to perfmon\n", fd));
4909                goto error_args;
4910        }
4911
4912        ctx = (pfm_context_t *)file->private_data;
4913        if (unlikely(ctx == NULL)) {
4914                DPRINT(("no context for fd %d\n", fd));
4915                goto error_args;
4916        }
4917        prefetch(&ctx->ctx_state);
4918
4919        PROTECT_CTX(ctx, flags);
4920
4921        /*
4922         * check task is stopped
4923         */
4924        ret = pfm_check_task_state(ctx, cmd, flags);
4925        if (unlikely(ret)) goto abort_locked;
4926
4927skip_fd:
4928        ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4929
4930        call_made = 1;
4931
4932abort_locked:
4933        if (likely(ctx)) {
4934                DPRINT(("context unlocked\n"));
4935                UNPROTECT_CTX(ctx, flags);
4936        }
4937
4938        /* copy argument back to user, if needed */
4939        if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4940
4941error_args:
4942        if (file)
4943                fput(file);
4944
4945        kfree(args_k);
4946
4947        DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4948
4949        return ret;
4950}
4951
4952static void
4953pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4954{
4955        pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4956        pfm_ovfl_ctrl_t rst_ctrl;
4957        int state;
4958        int ret = 0;
4959
4960        state = ctx->ctx_state;
4961        /*
4962         * Unlock sampling buffer and reset index atomically
4963         * XXX: not really needed when blocking
4964         */
4965        if (CTX_HAS_SMPL(ctx)) {
4966
4967                rst_ctrl.bits.mask_monitoring = 0;
4968                rst_ctrl.bits.reset_ovfl_pmds = 0;
4969
4970                if (state == PFM_CTX_LOADED)
4971                        ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4972                else
4973                        ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
4974        } else {
4975                rst_ctrl.bits.mask_monitoring = 0;
4976                rst_ctrl.bits.reset_ovfl_pmds = 1;
4977        }
4978
4979        if (ret == 0) {
4980                if (rst_ctrl.bits.reset_ovfl_pmds) {
4981                        pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
4982                }
4983                if (rst_ctrl.bits.mask_monitoring == 0) {
4984                        DPRINT(("resuming monitoring\n"));
4985                        if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
4986                } else {
4987                        DPRINT(("stopping monitoring\n"));
4988                        //pfm_stop_monitoring(current, regs);
4989                }
4990                ctx->ctx_state = PFM_CTX_LOADED;
4991        }
4992}
4993
4994/*
4995 * context MUST BE LOCKED when calling
4996 * can only be called for current
4997 */
4998static void
4999pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5000{
5001        int ret;
5002
5003        DPRINT(("entering for [%d]\n", task_pid_nr(current)));
5004
5005        ret = pfm_context_unload(ctx, NULL, 0, regs);
5006        if (ret) {
5007                printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret);
5008        }
5009
5010        /*
5011         * and wakeup controlling task, indicating we are now disconnected
5012         */
5013        wake_up_interruptible(&ctx->ctx_zombieq);
5014
5015        /*
5016         * given that context is still locked, the controlling
5017         * task will only get access when we return from
5018         * pfm_handle_work().
5019         */
5020}
5021
5022static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5023
5024 /*
5025  * pfm_handle_work() can be called with interrupts enabled
5026  * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5027  * call may sleep, therefore we must re-enable interrupts
5028  * to avoid deadlocks. It is safe to do so because this function
5029  * is called ONLY when returning to user level (pUStk=1), in which case
5030  * there is no risk of kernel stack overflow due to deep
5031  * interrupt nesting.
5032  */
5033void
5034pfm_handle_work(void)
5035{
5036        pfm_context_t *ctx;
5037        struct pt_regs *regs;
5038        unsigned long flags, dummy_flags;
5039        unsigned long ovfl_regs;
5040        unsigned int reason;
5041        int ret;
5042
5043        ctx = PFM_GET_CTX(current);
5044        if (ctx == NULL) {
5045                printk(KERN_ERR "perfmon: [%d] has no PFM context\n",
5046                        task_pid_nr(current));
5047                return;
5048        }
5049
5050        PROTECT_CTX(ctx, flags);
5051
5052        PFM_SET_WORK_PENDING(current, 0);
5053
5054        regs = task_pt_regs(current);
5055
5056        /*
5057         * extract reason for being here and clear
5058         */
5059        reason = ctx->ctx_fl_trap_reason;
5060        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5061        ovfl_regs = ctx->ctx_ovfl_regs[0];
5062
5063        DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5064
5065        /*
5066         * must be done before we check for simple-reset mode
5067         */
5068        if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE)
5069                goto do_zombie;
5070
5071        //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5072        if (reason == PFM_TRAP_REASON_RESET)
5073                goto skip_blocking;
5074
5075        /*
5076         * restore interrupt mask to what it was on entry.
5077         * Could be enabled/diasbled.
5078         */
5079        UNPROTECT_CTX(ctx, flags);
5080
5081        /*
5082         * force interrupt enable because of down_interruptible()
5083         */
5084        local_irq_enable();
5085
5086        DPRINT(("before block sleeping\n"));
5087
5088        /*
5089         * may go through without blocking on SMP systems
5090         * if restart has been received already by the time we call down()
5091         */
5092        ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5093
5094        DPRINT(("after block sleeping ret=%d\n", ret));
5095
5096        /*
5097         * lock context and mask interrupts again
5098         * We save flags into a dummy because we may have
5099         * altered interrupts mask compared to entry in this
5100         * function.
5101         */
5102        PROTECT_CTX(ctx, dummy_flags);
5103
5104        /*
5105         * we need to read the ovfl_regs only after wake-up
5106         * because we may have had pfm_write_pmds() in between
5107         * and that can changed PMD values and therefore 
5108         * ovfl_regs is reset for these new PMD values.
5109         */
5110        ovfl_regs = ctx->ctx_ovfl_regs[0];
5111
5112        if (ctx->ctx_fl_going_zombie) {
5113do_zombie:
5114                DPRINT(("context is zombie, bailing out\n"));
5115                pfm_context_force_terminate(ctx, regs);
5116                goto nothing_to_do;
5117        }
5118        /*
5119         * in case of interruption of down() we don't restart anything
5120         */
5121        if (ret < 0)
5122                goto nothing_to_do;
5123
5124skip_blocking:
5125        pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5126        ctx->ctx_ovfl_regs[0] = 0UL;
5127
5128nothing_to_do:
5129        /*
5130         * restore flags as they were upon entry
5131         */
5132        UNPROTECT_CTX(ctx, flags);
5133}
5134
5135static int
5136pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5137{
5138        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5139                DPRINT(("ignoring overflow notification, owner is zombie\n"));
5140                return 0;
5141        }
5142
5143        DPRINT(("waking up somebody\n"));
5144
5145        if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5146
5147        /*
5148         * safe, we are not in intr handler, nor in ctxsw when
5149         * we come here
5150         */
5151        kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5152
5153        return 0;
5154}
5155
5156static int
5157pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5158{
5159        pfm_msg_t *msg = NULL;
5160
5161        if (ctx->ctx_fl_no_msg == 0) {
5162                msg = pfm_get_new_msg(ctx);
5163                if (msg == NULL) {
5164                        printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5165                        return -1;
5166                }
5167
5168                msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL;
5169                msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd;
5170                msg->pfm_ovfl_msg.msg_active_set   = 0;
5171                msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5172                msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5173                msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5174                msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5175                msg->pfm_ovfl_msg.msg_tstamp       = 0UL;
5176        }
5177
5178        DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5179                msg,
5180                ctx->ctx_fl_no_msg,
5181                ctx->ctx_fd,
5182                ovfl_pmds));
5183
5184        return pfm_notify_user(ctx, msg);
5185}
5186
5187static int
5188pfm_end_notify_user(pfm_context_t *ctx)
5189{
5190        pfm_msg_t *msg;
5191
5192        msg = pfm_get_new_msg(ctx);
5193        if (msg == NULL) {
5194                printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5195                return -1;
5196        }
5197        /* no leak */
5198        memset(msg, 0, sizeof(*msg));
5199
5200        msg->pfm_end_msg.msg_type    = PFM_MSG_END;
5201        msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd;
5202        msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5203
5204        DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5205                msg,
5206                ctx->ctx_fl_no_msg,
5207                ctx->ctx_fd));
5208
5209        return pfm_notify_user(ctx, msg);
5210}
5211
5212/*
5213 * main overflow processing routine.
5214 * it can be called from the interrupt path or explicitly during the context switch code
5215 */
5216static void pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx,
5217                                unsigned long pmc0, struct pt_regs *regs)
5218{
5219        pfm_ovfl_arg_t *ovfl_arg;
5220        unsigned long mask;
5221        unsigned long old_val, ovfl_val, new_val;
5222        unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5223        unsigned long tstamp;
5224        pfm_ovfl_ctrl_t ovfl_ctrl;
5225        unsigned int i, has_smpl;
5226        int must_notify = 0;
5227
5228        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5229
5230        /*
5231         * sanity test. Should never happen
5232         */
5233        if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5234
5235        tstamp   = ia64_get_itc();
5236        mask     = pmc0 >> PMU_FIRST_COUNTER;
5237        ovfl_val = pmu_conf->ovfl_val;
5238        has_smpl = CTX_HAS_SMPL(ctx);
5239
5240        DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5241                     "used_pmds=0x%lx\n",
5242                        pmc0,
5243                        task ? task_pid_nr(task): -1,
5244                        (regs ? regs->cr_iip : 0),
5245                        CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5246                        ctx->ctx_used_pmds[0]));
5247
5248
5249        /*
5250         * first we update the virtual counters
5251         * assume there was a prior ia64_srlz_d() issued
5252         */
5253        for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5254
5255                /* skip pmd which did not overflow */
5256                if ((mask & 0x1) == 0) continue;
5257
5258                /*
5259                 * Note that the pmd is not necessarily 0 at this point as qualified events
5260                 * may have happened before the PMU was frozen. The residual count is not
5261                 * taken into consideration here but will be with any read of the pmd via
5262                 * pfm_read_pmds().
5263                 */
5264                old_val              = new_val = ctx->ctx_pmds[i].val;
5265                new_val             += 1 + ovfl_val;
5266                ctx->ctx_pmds[i].val = new_val;
5267
5268                /*
5269                 * check for overflow condition
5270                 */
5271                if (likely(old_val > new_val)) {
5272                        ovfl_pmds |= 1UL << i;
5273                        if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5274                }
5275
5276                DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5277                        i,
5278                        new_val,
5279                        old_val,
5280                        ia64_get_pmd(i) & ovfl_val,
5281                        ovfl_pmds,
5282                        ovfl_notify));
5283        }
5284
5285        /*
5286         * there was no 64-bit overflow, nothing else to do
5287         */
5288        if (ovfl_pmds == 0UL) return;
5289
5290        /* 
5291         * reset all control bits
5292         */
5293        ovfl_ctrl.val = 0;
5294        reset_pmds    = 0UL;
5295
5296        /*
5297         * if a sampling format module exists, then we "cache" the overflow by 
5298         * calling the module's handler() routine.
5299         */
5300        if (has_smpl) {
5301                unsigned long start_cycles, end_cycles;
5302                unsigned long pmd_mask;
5303                int j, k, ret = 0;
5304                int this_cpu = smp_processor_id();
5305
5306                pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5307                ovfl_arg = &ctx->ctx_ovfl_arg;
5308
5309                prefetch(ctx->ctx_smpl_hdr);
5310
5311                for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5312
5313                        mask = 1UL << i;
5314
5315                        if ((pmd_mask & 0x1) == 0) continue;
5316
5317                        ovfl_arg->ovfl_pmd      = (unsigned char )i;
5318                        ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0;
5319                        ovfl_arg->active_set    = 0;
5320                        ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5321                        ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5322
5323                        ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val;
5324                        ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5325                        ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid;
5326
5327                        /*
5328                         * copy values of pmds of interest. Sampling format may copy them
5329                         * into sampling buffer.
5330                         */
5331                        if (smpl_pmds) {
5332                                for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5333                                        if ((smpl_pmds & 0x1) == 0) continue;
5334                                        ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5335                                        DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5336                                }
5337                        }
5338
5339                        pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5340
5341                        start_cycles = ia64_get_itc();
5342
5343                        /*
5344                         * call custom buffer format record (handler) routine
5345                         */
5346                        ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5347
5348                        end_cycles = ia64_get_itc();
5349
5350                        /*
5351                         * For those controls, we take the union because they have
5352                         * an all or nothing behavior.
5353                         */
5354                        ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5355                        ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task;
5356                        ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5357                        /*
5358                         * build the bitmask of pmds to reset now
5359                         */
5360                        if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5361
5362                        pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5363                }
5364                /*
5365                 * when the module cannot handle the rest of the overflows, we abort right here
5366                 */
5367                if (ret && pmd_mask) {
5368                        DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5369                                pmd_mask<<PMU_FIRST_COUNTER));
5370                }
5371                /*
5372                 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5373                 */
5374                ovfl_pmds &= ~reset_pmds;
5375        } else {
5376                /*
5377                 * when no sampling module is used, then the default
5378                 * is to notify on overflow if requested by user
5379                 */
5380                ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0;
5381                ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0;
5382                ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5383                ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5384                /*
5385                 * if needed, we reset all overflowed pmds
5386                 */
5387                if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5388        }
5389
5390        DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5391
5392        /*
5393         * reset the requested PMD registers using the short reset values
5394         */
5395        if (reset_pmds) {
5396                unsigned long bm = reset_pmds;
5397                pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5398        }
5399
5400        if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5401                /*
5402                 * keep track of what to reset when unblocking
5403                 */
5404                ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5405
5406                /*
5407                 * check for blocking context 
5408                 */
5409                if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5410
5411                        ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5412
5413                        /*
5414                         * set the perfmon specific checking pending work for the task
5415                         */
5416                        PFM_SET_WORK_PENDING(task, 1);
5417
5418                        /*
5419                         * when coming from ctxsw, current still points to the
5420                         * previous task, therefore we must work with task and not current.
5421                         */
5422                        set_notify_resume(task);
5423                }
5424                /*
5425                 * defer until state is changed (shorten spin window). the context is locked
5426                 * anyway, so the signal receiver would come spin for nothing.
5427                 */
5428                must_notify = 1;
5429        }
5430
5431        DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5432                        GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5433                        PFM_GET_WORK_PENDING(task),
5434                        ctx->ctx_fl_trap_reason,
5435                        ovfl_pmds,
5436                        ovfl_notify,
5437                        ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5438        /*
5439         * in case monitoring must be stopped, we toggle the psr bits
5440         */
5441        if (ovfl_ctrl.bits.mask_monitoring) {
5442                pfm_mask_monitoring(task);
5443                ctx->ctx_state = PFM_CTX_MASKED;
5444                ctx->ctx_fl_can_restart = 1;
5445        }
5446
5447        /*
5448         * send notification now
5449         */
5450        if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5451
5452        return;
5453
5454sanity_check:
5455        printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5456                        smp_processor_id(),
5457                        task ? task_pid_nr(task) : -1,
5458                        pmc0);
5459        return;
5460
5461stop_monitoring:
5462        /*
5463         * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5464         * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5465         * come here as zombie only if the task is the current task. In which case, we
5466         * can access the PMU  hardware directly.
5467         *
5468         * Note that zombies do have PM_VALID set. So here we do the minimal.
5469         *
5470         * In case the context was zombified it could not be reclaimed at the time
5471         * the monitoring program exited. At this point, the PMU reservation has been
5472         * returned, the sampiing buffer has been freed. We must convert this call
5473         * into a spurious interrupt. However, we must also avoid infinite overflows
5474         * by stopping monitoring for this task. We can only come here for a per-task
5475         * context. All we need to do is to stop monitoring using the psr bits which
5476         * are always task private. By re-enabling secure montioring, we ensure that
5477         * the monitored task will not be able to re-activate monitoring.
5478         * The task will eventually be context switched out, at which point the context
5479         * will be reclaimed (that includes releasing ownership of the PMU).
5480         *
5481         * So there might be a window of time where the number of per-task session is zero
5482         * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5483         * context. This is safe because if a per-task session comes in, it will push this one
5484         * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5485         * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5486         * also push our zombie context out.
5487         *
5488         * Overall pretty hairy stuff....
5489         */
5490        DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1));
5491        pfm_clear_psr_up();
5492        ia64_psr(regs)->up = 0;
5493        ia64_psr(regs)->sp = 1;
5494        return;
5495}
5496
5497static int
5498pfm_do_interrupt_handler(void *arg, struct pt_regs *regs)
5499{
5500        struct task_struct *task;
5501        pfm_context_t *ctx;
5502        unsigned long flags;
5503        u64 pmc0;
5504        int this_cpu = smp_processor_id();
5505        int retval = 0;
5506
5507        pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5508
5509        /*
5510         * srlz.d done before arriving here
5511         */
5512        pmc0 = ia64_get_pmc(0);
5513
5514        task = GET_PMU_OWNER();
5515        ctx  = GET_PMU_CTX();
5516
5517        /*
5518         * if we have some pending bits set
5519         * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5520         */
5521        if (PMC0_HAS_OVFL(pmc0) && task) {
5522                /*
5523                 * we assume that pmc0.fr is always set here
5524                 */
5525
5526                /* sanity check */
5527                if (!ctx) goto report_spurious1;
5528
5529                if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) 
5530                        goto report_spurious2;
5531
5532                PROTECT_CTX_NOPRINT(ctx, flags);
5533
5534                pfm_overflow_handler(task, ctx, pmc0, regs);
5535
5536                UNPROTECT_CTX_NOPRINT(ctx, flags);
5537
5538        } else {
5539                pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5540                retval = -1;
5541        }
5542        /*
5543         * keep it unfrozen at all times
5544         */
5545        pfm_unfreeze_pmu();
5546
5547        return retval;
5548
5549report_spurious1:
5550        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5551                this_cpu, task_pid_nr(task));
5552        pfm_unfreeze_pmu();
5553        return -1;
5554report_spurious2:
5555        printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", 
5556                this_cpu, 
5557                task_pid_nr(task));
5558        pfm_unfreeze_pmu();
5559        return -1;
5560}
5561
5562static irqreturn_t
5563pfm_interrupt_handler(int irq, void *arg)
5564{
5565        unsigned long start_cycles, total_cycles;
5566        unsigned long min, max;
5567        int this_cpu;
5568        int ret;
5569        struct pt_regs *regs = get_irq_regs();
5570
5571        this_cpu = get_cpu();
5572        if (likely(!pfm_alt_intr_handler)) {
5573                min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5574                max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5575
5576                start_cycles = ia64_get_itc();
5577
5578                ret = pfm_do_interrupt_handler(arg, regs);
5579
5580                total_cycles = ia64_get_itc();
5581
5582                /*
5583                 * don't measure spurious interrupts
5584                 */
5585                if (likely(ret == 0)) {
5586                        total_cycles -= start_cycles;
5587
5588                        if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5589                        if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5590
5591                        pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5592                }
5593        }
5594        else {
5595                (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5596        }
5597
5598        put_cpu();
5599        return IRQ_HANDLED;
5600}
5601
5602/*
5603 * /proc/perfmon interface, for debug only
5604 */
5605
5606#define PFM_PROC_SHOW_HEADER    ((void *)(long)nr_cpu_ids+1)
5607
5608static void *
5609pfm_proc_start(struct seq_file *m, loff_t *pos)
5610{
5611        if (*pos == 0) {
5612                return PFM_PROC_SHOW_HEADER;
5613        }
5614
5615        while (*pos <= nr_cpu_ids) {
5616                if (cpu_online(*pos - 1)) {
5617                        return (void *)*pos;
5618                }
5619                ++*pos;
5620        }
5621        return NULL;
5622}
5623
5624static void *
5625pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5626{
5627        ++*pos;
5628        return pfm_proc_start(m, pos);
5629}
5630
5631static void
5632pfm_proc_stop(struct seq_file *m, void *v)
5633{
5634}
5635
5636static void
5637pfm_proc_show_header(struct seq_file *m)
5638{
5639        struct list_head * pos;
5640        pfm_buffer_fmt_t * entry;
5641        unsigned long flags;
5642
5643        seq_printf(m,
5644                "perfmon version           : %u.%u\n"
5645                "model                     : %s\n"
5646                "fastctxsw                 : %s\n"
5647                "expert mode               : %s\n"
5648                "ovfl_mask                 : 0x%lx\n"
5649                "PMU flags                 : 0x%x\n",
5650                PFM_VERSION_MAJ, PFM_VERSION_MIN,
5651                pmu_conf->pmu_name,
5652                pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5653                pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5654                pmu_conf->ovfl_val,
5655                pmu_conf->flags);
5656
5657        LOCK_PFS(flags);
5658
5659        seq_printf(m,
5660                "proc_sessions             : %u\n"
5661                "sys_sessions              : %u\n"
5662                "sys_use_dbregs            : %u\n"
5663                "ptrace_use_dbregs         : %u\n",
5664                pfm_sessions.pfs_task_sessions,
5665                pfm_sessions.pfs_sys_sessions,
5666                pfm_sessions.pfs_sys_use_dbregs,
5667                pfm_sessions.pfs_ptrace_use_dbregs);
5668
5669        UNLOCK_PFS(flags);
5670
5671        spin_lock(&pfm_buffer_fmt_lock);
5672
5673        list_for_each(pos, &pfm_buffer_fmt_list) {
5674                entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5675                seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5676                        entry->fmt_uuid[0],
5677                        entry->fmt_uuid[1],
5678                        entry->fmt_uuid[2],
5679                        entry->fmt_uuid[3],
5680                        entry->fmt_uuid[4],
5681                        entry->fmt_uuid[5],
5682                        entry->fmt_uuid[6],
5683                        entry->fmt_uuid[7],
5684                        entry->fmt_uuid[8],
5685                        entry->fmt_uuid[9],
5686                        entry->fmt_uuid[10],
5687                        entry->fmt_uuid[11],
5688                        entry->fmt_uuid[12],
5689                        entry->fmt_uuid[13],
5690                        entry->fmt_uuid[14],
5691                        entry->fmt_uuid[15],
5692                        entry->fmt_name);
5693        }
5694        spin_unlock(&pfm_buffer_fmt_lock);
5695
5696}
5697
5698static int
5699pfm_proc_show(struct seq_file *m, void *v)
5700{
5701        unsigned long psr;
5702        unsigned int i;
5703        int cpu;
5704
5705        if (v == PFM_PROC_SHOW_HEADER) {
5706                pfm_proc_show_header(m);
5707                return 0;
5708        }
5709
5710        /* show info for CPU (v - 1) */
5711
5712        cpu = (long)v - 1;
5713        seq_printf(m,
5714                "CPU%-2d overflow intrs      : %lu\n"
5715                "CPU%-2d overflow cycles     : %lu\n"
5716                "CPU%-2d overflow min        : %lu\n"
5717                "CPU%-2d overflow max        : %lu\n"
5718                "CPU%-2d smpl handler calls  : %lu\n"
5719                "CPU%-2d smpl handler cycles : %lu\n"
5720                "CPU%-2d spurious intrs      : %lu\n"
5721                "CPU%-2d replay   intrs      : %lu\n"
5722                "CPU%-2d syst_wide           : %d\n"
5723                "CPU%-2d dcr_pp              : %d\n"
5724                "CPU%-2d exclude idle        : %d\n"
5725                "CPU%-2d owner               : %d\n"
5726                "CPU%-2d context             : %p\n"
5727                "CPU%-2d activations         : %lu\n",
5728                cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5729                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5730                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5731                cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5732                cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5733                cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5734                cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5735                cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5736                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5737                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5738                cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5739                cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5740                cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5741                cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5742
5743        if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5744
5745                psr = pfm_get_psr();
5746
5747                ia64_srlz_d();
5748
5749                seq_printf(m, 
5750                        "CPU%-2d psr                 : 0x%lx\n"
5751                        "CPU%-2d pmc0                : 0x%lx\n", 
5752                        cpu, psr,
5753                        cpu, ia64_get_pmc(0));
5754
5755                for (i=0; PMC_IS_LAST(i) == 0;  i++) {
5756                        if (PMC_IS_COUNTING(i) == 0) continue;
5757                        seq_printf(m, 
5758                                "CPU%-2d pmc%u                : 0x%lx\n"
5759                                "CPU%-2d pmd%u                : 0x%lx\n", 
5760                                cpu, i, ia64_get_pmc(i),
5761                                cpu, i, ia64_get_pmd(i));
5762                }
5763        }
5764        return 0;
5765}
5766
5767const struct seq_operations pfm_seq_ops = {
5768        .start =        pfm_proc_start,
5769        .next =         pfm_proc_next,
5770        .stop =         pfm_proc_stop,
5771        .show =         pfm_proc_show
5772};
5773
5774static int
5775pfm_proc_open(struct inode *inode, struct file *file)
5776{
5777        return seq_open(file, &pfm_seq_ops);
5778}
5779
5780
5781/*
5782 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5783 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5784 * is active or inactive based on mode. We must rely on the value in
5785 * local_cpu_data->pfm_syst_info
5786 */
5787void
5788pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5789{
5790        struct pt_regs *regs;
5791        unsigned long dcr;
5792        unsigned long dcr_pp;
5793
5794        dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5795
5796        /*
5797         * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5798         * on every CPU, so we can rely on the pid to identify the idle task.
5799         */
5800        if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5801                regs = task_pt_regs(task);
5802                ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5803                return;
5804        }
5805        /*
5806         * if monitoring has started
5807         */
5808        if (dcr_pp) {
5809                dcr = ia64_getreg(_IA64_REG_CR_DCR);
5810                /*
5811                 * context switching in?
5812                 */
5813                if (is_ctxswin) {
5814                        /* mask monitoring for the idle task */
5815                        ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5816                        pfm_clear_psr_pp();
5817                        ia64_srlz_i();
5818                        return;
5819                }
5820                /*
5821                 * context switching out
5822                 * restore monitoring for next task
5823                 *
5824                 * Due to inlining this odd if-then-else construction generates
5825                 * better code.
5826                 */
5827                ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5828                pfm_set_psr_pp();
5829                ia64_srlz_i();
5830        }
5831}
5832
5833#ifdef CONFIG_SMP
5834
5835static void
5836pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5837{
5838        struct task_struct *task = ctx->ctx_task;
5839
5840        ia64_psr(regs)->up = 0;
5841        ia64_psr(regs)->sp = 1;
5842
5843        if (GET_PMU_OWNER() == task) {
5844                DPRINT(("cleared ownership for [%d]\n",
5845                                        task_pid_nr(ctx->ctx_task)));
5846                SET_PMU_OWNER(NULL, NULL);
5847        }
5848
5849        /*
5850         * disconnect the task from the context and vice-versa
5851         */
5852        PFM_SET_WORK_PENDING(task, 0);
5853
5854        task->thread.pfm_context  = NULL;
5855        task->thread.flags       &= ~IA64_THREAD_PM_VALID;
5856
5857        DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task)));
5858}
5859
5860
5861/*
5862 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5863 */
5864void
5865pfm_save_regs(struct task_struct *task)
5866{
5867        pfm_context_t *ctx;
5868        unsigned long flags;
5869        u64 psr;
5870
5871
5872        ctx = PFM_GET_CTX(task);
5873        if (ctx == NULL) return;
5874
5875        /*
5876         * we always come here with interrupts ALREADY disabled by
5877         * the scheduler. So we simply need to protect against concurrent
5878         * access, not CPU concurrency.
5879         */
5880        flags = pfm_protect_ctx_ctxsw(ctx);
5881
5882        if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5883                struct pt_regs *regs = task_pt_regs(task);
5884
5885                pfm_clear_psr_up();
5886
5887                pfm_force_cleanup(ctx, regs);
5888
5889                BUG_ON(ctx->ctx_smpl_hdr);
5890
5891                pfm_unprotect_ctx_ctxsw(ctx, flags);
5892
5893                pfm_context_free(ctx);
5894                return;
5895        }
5896
5897        /*
5898         * save current PSR: needed because we modify it
5899         */
5900        ia64_srlz_d();
5901        psr = pfm_get_psr();
5902
5903        BUG_ON(psr & (IA64_PSR_I));
5904
5905        /*
5906         * stop monitoring:
5907         * This is the last instruction which may generate an overflow
5908         *
5909         * We do not need to set psr.sp because, it is irrelevant in kernel.
5910         * It will be restored from ipsr when going back to user level
5911         */
5912        pfm_clear_psr_up();
5913
5914        /*
5915         * keep a copy of psr.up (for reload)
5916         */
5917        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5918
5919        /*
5920         * release ownership of this PMU.
5921         * PM interrupts are masked, so nothing
5922         * can happen.
5923         */
5924        SET_PMU_OWNER(NULL, NULL);
5925
5926        /*
5927         * we systematically save the PMD as we have no
5928         * guarantee we will be schedule at that same
5929         * CPU again.
5930         */
5931        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5932
5933        /*
5934         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5935         * we will need it on the restore path to check
5936         * for pending overflow.
5937         */
5938        ctx->th_pmcs[0] = ia64_get_pmc(0);
5939
5940        /*
5941         * unfreeze PMU if had pending overflows
5942         */
5943        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5944
5945        /*
5946         * finally, allow context access.
5947         * interrupts will still be masked after this call.
5948         */
5949        pfm_unprotect_ctx_ctxsw(ctx, flags);
5950}
5951
5952#else /* !CONFIG_SMP */
5953void
5954pfm_save_regs(struct task_struct *task)
5955{
5956        pfm_context_t *ctx;
5957        u64 psr;
5958
5959        ctx = PFM_GET_CTX(task);
5960        if (ctx == NULL) return;
5961
5962        /*
5963         * save current PSR: needed because we modify it
5964         */
5965        psr = pfm_get_psr();
5966
5967        BUG_ON(psr & (IA64_PSR_I));
5968
5969        /*
5970         * stop monitoring:
5971         * This is the last instruction which may generate an overflow
5972         *
5973         * We do not need to set psr.sp because, it is irrelevant in kernel.
5974         * It will be restored from ipsr when going back to user level
5975         */
5976        pfm_clear_psr_up();
5977
5978        /*
5979         * keep a copy of psr.up (for reload)
5980         */
5981        ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5982}
5983
5984static void
5985pfm_lazy_save_regs (struct task_struct *task)
5986{
5987        pfm_context_t *ctx;
5988        unsigned long flags;
5989
5990        { u64 psr  = pfm_get_psr();
5991          BUG_ON(psr & IA64_PSR_UP);
5992        }
5993
5994        ctx = PFM_GET_CTX(task);
5995
5996        /*
5997         * we need to mask PMU overflow here to
5998         * make sure that we maintain pmc0 until
5999         * we save it. overflow interrupts are
6000         * treated as spurious if there is no
6001         * owner.
6002         *
6003         * XXX: I don't think this is necessary
6004         */
6005        PROTECT_CTX(ctx,flags);
6006
6007        /*
6008         * release ownership of this PMU.
6009         * must be done before we save the registers.
6010         *
6011         * after this call any PMU interrupt is treated
6012         * as spurious.
6013         */
6014        SET_PMU_OWNER(NULL, NULL);
6015
6016        /*
6017         * save all the pmds we use
6018         */
6019        pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6020
6021        /*
6022         * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6023         * it is needed to check for pended overflow
6024         * on the restore path
6025         */
6026        ctx->th_pmcs[0] = ia64_get_pmc(0);
6027
6028        /*
6029         * unfreeze PMU if had pending overflows
6030         */
6031        if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6032
6033        /*
6034         * now get can unmask PMU interrupts, they will
6035         * be treated as purely spurious and we will not
6036         * lose any information
6037         */
6038        UNPROTECT_CTX(ctx,flags);
6039}
6040#endif /* CONFIG_SMP */
6041
6042#ifdef CONFIG_SMP
6043/*
6044 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6045 */
6046void
6047pfm_load_regs (struct task_struct *task)
6048{
6049        pfm_context_t *ctx;
6050        unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6051        unsigned long flags;
6052        u64 psr, psr_up;
6053        int need_irq_resend;
6054
6055        ctx = PFM_GET_CTX(task);
6056        if (unlikely(ctx == NULL)) return;
6057
6058        BUG_ON(GET_PMU_OWNER());
6059
6060        /*
6061         * possible on unload
6062         */
6063        if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6064
6065        /*
6066         * we always come here with interrupts ALREADY disabled by
6067         * the scheduler. So we simply need to protect against concurrent
6068         * access, not CPU concurrency.
6069         */
6070        flags = pfm_protect_ctx_ctxsw(ctx);
6071        psr   = pfm_get_psr();
6072
6073        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6074
6075        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6076        BUG_ON(psr & IA64_PSR_I);
6077
6078        if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6079                struct pt_regs *regs = task_pt_regs(task);
6080
6081                BUG_ON(ctx->ctx_smpl_hdr);
6082
6083                pfm_force_cleanup(ctx, regs);
6084
6085                pfm_unprotect_ctx_ctxsw(ctx, flags);
6086
6087                /*
6088                 * this one (kmalloc'ed) is fine with interrupts disabled
6089                 */
6090                pfm_context_free(ctx);
6091
6092                return;
6093        }
6094
6095        /*
6096         * we restore ALL the debug registers to avoid picking up
6097         * stale state.
6098         */
6099        if (ctx->ctx_fl_using_dbreg) {
6100                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6101                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6102        }
6103        /*
6104         * retrieve saved psr.up
6105         */
6106        psr_up = ctx->ctx_saved_psr_up;
6107
6108        /*
6109         * if we were the last user of the PMU on that CPU,
6110         * then nothing to do except restore psr
6111         */
6112        if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6113
6114                /*
6115                 * retrieve partial reload masks (due to user modifications)
6116                 */
6117                pmc_mask = ctx->ctx_reload_pmcs[0];
6118                pmd_mask = ctx->ctx_reload_pmds[0];
6119
6120        } else {
6121                /*
6122                 * To avoid leaking information to the user level when psr.sp=0,
6123                 * we must reload ALL implemented pmds (even the ones we don't use).
6124                 * In the kernel we only allow PFM_READ_PMDS on registers which
6125                 * we initialized or requested (sampling) so there is no risk there.
6126                 */
6127                pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6128
6129                /*
6130                 * ALL accessible PMCs are systematically reloaded, unused registers
6131                 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6132                 * up stale configuration.
6133                 *
6134                 * PMC0 is never in the mask. It is always restored separately.
6135                 */
6136                pmc_mask = ctx->ctx_all_pmcs[0];
6137        }
6138        /*
6139         * when context is MASKED, we will restore PMC with plm=0
6140         * and PMD with stale information, but that's ok, nothing
6141         * will be captured.
6142         *
6143         * XXX: optimize here
6144         */
6145        if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6146        if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6147
6148        /*
6149         * check for pending overflow at the time the state
6150         * was saved.
6151         */
6152        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6153                /*
6154                 * reload pmc0 with the overflow information
6155                 * On McKinley PMU, this will trigger a PMU interrupt
6156                 */
6157                ia64_set_pmc(0, ctx->th_pmcs[0]);
6158                ia64_srlz_d();
6159                ctx->th_pmcs[0] = 0UL;
6160
6161                /*
6162                 * will replay the PMU interrupt
6163                 */
6164                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6165
6166                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6167        }
6168
6169        /*
6170         * we just did a reload, so we reset the partial reload fields
6171         */
6172        ctx->ctx_reload_pmcs[0] = 0UL;
6173        ctx->ctx_reload_pmds[0] = 0UL;
6174
6175        SET_LAST_CPU(ctx, smp_processor_id());
6176
6177        /*
6178         * dump activation value for this PMU
6179         */
6180        INC_ACTIVATION();
6181        /*
6182         * record current activation for this context
6183         */
6184        SET_ACTIVATION(ctx);
6185
6186        /*
6187         * establish new ownership. 
6188         */
6189        SET_PMU_OWNER(task, ctx);
6190
6191        /*
6192         * restore the psr.up bit. measurement
6193         * is active again.
6194         * no PMU interrupt can happen at this point
6195         * because we still have interrupts disabled.
6196         */
6197        if (likely(psr_up)) pfm_set_psr_up();
6198
6199        /*
6200         * allow concurrent access to context
6201         */
6202        pfm_unprotect_ctx_ctxsw(ctx, flags);
6203}
6204#else /*  !CONFIG_SMP */
6205/*
6206 * reload PMU state for UP kernels
6207 * in 2.5 we come here with interrupts disabled
6208 */
6209void
6210pfm_load_regs (struct task_struct *task)
6211{
6212        pfm_context_t *ctx;
6213        struct task_struct *owner;
6214        unsigned long pmd_mask, pmc_mask;
6215        u64 psr, psr_up;
6216        int need_irq_resend;
6217
6218        owner = GET_PMU_OWNER();
6219        ctx   = PFM_GET_CTX(task);
6220        psr   = pfm_get_psr();
6221
6222        BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6223        BUG_ON(psr & IA64_PSR_I);
6224
6225        /*
6226         * we restore ALL the debug registers to avoid picking up
6227         * stale state.
6228         *
6229         * This must be done even when the task is still the owner
6230         * as the registers may have been modified via ptrace()
6231         * (not perfmon) by the previous task.
6232         */
6233        if (ctx->ctx_fl_using_dbreg) {
6234                pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6235                pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6236        }
6237
6238        /*
6239         * retrieved saved psr.up
6240         */
6241        psr_up = ctx->ctx_saved_psr_up;
6242        need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6243
6244        /*
6245         * short path, our state is still there, just
6246         * need to restore psr and we go
6247         *
6248         * we do not touch either PMC nor PMD. the psr is not touched
6249         * by the overflow_handler. So we are safe w.r.t. to interrupt
6250         * concurrency even without interrupt masking.
6251         */
6252        if (likely(owner == task)) {
6253                if (likely(psr_up)) pfm_set_psr_up();
6254                return;
6255        }
6256
6257        /*
6258         * someone else is still using the PMU, first push it out and
6259         * then we'll be able to install our stuff !
6260         *
6261         * Upon return, there will be no owner for the current PMU
6262         */
6263        if (owner) pfm_lazy_save_regs(owner);
6264
6265        /*
6266         * To avoid leaking information to the user level when psr.sp=0,
6267         * we must reload ALL implemented pmds (even the ones we don't use).
6268         * In the kernel we only allow PFM_READ_PMDS on registers which
6269         * we initialized or requested (sampling) so there is no risk there.
6270         */
6271        pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6272
6273        /*
6274         * ALL accessible PMCs are systematically reloaded, unused registers
6275         * get their default (from pfm_reset_pmu_state()) values to avoid picking
6276         * up stale configuration.
6277         *
6278         * PMC0 is never in the mask. It is always restored separately
6279         */
6280        pmc_mask = ctx->ctx_all_pmcs[0];
6281
6282        pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6283        pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6284
6285        /*
6286         * check for pending overflow at the time the state
6287         * was saved.
6288         */
6289        if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6290                /*
6291                 * reload pmc0 with the overflow information
6292                 * On McKinley PMU, this will trigger a PMU interrupt
6293                 */
6294                ia64_set_pmc(0, ctx->th_pmcs[0]);
6295                ia64_srlz_d();
6296
6297                ctx->th_pmcs[0] = 0UL;
6298
6299                /*
6300                 * will replay the PMU interrupt
6301                 */
6302                if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6303
6304                pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6305        }
6306
6307        /*
6308         * establish new ownership. 
6309         */
6310        SET_PMU_OWNER(task, ctx);
6311
6312        /*
6313         * restore the psr.up bit. measurement
6314         * is active again.
6315         * no PMU interrupt can happen at this point
6316         * because we still have interrupts disabled.
6317         */
6318        if (likely(psr_up)) pfm_set_psr_up();
6319}
6320#endif /* CONFIG_SMP */
6321
6322/*
6323 * this function assumes monitoring is stopped
6324 */
6325static void
6326pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6327{
6328        u64 pmc0;
6329        unsigned long mask2, val, pmd_val, ovfl_val;
6330        int i, can_access_pmu = 0;
6331        int is_self;
6332
6333        /*
6334         * is the caller the task being monitored (or which initiated the
6335         * session for system wide measurements)
6336         */
6337        is_self = ctx->ctx_task == task ? 1 : 0;
6338
6339        /*
6340         * can access PMU is task is the owner of the PMU state on the current CPU
6341         * or if we are running on the CPU bound to the context in system-wide mode
6342         * (that is not necessarily the task the context is attached to in this mode).
6343         * In system-wide we always have can_access_pmu true because a task running on an
6344         * invalid processor is flagged earlier in the call stack (see pfm_stop).
6345         */
6346        can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6347        if (can_access_pmu) {
6348                /*
6349                 * Mark the PMU as not owned
6350                 * This will cause the interrupt handler to do nothing in case an overflow
6351                 * interrupt was in-flight
6352                 * This also guarantees that pmc0 will contain the final state
6353                 * It virtually gives us full control on overflow processing from that point
6354                 * on.
6355                 */
6356                SET_PMU_OWNER(NULL, NULL);
6357                DPRINT(("releasing ownership\n"));
6358
6359                /*
6360                 * read current overflow status:
6361                 *
6362                 * we are guaranteed to read the final stable state
6363                 */
6364                ia64_srlz_d();
6365                pmc0 = ia64_get_pmc(0); /* slow */
6366
6367                /*
6368                 * reset freeze bit, overflow status information destroyed
6369                 */
6370                pfm_unfreeze_pmu();
6371        } else {
6372                pmc0 = ctx->th_pmcs[0];
6373                /*
6374                 * clear whatever overflow status bits there were
6375                 */
6376                ctx->th_pmcs[0] = 0;
6377        }
6378        ovfl_val = pmu_conf->ovfl_val;
6379        /*
6380         * we save all the used pmds
6381         * we take care of overflows for counting PMDs
6382         *
6383         * XXX: sampling situation is not taken into account here
6384         */
6385        mask2 = ctx->ctx_used_pmds[0];
6386
6387        DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6388
6389        for (i = 0; mask2; i++, mask2>>=1) {
6390
6391                /* skip non used pmds */
6392                if ((mask2 & 0x1) == 0) continue;
6393
6394                /*
6395                 * can access PMU always true in system wide mode
6396                 */
6397                val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6398
6399                if (PMD_IS_COUNTING(i)) {
6400                        DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6401                                task_pid_nr(task),
6402                                i,
6403                                ctx->ctx_pmds[i].val,
6404                                val & ovfl_val));
6405
6406                        /*
6407                         * we rebuild the full 64 bit value of the counter
6408                         */
6409                        val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6410
6411                        /*
6412                         * now everything is in ctx_pmds[] and we need
6413                         * to clear the saved context from save_regs() such that
6414                         * pfm_read_pmds() gets the correct value
6415                         */
6416                        pmd_val = 0UL;
6417
6418                        /*
6419                         * take care of overflow inline
6420                         */
6421                        if (pmc0 & (1UL << i)) {
6422                                val += 1 + ovfl_val;
6423                                DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i));
6424                        }
6425                }
6426
6427                DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val));
6428
6429                if (is_self) ctx->th_pmds[i] = pmd_val;
6430
6431                ctx->ctx_pmds[i].val = val;
6432        }
6433}
6434
6435static struct irqaction perfmon_irqaction = {
6436        .handler = pfm_interrupt_handler,
6437        .flags   = IRQF_DISABLED,
6438        .name    = "perfmon"
6439};
6440
6441static void
6442pfm_alt_save_pmu_state(void *data)
6443{
6444        struct pt_regs *regs;
6445
6446        regs = task_pt_regs(current);
6447
6448        DPRINT(("called\n"));
6449
6450        /*
6451         * should not be necessary but
6452         * let's take not risk
6453         */
6454        pfm_clear_psr_up();
6455        pfm_clear_psr_pp();
6456        ia64_psr(regs)->pp = 0;
6457
6458        /*
6459         * This call is required
6460         * May cause a spurious interrupt on some processors
6461         */
6462        pfm_freeze_pmu();
6463
6464        ia64_srlz_d();
6465}
6466
6467void
6468pfm_alt_restore_pmu_state(void *data)
6469{
6470        struct pt_regs *regs;
6471
6472        regs = task_pt_regs(current);
6473
6474        DPRINT(("called\n"));
6475
6476        /*
6477         * put PMU back in state expected
6478         * by perfmon
6479         */
6480        pfm_clear_psr_up();
6481        pfm_clear_psr_pp();
6482        ia64_psr(regs)->pp = 0;
6483
6484        /*
6485         * perfmon runs with PMU unfrozen at all times
6486         */
6487        pfm_unfreeze_pmu();
6488
6489        ia64_srlz_d();
6490}
6491
6492int
6493pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6494{
6495        int ret, i;
6496        int reserve_cpu;
6497
6498        /* some sanity checks */
6499        if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6500
6501        /* do the easy test first */
6502        if (pfm_alt_intr_handler) return -EBUSY;
6503
6504        /* one at a time in the install or remove, just fail the others */
6505        if (!spin_trylock(&pfm_alt_install_check)) {
6506                return -EBUSY;
6507        }
6508
6509        /* reserve our session */
6510        for_each_online_cpu(reserve_cpu) {
6511                ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6512                if (ret) goto cleanup_reserve;
6513        }
6514
6515        /* save the current system wide pmu states */
6516        ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1);
6517        if (ret) {
6518                DPRINT(("on_each_cpu() failed: %d\n", ret));
6519                goto cleanup_reserve;
6520        }
6521
6522        /* officially change to the alternate interrupt handler */
6523        pfm_alt_intr_handler = hdl;
6524
6525        spin_unlock(&pfm_alt_install_check);
6526
6527        return 0;
6528
6529cleanup_reserve:
6530        for_each_online_cpu(i) {
6531                /* don't unreserve more than we reserved */
6532                if (i >= reserve_cpu) break;
6533
6534                pfm_unreserve_session(NULL, 1, i);
6535        }
6536
6537        spin_unlock(&pfm_alt_install_check);
6538
6539        return ret;
6540}
6541EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6542
6543int
6544pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6545{
6546        int i;
6547        int ret;
6548
6549        if (hdl == NULL) return -EINVAL;
6550
6551        /* cannot remove someone else's handler! */
6552        if (pfm_alt_intr_handler != hdl) return -EINVAL;
6553
6554        /* one at a time in the install or remove, just fail the others */
6555        if (!spin_trylock(&pfm_alt_install_check)) {
6556                return -EBUSY;
6557        }
6558
6559        pfm_alt_intr_handler = NULL;
6560
6561        ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1);
6562        if (ret) {
6563                DPRINT(("on_each_cpu() failed: %d\n", ret));
6564        }
6565
6566        for_each_online_cpu(i) {
6567                pfm_unreserve_session(NULL, 1, i);
6568        }
6569
6570        spin_unlock(&pfm_alt_install_check);
6571
6572        return 0;
6573}
6574EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6575
6576/*
6577 * perfmon initialization routine, called from the initcall() table
6578 */
6579static int init_pfm_fs(void);
6580
6581static int __init
6582pfm_probe_pmu(void)
6583{
6584        pmu_config_t **p;
6585        int family;
6586
6587        family = local_cpu_data->family;
6588        p      = pmu_confs;
6589
6590        while(*p) {
6591                if ((*p)->probe) {
6592                        if ((*p)->probe() == 0) goto found;
6593                } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6594                        goto found;
6595                }
6596                p++;
6597        }
6598        return -1;
6599found:
6600        pmu_conf = *p;
6601        return 0;
6602}
6603
6604static const struct file_operations pfm_proc_fops = {
6605        .open           = pfm_proc_open,
6606        .read           = seq_read,
6607        .llseek         = seq_lseek,
6608        .release        = seq_release,
6609};
6610
6611int __init
6612pfm_init(void)
6613{
6614        unsigned int n, n_counters, i;
6615
6616        printk("perfmon: version %u.%u IRQ %u\n",
6617                PFM_VERSION_MAJ,
6618                PFM_VERSION_MIN,
6619                IA64_PERFMON_VECTOR);
6620
6621        if (pfm_probe_pmu()) {
6622                printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", 
6623                                local_cpu_data->family);
6624                return -ENODEV;
6625        }
6626
6627        /*
6628         * compute the number of implemented PMD/PMC from the
6629         * description tables
6630         */
6631        n = 0;
6632        for (i=0; PMC_IS_LAST(i) == 0;  i++) {
6633                if (PMC_IS_IMPL(i) == 0) continue;
6634                pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6635                n++;
6636        }
6637        pmu_conf->num_pmcs = n;
6638
6639        n = 0; n_counters = 0;
6640        for (i=0; PMD_IS_LAST(i) == 0;  i++) {
6641                if (PMD_IS_IMPL(i) == 0) continue;
6642                pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6643                n++;
6644                if (PMD_IS_COUNTING(i)) n_counters++;
6645        }
6646        pmu_conf->num_pmds      = n;
6647        pmu_conf->num_counters  = n_counters;
6648
6649        /*
6650         * sanity checks on the number of debug registers
6651         */
6652        if (pmu_conf->use_rr_dbregs) {
6653                if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6654                        printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6655                        pmu_conf = NULL;
6656                        return -1;
6657                }
6658                if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6659                        printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6660                        pmu_conf = NULL;
6661                        return -1;
6662                }
6663        }
6664
6665        printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6666               pmu_conf->pmu_name,
6667               pmu_conf->num_pmcs,
6668               pmu_conf->num_pmds,
6669               pmu_conf->num_counters,
6670               ffz(pmu_conf->ovfl_val));
6671
6672        /* sanity check */
6673        if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6674                printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6675                pmu_conf = NULL;
6676                return -1;
6677        }
6678
6679        /*
6680         * create /proc/perfmon (mostly for debugging purposes)
6681         */
6682        perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops);
6683        if (perfmon_dir == NULL) {
6684                printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6685                pmu_conf = NULL;
6686                return -1;
6687        }
6688
6689        /*
6690         * create /proc/sys/kernel/perfmon (for debugging purposes)
6691         */
6692        pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6693
6694        /*
6695         * initialize all our spinlocks
6696         */
6697        spin_lock_init(&pfm_sessions.pfs_lock);
6698        spin_lock_init(&pfm_buffer_fmt_lock);
6699
6700        init_pfm_fs();
6701
6702        for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6703
6704        return 0;
6705}
6706
6707__initcall(pfm_init);
6708
6709/*
6710 * this function is called before pfm_init()
6711 */
6712void
6713pfm_init_percpu (void)
6714{
6715        static int first_time=1;
6716        /*
6717         * make sure no measurement is active
6718         * (may inherit programmed PMCs from EFI).
6719         */
6720        pfm_clear_psr_pp();
6721        pfm_clear_psr_up();
6722
6723        /*
6724         * we run with the PMU not frozen at all times
6725         */
6726        pfm_unfreeze_pmu();
6727
6728        if (first_time) {
6729                register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6730                first_time=0;
6731        }
6732
6733        ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6734        ia64_srlz_d();
6735}
6736
6737/*
6738 * used for debug purposes only
6739 */
6740void
6741dump_pmu_state(const char *from)
6742{
6743        struct task_struct *task;
6744        struct pt_regs *regs;
6745        pfm_context_t *ctx;
6746        unsigned long psr, dcr, info, flags;
6747        int i, this_cpu;
6748
6749        local_irq_save(flags);
6750
6751        this_cpu = smp_processor_id();
6752        regs     = task_pt_regs(current);
6753        info     = PFM_CPUINFO_GET();
6754        dcr      = ia64_getreg(_IA64_REG_CR_DCR);
6755
6756        if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6757                local_irq_restore(flags);
6758                return;
6759        }
6760
6761        printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", 
6762                this_cpu, 
6763                from, 
6764                task_pid_nr(current),
6765                regs->cr_iip,
6766                current->comm);
6767
6768        task = GET_PMU_OWNER();
6769        ctx  = GET_PMU_CTX();
6770
6771        printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx);
6772
6773        psr = pfm_get_psr();
6774
6775        printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", 
6776                this_cpu,
6777                ia64_get_pmc(0),
6778                psr & IA64_PSR_PP ? 1 : 0,
6779                psr & IA64_PSR_UP ? 1 : 0,
6780                dcr & IA64_DCR_PP ? 1 : 0,
6781                info,
6782                ia64_psr(regs)->up,
6783                ia64_psr(regs)->pp);
6784
6785        ia64_psr(regs)->up = 0;
6786        ia64_psr(regs)->pp = 0;
6787
6788        for (i=1; PMC_IS_LAST(i) == 0; i++) {
6789                if (PMC_IS_IMPL(i) == 0) continue;
6790                printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6791        }
6792
6793        for (i=1; PMD_IS_LAST(i) == 0; i++) {
6794                if (PMD_IS_IMPL(i) == 0) continue;
6795                printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6796        }
6797
6798        if (ctx) {
6799                printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6800                                this_cpu,
6801                                ctx->ctx_state,
6802                                ctx->ctx_smpl_vaddr,
6803                                ctx->ctx_smpl_hdr,
6804                                ctx->ctx_msgq_head,
6805                                ctx->ctx_msgq_tail,
6806                                ctx->ctx_saved_psr_up);
6807        }
6808        local_irq_restore(flags);
6809}
6810
6811/*
6812 * called from process.c:copy_thread(). task is new child.
6813 */
6814void
6815pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6816{
6817        struct thread_struct *thread;
6818
6819        DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task)));
6820
6821        thread = &task->thread;
6822
6823        /*
6824         * cut links inherited from parent (current)
6825         */
6826        thread->pfm_context = NULL;
6827
6828        PFM_SET_WORK_PENDING(task, 0);
6829
6830        /*
6831         * the psr bits are already set properly in copy_threads()
6832         */
6833}
6834#else  /* !CONFIG_PERFMON */
6835asmlinkage long
6836sys_perfmonctl (int fd, int cmd, void *arg, int count)
6837{
6838        return -ENOSYS;
6839}
6840#endif /* CONFIG_PERFMON */
6841