linux/arch/ia64/kernel/salinfo.c
<<
>>
Prefs
   1/*
   2 * salinfo.c
   3 *
   4 * Creates entries in /proc/sal for various system features.
   5 *
   6 * Copyright (c) 2003, 2006 Silicon Graphics, Inc.  All rights reserved.
   7 * Copyright (c) 2003 Hewlett-Packard Co
   8 *      Bjorn Helgaas <bjorn.helgaas@hp.com>
   9 *
  10 * 10/30/2001   jbarnes@sgi.com         copied much of Stephane's palinfo
  11 *                                      code to create this file
  12 * Oct 23 2003  kaos@sgi.com
  13 *   Replace IPI with set_cpus_allowed() to read a record from the required cpu.
  14 *   Redesign salinfo log processing to separate interrupt and user space
  15 *   contexts.
  16 *   Cache the record across multi-block reads from user space.
  17 *   Support > 64 cpus.
  18 *   Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
  19 *
  20 * Jan 28 2004  kaos@sgi.com
  21 *   Periodically check for outstanding MCA or INIT records.
  22 *
  23 * Dec  5 2004  kaos@sgi.com
  24 *   Standardize which records are cleared automatically.
  25 *
  26 * Aug 18 2005  kaos@sgi.com
  27 *   mca.c may not pass a buffer, a NULL buffer just indicates that a new
  28 *   record is available in SAL.
  29 *   Replace some NR_CPUS by cpus_online, for hotplug cpu.
  30 *
  31 * Jan  5 2006        kaos@sgi.com
  32 *   Handle hotplug cpus coming online.
  33 *   Handle hotplug cpus going offline while they still have outstanding records.
  34 *   Use the cpu_* macros consistently.
  35 *   Replace the counting semaphore with a mutex and a test if the cpumask is non-empty.
  36 *   Modify the locking to make the test for "work to do" an atomic operation.
  37 */
  38
  39#include <linux/capability.h>
  40#include <linux/cpu.h>
  41#include <linux/types.h>
  42#include <linux/proc_fs.h>
  43#include <linux/module.h>
  44#include <linux/smp.h>
  45#include <linux/timer.h>
  46#include <linux/vmalloc.h>
  47#include <linux/semaphore.h>
  48
  49#include <asm/sal.h>
  50#include <asm/uaccess.h>
  51
  52MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
  53MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
  54MODULE_LICENSE("GPL");
  55
  56static int salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data);
  57
  58typedef struct {
  59        const char              *name;          /* name of the proc entry */
  60        unsigned long           feature;        /* feature bit */
  61        struct proc_dir_entry   *entry;         /* registered entry (removal) */
  62} salinfo_entry_t;
  63
  64/*
  65 * List {name,feature} pairs for every entry in /proc/sal/<feature>
  66 * that this module exports
  67 */
  68static salinfo_entry_t salinfo_entries[]={
  69        { "bus_lock",           IA64_SAL_PLATFORM_FEATURE_BUS_LOCK, },
  70        { "irq_redirection",    IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT, },
  71        { "ipi_redirection",    IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT, },
  72        { "itc_drift",          IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT, },
  73};
  74
  75#define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
  76
  77static char *salinfo_log_name[] = {
  78        "mca",
  79        "init",
  80        "cmc",
  81        "cpe",
  82};
  83
  84static struct proc_dir_entry *salinfo_proc_entries[
  85        ARRAY_SIZE(salinfo_entries) +                   /* /proc/sal/bus_lock */
  86        ARRAY_SIZE(salinfo_log_name) +                  /* /proc/sal/{mca,...} */
  87        (2 * ARRAY_SIZE(salinfo_log_name)) +            /* /proc/sal/mca/{event,data} */
  88        1];                                             /* /proc/sal */
  89
  90/* Some records we get ourselves, some are accessed as saved data in buffers
  91 * that are owned by mca.c.
  92 */
  93struct salinfo_data_saved {
  94        u8*                     buffer;
  95        u64                     size;
  96        u64                     id;
  97        int                     cpu;
  98};
  99
 100/* State transitions.  Actions are :-
 101 *   Write "read <cpunum>" to the data file.
 102 *   Write "clear <cpunum>" to the data file.
 103 *   Write "oemdata <cpunum> <offset> to the data file.
 104 *   Read from the data file.
 105 *   Close the data file.
 106 *
 107 * Start state is NO_DATA.
 108 *
 109 * NO_DATA
 110 *    write "read <cpunum>" -> NO_DATA or LOG_RECORD.
 111 *    write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
 112 *    write "oemdata <cpunum> <offset> -> return -EINVAL.
 113 *    read data -> return EOF.
 114 *    close -> unchanged.  Free record areas.
 115 *
 116 * LOG_RECORD
 117 *    write "read <cpunum>" -> NO_DATA or LOG_RECORD.
 118 *    write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
 119 *    write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
 120 *    read data -> return the INIT/MCA/CMC/CPE record.
 121 *    close -> unchanged.  Keep record areas.
 122 *
 123 * OEMDATA
 124 *    write "read <cpunum>" -> NO_DATA or LOG_RECORD.
 125 *    write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
 126 *    write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
 127 *    read data -> return the formatted oemdata.
 128 *    close -> unchanged.  Keep record areas.
 129 *
 130 * Closing the data file does not change the state.  This allows shell scripts
 131 * to manipulate salinfo data, each shell redirection opens the file, does one
 132 * action then closes it again.  The record areas are only freed at close when
 133 * the state is NO_DATA.
 134 */
 135enum salinfo_state {
 136        STATE_NO_DATA,
 137        STATE_LOG_RECORD,
 138        STATE_OEMDATA,
 139};
 140
 141struct salinfo_data {
 142        cpumask_t               cpu_event;      /* which cpus have outstanding events */
 143        struct semaphore        mutex;
 144        u8                      *log_buffer;
 145        u64                     log_size;
 146        u8                      *oemdata;       /* decoded oem data */
 147        u64                     oemdata_size;
 148        int                     open;           /* single-open to prevent races */
 149        u8                      type;
 150        u8                      saved_num;      /* using a saved record? */
 151        enum salinfo_state      state :8;       /* processing state */
 152        u8                      padding;
 153        int                     cpu_check;      /* next CPU to check */
 154        struct salinfo_data_saved data_saved[5];/* save last 5 records from mca.c, must be < 255 */
 155};
 156
 157static struct salinfo_data salinfo_data[ARRAY_SIZE(salinfo_log_name)];
 158
 159static DEFINE_SPINLOCK(data_lock);
 160static DEFINE_SPINLOCK(data_saved_lock);
 161
 162/** salinfo_platform_oemdata - optional callback to decode oemdata from an error
 163 * record.
 164 * @sect_header: pointer to the start of the section to decode.
 165 * @oemdata: returns vmalloc area containing the decoded output.
 166 * @oemdata_size: returns length of decoded output (strlen).
 167 *
 168 * Description: If user space asks for oem data to be decoded by the kernel
 169 * and/or prom and the platform has set salinfo_platform_oemdata to the address
 170 * of a platform specific routine then call that routine.  salinfo_platform_oemdata
 171 * vmalloc's and formats its output area, returning the address of the text
 172 * and its strlen.  Returns 0 for success, -ve for error.  The callback is
 173 * invoked on the cpu that generated the error record.
 174 */
 175int (*salinfo_platform_oemdata)(const u8 *sect_header, u8 **oemdata, u64 *oemdata_size);
 176
 177struct salinfo_platform_oemdata_parms {
 178        const u8 *efi_guid;
 179        u8 **oemdata;
 180        u64 *oemdata_size;
 181        int ret;
 182};
 183
 184/* Kick the mutex that tells user space that there is work to do.  Instead of
 185 * trying to track the state of the mutex across multiple cpus, in user
 186 * context, interrupt context, non-maskable interrupt context and hotplug cpu,
 187 * it is far easier just to grab the mutex if it is free then release it.
 188 *
 189 * This routine must be called with data_saved_lock held, to make the down/up
 190 * operation atomic.
 191 */
 192static void
 193salinfo_work_to_do(struct salinfo_data *data)
 194{
 195        (void)(down_trylock(&data->mutex) ?: 0);
 196        up(&data->mutex);
 197}
 198
 199static void
 200salinfo_platform_oemdata_cpu(void *context)
 201{
 202        struct salinfo_platform_oemdata_parms *parms = context;
 203        parms->ret = salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
 204}
 205
 206static void
 207shift1_data_saved (struct salinfo_data *data, int shift)
 208{
 209        memcpy(data->data_saved+shift, data->data_saved+shift+1,
 210               (ARRAY_SIZE(data->data_saved) - (shift+1)) * sizeof(data->data_saved[0]));
 211        memset(data->data_saved + ARRAY_SIZE(data->data_saved) - 1, 0,
 212               sizeof(data->data_saved[0]));
 213}
 214
 215/* This routine is invoked in interrupt context.  Note: mca.c enables
 216 * interrupts before calling this code for CMC/CPE.  MCA and INIT events are
 217 * not irq safe, do not call any routines that use spinlocks, they may deadlock.
 218 * MCA and INIT records are recorded, a timer event will look for any
 219 * outstanding events and wake up the user space code.
 220 *
 221 * The buffer passed from mca.c points to the output from ia64_log_get. This is
 222 * a persistent buffer but its contents can change between the interrupt and
 223 * when user space processes the record.  Save the record id to identify
 224 * changes.  If the buffer is NULL then just update the bitmap.
 225 */
 226void
 227salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe)
 228{
 229        struct salinfo_data *data = salinfo_data + type;
 230        struct salinfo_data_saved *data_saved;
 231        unsigned long flags = 0;
 232        int i;
 233        int saved_size = ARRAY_SIZE(data->data_saved);
 234
 235        BUG_ON(type >= ARRAY_SIZE(salinfo_log_name));
 236
 237        if (irqsafe)
 238                spin_lock_irqsave(&data_saved_lock, flags);
 239        if (buffer) {
 240                for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
 241                        if (!data_saved->buffer)
 242                                break;
 243                }
 244                if (i == saved_size) {
 245                        if (!data->saved_num) {
 246                                shift1_data_saved(data, 0);
 247                                data_saved = data->data_saved + saved_size - 1;
 248                        } else
 249                                data_saved = NULL;
 250                }
 251                if (data_saved) {
 252                        data_saved->cpu = smp_processor_id();
 253                        data_saved->id = ((sal_log_record_header_t *)buffer)->id;
 254                        data_saved->size = size;
 255                        data_saved->buffer = buffer;
 256                }
 257        }
 258        cpu_set(smp_processor_id(), data->cpu_event);
 259        if (irqsafe) {
 260                salinfo_work_to_do(data);
 261                spin_unlock_irqrestore(&data_saved_lock, flags);
 262        }
 263}
 264
 265/* Check for outstanding MCA/INIT records every minute (arbitrary) */
 266#define SALINFO_TIMER_DELAY (60*HZ)
 267static struct timer_list salinfo_timer;
 268extern void ia64_mlogbuf_dump(void);
 269
 270static void
 271salinfo_timeout_check(struct salinfo_data *data)
 272{
 273        unsigned long flags;
 274        if (!data->open)
 275                return;
 276        if (!cpus_empty(data->cpu_event)) {
 277                spin_lock_irqsave(&data_saved_lock, flags);
 278                salinfo_work_to_do(data);
 279                spin_unlock_irqrestore(&data_saved_lock, flags);
 280        }
 281}
 282
 283static void
 284salinfo_timeout (unsigned long arg)
 285{
 286        ia64_mlogbuf_dump();
 287        salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_MCA);
 288        salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_INIT);
 289        salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
 290        add_timer(&salinfo_timer);
 291}
 292
 293static int
 294salinfo_event_open(struct inode *inode, struct file *file)
 295{
 296        if (!capable(CAP_SYS_ADMIN))
 297                return -EPERM;
 298        return 0;
 299}
 300
 301static ssize_t
 302salinfo_event_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
 303{
 304        struct inode *inode = file->f_path.dentry->d_inode;
 305        struct proc_dir_entry *entry = PDE(inode);
 306        struct salinfo_data *data = entry->data;
 307        char cmd[32];
 308        size_t size;
 309        int i, n, cpu = -1;
 310
 311retry:
 312        if (cpus_empty(data->cpu_event) && down_trylock(&data->mutex)) {
 313                if (file->f_flags & O_NONBLOCK)
 314                        return -EAGAIN;
 315                if (down_interruptible(&data->mutex))
 316                        return -EINTR;
 317        }
 318
 319        n = data->cpu_check;
 320        for (i = 0; i < nr_cpu_ids; i++) {
 321                if (cpu_isset(n, data->cpu_event)) {
 322                        if (!cpu_online(n)) {
 323                                cpu_clear(n, data->cpu_event);
 324                                continue;
 325                        }
 326                        cpu = n;
 327                        break;
 328                }
 329                if (++n == nr_cpu_ids)
 330                        n = 0;
 331        }
 332
 333        if (cpu == -1)
 334                goto retry;
 335
 336        ia64_mlogbuf_dump();
 337
 338        /* for next read, start checking at next CPU */
 339        data->cpu_check = cpu;
 340        if (++data->cpu_check == nr_cpu_ids)
 341                data->cpu_check = 0;
 342
 343        snprintf(cmd, sizeof(cmd), "read %d\n", cpu);
 344
 345        size = strlen(cmd);
 346        if (size > count)
 347                size = count;
 348        if (copy_to_user(buffer, cmd, size))
 349                return -EFAULT;
 350
 351        return size;
 352}
 353
 354static const struct file_operations salinfo_event_fops = {
 355        .open  = salinfo_event_open,
 356        .read  = salinfo_event_read,
 357};
 358
 359static int
 360salinfo_log_open(struct inode *inode, struct file *file)
 361{
 362        struct proc_dir_entry *entry = PDE(inode);
 363        struct salinfo_data *data = entry->data;
 364
 365        if (!capable(CAP_SYS_ADMIN))
 366                return -EPERM;
 367
 368        spin_lock(&data_lock);
 369        if (data->open) {
 370                spin_unlock(&data_lock);
 371                return -EBUSY;
 372        }
 373        data->open = 1;
 374        spin_unlock(&data_lock);
 375
 376        if (data->state == STATE_NO_DATA &&
 377            !(data->log_buffer = vmalloc(ia64_sal_get_state_info_size(data->type)))) {
 378                data->open = 0;
 379                return -ENOMEM;
 380        }
 381
 382        return 0;
 383}
 384
 385static int
 386salinfo_log_release(struct inode *inode, struct file *file)
 387{
 388        struct proc_dir_entry *entry = PDE(inode);
 389        struct salinfo_data *data = entry->data;
 390
 391        if (data->state == STATE_NO_DATA) {
 392                vfree(data->log_buffer);
 393                vfree(data->oemdata);
 394                data->log_buffer = NULL;
 395                data->oemdata = NULL;
 396        }
 397        spin_lock(&data_lock);
 398        data->open = 0;
 399        spin_unlock(&data_lock);
 400        return 0;
 401}
 402
 403static void
 404call_on_cpu(int cpu, void (*fn)(void *), void *arg)
 405{
 406        cpumask_t save_cpus_allowed = current->cpus_allowed;
 407        cpumask_t new_cpus_allowed = cpumask_of_cpu(cpu);
 408        set_cpus_allowed(current, new_cpus_allowed);
 409        (*fn)(arg);
 410        set_cpus_allowed(current, save_cpus_allowed);
 411}
 412
 413static void
 414salinfo_log_read_cpu(void *context)
 415{
 416        struct salinfo_data *data = context;
 417        sal_log_record_header_t *rh;
 418        data->log_size = ia64_sal_get_state_info(data->type, (u64 *) data->log_buffer);
 419        rh = (sal_log_record_header_t *)(data->log_buffer);
 420        /* Clear corrected errors as they are read from SAL */
 421        if (rh->severity == sal_log_severity_corrected)
 422                ia64_sal_clear_state_info(data->type);
 423}
 424
 425static void
 426salinfo_log_new_read(int cpu, struct salinfo_data *data)
 427{
 428        struct salinfo_data_saved *data_saved;
 429        unsigned long flags;
 430        int i;
 431        int saved_size = ARRAY_SIZE(data->data_saved);
 432
 433        data->saved_num = 0;
 434        spin_lock_irqsave(&data_saved_lock, flags);
 435retry:
 436        for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
 437                if (data_saved->buffer && data_saved->cpu == cpu) {
 438                        sal_log_record_header_t *rh = (sal_log_record_header_t *)(data_saved->buffer);
 439                        data->log_size = data_saved->size;
 440                        memcpy(data->log_buffer, rh, data->log_size);
 441                        barrier();      /* id check must not be moved */
 442                        if (rh->id == data_saved->id) {
 443                                data->saved_num = i+1;
 444                                break;
 445                        }
 446                        /* saved record changed by mca.c since interrupt, discard it */
 447                        shift1_data_saved(data, i);
 448                        goto retry;
 449                }
 450        }
 451        spin_unlock_irqrestore(&data_saved_lock, flags);
 452
 453        if (!data->saved_num)
 454                call_on_cpu(cpu, salinfo_log_read_cpu, data);
 455        if (!data->log_size) {
 456                data->state = STATE_NO_DATA;
 457                cpu_clear(cpu, data->cpu_event);
 458        } else {
 459                data->state = STATE_LOG_RECORD;
 460        }
 461}
 462
 463static ssize_t
 464salinfo_log_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
 465{
 466        struct inode *inode = file->f_path.dentry->d_inode;
 467        struct proc_dir_entry *entry = PDE(inode);
 468        struct salinfo_data *data = entry->data;
 469        u8 *buf;
 470        u64 bufsize;
 471
 472        if (data->state == STATE_LOG_RECORD) {
 473                buf = data->log_buffer;
 474                bufsize = data->log_size;
 475        } else if (data->state == STATE_OEMDATA) {
 476                buf = data->oemdata;
 477                bufsize = data->oemdata_size;
 478        } else {
 479                buf = NULL;
 480                bufsize = 0;
 481        }
 482        return simple_read_from_buffer(buffer, count, ppos, buf, bufsize);
 483}
 484
 485static void
 486salinfo_log_clear_cpu(void *context)
 487{
 488        struct salinfo_data *data = context;
 489        ia64_sal_clear_state_info(data->type);
 490}
 491
 492static int
 493salinfo_log_clear(struct salinfo_data *data, int cpu)
 494{
 495        sal_log_record_header_t *rh;
 496        unsigned long flags;
 497        spin_lock_irqsave(&data_saved_lock, flags);
 498        data->state = STATE_NO_DATA;
 499        if (!cpu_isset(cpu, data->cpu_event)) {
 500                spin_unlock_irqrestore(&data_saved_lock, flags);
 501                return 0;
 502        }
 503        cpu_clear(cpu, data->cpu_event);
 504        if (data->saved_num) {
 505                shift1_data_saved(data, data->saved_num - 1);
 506                data->saved_num = 0;
 507        }
 508        spin_unlock_irqrestore(&data_saved_lock, flags);
 509        rh = (sal_log_record_header_t *)(data->log_buffer);
 510        /* Corrected errors have already been cleared from SAL */
 511        if (rh->severity != sal_log_severity_corrected)
 512                call_on_cpu(cpu, salinfo_log_clear_cpu, data);
 513        /* clearing a record may make a new record visible */
 514        salinfo_log_new_read(cpu, data);
 515        if (data->state == STATE_LOG_RECORD) {
 516                spin_lock_irqsave(&data_saved_lock, flags);
 517                cpu_set(cpu, data->cpu_event);
 518                salinfo_work_to_do(data);
 519                spin_unlock_irqrestore(&data_saved_lock, flags);
 520        }
 521        return 0;
 522}
 523
 524static ssize_t
 525salinfo_log_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
 526{
 527        struct inode *inode = file->f_path.dentry->d_inode;
 528        struct proc_dir_entry *entry = PDE(inode);
 529        struct salinfo_data *data = entry->data;
 530        char cmd[32];
 531        size_t size;
 532        u32 offset;
 533        int cpu;
 534
 535        size = sizeof(cmd);
 536        if (count < size)
 537                size = count;
 538        if (copy_from_user(cmd, buffer, size))
 539                return -EFAULT;
 540
 541        if (sscanf(cmd, "read %d", &cpu) == 1) {
 542                salinfo_log_new_read(cpu, data);
 543        } else if (sscanf(cmd, "clear %d", &cpu) == 1) {
 544                int ret;
 545                if ((ret = salinfo_log_clear(data, cpu)))
 546                        count = ret;
 547        } else if (sscanf(cmd, "oemdata %d %d", &cpu, &offset) == 2) {
 548                if (data->state != STATE_LOG_RECORD && data->state != STATE_OEMDATA)
 549                        return -EINVAL;
 550                if (offset > data->log_size - sizeof(efi_guid_t))
 551                        return -EINVAL;
 552                data->state = STATE_OEMDATA;
 553                if (salinfo_platform_oemdata) {
 554                        struct salinfo_platform_oemdata_parms parms = {
 555                                .efi_guid = data->log_buffer + offset,
 556                                .oemdata = &data->oemdata,
 557                                .oemdata_size = &data->oemdata_size
 558                        };
 559                        call_on_cpu(cpu, salinfo_platform_oemdata_cpu, &parms);
 560                        if (parms.ret)
 561                                count = parms.ret;
 562                } else
 563                        data->oemdata_size = 0;
 564        } else
 565                return -EINVAL;
 566
 567        return count;
 568}
 569
 570static const struct file_operations salinfo_data_fops = {
 571        .open    = salinfo_log_open,
 572        .release = salinfo_log_release,
 573        .read    = salinfo_log_read,
 574        .write   = salinfo_log_write,
 575};
 576
 577static int __cpuinit
 578salinfo_cpu_callback(struct notifier_block *nb, unsigned long action, void *hcpu)
 579{
 580        unsigned int i, cpu = (unsigned long)hcpu;
 581        unsigned long flags;
 582        struct salinfo_data *data;
 583        switch (action) {
 584        case CPU_ONLINE:
 585        case CPU_ONLINE_FROZEN:
 586                spin_lock_irqsave(&data_saved_lock, flags);
 587                for (i = 0, data = salinfo_data;
 588                     i < ARRAY_SIZE(salinfo_data);
 589                     ++i, ++data) {
 590                        cpu_set(cpu, data->cpu_event);
 591                        salinfo_work_to_do(data);
 592                }
 593                spin_unlock_irqrestore(&data_saved_lock, flags);
 594                break;
 595        case CPU_DEAD:
 596        case CPU_DEAD_FROZEN:
 597                spin_lock_irqsave(&data_saved_lock, flags);
 598                for (i = 0, data = salinfo_data;
 599                     i < ARRAY_SIZE(salinfo_data);
 600                     ++i, ++data) {
 601                        struct salinfo_data_saved *data_saved;
 602                        int j;
 603                        for (j = ARRAY_SIZE(data->data_saved) - 1, data_saved = data->data_saved + j;
 604                             j >= 0;
 605                             --j, --data_saved) {
 606                                if (data_saved->buffer && data_saved->cpu == cpu) {
 607                                        shift1_data_saved(data, j);
 608                                }
 609                        }
 610                        cpu_clear(cpu, data->cpu_event);
 611                }
 612                spin_unlock_irqrestore(&data_saved_lock, flags);
 613                break;
 614        }
 615        return NOTIFY_OK;
 616}
 617
 618static struct notifier_block salinfo_cpu_notifier __cpuinitdata =
 619{
 620        .notifier_call = salinfo_cpu_callback,
 621        .priority = 0,
 622};
 623
 624static int __init
 625salinfo_init(void)
 626{
 627        struct proc_dir_entry *salinfo_dir; /* /proc/sal dir entry */
 628        struct proc_dir_entry **sdir = salinfo_proc_entries; /* keeps track of every entry */
 629        struct proc_dir_entry *dir, *entry;
 630        struct salinfo_data *data;
 631        int i, j;
 632
 633        salinfo_dir = proc_mkdir("sal", NULL);
 634        if (!salinfo_dir)
 635                return 0;
 636
 637        for (i=0; i < NR_SALINFO_ENTRIES; i++) {
 638                /* pass the feature bit in question as misc data */
 639                *sdir++ = create_proc_read_entry (salinfo_entries[i].name, 0, salinfo_dir,
 640                                                  salinfo_read, (void *)salinfo_entries[i].feature);
 641        }
 642
 643        for (i = 0; i < ARRAY_SIZE(salinfo_log_name); i++) {
 644                data = salinfo_data + i;
 645                data->type = i;
 646                init_MUTEX(&data->mutex);
 647                dir = proc_mkdir(salinfo_log_name[i], salinfo_dir);
 648                if (!dir)
 649                        continue;
 650
 651                entry = proc_create_data("event", S_IRUSR, dir,
 652                                         &salinfo_event_fops, data);
 653                if (!entry)
 654                        continue;
 655                *sdir++ = entry;
 656
 657                entry = proc_create_data("data", S_IRUSR | S_IWUSR, dir,
 658                                         &salinfo_data_fops, data);
 659                if (!entry)
 660                        continue;
 661                *sdir++ = entry;
 662
 663                /* we missed any events before now */
 664                for_each_online_cpu(j)
 665                        cpu_set(j, data->cpu_event);
 666
 667                *sdir++ = dir;
 668        }
 669
 670        *sdir++ = salinfo_dir;
 671
 672        init_timer(&salinfo_timer);
 673        salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
 674        salinfo_timer.function = &salinfo_timeout;
 675        add_timer(&salinfo_timer);
 676
 677        register_hotcpu_notifier(&salinfo_cpu_notifier);
 678
 679        return 0;
 680}
 681
 682/*
 683 * 'data' contains an integer that corresponds to the feature we're
 684 * testing
 685 */
 686static int
 687salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data)
 688{
 689        int len = 0;
 690
 691        len = sprintf(page, (sal_platform_features & (unsigned long)data) ? "1\n" : "0\n");
 692
 693        if (len <= off+count) *eof = 1;
 694
 695        *start = page + off;
 696        len   -= off;
 697
 698        if (len>count) len = count;
 699        if (len<0) len = 0;
 700
 701        return len;
 702}
 703
 704module_init(salinfo_init);
 705