linux/arch/ia64/kernel/process.c
<<
>>
Prefs
   1/*
   2 * Architecture-specific setup.
   3 *
   4 * Copyright (C) 1998-2003 Hewlett-Packard Co
   5 *      David Mosberger-Tang <davidm@hpl.hp.com>
   6 * 04/11/17 Ashok Raj   <ashok.raj@intel.com> Added CPU Hotplug Support
   7 *
   8 * 2005-10-07 Keith Owens <kaos@sgi.com>
   9 *            Add notify_die() hooks.
  10 */
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/elf.h>
  14#include <linux/errno.h>
  15#include <linux/kallsyms.h>
  16#include <linux/kernel.h>
  17#include <linux/mm.h>
  18#include <linux/module.h>
  19#include <linux/notifier.h>
  20#include <linux/personality.h>
  21#include <linux/sched.h>
  22#include <linux/slab.h>
  23#include <linux/stddef.h>
  24#include <linux/thread_info.h>
  25#include <linux/unistd.h>
  26#include <linux/efi.h>
  27#include <linux/interrupt.h>
  28#include <linux/delay.h>
  29#include <linux/kdebug.h>
  30#include <linux/utsname.h>
  31#include <linux/tracehook.h>
  32
  33#include <asm/cpu.h>
  34#include <asm/delay.h>
  35#include <asm/elf.h>
  36#include <asm/ia32.h>
  37#include <asm/irq.h>
  38#include <asm/kexec.h>
  39#include <asm/pgalloc.h>
  40#include <asm/processor.h>
  41#include <asm/sal.h>
  42#include <asm/tlbflush.h>
  43#include <asm/uaccess.h>
  44#include <asm/unwind.h>
  45#include <asm/user.h>
  46
  47#include "entry.h"
  48
  49#ifdef CONFIG_PERFMON
  50# include <asm/perfmon.h>
  51#endif
  52
  53#include "sigframe.h"
  54
  55void (*ia64_mark_idle)(int);
  56
  57unsigned long boot_option_idle_override = 0;
  58EXPORT_SYMBOL(boot_option_idle_override);
  59unsigned long idle_halt;
  60EXPORT_SYMBOL(idle_halt);
  61unsigned long idle_nomwait;
  62EXPORT_SYMBOL(idle_nomwait);
  63
  64void
  65ia64_do_show_stack (struct unw_frame_info *info, void *arg)
  66{
  67        unsigned long ip, sp, bsp;
  68        char buf[128];                  /* don't make it so big that it overflows the stack! */
  69
  70        printk("\nCall Trace:\n");
  71        do {
  72                unw_get_ip(info, &ip);
  73                if (ip == 0)
  74                        break;
  75
  76                unw_get_sp(info, &sp);
  77                unw_get_bsp(info, &bsp);
  78                snprintf(buf, sizeof(buf),
  79                         " [<%016lx>] %%s\n"
  80                         "                                sp=%016lx bsp=%016lx\n",
  81                         ip, sp, bsp);
  82                print_symbol(buf, ip);
  83        } while (unw_unwind(info) >= 0);
  84}
  85
  86void
  87show_stack (struct task_struct *task, unsigned long *sp)
  88{
  89        if (!task)
  90                unw_init_running(ia64_do_show_stack, NULL);
  91        else {
  92                struct unw_frame_info info;
  93
  94                unw_init_from_blocked_task(&info, task);
  95                ia64_do_show_stack(&info, NULL);
  96        }
  97}
  98
  99void
 100dump_stack (void)
 101{
 102        show_stack(NULL, NULL);
 103}
 104
 105EXPORT_SYMBOL(dump_stack);
 106
 107void
 108show_regs (struct pt_regs *regs)
 109{
 110        unsigned long ip = regs->cr_iip + ia64_psr(regs)->ri;
 111
 112        print_modules();
 113        printk("\nPid: %d, CPU %d, comm: %20s\n", task_pid_nr(current),
 114                        smp_processor_id(), current->comm);
 115        printk("psr : %016lx ifs : %016lx ip  : [<%016lx>]    %s (%s)\n",
 116               regs->cr_ipsr, regs->cr_ifs, ip, print_tainted(),
 117               init_utsname()->release);
 118        print_symbol("ip is at %s\n", ip);
 119        printk("unat: %016lx pfs : %016lx rsc : %016lx\n",
 120               regs->ar_unat, regs->ar_pfs, regs->ar_rsc);
 121        printk("rnat: %016lx bsps: %016lx pr  : %016lx\n",
 122               regs->ar_rnat, regs->ar_bspstore, regs->pr);
 123        printk("ldrs: %016lx ccv : %016lx fpsr: %016lx\n",
 124               regs->loadrs, regs->ar_ccv, regs->ar_fpsr);
 125        printk("csd : %016lx ssd : %016lx\n", regs->ar_csd, regs->ar_ssd);
 126        printk("b0  : %016lx b6  : %016lx b7  : %016lx\n", regs->b0, regs->b6, regs->b7);
 127        printk("f6  : %05lx%016lx f7  : %05lx%016lx\n",
 128               regs->f6.u.bits[1], regs->f6.u.bits[0],
 129               regs->f7.u.bits[1], regs->f7.u.bits[0]);
 130        printk("f8  : %05lx%016lx f9  : %05lx%016lx\n",
 131               regs->f8.u.bits[1], regs->f8.u.bits[0],
 132               regs->f9.u.bits[1], regs->f9.u.bits[0]);
 133        printk("f10 : %05lx%016lx f11 : %05lx%016lx\n",
 134               regs->f10.u.bits[1], regs->f10.u.bits[0],
 135               regs->f11.u.bits[1], regs->f11.u.bits[0]);
 136
 137        printk("r1  : %016lx r2  : %016lx r3  : %016lx\n", regs->r1, regs->r2, regs->r3);
 138        printk("r8  : %016lx r9  : %016lx r10 : %016lx\n", regs->r8, regs->r9, regs->r10);
 139        printk("r11 : %016lx r12 : %016lx r13 : %016lx\n", regs->r11, regs->r12, regs->r13);
 140        printk("r14 : %016lx r15 : %016lx r16 : %016lx\n", regs->r14, regs->r15, regs->r16);
 141        printk("r17 : %016lx r18 : %016lx r19 : %016lx\n", regs->r17, regs->r18, regs->r19);
 142        printk("r20 : %016lx r21 : %016lx r22 : %016lx\n", regs->r20, regs->r21, regs->r22);
 143        printk("r23 : %016lx r24 : %016lx r25 : %016lx\n", regs->r23, regs->r24, regs->r25);
 144        printk("r26 : %016lx r27 : %016lx r28 : %016lx\n", regs->r26, regs->r27, regs->r28);
 145        printk("r29 : %016lx r30 : %016lx r31 : %016lx\n", regs->r29, regs->r30, regs->r31);
 146
 147        if (user_mode(regs)) {
 148                /* print the stacked registers */
 149                unsigned long val, *bsp, ndirty;
 150                int i, sof, is_nat = 0;
 151
 152                sof = regs->cr_ifs & 0x7f;      /* size of frame */
 153                ndirty = (regs->loadrs >> 19);
 154                bsp = ia64_rse_skip_regs((unsigned long *) regs->ar_bspstore, ndirty);
 155                for (i = 0; i < sof; ++i) {
 156                        get_user(val, (unsigned long __user *) ia64_rse_skip_regs(bsp, i));
 157                        printk("r%-3u:%c%016lx%s", 32 + i, is_nat ? '*' : ' ', val,
 158                               ((i == sof - 1) || (i % 3) == 2) ? "\n" : " ");
 159                }
 160        } else
 161                show_stack(NULL, NULL);
 162}
 163
 164/* local support for deprecated console_print */
 165void
 166console_print(const char *s)
 167{
 168        printk(KERN_EMERG "%s", s);
 169}
 170
 171void
 172do_notify_resume_user(sigset_t *unused, struct sigscratch *scr, long in_syscall)
 173{
 174        if (fsys_mode(current, &scr->pt)) {
 175                /*
 176                 * defer signal-handling etc. until we return to
 177                 * privilege-level 0.
 178                 */
 179                if (!ia64_psr(&scr->pt)->lp)
 180                        ia64_psr(&scr->pt)->lp = 1;
 181                return;
 182        }
 183
 184#ifdef CONFIG_PERFMON
 185        if (current->thread.pfm_needs_checking)
 186                /*
 187                 * Note: pfm_handle_work() allow us to call it with interrupts
 188                 * disabled, and may enable interrupts within the function.
 189                 */
 190                pfm_handle_work();
 191#endif
 192
 193        /* deal with pending signal delivery */
 194        if (test_thread_flag(TIF_SIGPENDING)) {
 195                local_irq_enable();     /* force interrupt enable */
 196                ia64_do_signal(scr, in_syscall);
 197        }
 198
 199        if (test_thread_flag(TIF_NOTIFY_RESUME)) {
 200                clear_thread_flag(TIF_NOTIFY_RESUME);
 201                tracehook_notify_resume(&scr->pt);
 202                if (current->replacement_session_keyring)
 203                        key_replace_session_keyring();
 204        }
 205
 206        /* copy user rbs to kernel rbs */
 207        if (unlikely(test_thread_flag(TIF_RESTORE_RSE))) {
 208                local_irq_enable();     /* force interrupt enable */
 209                ia64_sync_krbs();
 210        }
 211
 212        local_irq_disable();    /* force interrupt disable */
 213}
 214
 215static int pal_halt        = 1;
 216static int can_do_pal_halt = 1;
 217
 218static int __init nohalt_setup(char * str)
 219{
 220        pal_halt = can_do_pal_halt = 0;
 221        return 1;
 222}
 223__setup("nohalt", nohalt_setup);
 224
 225void
 226update_pal_halt_status(int status)
 227{
 228        can_do_pal_halt = pal_halt && status;
 229}
 230
 231/*
 232 * We use this if we don't have any better idle routine..
 233 */
 234void
 235default_idle (void)
 236{
 237        local_irq_enable();
 238        while (!need_resched()) {
 239                if (can_do_pal_halt) {
 240                        local_irq_disable();
 241                        if (!need_resched()) {
 242                                safe_halt();
 243                        }
 244                        local_irq_enable();
 245                } else
 246                        cpu_relax();
 247        }
 248}
 249
 250#ifdef CONFIG_HOTPLUG_CPU
 251/* We don't actually take CPU down, just spin without interrupts. */
 252static inline void play_dead(void)
 253{
 254        unsigned int this_cpu = smp_processor_id();
 255
 256        /* Ack it */
 257        __get_cpu_var(cpu_state) = CPU_DEAD;
 258
 259        max_xtp();
 260        local_irq_disable();
 261        idle_task_exit();
 262        ia64_jump_to_sal(&sal_boot_rendez_state[this_cpu]);
 263        /*
 264         * The above is a point of no-return, the processor is
 265         * expected to be in SAL loop now.
 266         */
 267        BUG();
 268}
 269#else
 270static inline void play_dead(void)
 271{
 272        BUG();
 273}
 274#endif /* CONFIG_HOTPLUG_CPU */
 275
 276static void do_nothing(void *unused)
 277{
 278}
 279
 280/*
 281 * cpu_idle_wait - Used to ensure that all the CPUs discard old value of
 282 * pm_idle and update to new pm_idle value. Required while changing pm_idle
 283 * handler on SMP systems.
 284 *
 285 * Caller must have changed pm_idle to the new value before the call. Old
 286 * pm_idle value will not be used by any CPU after the return of this function.
 287 */
 288void cpu_idle_wait(void)
 289{
 290        smp_mb();
 291        /* kick all the CPUs so that they exit out of pm_idle */
 292        smp_call_function(do_nothing, NULL, 1);
 293}
 294EXPORT_SYMBOL_GPL(cpu_idle_wait);
 295
 296void __attribute__((noreturn))
 297cpu_idle (void)
 298{
 299        void (*mark_idle)(int) = ia64_mark_idle;
 300        int cpu = smp_processor_id();
 301
 302        /* endless idle loop with no priority at all */
 303        while (1) {
 304                if (can_do_pal_halt) {
 305                        current_thread_info()->status &= ~TS_POLLING;
 306                        /*
 307                         * TS_POLLING-cleared state must be visible before we
 308                         * test NEED_RESCHED:
 309                         */
 310                        smp_mb();
 311                } else {
 312                        current_thread_info()->status |= TS_POLLING;
 313                }
 314
 315                if (!need_resched()) {
 316                        void (*idle)(void);
 317#ifdef CONFIG_SMP
 318                        min_xtp();
 319#endif
 320                        rmb();
 321                        if (mark_idle)
 322                                (*mark_idle)(1);
 323
 324                        idle = pm_idle;
 325                        if (!idle)
 326                                idle = default_idle;
 327                        (*idle)();
 328                        if (mark_idle)
 329                                (*mark_idle)(0);
 330#ifdef CONFIG_SMP
 331                        normal_xtp();
 332#endif
 333                }
 334                preempt_enable_no_resched();
 335                schedule();
 336                preempt_disable();
 337                check_pgt_cache();
 338                if (cpu_is_offline(cpu))
 339                        play_dead();
 340        }
 341}
 342
 343void
 344ia64_save_extra (struct task_struct *task)
 345{
 346#ifdef CONFIG_PERFMON
 347        unsigned long info;
 348#endif
 349
 350        if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
 351                ia64_save_debug_regs(&task->thread.dbr[0]);
 352
 353#ifdef CONFIG_PERFMON
 354        if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
 355                pfm_save_regs(task);
 356
 357        info = __get_cpu_var(pfm_syst_info);
 358        if (info & PFM_CPUINFO_SYST_WIDE)
 359                pfm_syst_wide_update_task(task, info, 0);
 360#endif
 361
 362#ifdef CONFIG_IA32_SUPPORT
 363        if (IS_IA32_PROCESS(task_pt_regs(task)))
 364                ia32_save_state(task);
 365#endif
 366}
 367
 368void
 369ia64_load_extra (struct task_struct *task)
 370{
 371#ifdef CONFIG_PERFMON
 372        unsigned long info;
 373#endif
 374
 375        if ((task->thread.flags & IA64_THREAD_DBG_VALID) != 0)
 376                ia64_load_debug_regs(&task->thread.dbr[0]);
 377
 378#ifdef CONFIG_PERFMON
 379        if ((task->thread.flags & IA64_THREAD_PM_VALID) != 0)
 380                pfm_load_regs(task);
 381
 382        info = __get_cpu_var(pfm_syst_info);
 383        if (info & PFM_CPUINFO_SYST_WIDE) 
 384                pfm_syst_wide_update_task(task, info, 1);
 385#endif
 386
 387#ifdef CONFIG_IA32_SUPPORT
 388        if (IS_IA32_PROCESS(task_pt_regs(task)))
 389                ia32_load_state(task);
 390#endif
 391}
 392
 393/*
 394 * Copy the state of an ia-64 thread.
 395 *
 396 * We get here through the following  call chain:
 397 *
 398 *      from user-level:        from kernel:
 399 *
 400 *      <clone syscall>         <some kernel call frames>
 401 *      sys_clone                  :
 402 *      do_fork                 do_fork
 403 *      copy_thread             copy_thread
 404 *
 405 * This means that the stack layout is as follows:
 406 *
 407 *      +---------------------+ (highest addr)
 408 *      |   struct pt_regs    |
 409 *      +---------------------+
 410 *      | struct switch_stack |
 411 *      +---------------------+
 412 *      |                     |
 413 *      |    memory stack     |
 414 *      |                     | <-- sp (lowest addr)
 415 *      +---------------------+
 416 *
 417 * Observe that we copy the unat values that are in pt_regs and switch_stack.  Spilling an
 418 * integer to address X causes bit N in ar.unat to be set to the NaT bit of the register,
 419 * with N=(X & 0x1ff)/8.  Thus, copying the unat value preserves the NaT bits ONLY if the
 420 * pt_regs structure in the parent is congruent to that of the child, modulo 512.  Since
 421 * the stack is page aligned and the page size is at least 4KB, this is always the case,
 422 * so there is nothing to worry about.
 423 */
 424int
 425copy_thread(unsigned long clone_flags,
 426             unsigned long user_stack_base, unsigned long user_stack_size,
 427             struct task_struct *p, struct pt_regs *regs)
 428{
 429        extern char ia64_ret_from_clone, ia32_ret_from_clone;
 430        struct switch_stack *child_stack, *stack;
 431        unsigned long rbs, child_rbs, rbs_size;
 432        struct pt_regs *child_ptregs;
 433        int retval = 0;
 434
 435#ifdef CONFIG_SMP
 436        /*
 437         * For SMP idle threads, fork_by_hand() calls do_fork with
 438         * NULL regs.
 439         */
 440        if (!regs)
 441                return 0;
 442#endif
 443
 444        stack = ((struct switch_stack *) regs) - 1;
 445
 446        child_ptregs = (struct pt_regs *) ((unsigned long) p + IA64_STK_OFFSET) - 1;
 447        child_stack = (struct switch_stack *) child_ptregs - 1;
 448
 449        /* copy parent's switch_stack & pt_regs to child: */
 450        memcpy(child_stack, stack, sizeof(*child_ptregs) + sizeof(*child_stack));
 451
 452        rbs = (unsigned long) current + IA64_RBS_OFFSET;
 453        child_rbs = (unsigned long) p + IA64_RBS_OFFSET;
 454        rbs_size = stack->ar_bspstore - rbs;
 455
 456        /* copy the parent's register backing store to the child: */
 457        memcpy((void *) child_rbs, (void *) rbs, rbs_size);
 458
 459        if (likely(user_mode(child_ptregs))) {
 460                if ((clone_flags & CLONE_SETTLS) && !IS_IA32_PROCESS(regs))
 461                        child_ptregs->r13 = regs->r16;  /* see sys_clone2() in entry.S */
 462                if (user_stack_base) {
 463                        child_ptregs->r12 = user_stack_base + user_stack_size - 16;
 464                        child_ptregs->ar_bspstore = user_stack_base;
 465                        child_ptregs->ar_rnat = 0;
 466                        child_ptregs->loadrs = 0;
 467                }
 468        } else {
 469                /*
 470                 * Note: we simply preserve the relative position of
 471                 * the stack pointer here.  There is no need to
 472                 * allocate a scratch area here, since that will have
 473                 * been taken care of by the caller of sys_clone()
 474                 * already.
 475                 */
 476                child_ptregs->r12 = (unsigned long) child_ptregs - 16; /* kernel sp */
 477                child_ptregs->r13 = (unsigned long) p;          /* set `current' pointer */
 478        }
 479        child_stack->ar_bspstore = child_rbs + rbs_size;
 480        if (IS_IA32_PROCESS(regs))
 481                child_stack->b0 = (unsigned long) &ia32_ret_from_clone;
 482        else
 483                child_stack->b0 = (unsigned long) &ia64_ret_from_clone;
 484
 485        /* copy parts of thread_struct: */
 486        p->thread.ksp = (unsigned long) child_stack - 16;
 487
 488        /* stop some PSR bits from being inherited.
 489         * the psr.up/psr.pp bits must be cleared on fork but inherited on execve()
 490         * therefore we must specify them explicitly here and not include them in
 491         * IA64_PSR_BITS_TO_CLEAR.
 492         */
 493        child_ptregs->cr_ipsr = ((child_ptregs->cr_ipsr | IA64_PSR_BITS_TO_SET)
 494                                 & ~(IA64_PSR_BITS_TO_CLEAR | IA64_PSR_PP | IA64_PSR_UP));
 495
 496        /*
 497         * NOTE: The calling convention considers all floating point
 498         * registers in the high partition (fph) to be scratch.  Since
 499         * the only way to get to this point is through a system call,
 500         * we know that the values in fph are all dead.  Hence, there
 501         * is no need to inherit the fph state from the parent to the
 502         * child and all we have to do is to make sure that
 503         * IA64_THREAD_FPH_VALID is cleared in the child.
 504         *
 505         * XXX We could push this optimization a bit further by
 506         * clearing IA64_THREAD_FPH_VALID on ANY system call.
 507         * However, it's not clear this is worth doing.  Also, it
 508         * would be a slight deviation from the normal Linux system
 509         * call behavior where scratch registers are preserved across
 510         * system calls (unless used by the system call itself).
 511         */
 512#       define THREAD_FLAGS_TO_CLEAR    (IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID \
 513                                         | IA64_THREAD_PM_VALID)
 514#       define THREAD_FLAGS_TO_SET      0
 515        p->thread.flags = ((current->thread.flags & ~THREAD_FLAGS_TO_CLEAR)
 516                           | THREAD_FLAGS_TO_SET);
 517        ia64_drop_fpu(p);       /* don't pick up stale state from a CPU's fph */
 518#ifdef CONFIG_IA32_SUPPORT
 519        /*
 520         * If we're cloning an IA32 task then save the IA32 extra
 521         * state from the current task to the new task
 522         */
 523        if (IS_IA32_PROCESS(task_pt_regs(current))) {
 524                ia32_save_state(p);
 525                if (clone_flags & CLONE_SETTLS)
 526                        retval = ia32_clone_tls(p, child_ptregs);
 527
 528                /* Copy partially mapped page list */
 529                if (!retval)
 530                        retval = ia32_copy_ia64_partial_page_list(p,
 531                                                                clone_flags);
 532        }
 533#endif
 534
 535#ifdef CONFIG_PERFMON
 536        if (current->thread.pfm_context)
 537                pfm_inherit(p, child_ptregs);
 538#endif
 539        return retval;
 540}
 541
 542static void
 543do_copy_task_regs (struct task_struct *task, struct unw_frame_info *info, void *arg)
 544{
 545        unsigned long mask, sp, nat_bits = 0, ar_rnat, urbs_end, cfm;
 546        unsigned long uninitialized_var(ip);    /* GCC be quiet */
 547        elf_greg_t *dst = arg;
 548        struct pt_regs *pt;
 549        char nat;
 550        int i;
 551
 552        memset(dst, 0, sizeof(elf_gregset_t));  /* don't leak any kernel bits to user-level */
 553
 554        if (unw_unwind_to_user(info) < 0)
 555                return;
 556
 557        unw_get_sp(info, &sp);
 558        pt = (struct pt_regs *) (sp + 16);
 559
 560        urbs_end = ia64_get_user_rbs_end(task, pt, &cfm);
 561
 562        if (ia64_sync_user_rbs(task, info->sw, pt->ar_bspstore, urbs_end) < 0)
 563                return;
 564
 565        ia64_peek(task, info->sw, urbs_end, (long) ia64_rse_rnat_addr((long *) urbs_end),
 566                  &ar_rnat);
 567
 568        /*
 569         * coredump format:
 570         *      r0-r31
 571         *      NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
 572         *      predicate registers (p0-p63)
 573         *      b0-b7
 574         *      ip cfm user-mask
 575         *      ar.rsc ar.bsp ar.bspstore ar.rnat
 576         *      ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
 577         */
 578
 579        /* r0 is zero */
 580        for (i = 1, mask = (1UL << i); i < 32; ++i) {
 581                unw_get_gr(info, i, &dst[i], &nat);
 582                if (nat)
 583                        nat_bits |= mask;
 584                mask <<= 1;
 585        }
 586        dst[32] = nat_bits;
 587        unw_get_pr(info, &dst[33]);
 588
 589        for (i = 0; i < 8; ++i)
 590                unw_get_br(info, i, &dst[34 + i]);
 591
 592        unw_get_rp(info, &ip);
 593        dst[42] = ip + ia64_psr(pt)->ri;
 594        dst[43] = cfm;
 595        dst[44] = pt->cr_ipsr & IA64_PSR_UM;
 596
 597        unw_get_ar(info, UNW_AR_RSC, &dst[45]);
 598        /*
 599         * For bsp and bspstore, unw_get_ar() would return the kernel
 600         * addresses, but we need the user-level addresses instead:
 601         */
 602        dst[46] = urbs_end;     /* note: by convention PT_AR_BSP points to the end of the urbs! */
 603        dst[47] = pt->ar_bspstore;
 604        dst[48] = ar_rnat;
 605        unw_get_ar(info, UNW_AR_CCV, &dst[49]);
 606        unw_get_ar(info, UNW_AR_UNAT, &dst[50]);
 607        unw_get_ar(info, UNW_AR_FPSR, &dst[51]);
 608        dst[52] = pt->ar_pfs;   /* UNW_AR_PFS is == to pt->cr_ifs for interrupt frames */
 609        unw_get_ar(info, UNW_AR_LC, &dst[53]);
 610        unw_get_ar(info, UNW_AR_EC, &dst[54]);
 611        unw_get_ar(info, UNW_AR_CSD, &dst[55]);
 612        unw_get_ar(info, UNW_AR_SSD, &dst[56]);
 613}
 614
 615void
 616do_dump_task_fpu (struct task_struct *task, struct unw_frame_info *info, void *arg)
 617{
 618        elf_fpreg_t *dst = arg;
 619        int i;
 620
 621        memset(dst, 0, sizeof(elf_fpregset_t)); /* don't leak any "random" bits */
 622
 623        if (unw_unwind_to_user(info) < 0)
 624                return;
 625
 626        /* f0 is 0.0, f1 is 1.0 */
 627
 628        for (i = 2; i < 32; ++i)
 629                unw_get_fr(info, i, dst + i);
 630
 631        ia64_flush_fph(task);
 632        if ((task->thread.flags & IA64_THREAD_FPH_VALID) != 0)
 633                memcpy(dst + 32, task->thread.fph, 96*16);
 634}
 635
 636void
 637do_copy_regs (struct unw_frame_info *info, void *arg)
 638{
 639        do_copy_task_regs(current, info, arg);
 640}
 641
 642void
 643do_dump_fpu (struct unw_frame_info *info, void *arg)
 644{
 645        do_dump_task_fpu(current, info, arg);
 646}
 647
 648void
 649ia64_elf_core_copy_regs (struct pt_regs *pt, elf_gregset_t dst)
 650{
 651        unw_init_running(do_copy_regs, dst);
 652}
 653
 654int
 655dump_fpu (struct pt_regs *pt, elf_fpregset_t dst)
 656{
 657        unw_init_running(do_dump_fpu, dst);
 658        return 1;       /* f0-f31 are always valid so we always return 1 */
 659}
 660
 661long
 662sys_execve (char __user *filename, char __user * __user *argv, char __user * __user *envp,
 663            struct pt_regs *regs)
 664{
 665        char *fname;
 666        int error;
 667
 668        fname = getname(filename);
 669        error = PTR_ERR(fname);
 670        if (IS_ERR(fname))
 671                goto out;
 672        error = do_execve(fname, argv, envp, regs);
 673        putname(fname);
 674out:
 675        return error;
 676}
 677
 678pid_t
 679kernel_thread (int (*fn)(void *), void *arg, unsigned long flags)
 680{
 681        extern void start_kernel_thread (void);
 682        unsigned long *helper_fptr = (unsigned long *) &start_kernel_thread;
 683        struct {
 684                struct switch_stack sw;
 685                struct pt_regs pt;
 686        } regs;
 687
 688        memset(&regs, 0, sizeof(regs));
 689        regs.pt.cr_iip = helper_fptr[0];        /* set entry point (IP) */
 690        regs.pt.r1 = helper_fptr[1];            /* set GP */
 691        regs.pt.r9 = (unsigned long) fn;        /* 1st argument */
 692        regs.pt.r11 = (unsigned long) arg;      /* 2nd argument */
 693        /* Preserve PSR bits, except for bits 32-34 and 37-45, which we can't read.  */
 694        regs.pt.cr_ipsr = ia64_getreg(_IA64_REG_PSR) | IA64_PSR_BN;
 695        regs.pt.cr_ifs = 1UL << 63;             /* mark as valid, empty frame */
 696        regs.sw.ar_fpsr = regs.pt.ar_fpsr = ia64_getreg(_IA64_REG_AR_FPSR);
 697        regs.sw.ar_bspstore = (unsigned long) current + IA64_RBS_OFFSET;
 698        regs.sw.pr = (1 << PRED_KERNEL_STACK);
 699        return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs.pt, 0, NULL, NULL);
 700}
 701EXPORT_SYMBOL(kernel_thread);
 702
 703/* This gets called from kernel_thread() via ia64_invoke_thread_helper().  */
 704int
 705kernel_thread_helper (int (*fn)(void *), void *arg)
 706{
 707#ifdef CONFIG_IA32_SUPPORT
 708        if (IS_IA32_PROCESS(task_pt_regs(current))) {
 709                /* A kernel thread is always a 64-bit process. */
 710                current->thread.map_base  = DEFAULT_MAP_BASE;
 711                current->thread.task_size = DEFAULT_TASK_SIZE;
 712                ia64_set_kr(IA64_KR_IO_BASE, current->thread.old_iob);
 713                ia64_set_kr(IA64_KR_TSSD, current->thread.old_k1);
 714        }
 715#endif
 716        return (*fn)(arg);
 717}
 718
 719/*
 720 * Flush thread state.  This is called when a thread does an execve().
 721 */
 722void
 723flush_thread (void)
 724{
 725        /* drop floating-point and debug-register state if it exists: */
 726        current->thread.flags &= ~(IA64_THREAD_FPH_VALID | IA64_THREAD_DBG_VALID);
 727        ia64_drop_fpu(current);
 728#ifdef CONFIG_IA32_SUPPORT
 729        if (IS_IA32_PROCESS(task_pt_regs(current))) {
 730                ia32_drop_ia64_partial_page_list(current);
 731                current->thread.task_size = IA32_PAGE_OFFSET;
 732                set_fs(USER_DS);
 733                memset(current->thread.tls_array, 0, sizeof(current->thread.tls_array));
 734        }
 735#endif
 736}
 737
 738/*
 739 * Clean up state associated with current thread.  This is called when
 740 * the thread calls exit().
 741 */
 742void
 743exit_thread (void)
 744{
 745
 746        ia64_drop_fpu(current);
 747#ifdef CONFIG_PERFMON
 748       /* if needed, stop monitoring and flush state to perfmon context */
 749        if (current->thread.pfm_context)
 750                pfm_exit_thread(current);
 751
 752        /* free debug register resources */
 753        if (current->thread.flags & IA64_THREAD_DBG_VALID)
 754                pfm_release_debug_registers(current);
 755#endif
 756        if (IS_IA32_PROCESS(task_pt_regs(current)))
 757                ia32_drop_ia64_partial_page_list(current);
 758}
 759
 760unsigned long
 761get_wchan (struct task_struct *p)
 762{
 763        struct unw_frame_info info;
 764        unsigned long ip;
 765        int count = 0;
 766
 767        if (!p || p == current || p->state == TASK_RUNNING)
 768                return 0;
 769
 770        /*
 771         * Note: p may not be a blocked task (it could be current or
 772         * another process running on some other CPU.  Rather than
 773         * trying to determine if p is really blocked, we just assume
 774         * it's blocked and rely on the unwind routines to fail
 775         * gracefully if the process wasn't really blocked after all.
 776         * --davidm 99/12/15
 777         */
 778        unw_init_from_blocked_task(&info, p);
 779        do {
 780                if (p->state == TASK_RUNNING)
 781                        return 0;
 782                if (unw_unwind(&info) < 0)
 783                        return 0;
 784                unw_get_ip(&info, &ip);
 785                if (!in_sched_functions(ip))
 786                        return ip;
 787        } while (count++ < 16);
 788        return 0;
 789}
 790
 791void
 792cpu_halt (void)
 793{
 794        pal_power_mgmt_info_u_t power_info[8];
 795        unsigned long min_power;
 796        int i, min_power_state;
 797
 798        if (ia64_pal_halt_info(power_info) != 0)
 799                return;
 800
 801        min_power_state = 0;
 802        min_power = power_info[0].pal_power_mgmt_info_s.power_consumption;
 803        for (i = 1; i < 8; ++i)
 804                if (power_info[i].pal_power_mgmt_info_s.im
 805                    && power_info[i].pal_power_mgmt_info_s.power_consumption < min_power) {
 806                        min_power = power_info[i].pal_power_mgmt_info_s.power_consumption;
 807                        min_power_state = i;
 808                }
 809
 810        while (1)
 811                ia64_pal_halt(min_power_state);
 812}
 813
 814void machine_shutdown(void)
 815{
 816#ifdef CONFIG_HOTPLUG_CPU
 817        int cpu;
 818
 819        for_each_online_cpu(cpu) {
 820                if (cpu != smp_processor_id())
 821                        cpu_down(cpu);
 822        }
 823#endif
 824#ifdef CONFIG_KEXEC
 825        kexec_disable_iosapic();
 826#endif
 827}
 828
 829void
 830machine_restart (char *restart_cmd)
 831{
 832        (void) notify_die(DIE_MACHINE_RESTART, restart_cmd, NULL, 0, 0, 0);
 833        (*efi.reset_system)(EFI_RESET_WARM, 0, 0, NULL);
 834}
 835
 836void
 837machine_halt (void)
 838{
 839        (void) notify_die(DIE_MACHINE_HALT, "", NULL, 0, 0, 0);
 840        cpu_halt();
 841}
 842
 843void
 844machine_power_off (void)
 845{
 846        if (pm_power_off)
 847                pm_power_off();
 848        machine_halt();
 849}
 850
 851